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Optimal insurance with adverse selection
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We solve the principal–agent problem of a monopolist insurer selling to an agent
whose riskiness (loss chance) is private information, a problem introduced in
Stiglitz’s (1977) seminal paper.

For an arbitrary type distribution, we prove several properties of optimal
menus, such as efficiency at the top and downward distortions elsewhere. We
show that these results extend beyond the insurance problem we emphasize. We
also prove that the principal always prefers an agent facing a larger loss and prefers
a poorer one if the agent’s risk aversion decreases with wealth.

For the standard case of a continuum of types and a smooth density, we show
that, under the mild assumptions of a log-concave density and decreasing abso-
lute risk aversion, the optimal premium is backward-S-shaped in the amount of
coverage—first concave, then convex. This curvature result implies that quan-
tity discounts are consistent with adverse selection in insurance, contrary to the
conventional wisdom from competitive models.

Keywords. Principal–agent model, monopoly insurance, common values,
wealth effects, quantity discounts, empirical tests for adverse selection.
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1. Introduction

Moral hazard and adverse selection are fundamental problems in insurance. A large
literature has explored how each affects insurance contracts. The usual approach for
moral hazard is the principal–agent model (which includes the case of monopoly).1 The
usual approach for adverse selection is competitive models, either the Rothschild and
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Stiglitz (1976) model or one of its variants. An exception is the by now classic paper
by Stiglitz (1977), who introduces a model of a monopolist insurer selling to an insuree
who is privately informed about the chance of a loss. He solves the case of two types of
insurees using an intuitive graphical argument and derives a few properties of optimal
insurance with a continuum of types. Still, we know surprisingly little about monopoly
insurance policies, even for the case of a finite number of types or the continuum-type
case distributed according to a continuous density function.

We solve the problem of a monopolist insurer selling to a risk averse agent (the in-
suree) who is privately informed about the chance of suffering a loss. This problem
is important for at least two reasons. First, from a technical standpoint, it does not
fit the standard principal–agent model of a monopolist selling to a privately informed
consumer (e.g., Maskin and Riley 1984): the agent’s risk aversion implies that there are
wealth effects (except for the constant absolute risk aversion case, henceforth CARA), the
agent’s type enters the principal’s objective function directly (common values), and the
agent’s reservation utility is type dependent. Second, most of the received wisdom re-
garding adverse selection in insurance comes from competitive markets models follow-
ing Rothschild and Stiglitz (1976), so it is important to explore the opposite benchmark
of a monopoly insurer. Since several recent empirical papers find evidence of market
power in insurance markets, the need for such analysis is even more pressing.

We divide the paper into two parts. In the first part, we allow for an arbitrary type dis-
tribution, imposing neither a finite support nor a continuous density function. Despite
the generality, we extend all of the known results for the two-type case and add others
(Theorem 1): the type with the highest chance of a loss gets full coverage (efficiency at
the top); all other types get less than full coverage (downward distortions elsewhere); the
premium and coverage are nonnegative for all types and co-monotone; and the princi-
pal makes positive expected profit (there are always gains to trade). We also argue that
the elementary arguments we use in the proofs of these results can be adapted to other
screening problems in addition to the canonical insurance problem we emphasize.

As mentioned, one difference with the standard monopoly model is that the agent’s
wealth matters. An important question is how the agent’s initial wealth and the size of
the loss affect the principal’s profit. Using monotone methods, we prove a new compar-
ative static result showing that the principal always prefers an agent facing a larger loss
and prefers a poorer one if the agent’s risk aversion decreases with wealth (Theorem 2).

In the second part, we specialize to the case of a continuum of types distributed ac-
cording to a smooth density. The additional structure allow us to derive new conditions
for complete sorting of types (Theorem 3), exclusion (or inclusion) of types, and curva-
ture of the menu. Wealth effects prevent us from bypassing optimal control arguments,
as is usually done in the quasilinear case.

Our most surprising result is on the curvature of the premium as a function of
the coverage amount. We show that under two mild assumptions—the density is log-
concave and the agent’s risk aversion decreases with wealth—the premium is backward-
S-shaped (Theorem 4)—first concave, then convex—a shape that is consistent with
global quantity discounts. The curvature property sharply distinguishes a monopolist



Theoretical Economics 7 (2012) Optimal insurance with adverse selection 573

insurer from a “standard” (i.e., Maskin–Riley) monopolist and from competitive insur-
ers. Maskin and Riley (1984) show that in their model, the price–quantity menu is glob-
ally concave under mild assumptions. By contrast, a monopoly insurer’s menu has a
convex segment for coverage close to full insurance.

An implication of many competitive insurance models (e.g., Rothschild and Stiglitz
1976) is that insurers offer global quantity premia, and this is often tested in the em-
pirical literature on adverse selection. A monopolist insurer, however, can offer global
quantity discounts. Our curvature result shows that we cannot simply infer the absence
of adverse selection from the absence of quantity premia.

To illustrate the results and for counterexamples, we derive in closed form the so-
lution for the CARA case with a continuum of types and for the square-root utility case
with two types. In particular, the CARA example reveals that a monotone hazard rate
does not suffice for complete sorting. We also use it to illustrate how the presence of
common values affects known results on sorting and curvature in the standard private-
values monopoly model.

Related literature

This paper is closely related to four literatures. First, it is related to the literature on in-
surance with adverse selection started by Rothschild and Stiglitz (1976) for competition,
and by Stiglitz (1977) for monopoly; each focuses on the two-type case. And although
Stiglitz (1977) contains some results on the continuum of types case, he does not provide
general properties of the solution.2 We solve a more general problem than does Stiglitz
(1977), and we compare the predictions of monopoly and competition. In independent
work, Szalay (2008) solves the smooth-density case with a different version of the opti-
mal control problem than ours (compare our Section 4 with his Section 3). His solution
sheds light on some properties of the optimal contract and allows him to rederive sev-
eral of Stiglitz’s results easily. But none of our main results—our four theorems—follows
from his.3

Second, a large literature tests implications of the joint hypothesis of adverse selec-
tion and (some version of) competition (e.g., Chiappori et al. 2006, Cawley and Philip-
son 1999). Our results help separate implications of adverse selection from competition
(e.g., that monopoly insurers can offer quantity discounts).

Third, the paper is related to the literature on principal–agent models with privately
informed agents, illustrated by Spence (1977), Mussa and Rosen (1978), Maskin and
Riley (1984), Guesnerie and Laffont (1984), Matthews and Moore (1987), Page (1992),
Jullien (2000), Nöldeke and Samuelson (2007), and Hellwig (2010). The complications of

2The renegotiation stage in Fudenberg and Tirole (1990) resembles a monopoly insurance problem in
which the (random) effort chosen in the first stage is the agent’s type. With a continuum of effort levels,
they derive an optimality condition similar to ours in Section 4. But they mainly use it to find the support
of the equilibrium effort distribution and do not explore sorting, exclusion, or curvature.

3Schlesinger (1983) derives the first-order condition for yet another version of the monopoly insurer’s
optimal control problem for the special case of CARA and points out that the optimal menu need not be
either concave or convex (but does not provide any results on curvature).
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the insurance problem—wealth effects, common values, and type-dependent reserva-
tion utilities—are absent in Mussa and Rosen (1978) and in Maskin and Riley (1984),
while only wealth effects appear in Matthews and Moore (1987) and only common
values appear in Guesnerie and Laffont (1984).4 Jullien (2000) allows type-dependent
reservation utility, and Nöldeke and Samuelson (2007) allow for common values, but
each imposes quasilinear preferences (and focuses on particular aspects of the solu-
tion). Hellwig (2010) derives the no-pooling and efficiency-at-the-top results in a gen-
eral principal–agent problem with wealth effects, using a nontrivial extension of the
maximum principle. We handle the insurance problem with a general type distribution
using elementary arguments.

Finally, the paper is related to Thiele and Wambach (1999) and Chade and Vera de Se-
rio (2011), who determine how an agent’s wealth affects the principal’s profit with moral
hazard. We provide a complete analysis of the issue for our adverse selection problem.

2. The model

We model the monopolist’s choice of insurance policies as a principal–agent problem
with adverse selection. The agent (insuree) has initial wealth w > 0, faces a potential
loss � ∈ (0�w) with chance θ ∈ (0�1), and has risk preferences represented by a strictly
increasing and strictly concave von Neumann–Morgenstern utility function u(·) on R+.
The loss chance θ, from now on the agent’s type, is private information to the agent.

The principal (monopolist insurer) is risk neutral, with beliefs about the agent’s type
given by a cumulative distribution function F(·)with support�⊂ (0�1).5 Let θ and θ be
the smallest and largest elements of �; by assumption, 0< θ< θ < 1.

For each θ ∈�, the principal chooses a contract (x� t) ∈ R
2 consisting of a premium

t and an indemnity payment x in the event of a loss. The expected profit from a contract
(x� t) chosen by a type-θ agent is π(x� t� θ)= t−θx, and the ex ante expected profit from
a (measurable) menu of contracts (x(θ)� t(θ))θ∈� is

∫
�π(x(θ)� t(θ)�θ)dF(θ).

The expected utility of a type-θ agent for a contract (x� t) isU(x� t� θ)= θu(w−�+x−
t)+ (1 − θ)u(w− t). The function U satisfies the following strict single-crossing property
(henceforth SSCP): for any two distinct contracts (x′� t ′) and (x� t) with (x′� t ′) ≥ (x� t)

and θ′ > θ, ifU(x′� t ′� θ)≥U(x� t� θ), thenU(x′� t ′� θ′) > U(x� t� θ′). If u(·) is differentiable
with u′(·) > 0, this is equivalent in our insurance setting to the Spence–Mirrlees SSCP
that −Ux(x� t� θ)/Ut(x� t� θ) is strictly increasing in θ; i.e., indifference curves cross once,
with higher types being willing to pay more for a marginal increase in insurance.

4 Biais et al. (2000, Section 4), consider a risk neutral monopoly market maker who trades a risky asset
with a risk averse investor who has CARA utility and private information about the asset’s mean return and
his endowment. The risk neutral market maker can be viewed as an insurer and the investor can be viewed
as an insuree, with the private information about the mean return as information about the mean loss in an
insurance setting (rather than the probability of a loss). But the difference in the definition of a type leads
to completely different conditions for separation and curvature.

5The support of a probability measure on the real line (endowed with the Borel σ-field) is the smallest
closed set of probability 1. Formally, �= {θ ∈ (0�1) | F(θ+ ε)− F(θ− ε) > 0�∀ε > 0}.
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By the revelation principle, we consider (measurable) menus (x(θ)� t(θ))θ∈� that the
agent accepts and announces its true type θ. Formally, the principal solves

max
x(·)�t(·)

∫
�
π(x(θ)� t(θ)�θ)dF(θ)

subject to

U(x(θ)� t(θ)�θ)≥U(0�0� θ) ∀θ ∈� (P)

U(x(θ)� t(θ)�θ)≥U(x(θ′)� t(θ′)�θ) ∀θ�θ′ ∈�	 (IC)

As mentioned, this problem is not a special case of the standard monopoly problem
(e.g., Maskin and Riley 1984) for three reasons: In the standard problem, the agent has
quasilinear utility, her type does not directly affect the principal’s profit (private values),
and her type does not enter her reservation utility. Here, the agent’s risk aversion implies
nontrivial wealth effects (except for CARA preferences), the agent’s type directly affects
the principal’s profit (common values), and the agent’s type enters her reservation utility.

We shall see that the first two differences are significant. Consider common values.
In the standard, private-values monopoly model, profit is increasing in type whether
information is complete (first-best) or incomplete. In our model, however, even first-
best profit is not increasing in type (higher types demand more insurance, but the cost
of selling to them is higher). Indeed, first-best profit from a type equals its risk pre-
mium, which is concave in the type—first increasing, then decreasing. Moreover, with
incomplete information, profit from the highest type can easily be negative, implying
that the principal does not offer quantity discounts for high coverage, as we explain in
Section 5.6 In addition, common values lead to different sufficient conditions for com-
plete sorting and for the presence or absence of quantity discounts, and wealth effects
rule out standard arguments from the quasilinear case, substantially complicating the
analysis.

3. The general case: Arbitrary type distribution

We begin with some general properties of optimal menus and then explore some com-
parative statics, with emphasis on how changes in the agent’s wealth affect the princi-
pal’s profit. We stress that these results hold for an arbitrary type support �⊂ (0�1) and
a general cumulative distribution function on it. Thus, they hold in the canonical special
cases of a finite number of types and of a continuum of types with a smooth density. We
think the extra generality is important for at least two reasons. First, if we interpret the
type distribution as the principal’s prior belief, rather than an empirical frequency, there
seems to be little justification for putting restrictions on it. And although we specialize
later to the smooth density case, it is worth understanding what follows if we do not re-
strict the type distribution. Second, as Hellwig (2010) points out, in some applications,

6We leave as an open question conditions under which profit is monotone in type in the second-best
case. The question is potentially important since Chiappori et al. (2006) use a “profit monotonicity”
condition—profit does not increase from contracts with higher coverage—to test for adverse selection and
competition.
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type distributions with both interval support and mass points arise naturally. Suppose,
for example, that the (common) prior has no mass points and that there is a positive
chance that the agent privately learns its type before the principal offers the menu, but
also a positive chance the agent learns nothing about its type. Then the principal faces
a type distribution with interval support but a mass point at its mean.

