Theoretical Economics, Volume 6, Number 2 (May 2011)

Theoretical Economics 6 (2011), 289–310

Judicial precedent as a dynamic rationale for axiomatic bargaining theory

Marc Fleurbaey, John E. Roemer


Axiomatic bargaining theory (e.g., Nash's theorem) is static. We attempt to provide a dynamic justification for the theory. Suppose a Judge or Arbitrator must allocate utility in an (infinite) sequence of two-person problems; at each date, the Judge is presented with a utility possibility set in the nonnegative orthant in two-dimensional Euclidean space. He/she must choose an allocation in the set, constrained only by Nash's axioms, in the sense that a penalty is paid if and only if a utility allocation is chosen at date T which is inconsistent, according to one of the axioms, with a utility allocation chosen at some earlier date. Penalties are discounted with t, and the Judge chooses any allocation, at a given date, that minimizes the penalty he/she pays at that date. Under what conditions will the Judge's chosen allocations converge to the Nash allocation over time? We answer this question for three canonical axiomatic bargaining solutions: Nash's, Kalai-Smorodinsky's, and the 'egalitarian' solution, and generalize the analysis to a broad class of axiomatic models.

Keywords: Axiomatic bargaining theory, judicial precedent, dynamic foundations, Nash's bargaining solution

JEL classification: C70, C78, K4

Full Text:  PRINT  VIEW  Supplementary appendix