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Topologies on types
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We define and analyze a “strategic topology” on types in the Harsanyi-Mertens-
Zamir universal type space, where two types are close if their strategic behavior
is similar in all strategic situations. For a fixed game and action define the dis-
tance between a pair of types as the difference between the smallest ε for which
the action is ε interim correlated rationalizable. We define a strategic topology in
which a sequence of types converges if and only if this distance tends to zero for
any action and game. Thus a sequence of types converges in the strategic topol-
ogy if that smallest ε does not jump either up or down in the limit. As applied
to sequences, the upper-semicontinuity property is equivalent to convergence in
the product topology, but the lower-semicontinuity property is a strictly stronger
requirement, as shown by the electronic mail game. In the strategic topology, the
set of “finite types” (types describable by finite type spaces) is dense but the set of
finite common-prior types is not.

KEYWORDS. Rationalizability, incomplete information, common knowledge, uni-
versal type space, strategic topology.
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1. INTRODUCTION

Harsanyi (1967–68) proposed, and Mertens and Zamir (1985) constructed, a universal
type space into which (under some technical assumptions) any incomplete information
about a strategic situation can be embedded. As a practical matter, applied researchers
do not work with that type space but with smaller subsets of the universal type space.
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Mertens and Zamir show that finite types are dense under the product topology, but un-
der this topology the rationalizable actions of a given type may be very different from
the rationalizable actions of a sequence of types that approximate it.1 This leads to the
question of whether and how one can use smaller type spaces to approximate the pre-
dictions that would be obtained from the universal type space.

To address this question, we define and analyze “strategic topologies” on types, un-
der which two types are close if their strategic behavior is similar in all strategic situa-
tions. Three ingredients need to be formalized in this approach: how we vary the “strate-
gic situations,” what is meant by “strategic behavior” (i.e., what solution concept), and
what is meant by “similar.”

To define “strategic situations,” we start with a given space of uncertainty, Θ, and a
type space over that space, i.e. all possible beliefs and higher order beliefs about Θ. We
then study the effect of changing the action sets and payoff functions while holding the
type space fixed. We are thus implicitly assuming that any “payoff relevant state” can
be associated with any payoffs and actions. This is analogous to Savage’s assumption
that all acts are possible, and thus implicitly that any “outcome” is consistent with any
payoff-relevant state. This separation between the type space and the strategic situation
is standard in the mechanism-design literature, and it seems necessary for any sort of
comparative statics analysis, but it is at odds with the interpretation of the universal
type space as describing all possible uncertainty, including uncertainty about the payoff
functions and actions. According to this latter view one cannot identify “higher order
beliefs” independent of payoffs in the game.2 In contrast, our definition of a strategic
topology relies crucially on making this distinction.

Our notion of “strategic behavior” is the set of interim-correlated-rationalizable ac-
tions that we analyze in Dekel et al. (2006). This set of actions is obtained by the iterative
deletion of all actions that are not best responses given a type’s beliefs over others’ types
and Nature and any (perhaps correlated) conjectures about which actions are played at
a given type profile and payoff-relevant state. Under interim correlated rationalizability,
a player’s conjectures allow for arbitrary correlation between other players’ actions, and
between other players’ actions and the payoff state; in the complete information case,
this definition reduces to the standard definition of correlated rationalizability (e.g., as
in Brandenburger and Dekel 1987). A key advantage of this solution concept for our
purposes is that all type spaces that have the same hierarchies of beliefs have the same
set of interim-correlated-rationalizable outcomes, so it is a solution concept that can be
characterized by working with the universal type space.

It remains to explain our notion of “similar” behavior. Our goal is to find a topol-
ogy on types that is fine enough that the set of interim-correlated-rationalizable actions
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1This is closely related to the difference between common knowledge and mutual knowledge of order n
that is emphasized by Geanakoplos and Polemarchakis (1982) and Rubinstein (1989).

2See the discussion in Mertens et al. (1994, Remark 4.20b).
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has the continuity properties that the best-response correspondences, rationalizable
actions, and Nash equilibria all have in complete-information games, while still being
coarse enough to be useful.3 A review of those properties helps clarify our work. Fix a
family of complete-information games with payoff functions that depend continuously
on a parameter λ, where λ lies in a metric space Λ. Because best responses include
the case of exact indifference, the set of best responses for player i to a fixed oppo-
nents’ strategy profile a j , denoted BRi (a j ,λ), is upper hemicontinuous but not lower
hemicontinuous in λ, i.e. it may be that λn → λ and a i ∈ BRi (a j ,λ), but there is no se-
quence a n

i ∈ BRi (a j ,λn ) that converges to a i . However, the set of ε-best responses,4

BRi (a j ,ε,λ), is well behaved: if λn → λ and a i ∈ BRi (a j ,ε,λ), then for any a n
i → a i

there is a sequence εn → 0 such that a n
i ∈ BRi (a j ,ε + εn ,λn ). In particular, the small-

est ε for which a i ∈ BRi (a j ,ε,λ) is a continuous function of λ. Moreover the same is
true for the set of all ε-Nash equilibria (Fudenberg and Levine 1986) and for the set of
ε-rationalizable actions. That is, the ε that measures the departure from best response
or equilibrium is continuous. The strategic topology is the coarsest metric topology with
this continuity property.