3.1 Useful lemmata

Consider a contract that does not give full coverage. Now change the indemnity in the
direction of (but not beyond) full coverage and adjust the premium so that expected
utility of a type falls. Then the principal’s profit from that type increases. We repeatedly
use this result to find improvements to a feasible menu.

Lemma 1 (Profitable changes). Let θ ∈ �, and let |x′′ − �| < |x′ − �| with (x′′ − �)(x′ −
�)≥ 0. If U(x′′� t ′′� θ)≤U(x′� t ′� θ), then π(x′′� t ′′� θ) > π(x′� t ′� θ).

Proof. Fix θ ∈�. Since the agent is strictly risk averse and U(x′� t ′� θ) ≥ U(x′′� t ′′� θ), it
follows that t ′′ − t ′ > θ(x′′ −x′); otherwise the consumption plan generated by the (x′′� t ′′)
would second-order stochastically dominate the plan generated by (x′� t ′) and the agent
would strictly prefer (x′′� t ′′) to (x′� t ′). Thus, t ′′ − θx′′ > t ′ − θx′. �

Intuitively, if a change from a given contract offers more insurance and yet makes
the agent worse off, then the additional insurance must be “actuarially unfair.” But then
the change increases expected profit.

As is well understood, the next result follows from the incentive compatibility con-
straints (IC) and the strict single-crossing property. We omit the proof.

Lemma 2 (Monotonicity). Any feasible menu is monotone in the agent’s type: x(θ), t(θ),
and x(θ)− t(θ) are increasing in θ.

An immediate implication of this result is that higher risks (types) obtain more cover-
age at an optimal menu, a property that serves as a basis for testing for adverse selection
in the empirical literature cited in the Introduction.

3.2 Properties of optimal menus

We now list several properties of optimal menus for an arbitrary type distribution.

Theorem 1 (Properties of an optimal menu). Any solution to the principal’s problem is
F-almost everywhere (a.e.) equal to a solution (x(θ)� t(θ))θ∈� satisfying

(i) (No Overinsurance) x(θ)≤ � for all θ;

(ii) (Nonnegativity) x(θ), t(θ), and x(θ)− t(θ) are nonnegative for all θ;

(iii) (Participation) (P) is binding for the lowest type θ;
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(iv) (Efficiency at the top) x(θ)= �;

(v) (No pooling at the top) If u is C1 with u′ > 0, then x(θ) < � for all θ < θ;

(vi) (Gains to Trade) The principal’s expected profit is positive.

Proofs that are not in the text are in the Appendix.
The proof has many steps, but except for a few measure-theoretic details, each is

elementary, requiring only a little more work than for the finite-type case. We prove parts
(i), (ii), and (iv) by contraposition: we use Lemma 1 to show that if a feasible menu does
not satisfy one of these properties, then there is another feasible menu that increases
profit for a positive measure of agents.7 If (iii) fails for a feasible menu, the principal
can reduce the utility of each type in each state by the same amount, so profit rises but
IC still holds, and if the reduction is small enough, (P) still holds. For (v), if a positive
measure of types gets full coverage, the principal can feasibly reduce the coverage of a
fraction of those types and raise the premium charged to the remaining types with full
coverage. The premium increase leads to a positive first-order increase in profit, while
the coverage reduction has only a second-order effect on profit. Finally, we prove (vi)
by showing that there is a pooling contract that is accepted by a positive mass of high
enough types and yields positive expected profit.

Stiglitz (1977) derives (iii)–(v) for the two-type case and for the continuum case with
a smooth positive density. In independent work, Hellwig (2010) proves (iv) and (v) for a
principal–agent problem with wealth effects and an arbitrary type distribution, but with
private values. Much of his contribution is to derive and exploit the first-order condi-
tions for an optimal control problem with discontinuous densities. We prove these prop-
erties for an arbitrary type distribution using elementary arguments, invoking Lemma 1
to find profitable deviations from a feasible menu that fails one of the properties.

Although the proof of Theorem 1 is short, the only part where we used the assump-
tions that the type is the loss chance and the agent maximizes expected utility is in
the proof of part (iii), that participation binds for the lowest type. In the Appendix, we
prove that all of the conclusions of Theorem 1 hold simply if U satisfies the strict single-
crossing property in (x� t) and θ, and either the first-best quantity does not depend on
type or wealth, or utility is quasilinear in the transfer t. So the conclusions of Theorem 1
extend to the following environments:

• An insurance model in which the agent does not satisfy the expected utility hy-
pothesis (but we impose the SSCP as a primitive assumption);8

7Since (i) and (ii) show that there is no loss of generality in bounding the set of menus, existence of a
solution to the principal’s problem follows from Page (1992).

8That Theorem 1 extends to this setting complements Machina (1995), who explores whether well known
properties of insurance under complete information extend to (smooth) nonexpected utility models. No-
tice that the assumption of the SSCP is important, since the SSCP can fail without expected utility; e.g.,
Ormiston and Schlee (2001) show that this property fails for mean–variance preferences.
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• An insurance model in which the type θ orders the agents by their degree of risk
aversion (but we impose no overinsurance as a primitive assumption);9

• The standard monopoly model pricing model with quasilinear preferences and no
wealth effects, but allowing for common values.10

Allowing common values in the standard monopoly model is especially useful if we think
of the type as the quality of the good exchanged in a procurement problem: the agent
is a supplier of the good who is privately informed about its quality θ with preferences
over contracts represented by t− c(x�θ), where c satisfies strictly increasing differences;
the principal is a monopsony buyer with preferences over contracts given by θx− t.

3.3 Comparative statics

In this section, we still refrain from any assumption on the type distribution. The main
result is that the principal’s maximum expected profit is increasing with the agent’s loss
size or with risk aversion, and decreasing with wealth if risk aversion decreases with
wealth.

3.3.1 The principal prefers a poorer agent The agent’s risk aversion introduces wealth
effects that are absent in the standard screening model with quasilinear utility: here
changing the wealth endowment changes the set of feasible menus. An important ques-
tion is how the agent’s wealth endowment affects the principal’s profit: Does the princi-
pal prefer a richer or poorer agent? Does he prefer one facing a larger or smaller potential
loss?

In the first-best case (observable types), the answers are immediate: the risk pre-
mium is higher if the loss amount or risk aversion is higher, or the agent’s initial wealth is
smaller and risk aversion decreases with wealth (DARA). The first-best argument, how-
ever, fails with adverse selection, since the incentive compatibility and participation
constraints change with the agent’s wealth endowment or risk aversion. And, unfor-
tunately, the constraint sets cannot be ordered by inclusion as wealth or risk aversion
changes. Despite this nontrivial complication, the principal still prefers a poorer agent
(under DARA) and a larger loss size.

It is important to emphasize that we analyze the principal’s preferences over the ini-
tial wealth of the agent for a given loss amount. Clearly, the principal might prefer a
richer agent if the potential loss rises with wealth. Also, recall that we assume � < w; it
should be understood that we consider only changes in w and � that preserve this in-
equality. Since t ≤ x≤ � in an optimal menu, wealth is positive in both states whenever
� < w, thereby avoiding problems of liquidity constraints.

Theorem 2 (Wealth effects). The principal’s maximum profit is

9In this setting, indifference curves “double-cross” below and above full insurance. The assumption rules
out the second crossing and thus the SCCP holds.

10For the standard monopoly model, the loss amount � is replaced by the first-best output for the highest
demand type. Unlike the insurance model, however, “no pooling at the top” and “no overprovision” do not
imply “downward distortions below the top.”
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(i) increasing in the loss size �;

(ii) increasing in the agent’s risk aversion;

(iii) decreasing in wealth w if the agent’s preferences satisfy DARA.

The proof of each part is similar. Fix an optimal menu. After an increase in risk
aversion or the loss amount, the menu continues to satisfy the downward incentive and
participation constraints; i.e., lower contracts (involving less insurance at a lower pre-
mium) become less attractive. We do, however, need to worry about possible violations
of upward incentive constraints. Now, if we simply let each type choose its best con-
tract from the original menu, each agent type will choose either the same contract or a
higher contract. If the chosen contract is higher, then by Lemma 1, the principal’s profit
from that type does not fall. Since the resulting menu satisfies (IC) and (P), maximum
expected profit cannot fall.11

Contrast Theorem 2 with how the agent’s wealth affects the principal under moral
hazard (Thiele and Wambach 1999). Under moral hazard, a fall in wealth makes the
agent less lazy (loosens the incentive constraints), but under DARA, much stronger con-
ditions are imposed to conclude that the principal prefers a poorer agent (namely, the
coefficient of prudence is less than three times the coefficient of absolute risk aversion).
With adverse selection, a decrease in agent’s wealth loosens both the downward incen-
tive and the participation constraints under just DARA, and we show that the potential
tightening of the upward incentive constraints does not lower expected profit.

The proof outline of Theorem 2 suggests a conjecture about what happens to the
menu as risk aversion or the loss amount increases: each type gets a higher contract. We
were surprised that this conjecture is false, as the following example shows.

Example 1 (Menu nonmonotonicity in risk aversion). Suppose the agent can be one of
two types, θ1 < θ2, and let 0< fi < 1, i= 1�2, be the chance that θ= θi. Assume also that
the agent’s utility function is u(·)= √

(·), which satisfies DARA. We show in the Appendix
that for any (θ1� θ2� ��w) with θ1 < θ2 and � < w, the premium of the high type t(θ2) is
locally strictly increasing in w if f1 is sufficiently close to 1 and the loss amount is small
enough. That is, the high type pays a lower premium when he becomes poorer (hence
more risk averse). ♦

3.3.2 Principal’s profit and changes in the type distribution As mentioned, in the stan-
dard monopoly pricing model with private values, the principal’s profit is higher for
higher types under both complete and incomplete information, so a first-order stochas-
tic dominance (FOSD) shift in the type distribution increases the principal’s expected
profit. In our monopoly insurance model, complete information profit is the agent’s
risk premium, which is strictly concave in the loss chance and equals 0 at θ = 0 and at

11Machina’s 1995 extension of expected-utility comparative statics of increased risk aversion on insur-
ance demand to smooth nonexpected utility representations suggests that at least part (ii) of Theorem 2
extends to risk averse nonexpected utility preferences after we impose the single-crossing property. But we
conjecture that additional assumptions are needed to extend parts (i) and (iii).
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θ = 1. Since the risk premium is strictly decreasing over an interval of types, it is easy
to construct examples in which an FOSD shift in the type distribution lowers the princi-
pal’s profit. Let 0 < θ1 < θ2 < 1 be two types in the interval on which the risk premium
is strictly decreasing, and consider two different two-point distributions with support
θi ± ε for i = 1�2. As ε tends to 0, profit from distribution i tends to the risk premium
at θi, so for ε small enough, profit is lower for the higher distribution.

Since the risk premium is concave in type, a natural conjecture is that the principal’s
profit falls with a mean-preserving increase in risk in the type distribution. The next
example shows that this conjecture is false.

Example 2 (An increase in risk can raise the principal’s profit). Suppose the agent can
be one of two types, θ1 < θ2, and let 0< fi < 1, i= 1�2, be their probability distribution.
Assume that u(·) is twice-continuously differentiable, that θ2 is in the interval of types
over which the risk premium is strictly increasing, and that f1 is small enough so that
θ1 is excluded from the optimal menu (see Stiglitz 1977 and Section 4.3). Thus, the op-
timal contract offers the high type full insurance at the first-best premium t(θ2) = w −
h(θ2u(w− �)+ (1 − θ2)u(w)), which yields an expected profit equal to f2 ×π(θ2), where
π(θ2) is the risk premium at θ2 (i.e., π(θ2) = w − θ2� − h(θ2u(w − �) + (1 − θ2)u(w))).
Consider an increase in θ2 and a decrease in θ1 so that the mean type is unchanged, but
the changes are sufficiently small so that the low type continues to be excluded and the
high type continues to fall in the interval in which the risk premium strictly increases.
Then this increase in risk raises the principal’s expected profit. ♦

3.4 A reformulation

So far we have restricted contracts to be deterministic: each type is offered a single
premium–indemnity pair. In this section, we show that this restriction is without loss
of generality (w.l.o.g.). The simplest way to prove this result is to reformulate the prob-
lem as one in which the principal chooses a menu of state-contingent utilities, rather
than a menu of premium–indemnity pairs. We also use this formulation in the rest of
the paper to derive other properties of optimal contracts.

Given a menu (x(θ)� t(θ))θ∈�, define, for each θ ∈�,

un(θ) = u(w− t(θ))

(θ) = u(w− t(θ))− u(w− �+ x(θ)− t(θ))	

A menu (x(θ)� t(θ))θ∈� uniquely defines a menu (un(θ)�
(θ))θ∈�. Conversely, given
(un(θ)�
(θ))θ∈�, we can recover (x(θ)� t(θ))θ∈� by (henceforth, h= u−1)

t(θ) = w− h(un(θ)) (1)

x(θ) = l− (
h(un(θ))− h(un(θ)−
(θ)))	 (2)

An equivalent formulation of the principal’s problem is

max
u(·)�
(·)

∫
�

[
w− θ�− (1 − θ)h(un(θ))− θh(un(θ)−
(θ))]dF(θ)
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subject to

un(θ)− θ
(θ) ≥ un(θ′)− θ
(θ′) ∀θ�θ′ ∈�
un(θ)− θ
(θ) ≥ U(0�0� θ) ∀θ ∈�	

In other words, we can think of a menu of contracts as specifying, for each type θ, a utility
un(θ) in the no loss state, and a change in utility 
(θ) in case of a loss. In this formula-
tion, the constraints are linear in the contracting variables, and the objective function is
strictly concave in them. This formulation makes it clear that stochastic menus cannot
improve upon deterministic ones.

Proposition 1 (Deterministic menus). Any solution to the principal’s problem involves
a deterministic contract for almost all types.

Proof. Suppose the principal offers each type θ in a set of positive probability a con-
tract consisting of random variables (x̃(θ)� t̃(θ)). In the reformulated problem, this im-
plies that the principal offers each type in that same set a contract consisting of random
variables (ũn(θ)� 
̃(θ)). Since the constraints are linear in these variables, any type-θ
agent’s constraints are satisfied if ũn(θ) and 
̃(θ) are replaced with their expected val-
ues. But profit increases from this change, since the objective function is strictly con-
cave. �

Arnott and Stiglitz (1988, Proposition 10), proved a similar result for the two-type
case. Proposition 1 extends it to any number of types arbitrarily distributed. A more
recent contribution is Strausz (2006), who proves that in a principal–agent model with
quasilinear utilities and a finite number of types, random contracts are not optimal if
there is no bunching in any optimal deterministic menu. Our Proposition 1 holds even
if there is bunching in the optimal deterministic menu.

4. Continuum of types: The smooth case

A major objective of the paper is to analyze the curvature of optimal menus (for ex-
ample, the existence of quantity discounts). The issue is of paramount importance in
the analysis of nonlinear pricing models, and, as we explain in Section 4.4.2, it plays a
prominent role in the empirical literature on adverse selection. We now specialize to a
smooth model with a continuum of types. Specifically, we assume that u(·) is C2, with
positive first and negative second derivatives,�= [θ�θ], and F(·) isC2 on�with density
F ′(·)= f (·) that is positive on (θ�θ).12 Except for the possibility of a zero density at the
endpoints, this setup is the most common one used in contracting problems with ad-
verse selection. Under these assumptions, we prove strong results for complete sorting
of types and for the existence of quantity discounts.

12We leave as an open question whether the argument in Appendix A in Maskin and Riley (n.d.) could
be adapted to show that the (w.l.o.g.) continuous solution of our smooth continuum model can be well
approximated by a model with a large, but finite, type set.



582 Chade and Schlee Theoretical Economics 7 (2012)

4.1 The optimal control problem

Let V (θ) be the agent’s indirect utility function for a bounded menu (un(θ)�
(θ))θ∈�
satisfying 
(·) ≥ 0, (IC), and (P), that is, V (θ) = un(θ)− θ
(θ). Since the agent’s objec-
tive is affine in θ, V (·) is convex, and since it is also continuous on [θ�θ] (Lemma 4),
V is absolutely continuous on [θ�θ]. By standard arguments, (IC) holds if and only
if V ′(θ) = −
(θ) almost everywhere and 
(·) is nonincreasing, so there is no loss of
generality in replacing (IC) with these two conditions. Moreover, by Theorem 1(i) and
(ii), we can assume that 0 ≤ 
(θ) ≤ 
0 = u(w) − u(w − �) for all θ ∈ �, while by (iii),
V (θ)=U(0�0� θ). We now write the principal’s problem as an optimal control problem
with a control variable 
(·) (measurable, by monotonicity), an absolutely continuous
state variable V (·), and a free endpoint at V (θ):

max
V (·)�
(·)

∫ θ

θ

[
w− θ�− (1 − θ)h(V (θ)+ θ
(θ))− θh(V (θ)− (1 − θ)
(θ))]f (θ)dθ

subject to


(·) nonincreasing (3)


(θ) ≥ 0 ∀θ (4)


(θ) ≤ 
0 ∀θ (5)

V ′(θ) = −
(θ) for almost all θ (6)

V (θ) = U(0�0� θ) (7)

V (θ) free.

Notice that the optimal control problem is not identical to the original problem, since
the control problem includes constraints (4) and (5) that are absent in the original prob-
lem, and the original problem imposes participation on all types, something the optimal
control problem imposes only on the lowest type (and with equality). The solution to
the optimal control problem nonetheless solves the original problem. It does so since,
in the presence of (4) and (5), constraints (7) and (6) imply the omitted participation
constraints, and (4), (5), and (7) are all justified by Theorem 1.

In the standard model with quasilinear preferences, the objective function is lin-
ear in the indirect utility. The usual next step in that case is to use Fubini’s theorem to
eliminate the transfer and maximize pointwise with respect to the remaining variable,
a great simplification (Guesnerie and Laffont 1984). Since our objective is not linear in
the indirect utility V (·), we are forced to proceed with optimal control arguments.

Consider the “relaxed problem” that ignores (3)–(5), and let λ(·) be the costate vari-
able of the problem. If a solution to the relaxed problem satisfies the omitted con-
straints, then of course it solves the original problem.

The Hamiltonian is

H(V �
�λ�θ)= [
w− θ�− (1 − θ)h(V (θ)+ θ
(θ))

− θh(V (θ)− (1 − θ)
(θ))]f (θ)− λ(θ)
(θ)�
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and by the maximum principle (e.g., Clarke 1976 or Vinter 2000, Chapter 6), at any so-
lution to the relaxed problem, there is an absolutely continuous function λ(·) such that
for almost all θ,

−λ(θ) = f (θ)θ(1 − θ)[h′(V (θ)+ θ
(θ))− h′(V (θ)− (1 − θ)
(θ))] (8)

λ′(θ) = f (θ)
[
(1 − θ)h′(V (θ)+ θ
(θ))+ θh′(V (θ)− (1 − θ)
(θ))] (9)

λ(θ) = 0� (10)

as well as (6) and (7).13

Note that λ(θ)≤ 0, and λ(θ) < 0 if 
(θ) > 0; also λ′(θ) > 0 for almost all θ. Integrate
(9) with respect to θ, use (10), and replace the resulting expression in (8) to find that for
almost all θ,

f (θ)θ(1 − θ)[h′(V (θ)+ θ
(θ))− h′(V (θ)− (1 − θ)
(θ))] =
∫ θ

θ
a(s)f (s)ds� (11)

where a(s)= (1 − s)h′(V (s)+ s
(s))+ sh′(V (s)− (1 − s)
(s)) > 0.
Equation (11) illustrates the standard efficiency versus information rent trade-off of

screening problems: the left side is the marginal benefit (increase in profit) of providing
type θwith additional insurance (lower 
(θ)), i.e., more efficiency, while the right side is
the marginal cost (decrease in profit) of doing so, as it leads to an increase in the infor-
mation rent left to all higher types to ensure that incentive compatibility is satisfied. To
see this last point, note that the cost of giving type θ one more unit of utility is a(θ)f (θ),
but giving θ an additional unit of utility also increases the utility of all higher types by

one unit, and thus the cost to the principal is given by
∫ θ
θ a(s)f (s)ds.

The right side of (11) is continuous in θ. Since the left side f (θ)θ(1 − θ)[h′(V (θ) +
θδ)−h′(V (θ)−(1−θ)δ)] is continuous in θ and strictly increasing in δ, it follows that any
solution 
(·) to (11) is continuous. Hence, any solution to the relaxed problem is almost
everywhere equal to a continuous function (and any discontinuities to the solution to the
relaxed problem are removable). It follows that there is no loss of generality to restrict

(·) to be continuous and hence V (·) to be C1 (the last by Theorem 3 in Milgrom and
Segal 2002). After imposing continuity, (11) implies that the omitted constraint (4) is
satisfied for all types. Note also that (consistent with Theorem 1) 
(θ)= 0 and 
(θ) > 0
for all θ < θ: type θ gets full coverage and all other types get partial coverage.14

Before presenting our results on sorting and curvature, we give the (closed form) so-
lution for the special case of CARA preferences for which wealth affects are absent. We
use it to isolate how the presence of common values affects our results and also for coun-
terexamples. We define ρ(·) to be the hazard rate f (·)/(1 −F(·)) of the type distribution.

13The Hamiltonian is strictly concave in (V �
), so these conditions are also sufficient for optimality.
14This result is immediate if f (θ) > 0. And if f (θ) = 0, then 
(θn) tends to zero for any sequence θn

in � tending to θ. To see this second point, divide both sides of (11) by f (θn) and use the mean value
theorem to write the right side as ψ(θ̂)(1 − F(θn))/f (θn) for some θ̂. The conclusion now follows since
limθ→θ f (θ)/(1 − F(θ))= ∞ (Barlow et al. 1963, pp. 377–378).
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Example 3 (CARA preferences). Set u(z) = −e−rz . Letting v(x�θ) = − log[(1 − θ) +
θer(�−x)]/r, the certainty equivalent of (x� t) is v(x�θ)+w− t, which represents the same
preferences over contracts as U(x� t� θ).15 The optimal indemnity in the relaxed prob-
lem satisfies the first-order condition vx(x�θ)−θ−(vxθ(x�θ)/ρ(θ))= 0 for each θ, which
simplifies to (setting ξ= er(�−x))

θ(1 − θ)[(1 − θ)+ θξ](ξ− 1)− ξ

ρ(θ)
= 0	 (12)

This equation is quadratic in ξ; since ξ≥ 0, we take the positive solution

ξ(θ)=
1

ρ(θ) − θ(1 − θ)(1 − 2θ)+
√(
θ(1 − θ)(1 − 2θ)− 1

ρ(θ)

)2 + 4θ3(1 − θ)3
2θ2(1 − θ) 	 (13)

Since ξ(θ) = er(�−x(θ)), we have x(θ) = �− (logξ(θ)/r) and t(θ) = v(x(θ)�θ)− v(0� θ)−∫ θ
θ vθ(x(s)� s)ds, which completes the solution to the (relaxed) problem. ♦

4.2 Complete sorting

We now determine when the solution to the relaxed problem satisfies constraint (3) by
providing conditions on the distribution of types under which the optimal menu ex-
hibits complete sorting. In the standard contracting model with quasilinear utility and
private values, sufficient conditions for complete sorting can be read easily off the first-
order conditions of the problem. In particular, complete sorting follows in the standard
model if the hazard rate ρ(·) is increasing in θ. To illustrate the challenge of finding
sufficient conditions for complete sorting in our model, suppose for a moment that we
suppress the common values aspect of the model by setting the principal’s marginal cost
of insurance equal to k= θ. In that case, the first-order condition (11) becomes

(1 − k)θh′(V (θ)+ θ
(θ))− k(1 − θ)h′(V (θ)− (1 − θ)
(θ))
(14)

=
∫ θ

θ
a(s�k)f (s)ds/f (θ)�

where

a(s�k)= (1 − k)h′(V (s)+ s
(s))+ kh′(V (s)− (1 − s)
(s))	
Fixing 
(θ) and V (θ), the left side of (14) is strictly increasing in θ. If the right side
were decreasing in θ, then sorting would be complete, and if a were constant, then the
right side would be decreasing if the hazard rate were increasing. Unfortunately, when
we set k = θ (common values), the left side of (14) is not decreasing. And, in general,
monotonicity of the hazard rate does not imply that the right side is increasing.

15Since the certainty equivalent is linear in t, it is simplest to solve for x(·) without transforming the
variables (as in the standard monopoly model). That is, replace t(·) from the objective function, integrate
by parts, and maximize pointwise with respect to x(·), ignoring the monotonicity condition.
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Since the solution 
(·) to (11) is continuous, the integral on the right side of (11) is
differentiable in θ. As the left side has a nonzero derivative with respect to 
, the implicit
function theorem implies that 
(·) is C1 on � (except possibly at the endpoints when f
is zero there), so we can replace (3) with 
′(θ)≤ 0 for all θ ∈�.16

Differentiate (8) with respect to θ and use (6) to obtain, after some algebra,


′(θ)= λ(θ)[f ′(θ)θ(1 − θ)+ f (θ)(1 − 2θ)] − f (θ)θ(1 − θ)λ′(θ)
f (θ)2θ2(1 − θ)2[θh′′(V (θ)+ θ
(θ))+ (1 − θ)h′′(V (θ)− (1 − θ)
(θ))] 	 (15)

Since h′′(·) > 0, the denominator of (15) is positive, and the sign of 
′(θ) depends on the
sign of the numerator. Notice that, consistent with Theorem 1(v), equation (15) implies
that there is no pooling of types at the top; i.e., 
′(θ) < 0.17

We now give three sufficient conditions for complete sorting.

Theorem 3 (Complete sorting: sufficient conditions). The optimal menu completely
sorts all types who get some insurance if one of the following conditions holds.

(i) ρ′(θ)
ρ(θ) >

3θ−1
θ(1−θ) for all θ ∈ [θ�θ].

(ii) f (·) is log-concave and either θ≤ 1/2 or f ′(·)≥ 0.

(iii) f (·) is C1, f ′(·)/f (·) is bounded below on �, and � is sufficiently small (how small
depends on the primitives).