Thus for a fixed game and action, we identify for each type of a player, the smallest
ε for which the action is ε interim correlated rationalizable. The distance between a
pair of types (for a fixed game and action) is the difference between those smallest ε’s.
In our strategic topology a sequence converges if and only if this distance tends to zero
pointwise for any action and game. Thus a sequence of types converges in the strategic
topology if, for any game and action, the smallest ε does not jump either up or down
in the limit, so that the map from types to ε is both upper semicontinuous and lower
semicontinuous. We show that a sequence has the upper-semicontinuity property if and
only if it converges in the product topology (Theorem 2), that a sequence has the lower-
semicontinuity property if and only if it converges in the strategic topology, and that
if a sequence has the lower-semicontinuity property then it converges in the product
topology (Theorem 1).

A version of the electronic mail game shows that the converse is false: a sequence
can converge in the product topology but not have the lower-semicontinuity property,
so the product topology is strictly coarser than the strategic topology. This has substan-
tive implications. For example, Lipman (2003) shows that finite common-prior types
are dense in the product topology, while we show in Section 7.3 that they are not dense
in the strategic topology. Similarly, Yildiz (2006)—using the main argument from Wein-
stein and Yildiz (2003)—shows that types with a unique interim correlated rationalizable
action are open and dense in the product topology; but in the strategic topology there
are open sets of types with multiple interim correlated rationalizable actions.5

3Topology P is finer than topology P ′ if every open set in P ′ is an open set in P . The use of a very fine
topology such as the discrete topology makes continuity trivial, but it also makes it impossible to approxi-
mate one type with another; hence our search for a relatively coarse topology. We will see that our topology
is the coarsest metrizable topology with the desired continuity property; this leaves open whether other,
non-metrizable, topologies have this property.

4An action is an ε-best response if it gives a payoff within ε of the best response.
5As will become clear, this follows directly from the definition of the strategic topology: for any type
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Our main result is that finite types are dense in the strategic topology (Theorem 3).
Thus finite type spaces do approximate the universal type space, so that the strategic
behavior—defined as the ε-correlated-interim-rationalizable actions—of any type can
be approximated by a finite type. However, this does not imply that the set of finite types
is large. In fact, while finite types are dense in the strategic topology (and the product
topology), they are small in the sense of being category I in the product topology and
the strategic topology.

Our paper follows Monderer and Samet (1996) and Kajii and Morris (1997) in seeking
to characterize “strategic topologies” in incomplete-information games. These earlier
papers defined topologies on priors or partitions in common-prior information systems
with a countable number of types, and used equilibrium as the solution concept.6 We
do not have a characterization of our strategic topology in terms of beliefs, so we are
unable to pin down the relation to these earlier papers.

We use interim correlated rationalizability as the benchmark for rational play. There
are two reasons for this choice. First, interim correlated rationalizability depends only
on hierarchies of beliefs, and hence is suitable for analysis using the universal type
space. In contrast, two types with the same hierarchy of beliefs may have different sets
of Nash equilibrium strategies and interim-independent-rationalizable strategies: this
is because they can correlate their play on payoff-irrelevant signals using what Mertens
and Zamir (1985) call redundant types. If one defined a strategic topology with a solution
concept that is not determined by hierarchies of beliefs, one would have to decide what
to do about the sensitivity of other solution concepts to “redundant types,” i.e., types
with the same hierarchy of beliefs but different correlation possibilities. Second, due to
our focus on the universal type space, we have chosen not to impose a common prior
on the beliefs. In Dekel et al. (2006), we argue that interim correlated rationalizability
characterizes the implications of common knowledge of rationality without the com-
mon prior assumption. Dekel et al. (2004) argue that the notion of equilibrium without
a common prior has neither an epistemic nor a learning-theoretic foundation. In short,
we think this is the natural solution concept for this problem.

The paper is organized as follows. Section 2 reviews the electronic mail game and the
failure of the lower-semicontinuity property (but not the upper-semicontinuity prop-
erty) of interim-correlated-rationalizable outcomes with respect to the product topol-
ogy. The universal type space is described in Section 3 and the incomplete informa-
tion games and interim-correlated-rationalizable outcomes we analyze are introduced
in Section 4. The strategic topology is defined in Section 5 and our main results about the
strategic topology are reported in Section 6. The concluding section, 7, contains some
discussion of the interpretation of our results, including the “genericity” of finite types,
the role of the common prior assumption, and an alternative stronger uniform strategic
topology on types. All proofs not contained in the body of the paper are provided in the
appendix.

with multiple actions that are ε rationalizable for some strictly negative ε (i.e., actions that are “strictly”
rationalizable), there is an open set around that point with multiple rationalizable actions (with ε = 0).

6For Monderer and Samet (1996), an information system is a collection of partitions on a fixed state
space with a given prior. For Kajii and Morris (1997), an information system is a prior on a fixed type space.
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2. ELECTRONIC MAIL GAME

To introduce the basic issues we use a variant of Rubinstein’s (1989) electronic mail game
that illustrates the failure of a lower-semicontinuity property in the product topology
(defined formally below). Specifically, we use it to provide a sequence of types, t i k ,
that converge to a type t i∞ in the product topology, while there is an action that is 0-
rationalizable for t i∞ but is not ε-rationalizable for t i k for any ε < 1

2 and finite k . Thus
the minimal ε for which the action is ε-rationalizable jumps down in the limit, and the
lower-semicontinuity property discussed in the introduction is not satisfied. Intuitively,
for interim-correlated-rationalizable play, the tails of higher order beliefs matter, but the
product topology is insensitive to the tails.

On the other hand the set of rationalizable actions does satisfy an upper-semicon-
tinuity property with respect to the sequence of types t1k converging in the product
topology to t1∞: since every action is 0-rationalizable for type t1∞, the minimum ε can-
not jump up in the limit. In Section 6 we show that product convergence is equivalent
to this upper-hemicontinuity property in general.

EXAMPLE 1. Each player has two possible actions A1 = A2 = {N , I } (“not invest” or “in-
vest”). There are two payoff states, Θ = {0, 1}. In payoff state 0, payoffs are given by the
following matrix:

θ = 0:

N I
N 0, 0 0,−2
I −2, 0 −2,−2

In payoff state 1, payoffs are given by:

θ = 1:

N I
N 0, 0 0,−2
I −2, 0 1, 1

Player i ’s types are Ti = {t i 1, t i 2, . . .} ∪ {t i∞}. Beliefs are generated by the common prior
on the type space given in Figure 1, where α, δ ∈ (0, 1). There is a sense in which the
sequence (t1k )∞k=1 converges to t1∞. Observe that type t12 of player 1 knows that θ = 1
(but does not know if player 2 knows it). Type t13 of player 1 knows that θ = 1, knows that
player 2 knows it (and knows that 1 knows it), but does not know if 2 knows that 1 knows
that 2 knows it. For k ≥ 3, each type t1k knows that θ = 1, knows that player 2 knows
that 1 knows . . . (k − 2 times) that θ = 1. But for type t1∞, there is common knowledge
that θ = 1. Thus type t1k agrees with type t1∞ up to 2k − 3 levels of beliefs. We later
define more generally the idea of product convergence of types, i.e., the requirement that
k th level beliefs converge for every k . In this example, (t1k )∞k=1 converges to t1∞ in the
product topology.

We are interested in the ε-interim-correlated-rationalizable actions in this game. We
provide a formal definition shortly, but the idea is that we iteratively delete an action for
a type at round k if that action is not an ε-best response for any conjecture over the
action-type pairs of the opponent that survived to round k −1.
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θ = 0 :

t21 t22 t23 t24 · · · t2∞
t11 (1−δ)α 0 0 0 · · · 0
t12 0 0 0 0 · · · 0
t13 0 0 0 0 · · · 0
t14 0 0 0 0 · · · 0

...
...

...
...

...
...

...
t1∞ 0 0 0 0 · · · 0

θ = 1 :

t21 t22 t23 t24 · · · t2∞

t11 0 0 0 0 · · · 0

t12 (1−δ)α (1−α) (1−δ)α (1−α)2 0 0 · · · 0

t13 0 (1−δ)α (1−α)3 (1−δ)α (1−α)4 0 · · · 0

t14 0 0 (1−δ)α (1−α)5 (1−δ)α (1−α)6 · · · 0
...

...
...

...
...

...
...

t1∞ 0 0 0 0 · · · δ

FIGURE 1. The common prior on the type space.

Clearly, both N and I are 0 interim correlated rationalizable for types t1∞ and t2∞ of
players 1 and 2, respectively. But action N is the unique ε-interim-correlated-rationaliz-
able action for all types of each player i except t i∞, for every ε < (1+α)/(2−α) (note that
(1+α)/(2−α)> 1

2 ). To see this fix any ε < (1+α)/(2−α). Clearly, I is not ε-rationalizable
for type t11, since the expected payoff from action N is 0 independent of player 2’s ac-
tion, whereas the payoff from action I is−2. Now suppose we can establish that I is not
ε-rationalizable for types t11 through t1k . Type t2k ’s expected payoff from action I is at
most

1−α
2−α

(1)+
1

2−α
(−2) =−

1+α
2−α

<− 1
2 .

Thus I is not ε-rationalizable for type t2k . A symmetric argument establishes if I is not
ε-rationalizable for types t21 through t2k , then I is not ε-rationalizable for type t1,k+1.
Thus the conclusion holds by induction. ◊

The example shows that strategic outcomes are not continuous in the product topol-
ogy. Yildiz (2006)—using the main argument from Weinstein and Yildiz (2003)—shows
that this discontinuity with respect to the product topology in the email example is quite
general: for any type with multiple interim correlated rationalizable actions, there is a
sequence of types converging to it in the product topology with a unique interim corre-
lated rationalizable action for every type in the sequence. Thus the denseness of finite
types in the product topology does not imply that they are dense in our topology.
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3. TYPES

Games of incomplete information are modelled using type spaces. In this paper we work
primarily with the “universal type space” developed by Mertens and Zamir (1985).7 This
type space is called “universal” because it can be used to embed the belief hierarchies
(defined below) that are derived from arbitrary type spaces. In this paper, we occasion-
ally construct finite and countable type spaces, but we do not need to work with general
uncountable type spaces, so we do not develop the machinery and assumptions needed
to handle them. We review the relevant concepts here.

The set of agents is I = {1, 2}; we also denote them by i and j = 3−i .8 LetΘ be a finite
set representing possible payoff-relevant moves by Nature.9 Throughout the paper, we
write∆(Ω) for the set of probability measures on the Borel field of any topological space
Ω; when Ω is finite or countable we use the Borel field corresponding to the discrete
topology, so that all subsets of Ω are measurable.