Stiglitz (1977) finds that a sufficient condition for complete sorting is f ′(θ)/f (θ) >
(3θ − 2)/θ(1 − θ) for all θ. Unfortunately, if θ > 2/3 and f ′(θ) ≤ 0 for some θ > 2/3,
then this condition fails. For example, the commonly used uniform distribution fails
this condition if θ > 2/3. Part (i) substantially extends Stiglitz’s sufficient condition. It
clearly modifies the familiar monotone hazard rate condition (MHRC): it is weaker than
the MHRC for θ < 1/3 and stronger otherwise. In particular, if θ ≤ 1/3, then the MHRC
also implies complete sorting in our model.

Since by part (i), the MHRC implies complete sorting among low enough types and,
by Theorem 1, there is no pooling at the top, it is natural to wonder whether the MHRC
suffices for complete sorting. We use Example 3 (CARA) to show that even without
wealth effects, the MHRC does not imply complete sorting.

Example 4 (The MRHC does not imply complete sorting). Refer to (13) in Example 3
and recall that sorting is complete if and only if ξ(·) is strictly decreasing. If ρ(·)were set
equal to a constant, then ξ(θ)would tend to +∞ as θ tends to 1. Since� is bounded, the
hazard rate ρ(·) cannot be constant on all of �, but the observation suggests that if the
hazard rate increases slowly enough for large enough θ, then sorting is not complete. To

16Since 
(·) is continuous, the integrand on the right side of (13) is continuous in s, ensuring that the
integral is differentiable in θ. Since the left side is differentiable and h′′(·) > 0, the hypotheses of the implicit
function theorem hold.

17If f (θ) > 0, then (9) and (10) imply that 
′(θ) < 0. If f (θ) = 0, then f ′(θ)/f (θ)→ −∞ as θ→ θ, so in
either case, lim supθ→θ 


′(θ) < 0, implying 
′(θ) < 0 for types near θ.
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confirm the conjecture, let θ > 2/3 and let f (·) be any density with an increasing hazard
rate but with ρ′(θ̂) = 0 at some θ̂ > 2/3. Differentiate either (12) or (13) with respect to
θ to find, after some work, that ξ′(θ̂) > 0, so sorting is not complete. For a numerical
example, let f (·) be the truncated exponential at θ < 1 with parameter η. Then ρ(θ) =
(ηe−ηθ)/(e−ηθ − e−ηθ) and ρ′(θ) > 0 for all θ. Insert this expression into (13), and set
η= 30 and θ= 0	9 to find that ξ(0	5)= 1	14< 1	2 = ξ(0	8), so that the solution x(·) to the
relaxed problem is not increasing everywhere. ♦

Part (ii) of Theorem 2 shows that sorting is complete if the density is log-concave
and either the highest type below 1/2 or the density is nondecreasing. It is easy to check

that (ii) holds for the class of densities on [θ�θ] given by f (θ)= (1 + α)θα/(θα+1 − θα+1),
α≥ 0, which includes the uniform distribution that is ruled out by Stiglitz’s condition.

Finally, part (iii) shows that if f (·) is C1 and the likelihood ratio f ′(·)/f (·) is bounded
below, then there is a region of losses for which sorting is complete. This result does not
impose monotonicity of the hazard rate or of the likelihood ratio. Moreover, if f is C1,
the second condition of (iii) holds if the density is positive everywhere.

4.3 Exclusion

It follows from (3) and (5) that the set of types that receive some insurance at the opti-
mum is an interval [θ0� θ], with θ0 ≥ θ.

We now prove two results on the value of θ0: one for no type to be excluded (θ0 = θ)
and one for a subset of low types to be excluded (θ0 > θ).

Proposition 2 (No exclusion and exclusion). Assume that sorting is complete.

(i) If ρ(θ̃)θ̃(1 − θ̃) is low enough for θ̃ ∈ [θ�θ) or if the agent’s risk aversion is low
enough on [w− ��w], then all types in [θ� θ̃] are excluded in an optimal menu.

(ii) If f (θ) is large enough or if f (θ) > 1/θ(1 − θ) and the agent’s risk aversion is large
enough on [w− ��w], then no type is excluded in an optimal menu.

Intuitively, part (i) shows that a type is excluded if it is close to zero or the hazard rate
is low enough there, or if the agent’s risk aversion is low enough. Part (ii) shows that no
type is excluded (and thus constraint (5) does not bind) if there are enough low types in
the population or if the agent is risk averse enough.18

4.4 Curvature

We now come to the most surprising part of the paper: our analysis of the curvature
of the premium as a function of coverage. We are particularly interested in whether

18The usual way to analyze exclusion is to find the optimal contract for a given θ0 and then optimize with
respect to θ0. In the quasilinear case, this is straightforward, since one of the variables of the menu can be
omitted from the problem. With wealth effects it is more challenging, since both variables must be solved
jointly. For this reason, we proceed differently in the proof of Proposition 2(ii).
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monopoly insurers offer quantity discounts. The issue is important for at least two rea-
sons. First, firms commonly offer quantity discounts in practice, so it is natural to ask
whether a monopolist insurer would. Second, in competitive insurance models, quan-
tity premia rather than discounts are the rule, since equilibrium prices equal marginal
cost (in many competitive models). Since this curvature property has been used in the
empirical literature to test for adverse selection, it is important to know if the implication
holds for a monopoly insurer as well.

Stiglitz (1977, pp. 427–428) gives an example in which the optimal premium is an
affine function of the coverage amount: imposing CARA preferences, he derives a func-
tional form for the density that supports an affine premium as a solution to the princi-
pal’s problem. Unfortunately, the implied density is U-shaped, so that the mass is con-
centrated in the tails. His example shows that the premium need not be strictly convex
in the quantity bought. And if the intercept of his affine premium were positive, it would
also show that quantity discounts are consistent with adverse selection for a monopo-
list insurer (though for an implausible type distribution). We pin down the shape of the
premium schedule exactly under mild conditions, and we argue that quantity discounts
are consistent with plausible preferences and type distributions.

Let (x(θ)� t(θ))θ∈� be an optimal menu. Since the coverage cannot increase unless
the premium increases, there is an increasing function T(·) on [x(θ)� �] such that t(θ)=
T(x(θ)) for all θ ∈ [θ�θ].19 We want to know when T(x)/x is nonincreasing. It is simpler
to determine when T(·) is concave, so we begin with that issue. To simplify the notation
we set u� = u(w−�+x(θ)− t(θ)) and un = u(w− t(θ)), where the subscript denotes that
the utility function is evaluated at the level of wealth in the loss (�) or no-loss (n) state
for type θ in the optimal menu.

It is easy to show that T(·) cannot be concave if a positive measure of agents pool at
any (x� t) with x > 0.20 So we assume from now on that the optimal menu sorts types
completely (just as it is done for curvature results in the standard monopoly model).

Since sorting is complete, x(·) is strictly increasing, so it has an inverse, call it z(·)
(i.e., θ= z(x)). We can now describe an optimal menu as a nonlinear premium schedule
T(x) = t(z(x)). By the first-order condition, the slope of T(·) at x(θ) equals type-θ’s
marginal rate of substitution of x for t (see (45) in Section A.8):

T ′(x(θ))= −Ux(x(θ)� t(θ)�θ)/Ut(x(θ)� t(θ)�θ)	 (16)

We now give a necessary and sufficient condition for T(·) to be strictly concave locally.

Lemma 3 (Curvature). Let T(·) be an optimal nonlinear premium schedule that com-
pletely sorts types. We have T ′′(x(θ)) < 0 if and only if

f ′(θ)
f (θ)

>
3θ− 2 + c(θ)
θ(1 − θ) � (17)

19If x(θ) > 0, we extend T(·) to all of [0� �] by setting T(x) = R(x), where R(x) solves U(x�R(x)�θ) =
U(0�0� θ) on [0�x(θ)]. If x(θ) > 0, then T(·) is concave on [0�x(θ)] and differentiable at x(θ).

20Suppose that x(θ0) = x(θ1) = x̃ > 0 with θ1 > θ0. Then T ′(x̃−) ≤ θ0u
′
�/(θ0u

′
� + (1 − θ0)u

′
n) <

θ1u
′
�/(θ1u

′
� + (1 − θ1)u

′
n)≤ T ′(x̃+), so T(·) cannot be concave.
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where c(θ)= θu′′
nu

′2
� /[θu′′

nu
′2
� + (1 − θ)u′′

�u
′2
n ].

Since c(θ) ∈ (0�1) for all θ, Lemma 3 implies that the premium schedule is concave
if f ′(θ)/f (θ) > (3θ− 1)/θ(1 − θ) for all θ ∈�. The condition holds, for example, if f (·) is
uniform with θ < 1/3. This simple uniform example already shows that, unlike a com-
petitive insurer, a monopoly insurer can optimally give global quantity discounts.

An objection to Lemma 3 is that c(·) is endogenous, but in some cases, it gives us a
complete description of the curvature of T(·).
Example 5 (Uniform density, log utility). Let f (·) be uniform on [0� θ] with θ ≥ 1

2 . By
Theorem 3, sorting is complete. For u(·) = log(·), the function c(·) from Lemma 3 sim-
plifies to the identity function c(θ) = θ. Since f ′(θ) = 0 for all θ, (17) implies that T(·)
is backward-S-shaped, concave on [0�x( 1

2)], and convex on [x( 1
2)� �]. Thus T(·) exhibits

quantity discounts, at least for small coverage levels. And if f (·) is uniform on just [0� 1
2 ],

then T(·) is globally concave and exhibits quantity discounts globally. ♦

The curvature in Example 5 holds far more generally. If f (·) is log-concave, the left
side of (17) is decreasing. If the right side were increasing as in the example, the conclu-
sion would follow. Unfortunately, since c(·) is endogenous, it is not easy to find condi-
tions that ensure that the right side of (17) is increasing. But if DARA holds, we show that
it crosses the left side at most once from below.

Theorem 4 (Backward-S-shaped premium). Let T(·) be an optimal schedule that com-
pletely sorts types, suppose that f is log-concave, and that DARA holds.

(i) There is an x̂ ∈ [x(θ)� �] such that T(·) is concave below x̂ and convex above x̂.

(ii) If f ′(·) takes positive and negative values, then x̂ > x(θ) if θ < 1/3 and x̂ < � if
θ > 2/3.

Proof. (i) Denote the right side of (17) by g(θ). We first show that c′(θ)≥ 0 implies that
g′(θ) > 0. Differentiate g to find that

g′(θ)= c′(θ)
θ(1 − θ) + 3θ2 − 4θ+ 2 − c(θ)(1 − 2θ)

θ2(1 − θ)2 	

Since c(θ) ∈ (0�1), it follows that 3θ2 −4θ+2−c(θ)(1−2θ) > 2/3> 0. Therefore, c′(θ)≥ 0
implies that g′(θ) > 0.

We have T ′(x) = θu′
�/[(1 − θ)u′

n + θu′
�] ((16)). Rearrange to find (1 − θ)u′

n/θu
′
� =

(1/T ′)− 1> 0 and use the equality to rewrite c(θ) as

c(θ)= 1

1 + r�
rn

( 1
T ′ − 1

) �
where ri is the Arrow–Pratt risk aversion measure in state i = ��n, evaluated at the con-
tract for type θ. Differentiate c(·) to find that

c′(θ)= −�
[
∂ r�rn
∂θ

(
1
T ′ − 1

)
− r�

rn

T ′′x′

T ′2

]
� (18)
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Figure 1. If an interior type gets close enough to its first-best contract, then the premium can-
not be convex below or concave above that type’s coverage.

where � = (1 + r�
rn
( 1
T ′ − 1))−2. Since the menu is increasing in θ, DARA implies that

∂ r�rn /∂θ≤ 0. By (18), if T ′′(x(θ0))≥ 0, then c′(θ0)≥ 0 and so g′(θ0) > 0. Thus, g(·) crosses

the decreasing function f ′(·)/f (·) at most once from below, so there is an interval (θ̂� θ]
with T(·) convex on the interval [x(θ̂)�x(θ)] and concave otherwise. Setting x̂ = x(θ̂)

completes the proof that T(·) is backward-S-shaped.
(ii) The result follows from (17) and c(θ) ∈ (0�1). �

Theorem 4 is the most surprising result of the paper: despite the complications of
common values and wealth effects, it holds under the weak and commonly imposed
assumptions of a log-concave density and DARA. We are not aware of such a curvature
result in other monopoly pricing models.21

Few papers in the monopoly pricing literature give any intuition for curvature re-
sults. For some intuition on the role of log-concavity of the density of types in our case,
consider Figure 1, which shows a contract for an interior type θ. By (IC), optimal menus
are monotone, so contracts given to lower types must lie in the shaded region. If the
contract given to type θ is close enough to its first best (the zero-surplus full-insurance
contract for that type), then T(·) cannot be convex on [0�x(θ)]. To see this graphically,
notice that the indifference curve of this type passes close to the origin, since this type
gets little surplus. But strict concavity of indifference curves then rules out convexity
of T(·) on [0�x(θ)]. Working backward from this interior type to lower types, incentive
compatibility and participation almost force the premium to be concave for the quan-
tities associated with those types. Regarding the interval [x(θ)� �], recall that, by (16),
T ′(x(θ)) equals the slope of the indifference curve of θ at (x(θ)� t(θ)). If T(·) were con-
cave on [x(θ)� �], then T ′(x)≤ T ′(x(θ)) for all x ∈ [x(θ)� �]. But if x(θ) is close to �, then
(see (16)) T ′(x(θ))≈ θ < θ= T ′(x(θ)), a contradiction. Why should an interior type have
a contract that is close to its first best? First, interior types are relatively more likely if

21Spence (1977) considers a nonlinear pricing problem of allocating a good in fixed supply and finds that
a tariff chosen to maximize a weighted sum of utilities can be backward-S-shaped. But his curvature result
is an artifact of the weights used: with equal weights on types, the tariff is affine. He also examines the tariff
chosen by a monopolist when U = θu(x)− t with u(·) strictly increasing and concave; the tariff is globally
concave under the MHRC.
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f (·) is log-concave (with f ′(·) changing signs); second, if the the support is wide enough,
first-best profit is maximized at some interior type. Since some interior types are both
more likely and more profitable than extreme types, it is plausible that optimal menus
push contracts for some interior types close to their first-best.