DEFINITION 1. A countable (finite) type space is any collection (Ti ,πi )i∈I where Ti is a
countable (finite) set and πi : Ti →∆(Tj ×Θ).

Let X0 =Θ, X1 =X0×∆(X0), and continuing in this way, for each k ≥ 1, let

Xk =Xk−1×∆(Xk−1),

where ∆(Xk ) is endowed with the topology of weak convergence of measures (i.e., the
“weak” topology) and each Xk is given the product topology over its two components.
Note that because Θ is finite, each Xk and ∆(Xk ) is compact. An element (δ1,δ2, . . .) ∈
×∞k=0∆(Xk ) is a hierarchy of beliefs.

Next we show how to calculate the hierarchy of beliefs associated with a given count-
able type space.

DEFINITION 2. Given a countable type space (Ti ,πi )i∈I , for each k = 1, 2, . . ., define the
k th level beliefs for each type as follows. The first-level beliefs are bπi ,1 : Ti →∆(X0), where

bπi 1 [t i ] (θ ) =
∑

t j ∈Tj

πi [t i ] (t j ,θ ).

Now we define the k th level beliefs bπi ,k+1 : Ti → ∆(Xk ) inductively, noting that Xk =
(Πk−1

l=0∆(X0))×Θ:

bπi ,k+1 [t i ] ((δj ,l )kl=1,θ ) =
∑

{t j ∈Tj :bπj ,l (t j )=δj ,l ,l=1,...,k }
πi [t i ] (t j ,θ ).

Let bπi (t i ) = (bπi ,k (t i ))∞k=1.

7See also Brandenburger and Dekel (1993), Heifetz (1993), and Mertens et al. (1994). SinceΘ is finite, the
construction here yields the same universal space with the sameσ-fields as the topology-free construction
of Heifetz and Samet (1998); see Dekel et al. (2006).

8We restrict the analysis to the two player case for notational convenience. We do not think that there
would be any difficulties extending the results to any finite number of players.

9We choose to focus on finite Θ as here the choice of a topology is obvious, while in larger spaces the
topology on types will depend on the underlying topology on Θ.
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Mertens and Zamir (1985) show the existence of a subset of hierarchies, T ∗ ⊆
×∞k=0∆(Xk ), and a functionπ∗ : T ∗→∆(T ∗×Θ) that preserves beliefs (i.e., margXkπ

∗(t ) =
δk+1(t )), that—by defining T ∗i = T ∗ and π∗i = π

∗—generate a universal type space
(T ∗i ,π∗i )i∈I into which all “suitably regular” type spaces can be embedded, in the sense
that any hierarchy of beliefs generated by such a type space is an element of T ∗.10 In
particular, finite and countable type spaces are covered by the Mertens and Zamir re-
sult, and the function bπi constructed above maps any type from a countable type space
into T ∗. The same mapping sends the set of types in any countable type space into a
subset of T ∗i ; this subset is a “belief-closed subspace” of the universal type space.

DEFINITION 3. A countable belief-closed subspace is a collection (Ti ,π∗i )i∈I where Ti ⊆ T ∗i
is countable and π∗i (t i )[Tj ×Θ] = 1 for all i ∈ I and all t i ∈ Ti . It is finite if Ti is finite for
i = 1, 2.

While we construct and use countable type spaces, we are interested only in the
hierarchies of beliefs generated by those type spaces, and hence the belief-closed sub-
spaces into which they are mapped. Therefore, whenever type spaces (Ti ,πi )i∈I are con-
structed, we abuse notation and view the types t i ∈ Ti as elements of the universal type
space with π∗i (t i ) being the belief over j ’s types and Nature, rather than writing the more
cumbersome π∗i (bπi (t i )).

Since our main result is that finite types are dense in the universal type space, we
need to define finite types.

DEFINITION 4. A type t i ∈ T ∗i is finite if it is an element of a finite belief-closed subspace,
i.e., there exists (Tj )j∈I such that t i ∈ Ti and (Tj ,π∗j )j∈I is a finite belief-closed subspace.
A type is infinite if it is not finite.

REMARK 1. If a type space (Ti ,πi )i∈I is finite then each t i ∈ Ti corresponds to a finite type
in the universal type space. However, an infinite type space can contain some finite
types, for two reasons. First, an infinite number of types can be mapped to the same
type in the universal type space; for example, a complete-information game where Θ is
a singleton and so each player necessarily has a single belief hierarchy can be combined
with a publicly-observed randomizing device to create an infinite type space. Second, a
finite belief-closed subspace can always be combined with a disjoint infinite type space
to yield an infinite type space that contains finite types; the types {t1∞, t2∞} in the email
game are an example of this.

REMARK 2. To test whether a given type in a type space is finite, it must be mapped into
its hierarchy of beliefs, i.e., into its image in the universal type space. A given type t in
the universal type space is finite if and only if it “reaches” only a finite set of types. We
write r (t ) = support(margT ∗π∗(t )) for the set of types of the opponent directly reached
by type t . If t ′ ∈ r (t ), we say that t ′ is reached in one step from t . If type t ′′ ∈ r (t ′)

10The Mertens-Zamir result applies to type spaces that are Polish and given the Borel sigma field. Heifetz
and Samet (1998) extend the result to a class of non-topological type spaces.
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and t ′ ∈ r (t ), we say that t ′′ is reached in two steps from t . And so on. Now if we set
Z (−1, t ) =∅, Z (0, t ) = {t }, and, for k ≥ 1,

Z (k , t ) =Z (k −2, t1)∪
�

∪t∈Z (k−1,t1)r (t1)
�

,

then, for k odd, Z (k , t ) is the set of types of the opponent reached in k or less steps from
t ; and, for k even, Z (k , t ) is the set of types of the same player as t reached in k or less
steps. Now type t is finite if and only if Z (k , t ) is bounded above.11

Recall that our intent is to find a strategic topology for the universal type space.
However, types in the universal type space are just hierarchies of beliefs, so we consider
topologies on hierarchies of beliefs. For this approach to be sensible, it is important that
we base our topology on a solution concept that depends only on the hierarchy of be-
liefs and not on other aspects of the type space. As noted, in our companion paper we
show that interim correlated rationalizability has this property.

4. GAMES AND INTERIM CORRELATED RATIONALIZABILITY

A game G consists of, for each player i , a finite set of possible actions A i and a payoff
function g i , where g i : A ×Θ → [−M , M ] and M is an exogenous bound on the scale
of the payoffs. Note the assumption of a uniform bound on payoffs: If payoffs can be
arbitrarily large, then best responses, rationalizable sets, etc. are unboundedly sensitive
to beliefs, and as we will see our “strategic topology” reduces to the discrete one; we
elaborate on this point in Section 7.6. The topology we define is independent of the
value of the payoff bound M so long as M is finite.

Here we restate definitions and results from our companion paper, Dekel et al.
(2006). In that paper, we vary the type space and hold fixed the game G being played
and characterize 0-rationalizable actions. In this paper, we fix the type space to be the
universal type space (and finite belief-closed subsets of it), but we vary the game G and
examine ε-rationalizable actions, so we need to make the dependence of the solution
on G and ε explicit. The companion paper defines interim correlated rationalizability
on arbitrary type spaces, and shows that two types that have the same hierarchy of be-
liefs (and so map to the same point in the universal type space T ∗) have the same set of
ε-interim-correlated-rationalizable actions for any ε. Thus in this paper we can without
loss of generality specialize the definitions and results to the type space T ∗.

For any subset of actions for all types, we first define the best replies when conjec-
tures are restricted to those actions. Letσj : T ∗j ×Θ→∆(A j ) denote player i ’s conjecture
about the distribution of the player j ’s action as a function of j ’s type and the state of
Nature. For any measurable σj and any belief over opponents’ types and the state of
Nature, π∗i (t i ) ∈ ∆(T ∗j ×Θ), let ν (π∗i (t i ),σj ) ∈ ∆(T ∗j ×Θ× A j ) denote the induced joint
conjecture over the space of types, Nature, and actions, where for measurable F ⊂ T ∗j ,

ν (π∗i (t i ),σj )(F ×{(θ , a j )}) =
∫

F

σj (t j ,θ )[a j ] ·π∗i (t i )[d t j ,θ ].

11The choice of topology for defining the support of a set is irrelevant since all we care about here is
whether or not it is finite.
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DEFINITION 5. Given a specification of a subset of actions for each possible type of op-
ponent, denoted by E j = ((E t j )t j ∈T ∗j

), with E t j ⊂ A j for all t j and j 6= i , we define the
ε-best replies for t i in game G as

BRi (t i , E j ,G ,ε) =



























a i ∈ A i :

∃ν ∈∆(T ∗j ×Θ×A j ) such that

(1) ν [{(t j ,θ , a j ) : a j ∈ E t j }] = 1

(2) margT ∗×Θν =π
∗
i (t i )

(3)
∫

T ∗j ×Θ×A j

(g i (a i , a j ,θ )− g i (a ′i , a j ,θ ))dν

≥−ε for all a ′i ∈ A i



























.

The correspondence of ε best replies in game G for all types given a subset of actions
for all types is denoted BR (G ,ε) : ((2A i )T

∗
i )i∈I → ((2A i )T

∗
i )i∈I and defined by BR (G ,ε)(E ) =

((BRi (t i , E−i ,G ,ε))t i∈Ti )i∈I , where E = ((E t i )t i∈Ti )i∈I ∈ ((2A i )T
∗

i )i∈I .12

REMARK 3. In cases where E j is not measurable, we interpret ν [{(t j ,θ , a j ) : a j ∈ E j }] = 1
as saying that there is a measurable subset E ′ ⊆ E j such that v [Θ×E ′] = 1. Because
A−i ×Θ is finite and utility depends only on actions and conjectures, the set of ε best
responses in G given some E−i , BRi (t i , E−i ,G ,ε), is non-empty provided there exists at
least one measurable σ−i that satisfies (1). Such σ−i exist whenever E−i is non-empty
and measurable, and more generally whenever E−i admits a measurable selection.

The solution concept and closely related notions with which we work in this paper
are given below.

DEFINITION 6. Fix a game G = (A i , g i )i∈I and ε.

(i) The interim-correlated-rationalizable set,

R(G ,ε)≡ ((Ri (t i ,G ,ε))t i∈T ∗i
)i∈I ∈ ((2A i )T

∗
i )i∈I ,

is the largest (in the sense of set inclusion) fixed point of BR.