4.4.1 Private versus common values It is instructive to compare the curvature result in
Theorem 4 with that in Maskin and Riley (1984, p. 172). They assume that type-θ buyer’s
preferences over quantity–payment pairs (x� t) are of the form U(x� t� θ) = v(x�θ) − t,
where v(x�θ)= ∫ x

0 p(q�θ)dq, and p(·� θ) is decreasing in q and p(q� ·) is increasing in θ.
The cost of selling x units to any type is kx, where k is a positive constant. As already
noted, theirs is a private-values model with no wealth effects on demand, in contrast to
our insurance model.

Recall that in Maskin and Riley (1984) there are always quantity discounts for the
highest types; this is not so for a monopoly insurer. To see why, differentiate t(θ)/x(θ)
with respect to θ to find that under complete sorting,

d(t(θ)/x(θ))

dθ
= x′(θ)
x(θ)

(
t ′(θ)
x′(θ)

− t(θ)

x(θ)

)
≥ x′(θ)
x(θ)

(
θ− t(θ)

x(θ)

)
= − x

′(θ)
x(θ)2

π(θ)�

with equality if and only if θ = θ. The inequality comes from t ′(θ)/x′(θ) = θu′
�/(θu

′
� +

(1 − θ)u′
n)≥ θ, with equality if and only if θ= θ (see (45) in Section A.8). If x′(θ)π(θ) < 0,

then revenue per unit, t(·)/x(·), must be rising at θ. And in a small enough neighbor-
hood including the highest type, t(·)/x(·) is decreasing if and only if profit is positive for
the highest type. But even in the two-type case, profit from the highest type can be neg-
ative in an optimal insurance menu. In contrast, in Maskin and Riley (1984), profit from
every type is nonnegative and is always positive for the highest type, which explains the
markedly different result we obtain.

They also give mild assumptions under which the optimal price is concave in quan-
tity (Maskin and Riley 1984, Proposition 6, p. 185).22 To clarify the role that common
values play in the curvature of the premium, consider the CARA case (Example 3). As
in the derivation of (14), suppress common values by setting the insurer’s marginal cost
of coverage at k= θ, so under CARA we are back in a standard monopoly pricing model
with quasilinear utility and private values. It is easy to confirm that Assumptions 1–3 of
Maskin and Riley (1984) hold, so by their (25), the necessary and sufficient condition for
the premium to be strictly concave in coverage is that, for all θ,

ρ′(θ)
ρ(θ)

+
[
vxxθ(x(θ)�θ)

vxx(x(θ)�θ)
− vxθθ(x(θ)�θ)

vxθ(x(θ)�θ)

]
> 0	 (19)

After tedious algebra, (19) becomes ρ′(θ)/ρ(θ) > (2θ− 1)/(θ(1 − θ)) for all θ. If a density
satisfies this inequality, the premium is globally concave (implying quantity discounts)
in the CARA case with private values. For example, let the type distribution be uniform

22Figure 1 provides some intuition for concavity in their case: if the highest type gets close enough to
its first-best contract, then the nonlinear price is globally concave. Since higher types generate more profit
under private values, this property—together with the MHRC—suggests that it is plausible that the highest
type gets a contract close to its first best.



Theoretical Economics 7 (2012) Optimal insurance with adverse selection 591

on [0� θ]. Then ρ′(θ)/ρ(θ)= 1/(θ− θ) > (2θ− 1)/(θ(1 − θ)) for all θ and (19) holds. But
with common values, we know from Theorem 4 that if f (·) is log-concave and θ > 2/3,
the premium is convex in coverage for θ ∈ (2/3� θ].
4.4.2 Using curvature to test for adverse selection in insurance There is a growing em-
pirical literature that tests for the presence of adverse selection in insurance. Most of it
focuses on the prediction that riskier types buy more coverage, an implication of most
competitive models (following Rothschild and Stiglitz 1976) as well as our monopoly
model. For example, Puelz and Snow (1994) find evidence of this monotonicity property
in automobile insurance in the United States (but Dionne et al. 2001 fail to find mono-
tonicity using the same data but a different method). By contrast, Cawley and Philip-
son (1999) do not find monotonicity in life insurance data from the United States,23

and Chiappori and Salanié (2000) do not find monotonicity in automobile insurance
in France (but Cohen 2005 finds monotonicity in French auto insurance using data
for more experienced drivers). Finkelstein and Poterba (2004) do not find evidence
of monotonicity between coverage amount and risk type in the U.K. annuity market,
although they do find evidence of adverse selection on other contract dimensions.
Chiappori et al. (2006) find evidence of monotonicity for (again) automobile insurance
in France; they also provide a detailed discussion of monotonicity and its robustness
across different settings.

A second test is based on curvature. In Rothschild and Stiglitz (1976), the equilib-
rium premium for a type θ is t(θ) = θx(θ), where x(·) is the (increasing) equilibrium
indemnity function. Hence t(θ)/x(θ)= θ and there are always quantity premia.24 Sev-
eral prominent papers use the quantity premia implication to test for adverse selec-
tion. Puelz and Snow (1994) find evidence of quantity premia in automobile insurance;
Finkelstein and Poterba (2004) find evidence of mild quantity discounts together with a
slightly increasing marginal price—a shape consistent with our Theorem 4, but not with
competitive models of adverse selection.25

Perhaps the best known (certainly the most widely cited) paper that tests the curva-
ture prediction is Cawley and Philipson (1999). They regress the premium on a quadratic
function of the coverage amount and find that the coefficient on the squared term
is zero, and that the intercept is positive.26 They conclude that the estimated affine
function—which implies quantity discounts—is evidence against adverse selection in
life insurance. Theorem 4 shows that quantity premia are not an implication of ad-
verse selection as such, but of the joint imposition of adverse selection and (some form

23He (2009) argues that selection bias accounts for the failure of monotonicity in Cawley and Philipson
(1999): they use a cross section of the data and so exclude people who already bought policies, but died
before the sample period. Using the same data, but taking into account this possible selection bias, He
(2009) finds that monotonicity holds: riskier types buy more coverage.

24See Wilson (1993, pp. 382–384), for another insurance example with quantity premia.
25Quantity discounts are sometimes explained informally by a fixed cost of providing a good or writing a

contract. For a monopolist, a fixed cost just affects whether a contract is offered, not its shape.
26Finkelstein and Poterba (2004) also regress payment on a quadratic function of the annuity amount.

They find that the coefficient on the squared term is positive, but small in magnitude, and the intercept is
positive, consistent with quantity discounts.



592 Chade and Schlee Theoretical Economics 7 (2012)

of) perfect competition. Indeed, even with a convex segment at the end, our premium
shape could exhibit global quantity discounts.

Since recent papers do find evidence of market power in insurance,27 researchers
should be cautious about using curvature to rule out adverse selection. Absent evidence
on competition, we think that the main focus of tests for adverse selection should be on
the monotonicity prediction that those who buy more coverage suffer more losses.

5. Conclusion

Stiglitz (1977) introduced the insurance model that we examine and solved the two-type
case with an illuminating graphical analysis that is now a textbook standard. Despite the
importance of adverse selection in insurance and well known problems with its com-
petitive provision, the monopoly case has received surprisingly little attention. We have
derived several important properties of optimal menus in this setting, including a sharp
result on curvature that is also of empirical interest.

Insurance markets surely lie in between competition and monopoly. Monopoly
seems to be the right place to start thinking about noncompetitive markets: for insur-
ance with adverse selection, there is no agreement on what a good model of competition
is, let alone of oligopoly. Clearly, more work is needed on models of imperfectly com-
petitive markets with adverse selection.

There are several other extensions worth pursuing. For example, one could allow for
more than one loss amount. If the private information is still purely about likelihood of
a loss, not its magnitude, then it is not hard to prove that the principal will offer a menu
of deductible contracts. Since a deductible contract is still two-dimensional, many of
our proofs extend to this case. A multiperiod version of the model raises issues such as
renegotiation and experience rating, and should reveal further implications of adverse
selection for insurance. Finally, we have extended some general properties of optimal
menus to the cases of nonexpected utility and to private information about risk prefer-
ences (rather than risk), but much more work remains to gain a complete understanding
of these cases.

Appendix

A.1 Proof of Theorem 1 (Properties of an optimal menu)

In the proof of Theorem 1, we use the following result:

Lemma 4 (Indirect utility function). Let (x(·)� t(·)) be a bounded menu that satisfies (IC),
with x(θ)≤ � for all θ ∈�, and let V (θ)=U(x(θ)� t(θ)�θ) be the indirect utility of type θ
from that menu. Then V (·) is decreasing and continuous on �.

27See Chiappori et al. (2006), Cohen and Einav (2007), and Dafny (2010). For instance, Cohen and Einav
(2007) estimate the demand for insurance for a new entrant into the Israeli automobile insurance market.
They argue that this firm has market power and that a monopoly insurance model better describes this
situation than a competitive one.
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Proof. Let θ′ > θ. We have V (θ) ≥ U(x(θ′)� t(θ′)�θ) ≥ V (θ′), where the first inequality
follows from (IC) and the second follows from x(θ′)≤ �. Hence V (θ) is decreasing in θ.

Monotonicity implies that the left and right limits exist at any θ ∈�. Let θ′ ∈�. We
show that the left and right limits of V (·) are equal at θ= θ′. Consider any sequence θn
approaching θ′ from below, and let tn = t(θn) and xn = x(θn). We have

0 ≥ V (θ′)− V (θn)≥U(xn� tn�θ′)− V (θn)� (20)

where the first inequality follows from monotonicity of V (·) and the second follows from
(IC). ButU(xn� tn�θ′)−V (θn)= (θ′ −θn)(u(w− �− tn+xn)−u(w− tn)). Since (x(·)� t(·))
is bounded and u(·) is continuous, U(xn� tn�θ′)− V (θn) tends to 0 as θn tends to θ′, so
by (20), V (·) is left-continuous at θ= θ′. Now consider any sequence θn approaching θ′
from above. For every n,

0 ≥ V (θn)− V (θ′)≥U(x(θ′)� t(θ′)�θn)− V (θ′)�

where the first inequality follows from monotonicity in θ and the second follows from
(IC). But again U(x(θ′)� t(θ′)�θn) − V (θ′) tends to zero as θn tends to θ′ and so V (θn)
converges to V (θ′) and so V (·) is right-continuous at θ = θ′. Since θ′ was arbitrary, it
follows that V (·) is continuous on �. �

We prove Theorem 1 in several steps. Most are by contraposition: we show that if the
property fails for a positive measure of types in a feasible menu, then there is another
feasible menu with higher profit (relying on Lemma 1).

For a feasible menu (x(·)� t(·)), let R(·) be its revenue function: for x ∈ R, R(x) is the
(possibly extended) real number

R(x)= sup{τ ∈ R | V (θ)=U(x�τ�θ) for some θ ∈�}	 (21)

This function is the upper envelope of the indifference curves that pass through con-
tracts in the menu. Clearly it is increasing.

(i) No overinsurance. Let (x(·)� t(·)) be a feasible (hence increasing) menu with
x(θ) > � on a set �+ ⊂ � of positive measure. Since x(·) is increasing, �+ is the inter-
section of � with an interval with right endpoint θ. Let R be the revenue function ((21))
for this menu. Pool all types in �+ at (��R(�)) and leave the contracts of all other types
unchanged. By the definition of R, the new menu is feasible, and by Lemma 1, expected
profit increases for all types in the positive measure set �+, so that the original menu
does not solve the principal’s problem.

(ii) Premium, indemnity, and net indemnity are nonnegative. It is enough to show
that t(θ) ≥ 0 for almost all types: if that condition holds, then (P) implies that x(θ) ≥ 0
and x(θ)− t(θ) ≥ 0 for almost all types. Let (x(·)� t(·)) be a feasible menu with t(θ) < 0
on a set �− ⊂� of positive measure. By part (i), we may take x(θ)≤ �. By monotonicity,
�− is the intersection of � and a left-closed interval with left endpoint θ. Now pool all
types in�− at the contract (x′�0), where x′ is the minimum of � and the infimum of {χ ∈
R+ | V (θ)=U(χ�0� θ) for some θ ∈�} (if this set is empty, the infimum equals infinity),
and leave the contracts for all other types unchanged. The resulting menu satisfies (P)
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and (IC). Since the original menu satisfies (IC), x(θ) < x′ ≤ � for each θ ∈�−. Also, by the
definition of x′, the move makes each type in �− at least weakly worse off. By Lemma 1,
the change increases expected profit.