(ii) The k th-order interim-correlated-rationalizable sets, k = 0, 1, 2, . . . ,∞, are defined
as follows:

R0(G ,ε)≡ (Ri ,0(G ,ε))i∈I ≡ ((Ri ,0(t i ,G ,ε))t i∈T ∗i
)i∈I ≡ ((A i )t i∈T ∗i

)i∈I

Rk (G ,ε)≡ (Ri ,k (G ,ε))i∈I ≡ ((Ri ,k (t i ,G ,ε))t i∈T ∗i
)i∈I ≡BR (G ,ε)(Rk−1)

R∞(G ,ε)≡ (Ri ,∞(G ,ε))i∈I ≡ ((Ri ,∞(t i ,G ,ε))t i∈T ∗i
)i∈I ≡∩∞k=1Rk (G ,ε).

Dekel et al. (2006) establish that the sets are well-defined, and show the following
relationships among them for the case ε = 0; the extensions to general non-negative ε
are immediate.

12We abuse notation and write BR both for the correspondence specifying best replies for a type and for
the correspondence specifying these actions for all types.
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RESULT 1. (i) R(G ,ε) equals R∞(G ,ε).

(ii) Ri ,k (G ,ε) and Ri ,∞(G ,ε) are measurable functions from Ti → 2A i /;, and for each
action a i and each k the sets

�

t i : a i ∈Ri ,k (t i ,G ,ε)
	

and
�

t i : a i ∈Ri ,∞(t i ,G ,ε)
	

are
closed.

To lighten the paper, we will frequently drop the “interim correlated” modifier, and
simply speak of rationalizable sets and rationalizability whenever no confusion will
result.

In defining our strategic topology, we exploit the following closure properties of R as
a function of ε.

LEMMA 1. For each k = 0, 1, . . ., if εn ↓ ε and a i ∈ Ri ,k (t i ,G ,εn ) for all n, then a i ∈
Ri ,k (t i ,G ,ε).

PROOF. We prove this by induction. It is vacuously true for k = 0.
Suppose that it holds true up to k −1. Let

Ψi ,k (t i ,δ) =















ψ∈∆(A j ×Θ) :

ψ(a j ,θ ) =
∫

T ∗j
ν [d t j ,θ , a j ]

for some ν ∈∆(T ∗j ×Θ×A j ) such that

ν [{(t j ,θ , a j ) : a j ∈R j ,k−1(t j ,G ,δ)}] = 1
and margT ∗×Θν =π

∗
i (t i )















.

The sequence Ψi ,k (t i ,εn ) is decreasing in n (under set inclusion) and converges (by σ-
additivity) to Ψi ,k (t i ,ε); moreover, in Dekel et al. (2006) we show that each Ψi ,k (t i ,εn ) is
compact. Let

Λi ,k (t i , a i ,δ) =
n

ψ∈∆(A j ×Θ) :
∑

a j ,θ

ψ(a j ,θ )(g i (a i , a j ,θ )− g i (a ′i , a j ,θ ))≥−δ for all a ′i ∈ A i

o

.

The sequence Λi ,k (t i , a i ,εn ) is decreasing in n (under set inclusion) and converges to
Λi ,k (t i , a i ,ε). Now a i ∈Ri ,k (t i ,G ,εn ) for all n

⇒Ψi ,k
�

t i ,εn�∩Λi ,k
�

t i , a i ,εn� 6=∅ for all n

⇒Ψi ,k (t i ,ε)∩Λi ,k (t i , a i ,ε) 6=∅
⇒ a i ∈Ri ,k (t i ,G ,ε) ,

where the second implication follows from the finite intersection property of compact
sets. �

PROPOSITION 1. If εn ↓ ε and a i ∈ Ri (t i ,G ,εn ) for all n, then a i ∈ Ri (t i ,G ,ε). Thus for
any t i , a i , and G ,

min{ε : a i ∈Ri (t i ,G ,ε)}

exists.
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PROOF. We have

a i ∈Ri
�

t i ,G ,εn� for all n

⇒ a i ∈Ri ,k
�

t i ,G ,εn� for all n and k

⇒ a i ∈Ri ,k (t i ,G ,ε) for all k , by Lemma 1

⇒ a i ∈Ri (t i ,G ,ε) .

Since we are considering a fixed finite game, inf{ε : a i ∈Ri (t i ,G ,ε)} is finite, and the
first part of the proposition shows that the infimum is attained. �

5. THE STRATEGIC TOPOLOGY

5.1 Basic definitions

The most commonly used topology on the universal type space is the “product topol-
ogy” on the hierarchy.

DEFINITION 7. t n
i →∗ t i if, for each k , δk (t n

i )→δk (t i ) as n→∞.

Here, the convergence of beliefs at a fixed level in the hierarchy, represented by →, is
with respect to the topology of weak convergence of measures.13

However, we would like to use a topology that is fine enough that the ε-best-response
correspondence and ε-rationalizable sets have the continuity properties satisfied by the
ε-best-response correspondence, ε-Nash equilibrium, and ε-rationalizability in com-
plete information games with respect to the payoff functions. The electronic mail game
shows that the product topology is too coarse for these continuity properties to obtain,
which suggests the use of a finer topology. One way of phrasing our question is whether
there is any topology that is fine enough for the desired continuity properties and yet
coarse enough that finite types are dense; our main result is that indeed there is: this is
true for the “strategic topology” that we are about to define.

Ideally, it would be nice to know that our strategic topology is the coarsest one with
the desired continuity properties, but since non-metrizable topologies are hard to ana-
lyze, we have chosen to work with a metric topology. Hence we construct the coarsest
metric topology with the desired properties.

For any fixed game and feasible action, we define the distance between a pair of
types as the difference between the smallest ε that would make that action ε-rationaliz-
able in that game. Thus for any G = (A i , g i )i∈I and a i ∈ A i ,

h i (t i | a i ,G ) =min{ε : a i ∈Ri (t i ,G ,ε)}

d i (t i , t ′i | a i ,G ) =
�

�h i (t i | a i ,G )−h i (t ′i | a i ,G )
�

�

In extending this to a distance over types, we allow for a larger difference in the h’s in
games with more actions. Thus, the metric that we define is not uniform over the num-
ber of actions in the game. When studying a game with a large or unbounded number

13It is used not only in the constructions by Mertens and Zamir (1985) and Brandenburger and Dekel
(1993) but also in more recent work by Lipman (2003) and Weinstein and Yildiz (2003).
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of actions, we think there should be a metric on actions and accompanying constraints
on the set of admissible payoff functions (such as continuity or single-peakedness) that
make “nearby” actions “similar.” Requiring uniformity here would require that strategic
convergence be uniform over the number of actions in the game, and this seems too
strong a requirement given that we allow arbitrary (bounded) payoff functions.

For any integer m , there is no loss in generality in taking the action spaces to be Am
1 =

Am
2 = {1, 2, . . . , m }. Having fixed the action sets, a game is parameterized by the payoff

function g . So for a fixed m , we write g for the game G = ({1, 2, . . . , m } ,{1, 2, . . . , m } , g ),
and Gm for the set of all such games g .

Now consider the following notion of distance between types:

d (t i , t ′i ) =
∑

m

βm sup
a i∈Am

i ,g∈Gm
d i (t i , t ′i | a i , g ),

where 0<β < 1.14

LEMMA 2. The distance d is a pseudo-metric.

PROOF. First note d is symmetric by definition. To see that d satisfies the triangle in-
equality, note that for each action a i and game g ,

d (t i , t ′′i | a i , g ) =
�

�h i (t i | a i , g )−h i (t ′′i | a i , g )
�

�

≤
�

�h i (t i | a i , g )−h i (t ′i | a i , g )
�

�+
�

�h i (t ′i | a i , g )−h i (t ′′i | a i , g )
�

�

= d (t i , t ′i | a i , g )+d (t ′i , t ′′i | a i , g ).

Hence

d (t i , t ′′i ) =
∑

m

βm sup
a i∈Am

i , g∈Gm
d (t i , t ′′i | a i , g )

≤
∑

m

βm sup
a i∈Am

i , g∈Gm
(d (t i , t ′i | a i , g )+d (t ′i , t ′′i | a i , g ))

≤
∑

m

βm

 

sup
a i∈Am

i , g∈Gm
d (t i , t ′i | a i , g )+ sup

a i∈Am
i , g∈Gm

d (t ′i , t ′′i | a i , g )

!

=
∑

m

βm sup
a i∈Am

i , g∈Gm
d (t i , t ′i | a i , g )+

∑

m

βm sup
a i∈Am

i , g∈Gm
d (t ′i , t ′′i | a i , g )

= d (t i , t ′i )+d (t ′i , t ′′i ). �

Theorem 1 below implies that d (t i , t ′i ) = 0⇒ t i = t ′i , so that d is in fact a metric.

DEFINITION 8. The strategic topology is the topology generated by d .

14We do not require a supremum over i in this definition as we can instead consider a game with the
indices switched on the action spaces and payoff functions (while we do not restrict attention to symmetric
games, the set of all games is symmetric).
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To analyze and explain the strategic topology, we characterize its convergent se-
quences using the following two conditions.15

DEFINITION 9 (Strategic Convergence).

(i) ((t n
i )
∞
n=1, t i ) satisfy the upper strategic convergence property (written t n

i →U t i ) if
for every m , a i ∈ Am

i , and g ∈ Gm , lim supn h i (t n
i | a i , g )≤ h i (t i | a i , g ). We refer

to this property as upper semicontinuity in n .

(ii) ((t n
i )
∞
n=1, t i ) satisfy the lower strategic convergence property (written t n

i →L t i ) if for
every m , a i ∈ Am

i , and g ∈ Gm , lim infn h i (t n
i | a i , g ) ≥ h i (t i | a i , g ). We refer to

this property as lower semicontinuity in n .

Not that by definition if t n
i →U t i then for each m , g ∈Gm , and a i ∈ Am

i there exists
εn → 0 such that h i (t i | a i , g ) < h i (t n

i | a i , g ) + εn . The statement for lower semiconti-
nuity is analogous (switching t n

i and t i in the implication). Lemma 11 in the appendix
states that for each m the sequence εn can be chosen independently of g , so that upper
and lower strategic convergence have the following stronger implications: for each m ,

t n
i →U t i ⇒∃εn → 0 s.t. h i (t i | a i , g )< h i (t n

i | a i , g )+ εn

t n
i →L t i ⇒∃εn → 0 s.t. h i (t n

i | a i , g )< h i (t i | a i , g )+ εn

for every n , a i ∈ Am
i , and g ∈Gm .16

We do not require convergence uniformly over all games, as an upper bound on the
number of actions m is fixed before the approximating sequence εn is chosen. Requir-
ing uniformity over all games would considerably strengthen the topology, as briefly
discussed in Section 7.5.