By (i) and (ii), any solution to the principal’s problem is almost everywhere equal to a
solution that is nonnegative with x(θ)≤ �. For the rest of the proof, it suffices to consider
only feasible menus that are nonnegative with x(θ)≤ �.

(iii) Participation binds at the bottom. Let (x(·)� t(·)) be a nonnegative feasible menu
with x(θ)≤ � and U(x(θ)� t(θ)�θ)−U(0�0� θ)=K > 0. Change the menu to reduce the
utility of each type by K in each state. Clearly (IC) continues to hold. Since (P) holds for
the lowest type in the new menu, it holds for every type in the new menu by the SSCP,
and since the premium increases and the net indemnity goes down for every type, profit
from each type increases.

(iv) Full insurance at the top. Let (x(·)� t(·)) be a nonnegative feasible menu with
x(θ) < �.28 Let τ and τ̃ solve τ− θ�= t(θ)− θx(θ) and U(�� τ̃� θ)= V (θ). In words, (�� τ)
is a contract with the same expected profit from θ as (x(θ)� t(θ)), and (�� τ̃) is a contract
that is indifferent to (x(θ)� t(θ)) for type θ.

Notice that τ̃ > τ. Let τ = (τ+ τ̃)/2> τ and consider (�� τ). By construction, τ− θ� >
t(θ)− θx(θ). Since x(θ) < �, we have τ− θ� > t(θ)− θx(θ) for every θ ∈�. By Lemma 1,
x(θ) < �, and by the monotonicity of the menu, t(θ) − θx(θ) > t(θ) − θx(θ) for every
θ ∈�. So for each type θ, expected profit at (�� τ) is higher than at (x(θ)� t(θ)).

Define m(θ) = U(��τ�θ) − V (θ). It follows that m(θ) > 0 (by definition of τ), and
m(·) is continuous (by Lemma 4) and increasing in θ (by the single-crossing property).
Hence, the set of types such thatm(θ)≥ 0 is of the form [θ−δ�θ] ∩�, with δ ∈ (0� θ− θ),
which is of positive measure. Now pool all types in this set at (�� τ), leaving the contracts
of the other types unchanged. The new contract is feasible by construction and gives
higher expected profit than the menu with x(θ) < �.

(v) No pooling at the top. Suppose that the set of types below θwith x= � is of positive
measure for some nonnegative feasible menu (x(θ)� t(θ))θ∈� with x(θ)≤ � for all θ ∈�.
By (IC), any such type is charged the same payment, call it τ. Let θ̂ be the infimum of
the set of types that are indifferent between (x(θ)� t(θ)) and (�� τ). W.l.o.g., we can set
x(θ)= � and t(θ)= τ for all types θ≥ θ̂, since expected profit does not fall, and (IC) and
(P) still hold. With this change, the set of types receiving x= � is [θ̂� θ] ∩�. For all other
types, V (θ) > U(��τ�θ) and x(θ) < �.

Fix ε ∈ (0� θ− θ̂). For each δ > 0, let (xδ� tδ) be the contract that leaves type θ̂ indiffer-
ent between (�� τ) and (xδ� tδ), and leaves type θ̂+ ε indifferent between (�� τ + δ) and
(xδ� tδ).29 Formally, (xδ� tδ) solves (see Figure 2)

U(��τ� θ̂) = U(xδ� tδ� θ̂)

U(�� τ+ δ� θ̂+ ε) = U(xδ� tδ� θ̂+ ε)	
28We could finish off the proof as follows. If there is no mass point at θ, then there is nothing to prove:

the menu is almost everywhere equal to a menu with full insurance at the top. If there is a mass point at
θ, then the principal could set x(θ) = �, leaving the contract for other types unchanged; the new menu is
feasible and the principal is better off by Lemma 1. We show a stronger result: the essential supremum of
x(·)must equal � for any solution; otherwise, the principal can strictly improve upon it.

29It is possible, but irrelevant, that θ̂+ ε is not in �.
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Figure 2. The menu constructed in the proof of the no pooling at the top property.

For every ε ∈ (0� θ− θ̂), there is a d(ε) > 0 such that if δ ∈ [0� d(ε)], a solution exists.
Define a menu of contracts (x̂(θ)� t̂(θ))θ∈� as

(x̂(θ)� t̂(θ))=
⎧⎨⎩
(�� τ+ δ) if θ ∈ (θ̂+ ε�θ] ∩�
(xδ� tδ) if θ ∈ [θ̂� θ̂+ ε] ∩�
(x̃δ(θ)� t̃δ(θ)) if θ ∈ [θ� θ̂)∩�,

where (x̃δ(θ)� t̃δ(θ)) = (xδ� tδ) if type θ strictly prefers (xδ� tδ) to (x(θ)� t(θ)) and
(x(θ)� t(θ)) otherwise. The menu (x̂(θ)� t̂(θ))θ∈� satisfies (IC) and also satisfies (P)
if δ ∈ [0� τ(ε) − τ], where τ(ε) is given by U(��τ(ε)� θ̂ + ε) = U(0�0� θ̂ + ε). (Since
U(��τ� θ̂)≥U(0�0� θ̂), the SSCP implies that τ(ε) > τ.)

The expected profit from menu (x̂(θ)� t̂(θ))θ∈� is∫
(θ̂+ε�θ]

[τ+ δ− θ�]dF(θ)+
∫

[θ̂�θ̂+ε]
[tδ − θxδ]dF(θ)+

∫
[θ�θ̂)

[̃tδ(θ)− θx̃δ(θ)]dF(θ)	 (22)

We next show that the first two integrals are each differentiable in δ at δ= 0 and that,
for small enough ε > 0, the derivative of the sum is positive. The derivative of the first
integral at δ= 0 is 1 − F(θ̂+ ε) > 0 for every ε ∈ [0� θ− θ̂).

Consider the second integral. Since u is C1 with u′ > 0, Ux/Ut is strictly increasing
in θ, so xδ and tδ are continuously differentiable in δ for every δ ∈ I(ε)=: [0�min{τ(ε)−
τ�d(ε)}]. The derivative t ′δ − θx′

δ with respect to δ is bounded on I(ε) × �, and some
algebra reveals that

0 ≥ t ′0 − θx′
0 = θ̂− θ

ε
≥ −1 (23)

for θ ∈ [θ̂� θ̂+ ε]. So the derivative of the second integral in (22) with respect to δ exists
at δ= 0, equals

∫
[θ̂�θ̂+ε](θ̂− θ)/εdF(θ), and satisfies

0 ≥
∫

[θ̂�θ̂+ε]
θ̂− θ
ε

dF(θ)≥ F(θ̂)− F(θ̂+ ε)	
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Since F(·) is right-continuous, the last expression tends to zero as ε tends to zero, so the
derivative of the second term in (22) at δ = 0 converges to zero as ε converges to 0. So
the first two integrals are differentiable in δ at δ = 0 and the sum of the derivatives is
positive for small enough ε > 0. For the rest of the proof, fix such a ε.

Consider the third integral in (22). Let �+(δ) be the set of types in [θ� θ̂) ∩ � that
strictly prefer (xδ� tδ) to (x(θ)� t(θ)). Since (xδ� tδ)→ (τ� �), V (θ) > U(��τ�θ) for all θ ∈
[θ� θ̂)∩�, and V and U are continuous, it follows that�+(·) is a decreasing sequence of
sets with empty intersection, so limδ→0

∫
�+(δ) dF(θ)= 0. For θ ∈ [θ� θ̂)∩�,

t̃δ(θ)− θx̃δ(θ)− t(θ)+ θx(θ)
δ

≥ tδ − θxδ − τ+ θ�
δ

(24)

since, by Lemma 1, τ− θ� > t(θ)− θx(θ), and the right side is negative. (The left side is
either 0 or greater than the right side when nonzero.) Integrate over [θ� θ̂) and use (24)
to find∫

[θ�θ̂)
t̃δ(θ)− x̃δ(θ)− t(θ)+ θx(θ)

δ
dF =

∫
�+(δ)

t̃δ(θ)− θx̃δ(θ)− t(θ)+ θx(θ)
δ

dF

≥
∫
�+(δ)

tδ − θxδ − τ+ θ�
δ

dF	

Since tδ and xδ are differentiable in δ on I(ε), the mean value theorem implies that the
integrand in the last integral equals t ′δ(ε�θ)−θx′

δ(ε�θ) for some δ(ε�θ) ∈ I(ε), and since the
derivatives are continuous on I(ε), the integrand is bounded below by some numberM .
So the last integral is at least as large asM

∫
�+(δ) dF , which tends to 0 as δ converges to 0.

Thus

lim inf
δ→0+

∫
[θ�θ̂)

t̃δ(θ)− θx̃δ(θ)− t(θ)− θx(θ)
δ

dF(θ)≥ 0	 (25)

Letting �(δ) equal (22), the expected profit from menu (x̂(·)� t̂(·)), we have shown that

lim inf
δ→0+

�(δ)−�(0)
δ

> 0�

implying that the original menu does not solve the principal’s problem.
(vi) Positive profit. Let ε > 0 and consider a menu in which each type chooses be-

tween (0�0) or (��θ�+ ε) to maximize expected utility. Clearly, expected profit is pos-
itive from any type who chooses (��θ� + ε). Since θ < 1 and the agent is strictly risk
averse,U(��θ��θ) > U(0�0� θ), and sinceU is continuous, it follows thatU(��θ�+ε�θ) >
U(0�0� θ) on a neighborhood of (θ�ε)= (θ�0). So for ε > 0 small enough, a positive mea-
sure of types strictly prefer (��θ�+ ε) to (0�0).

A.2 Proof of Theorem 1 for the general insurance model

We denote by U(x� t� θ) a type-θ ∈ � ⊂ (0�1) agent’s utility for a contract (x� t), but we
do not assume that θ is the probability of a loss or that the agent has expected utility
preferences. SetD= {(x� t) | (w− t�w− �− t + x)≥ 0} andD+ =D∩ R

2+.
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Theorem 5. Suppose that the principal’s unit cost of selling to type θ equals k(θ), with
k(·) nondecreasing and continuous on �. Let the function U(·� ·� ·) :D× [0�1] satisfy the
following assumptions:

(a) U(·� ·� θ) is strictly quasiconcave and continuous in (x� t) on D for each θ, and it is
strictly increasing in x and strictly decreasing in t.

(b) {U(x� t� ·)}(x�t)∈C is uniformly equicontinuous for any compact subset C ofD.30

(c) For each (x� t) ∈D, U(x� t� ·) is monotone (increasing or decreasing) in θ.

(d) The unique Pareto optimum quantity is � for every θ ∈�.

(e) U satisfies the strict single-crossing property (SSCP) in (x� t) and θ onD or it satisfies
the SSCP onD+ and contracts are restricted to lie inD+.

Then the conclusion of Theorem 1, parts (i)–(iv) and (vi) hold. If, in addition, U is C1

withUt < 0 and satisfies the Spence–Mirrlees SSCP that −Ux/Ut is strictly increasing in θ,
then the conclusion of Theorem 1(v) holds.

It is easy to verify that these assumptions are satisfied in our model. Conditions (a)
and (c)–(e) clearly hold. Regarding (b), for any compact set of contracts C, |U(x� t� θ′)−
U(x� t� θ′′)| = |u(w− �+ x− t)−u(w− t)||θ′ − θ′′| ≤ (max(x�t)∈C |u(w− �+ x− t)−u(w−
t)|)|θ′ − θ′′| =M|θ′ − θ′′| and uniform equicontinuity follows.

We repeatedly invoke Lemma 4 in the proof of Theorem 1, but our proof of the
lemma uses linearity of expected utility in the loss chance. We use assumption (b) to
extend the conclusion of Lemma 4 (continuity of V ) to the general case.31

Proof of Theorem 5. It is easy to check that, after we change the principal’s unit cost
of selling from θ to k(θ), the only changes we need to make to the proof of Theorem 1
are to parts (iii) (Participation binds at the bottom) and (v) (No pooling at the top). For
part (v), some calculations change, notably that (23) now becomes

0 ≥ t ′0 − k(θ)x′
0 = k(θ̂)− k(θ)

k(θ̂+ ε)− k(θ̂) ≥ −1�

but the changes are straightforward to confirm.
The argument for part (iii) exploits the assumption that the agent has expected utility

preferences. In the general case, the argument is slightly more involved. Let (x(·)� t(·))
be a nonnegative feasible menu with U(x(θ)� t(θ)�θ) > U(0�0� θ) and x(θ) ≤ � for all
θ ∈�. As just observed, the indirect utility V (·) of the menu is continuous in θ.

30A family F of functions f defined on an interval [a�b] is uniformly equicontinuous if, given any ε > 0,
there exists a δ > 0 such that |x′ − x′′|< δ implies |f (x′)− f (x′′)|< ε for all x′, x′′ ∈ [a�b] and all f ∈ F .

31Uniform equicontinuity is used in the last step of the proof of the left- and right-continuity of V (·),
i.e., the proof of limθn→θ′− U(xn� tn�θ

′) − V (θn) = limθn→θ′+ U(xn� tn�θ
′) − V (θn) = 0. To see this, let ε > 0.

Then there is a δ > 0 such that |θ′ − θn| < δ implies |U(x� t� θ′)−U(x� t� θn)| < ε for any (x� t) in C. Thus,
|U(xn� tn�θ′)− V (θn)| ≤ max(x�t)∈C |U(x� t� θ′)−U(x� t� θn)|< ε for n large enough.
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Let δ > 0 satisfy U(x(θ)� t(θ)+ δ�θ)=U(0�0� θ). Define R1(x) on [x(θ)� �] by

R1(x)= max{R(x)� r(x)}�
where R(·) is the revenue function (21) for the menu (x(·)� t(·)) and r(·) is defined im-
plicitly by

U(x� r(x)�θ)=U(x(θ)� t(θ)+ δ�θ)	
Now define a new menu (x1(·)� t1(·)) as follows. Set (x1(θ)� t1(θ)) = (x(θ)� t(θ) + δ).
For θ ∈ � − {θ}, set (x1(θ)� t1(θ)) = (x(θ)� t(θ)) if x(θ) maximizes U(x�R1(x)�θ) on
[x(θ)� �]; otherwise set (x1(θ)� t1(θ))= (x′�R1(x

′)) for any maximizer x′ ofU(x�R1(x)�θ)

on [x(θ)� �]. In the second case, notice that x(θ) < x′ ≤ � and U(x′�R1(x
′)�θ)≤ V (θ), so

by Lemma 1, expected profit rises from any type for which (x1(θ)� t1(θ)) = (x(θ)� t(θ)).
Let �1 denote the set of types for which (x1(θ)� t1(θ)) = (x(θ)� t(θ)).

We now show that �1 has positive measure. Since θ is the left endpoint of the sup-
port, the set [θ�θ+ ν) ∩� has positive measure for every ν > 0. It suffices to show that
for ν small enough, [θ�θ+ ν)∩�⊂�1.

Let V1(·) be the indirect utility for the menu (x1(·)� t1(·)). Since V1(·) and V (·) are
continuous and V (θ) > V1(θ), there is a ν∗ > 0 such that if θ ∈�∩[θ�θ+ν∗), then V (θ) >
V1(θ). Thus, [θ�θ+ ν∗)∩�⊂�1, and �1 has positive measure. �

Remark. Theorem 5 also covers (with minor changes) the quasilinear setting of Maskin
and Riley (1984) with the addition of common values, i.e., U(x� t� θ) = v(x�θ) − t and
π(θ)= t−k(θ)x, where k(·) is strictly increasing in θ. Assuming that the first-best quan-
tity x∗(·) is strictly increasing in θ, Theorem 1 can be adapted to this case. For instance,
no overinsurance becomes no quantity overprovision and its proof follows along the
same lines; nonnegativity is assumed in this setting; no surplus at the bottom is trivial
due to linearity in t; the proof of efficiency at the top holds almost unaltered after replac-
ing � with x∗(θ), and similarly with the proof of no pooling at the top; finally, positive
profit holds if, e.g., the highest type generates positive surplus.

A.3 Proof of Theorem 2

Since (iii) follows from (ii), we just prove (i) and (ii). Fix a feasible menu (x(θ)� t(θ))θ∈�,
with 0 ≤ x(θ) ≤ � for all θ ∈�. (By Theorem 1, any optimal menu satisfies these condi-
tions almost everywhere.) Recall that by Lemma 1, t(θ)−θ′x(θ)≥ t(θ′)−θ′x(θ′) if θ > θ′;
i.e., profit increases if a type takes the contract offered to a higher type.

(i) The principal prefers a larger loss size. Let � < �̃ < w and let Ũ(x� t� θ) be the ex-
pected utility of a type-θ agent for contract (x� t) when the loss is �̃ (and let U(x� t� θ)
be the expected utility of a type-θ agent for (x� t) when the loss is �). Fix θ′ ∈�, and let
(χ�τ) be any nonnegative contract bounded above by (x(θ′)� t(θ′)) and no better than
(x(θ′)� t(θ′)) for type θ′ when the loss is �. Formally,

(a) (0�0)≤ (χ�τ)≤ (x(θ′)� t(θ′)); and

(b) U(χ�τ�θ′)≤U(x(θ′)� t(θ′)�θ′).
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These inequalities hold if we set (χ�τ) equal to any lower type’s contract in the menu
(x(θ)� t(θ))θ∈�, or to the null contract (0�0).

Claim 1. Inequalities (a) and (b) imply Ũ(x(θ′)� t(θ′)�θ′)≥ Ũ(χ�τ�θ′), and the inequal-
ity is strict if (χ�τ) = (x(θ′)� t(θ′)).

If (χ�τ) = (x(θ′)� t(θ′)), there is nothing to prove, so suppose that (χ�τ) =
(x(θ′)� t(θ′)), which, by (a) and (b), implies that χ − τ < x(θ′) − t(θ′). To simplify
notation, set u�(θ′) = u(w − � + x(θ′) − t(θ′)), un(θ′) = u(w − t(θ′)), un = u(w − τ),
u� = u(w− �+χ− τ), ũ�(θ′)= u(w− �̃+ x(θ′)− t(θ′)), and ũ� = (w− �̃+χ− τ). Rewrite
the inequality U(x(θ′)� t(θ′)�θ′)≥U(χ�τ�θ′) as

u�(θ
′)− u� ≥ 1 − θ′

θ′ (un − un(θ′))	 (26)

The strict concavity of u(·) and the inequalityχ−τ < x(θ′)−t(θ′) imply that ũ�(θ′)− ũ� >
u�(θ

′)−u� and so, by (26), that (1 −θ′)(ũn(θ′)− ũn)+θ′(ũ�(θ′)− ũ�) > 0 or, equivalently,
Ũ(x(θ′)� t(θ′)�θ′) > Ũ(χ�τ�θ′), which proves Claim 1.

Since, for each θ�θ′ ∈� with θ < θ′ and (x(θ)� t(θ)) = (x(θ′)� t(θ′)), (a) and (b) hold
for (χ�τ) = (x(θ)� t(θ)) and for (χ�τ) = (0�0), it follows that (x(θ)� t(θ))θ∈� contin-
ues to satisfy all the downward incentive and participation constraints when the loss
equals �̃.

Let C be the closure of the set {(x(θ)� t(θ)) | θ ∈ �} ∪ {(0�0)}. Consider the prob-
lem of choosing a contract in C to maximize Ũ(·� θ). (A solution exists since C is com-
pact.) Since (x(θ)� t(θ))θ∈� satisfies (IC) when the loss is �, any maximizer (x� t) of
Ũ(·� ·� θ) on C satisfies U(x� t� θ)≤U(x(θ)� t(θ)�θ) (the new choice cannot increase the
pre-change expected utility for θ). Moreover, C is ordered by the usual vector inequality
≥ on R

2. By Claim 1, (x� t) ≥ (x(θ)� t(θ)).32 Hence, by Lemma 1, profit from the new
contract does not fall. (By Theorem 1, coverage levels in C are w.l.o.g. bounded above
by �.) Consider a menu defined by choosing, for each θ ∈�, any maximizer of Ũ(·� ·� θ).
It satisfies (IC) and (P) when the loss is �̃, and is at least as profitable as the original
menu.

(ii) The principal prefers a more risk averse agent. Let ũ(·) be more risk averse
than u(·); i.e., ũ(·) = φ(u(·)) for some strictly increasing and strictly concave func-
tionφ(·). Denote by Ũ(x� t� θ) the expected utility of a type-θ agent with von Neumann–
Morgenstern utility function ũ(·).

As before, fix θ′ ∈ � and let (χ�τ) be any point satisfying (a) and (b) from the proof
of (i). We will show that Ũ(x(θ′)� t(θ′)�θ′) ≥ Ũ(χ�τ�θ′).33 As in (i), we can suppose that
χ− τ < x(θ′)− t(θ′). Let u�(θ′), un(θ′), un, and u� be defined as before, and set 
φi =

32As the loss increases, the maximizers on C strongly increase in the sense of Shannon (1995, pp. 215–
216). Claim 1 shows that U satisfies the strict single-crossing property in (x� t) and �, so the conclusion in
this sentence also follows from her Theorem 4.

33This inequality follows from familiar comparative statics results, for example, Theorem 1 in Jewitt
(1987). We nonetheless include its simple proof.
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φ(ui(θ
′))−φ(ui) and 
ui = ui(θ′)− ui, for i= ��n. Then

Ũ(x(θ′)� t(θ′)�θ′)− Ũ(χ�τ�θ′) = θ
φ� + (1 − θ)
φn
= θ


φ�


u�

u� + (1 − θ)
φn


un

un

>

φn


un
(θ
u� + (1 − θ)
un)

≥ 0�

where the first inequality follows from the strict concavity ofφ(·), and the second follows
from the monotonicity of φ(·) and U(x(θ′)� t(θ′)�θ)≥U(χ�τ�θ). Hence (x(θ)� t(θ))θ∈�
satisfies the downward incentive compatibility and participation constraints after the
increase in risk aversion. As in the proof of (i), now let each type choose a best con-
tract in C (the closure of the original menu in R

2 and (0�0)). Any such menu satisfies
(IC) and (P) after the agent becomes more risk averse and has at least as much profit as
(x(θ)� t(θ))θ∈�. Hence, an increase in risk aversion cannot lower the principal’s expected
profit.

A.4 Square-root utility example

Principal’s problem. Let us denote a menu (x1� t1�x2� t2). It is easy to show that in
this case the downward incentive constraint is binding. Also, using Theorem 1, x2 = �,
xi ≥ 0 (so ti ≥ 0), i= 1�2, and (P) binds for θ1. The principal’s problem becomes

max
x1�t1�t2

f1(t1 − θ1x1)+ f2(t2 − θ2�)

subject to

θ1
√
w− �+ x1 − t1 + (1 − θ1)

√
w− t1 = θ1

√
w− �+ (1 − θ1)

√
w

√
w− t2 = θ2

√
w− �+ x1 − t1 + (1 − θ2)

√
w− t1�

and 0 ≤ x1 ≤ � (or t1 ≥ 0 and x1 ≤ �), which we ignore for now (and check ex post).

Candidate solution. After some algebra, we obtain the expressions

t1 = w− κ(f1� f2� θ1� θ2)
2U(θ1)

2 (27)

x1 = �+
(

−κ(f1� f2� θ1� θ2)
2 +

(
1
θ1

− (1 − θ1)

θ1
κ(f1� f2� θ1� θ2)

)2)
U(θ1)

2 (28)

t2 = w−
(
θ2

θ1
(1 − (1 − θ1)κ(f1� f2� θ1� θ2))+ (1 − θ2)κ(f1� f2� θ1� θ2)

)2

U(θ1)
2� (29)

where U(θ1)= θ1
√
w− �+ (1 − θ1)

√
w and

κ(f1� f2� θ1� θ2)= f1θ1(1 − θ1)+ f2θ2(θ2 − θ1)

f1θ1(1 − θ1)+ f2(θ2 − θ1)2
∈

(
1�

θ2

θ2 − θ1

)
	 (30)
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Along with x2 = �, (27)–(29) is an optimal menu if t1 ≥ 0 and x1 ≤ �. The bounds given in
(30) imply x1 ≤ �. Thus, our candidate solution is an actual one if t1 ≥ 0.

Comparative statics with respect to wealth. It is easy to show that t1 and x1 are
decreasing in w, while x2 is independent of it since it equals �. In turn, the change in t2
is given by (we omit the arguments of κ to simplify the notation)

∂t2
∂w

= 1 −
(
θ2

θ1
(1 − (1 − θ1)κ)+ (1 − θ2)κ

)2

U(θ1)(θ1(w− �)−0	5 + (1 − θ1)w
−0	5)	 (31)

We now show that for an open set of parameters, this derivative is positive when loss
size is sufficiently small. To see this, let �= αw for α ∈ (0�1). Then

U(θ1)(θ1(w− �)−0	5 + (1 − θ1)w
−0	5)= (θ1(1 −α)0	5 + (1 − θ1))(θ1(1 −α)−0	5 + (1 − θ1))�

which does not depend onw and tends to 1 as α vanishes. Since (θ2/θ1)(1 − (1 −θ1)κ)+
(1 − θ2)κ < 1 as κ > 1, the result follows.

Omitted constraint. We have ignored the constraint t1 ≥ 0. We now show that t1 ≥ 0
and ∂t2/∂w > 0 can both hold when α is sufficiently small. Rewrite t1 ≥ 0 as

t1 =w(1 − κ2(θ1
√

1 − α+ 1 − θ1)
2)≥ 0	 (32)

Simple algebraic manipulation reveals that (32) holds if and only if κ ≤ κ̂(α), while (31)
holds if and only if κ > κ̃(α). The functions κ̂(·) and κ̃(·) are continuously differentiable,
κ̂(0) = κ̃(0) = 1, κ̂′(α) > 0 for all α ∈ (0�1), and κ̃′(0) = 0. Thus, κ̂(α) > κ̃(α) for α suffi-
ciently small and both inequalities are satisfied. Since for any θ1 and θ2 we can make κ
arbitrarily close to 1 as f1 tends to 1, it follows that there exists an open set of parameters
(f1� f2� θ1� θ2� ��w) such that t1 ≥ 0 and ∂t2/∂w > 0.

A.5 Complete sorting lemma

Lemma 5 (Complete sorting). For θ ∈ [θ�θ), 
′(θ) < 0 if and only if

f ′(θ)
f (θ)

>
3θ− 2 − b(θ)
θ(1 − θ) � (33)

where b(θ)= h′(V (θ)− (1 − θ)
(θ))/[h′(V (θ)+ θ
(θ))− h′(V (θ)− (1 − θ)
(θ))]. If (33)
holds for all θ ∈�, then the optimal menu sorts all types who obtain insurance.

Proof. Using (8) and (9) to eliminate λ′(θ), rewrite the numerator of (15) as λ(θ)B(θ),
where

B(θ)= f (θ)
[
f ′(θ)
f (θ)

θ(1 − θ)+ (1 − 3θ)+ 1

1 − h′(V (θ)−(1−θ)
(θ))
h′(V (θ)+θ
(θ))

]
	

Since

1

1 − h′(V (θ)−(1−θ)
(θ))
h′(V (θ)+θ
(θ))

= 1 + 1
h′(V (θ)+θ
(θ))

h′(V (θ)−(1−θ)
(θ)) − 1
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and λ(θ) < 0 for θ < θ, it follows that 
′(θ) < 0 if and only if

f ′(θ)
f (θ)

θ(1 − θ)+ (2 − 3θ)+ h′(V (θ)− (1 − θ)
(θ))
h′(V (θ)+ θ
(θ))− h′(V (θ)− (1 − θ)
(θ)) > 0

or, equivalently,

f ′(θ)
f (θ)

>
3θ− 2 − b(θ)
θ(1 − θ) �

where b(θ)= h′(V (θ)− (1 − θ)
(θ))/[h′(V (θ)+ θ
(θ))− h′(V (θ)− (1 − θ)
(θ))]. �

A.6 Proof of Theorem 3 (Complete sorting: sufficiency)

(i) Since ρ′(θ)/ρ(θ)= ρ(θ)+ f ′(θ)/f (θ), we must show that the condition

f ′(θ)
f (θ)

>
3θ− 1
θ(1 − θ) − f (θ)

1 − F(θ) (34)

is sufficient for complete sorting. Fix θ̂ ∈ [θ�θ). We first claim that if 
′(τ) < 0 for all
τ ∈ (θ̂� θ) and condition (34) holds, then 
′(θ̂) < 0. To establish this claim, we show that

b(θ̂) >−1 + f (θ̂)

1 − F(θ̂) θ̂(1 − θ̂)� (35)

implying that condition (33) holds at θ̂.
Let h′

n(θ)= h′(V (θ)+ θ
(θ)). Since 
′(τ) < 0 and f (τ) > 0 for all τ ∈ (θ̂� θ),

f (τ)h′
n(θ̂) > f(τ)h

′
n(τ) > f(τ)a(τ) (36)

for all τ ∈ (θ̂� θ), with equalities at θ, where a(·) is defined in (11).
Integrate both sides of (36) from θ̂ to θ and divide by 1 − F(θ̂) to obtain

h′
n(θ̂) >

1

1 − F(θ̂)
∫ θ

θ̂
a(τ)f (τ)dτ = (
h)′(θ̂) θ̂(1 − θ̂)f (θ̂)

1 − F(θ̂) � (37)

where (
h)′(θ)= h′(V (θ)+ θ
(θ))−h′(V (θ)− (1 − θ)
(θ)) and we have used (11). Add
−(
h)′(θ̂) to both sides of (37) and rearrange to get (35), so that (33) holds at θ̂.

It now follows that, under condition (34), 
′(θ) < 0 for all θ ∈ �: if 
′(·) ≥ 0 some-
where, then there would be a largest θ ∈ [θ�θ) with 
′(θ) ≥ 0 (since 
′(·) is continuous
and lim supθ→θ 


′(θ) < 0). By the claim, condition (34) would fail.
(ii) Let f ′(·)/f (·) be decreasing and suppose that sorting is not complete. Then


′(θ)≥ 0 for some θ. We will show that θ≥ 1/2 and that f ′(·) is sometimes negative.
Since lim supθ→θ 


′(θ) < 0 and 
′ is continuous on (θ�θ), there is a largest type θ̂ ∈�
with 
′(θ̂)= 0. In addition, 
′(θ) < 0 for all θ ∈ (θ̂� θ).

From Lemma 3 the sign of −
′(·) is the same as the sign of

g(θ)= f ′(θ)
f (θ)

− (3θ− 2 − b(θ))
θ(1 − θ) 	 (38)
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Moreover,

b′(θ)= −
′(θ)
[
(1 − θ)h′′

�(h
′
n − h′

�)+ h′
�h

′′
�(1 − θ)+ h′′

nh
′
�θ

(h′
n − h′

�)
2

]
�

so that b′(θ̂)= 0. Since 
′(θ) < 0 for all θ > θ̂ and since g(θ̂)= 0, we must have g′(θ̂)≥ 0.
Since f ′(·)/f (·) is decreasing, the second fraction cannot be increasing at θ̂. But

∂

∂θ

3θ− 2 − b(θ)
θ(1 − θ) = −θ(1 − θ)b′(θ)+ 3θ2 + (1 − 2θ)(2 + b(θ))

θ2(1 − θ)2 	

Since b′(θ̂) = 0 and b(θ) > 0, g′(θ̂)≥ 0 implies that θ̂ > 1/2, so θ > 1/2.
To show that f ′(·) must sometimes be negative, rewrite (38) as g̃(θ)= (1 − θ)g(θ)=

(1−θ)(f ′(θ)/f (θ))− (3θ−2−b(θ))/θ. Since 
′(θ) < 0 for all θ > θ̂ and since g̃(θ̂)= 0, we
must have g̃′(θ̂)≥ 0. But since b′(θ̂)= 0, the fraction (3θ− 2 − b(θ))/θ is strictly increas-
ing in a neighborhood of θ̂, which implies that (1 − θ)f ′(θ)/f (θ)must be increasing in a
neighborhood of θ̂, so f ′(·) is negative on a neighborhood of θ̂.

(iii) Notice that b(θ) ≥ b0 for every θ, where b0 = h′(u(w− �))/[h′(u(w))− h′(u(w −
�))] > 0. By Lemma 5, complete sorting follows if f ′(θ)/f (θ) > (3θ − 2 − b0)/θ(1 − θ).
Since lim�→0 u(w− �)= u(w), lim�→0
0 = 0. Thus, lim�→0 b0 = ∞. As the ratio f ′(·)/f (·)
is bounded below, there is a threshold for the loss, �̂ > 0, such that (33) is satisfied for all
types if � ∈ (0� �̂).

A.7 Proof of Proposition 2 (No exclusion and exclusion)

(i) Type θ̃ is excluded from the optimal menu of contracts if 
(θ̃) = 
0. From (11), we
must show that the marginal benefit of providing insurance to θ̃ starting from no insur-
ance is less than the marginal cost of doing so. Formally,

f (θ̃)θ̃(1 − θ̃)[h′(u(w))− h′(u(w− �))]< ∫ θ

θ̃
a(s)f (s)ds	 (39)

Assume first that −u′′′(·)/u′′(·) < −3u′′(·)/u′(·). Then
∫ θ
θ̃ a(s)f (s)ds > a(θ)(1 − F(θ̃))

and (39) holds if f (θ̃)θ̃(1 − θ̃)[h′(u(w)) − h′(u(w − �))] < a(θ)(1 − F(θ̃)). Since a(θ) =
h′(U(θ))≥ h′((1 − θ)u(w)+ θu(w− �)), type θ̃ is excluded from the optimal menu if

f (θ̃)

(1 − F(θ̃)) <
h′((1 − θ)u(w)+ θu(w− �))

θ̃(1 − θ̃)[h′(u(w))− h′(u(w− �))] 	 (40)

Since sorting is complete, any θ≤ θ̃ is excluded as well.
Without imposing −u′′′(·)/u′′(·) < −3u′′(·)/u′(·), a similar, but stronger, sufficient

condition for exclusion holds by replacing the numerator of (40) with h′(u(w− �)). Then
the right side of (40) tends to ∞ if risk aversion tends to 0 uniformly on [w− ��w], so (40)
holds if the agent’s risk aversion is low enough on [w− ��w].

(ii) Type θ is not excluded from the optimal menu of contracts if
(θ) > 
0. From (11)
and the concavity of the optimal control problem, this is tantamount to showing that the
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marginal benefit of providing insurance to θ starting from no insurance is greater than
the marginal cost of doing so. Formally,

f (θ)θ(1 − θ)[h′(u(w))− h′(u(w− �))]> ∫ θ

θ
a(s)f (s)ds	 (41)

Assume first that −u′′′(·)/u′′(·) < −3u′′(·)/u′(·). It is easy to show that in this case

a′(·) < 0. Hence,
∫ θ
θ a(s)f (s)ds < a(θ) and (41) holds if f (θ)θ(1 − θ)[h′(u(w))−h′(u(w−

�))]> a(θ). Since a(θ) < (1 − θ)h′(u(w))+ θh′(u(w− �)), it follows that

f (θ)θ(1 − θ)[h′(u(w))− h′(u(w− �))]> (1 − θ)h′(u(w))+ θh′(u(w− �))�
which is equivalent to

f (θ) >
(1 − θ)h′(u(w))+ θh′(u(w− �))
θ(1 − θ)[h′(u(w))− h′(u(w− �))] 	 (42)

Thus, type θ is not excluded from the optimal menu if f (θ) is greater than the right side
of (42). Since sorting is complete, no type is excluded.

Without imposing −u′′′(·)/u′′(·) < −3u′′(·)/u′(·), a stronger sufficient condition
holds, with the numerator on the right side of (42) replaced with h′(u(w)). Then the
right side of (42) tends to 1 if risk aversion tends to ∞ uniformly on [w − ��w]. If
f (θ) > 1/θ(1 − θ), then (42) holds if the agent’s risk aversion is sufficiently high on
[w− ��w].

A.8 Proof of Lemma 3 (Curvature)

Let (V (θ)�
(θ)) solve the optimal control problem with 
′(·) < 0 everywhere. Since
un(θ) = V (θ) + θ
(θ) for all θ, we can use (1) and (2) to recover the optimal menu
(x(θ)� t(θ))θ∈�.

Recall that V ′(θ)= −
(θ), so u′
n(θ)= θ
′(θ). Differentiate (1) and (2) to get

t ′(θ) = − θ
′(θ)
u′(w− t(θ)) (43)

x′(θ) = −

′(θ)[(1 − θ)u′(w− t(θ))+ θu′(w− �+ x(θ)− t(θ))]

u′(w− �+ x(θ)− t(θ))u′(w− t(θ)) � (44)

where we have used un(θ)= u(w− t(θ)) and h′(·)= 1/u′(h(·)).
Since (by assumption) sorting is complete, we have x′(·) > 0, so the inverse of x(·),

call it z(·), is well defined (i.e., θ= z(x)). We can now represent the optimal mechanism
as a nonlinear premium schedule T(x)= t(z(x)). Then (43), (44), and θ= z(x) give

T ′(x)= t ′(z(x))z′(x)= t ′(z(x))
x′(z(x))

= θu′(w− �+ x(θ)− t(θ))
(1 − θ)u′(w− t(θ))+ θu′(w− �+ x(θ)− t(θ)) 	 (45)

Differentiate T ′(·) and use θ= z(x) to find, after some algebra,

T ′′(x) = 1
(θu′

� + (1 − θ)u′
n)

2

{
u′
nu

′
�

x′(θ)
+ θ(1 − θ)

[
u′′
nu

′
�

t ′(θ)
x′(θ)

+ u′′
�u

′
n

(
1 − t ′(θ)

x′(θ)

)]}
	 (46)
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Insert (43) and (44) into (46), and manipulate the resulting expression to reveal that

T ′′(x) < 0 if and only if 
′(θ) < (θ(1 − θ)[θ u′′
n

u′2
n

+ (1 − θ) u′′
�

u′2
�

])−1. Use h′ = 1/u′, h′′ = u′′/u′3,

(8), and (9) to rewrite (15) as


′(θ)=
( 1
u′
n

− 1
u′
�

)
�+E[ 1

u′
]

θ(1 − θ)[θ u′′
n

u′3
n

+ (1 − θ) u′′
�

u′3
�

] �
where � = θ(1 − θ)f

′
f + 1 − 2θ and E[ 1

u′ ] = θ(1/u′
�) + (1 − θ)(1/u′

n). Now find that
T ′′(x) < 0 if and only if

θ(1 − θ)f
′

f
+ 1 − 2θ >

[
θ
u′′
n

u′3
n

+ (1 − θ) u′′
�

u′3
�

] −E[ 1
u′

][
θ
u′′
n

u′2
n

+ (1 − θ) u′′
�

u′2
�

]
[
θ u

′′
n

u′2
n

+ (1 − θ) u′′
�

u′2
�

]( 1
u′
n

− 1
u′
�

) 	 (47)

The numerator on the right side of (47) simplifies to ( 1
u′
n

− 1
u′
�
)[θ2 u′′

n

u′2
n

− (1 − θ)2
u′′
�

u′2
�

], and

the entire right side simplifies to θ− 1 + c(θ). Rearrange to get the result.
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