LEMMA 3. d (t n
i , t i )→ 0 if and only if t n

i →U t i and t n
i →L t i .

PROOF. Suppose d (t n
i , t i )→ 0. Fix m and let

εn =β−m d (t n
i , t i ).

15In metric spaces convergence and continuity can be assessed by looking at sequences (Munkres 1975,
p. 190). Since we show in Section 6.1 that each convergence condition coincides with convergence accord-
ing to a metric topology (the product and strategic topologies respectively) we conclude that the open sets
defined directly from the convergence notions below do define these topologies. We do not know if there
are non-metrizable topologies with the same convergent sequences.

16The upper-strategic-convergence property implies a property that resembles upper hemicontinu-
ity of the interim correlated rationalizability correspondence; specifically, t n

i →U t i implies that a i ∈
Ri (t n

i , g ,ε) ∀n =⇒ a i ∈ Ri (t i , g ,ε). Moreover, in Theorem 1 below we show that t n
i →U t i if and only if

t n
i →∗ t i , which, together with the preceding observation, implies that Ri (t i , g ,ε) is upper hemicontinu-

ous in t i w.r.t. the product topology. In contrast, the lower-strategic-convergence property is weaker than
a lower-hemicontinuity-like property, and Ri (t i , g ,ε) is not lower hemicontinuous in t i w.r.t. the product
topology. Instead, t n

i →∗ t i and a i ∈ Ri (t i , g ,ε) =⇒ ∃εn → ε with a i ∈ Ri (t n
i , g ,εn ) ∀n . As discussed in the

introduction, this is what we should expect by analogy with the continuity properties of solution concepts
under complete information.
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Now for any a i ∈ Am
i , g ∈Gm ,

βm
�

�h i (t n
i | a i , g )−h i (t i | a i , g )

�

�≤
∑

m

βm sup
a ′i∈Am

i , g ′∈Gm
d (t n

i , t i | a ′i , g ′) = d (t n
i , t i ),

so
�

�h i (t n
i | a i , g )−h i (t i | a i , g )

�

�≤β−m d (t n
i , t i ) = εn .

Thus t n
i →U t i and t n

i →L t i .
Conversely, suppose that t n

i →U t i and t n
i →L t i . Then ∀m , ∃ εn (m ) → 0 and

εn (m )→ 0 such that for all a i , g ∈Gm ,

h i (t i | a i , g )< h i (t n
i | a i , g )+ εn (m )

and h i (t n
i | a i , g )< h i (t i | a i , g )+ εn (m ).

Thus

d (t n
i , t i ) =

∑

m

βm sup
a i ,g∈Gm

d (t n
i , t i | a i , g )

≤
∑

m

βm max(εn (m ),εn (m ))

→ 0 as n→∞. �

The strategic topology is thus a metric topology where sequences converge if and
only if they satisfy upper and lower strategic convergence, and so the strategic topology
is the coarsest metric topology with the desired continuity properties. We now illustrate
the strategic topology with the example discussed earlier.

5.2 The e-mail example revisited

We can illustrate the definitions in this section with the e-mail example introduced
informally earlier. We show that we have convergence of types in the product topol-
ogy, t1k →∗ t1∞, corresponding to the upper semicontinuity noted in Section 2, while
d (t1k , t1∞) 6→ 0, corresponding to the failure of lower semicontinuity.

The beliefs for the types in that example are as follows.

π∗1 (t11) [(t2,θ )] =

(

1 if (t2,θ ) = (t21, 0)

0 otherwise

π∗1 (t1m ) [(t2,θ )] =















1

2−α
if (t2,θ ) =

�

t2,m−1, 1
�

1−α
2−α

if (t2,θ ) = (t2m , 1)

0 otherwise

for all m = 2, 3, . . . .

π∗1 (t1∞) [(t2,θ )] =

(

1 if (t2,θ ) = (t2∞, 1)

0 otherwise
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π∗2 (t21) [(t1,θ )] =















1

2−α
if (t1,θ ) = (t11, 0)

1−α
2−α

if (t1,θ ) = (t12, 1)

0 otherwise

π∗2 (t2m ) [(t1,θ )] =















1

2−α
if (t1,θ ) = (t1m , 1)

1−α
2−α

if (t1,θ ) =
�

t1,m+1, 1
�

0 otherwise

for all m = 2, 3, . . . .

π∗2 (t2∞) [(t1,θ )] =

(

1 if (t1,θ ) = (t1∞, 1)

0 otherwise.

One can verify that t1k →∗ t1∞. This is easiest to see by looking at the table presenting
the beliefs: t1m assigns probability 1 to each of the following: θ = 1; 2 assigns probability
1 to θ = 1; 2 assigns probability 1 to 1 assigning probability 1 to θ = 1; and so on up to
iterations of length m−1. As m →∞, the k th level beliefs converge to those of t1∞ where
it is common knowledge that θ = 1.

Note that the only finite types here are t i∞.
Denote by bG the e-mail game described earlier. For any ε < (1+α)/(2−α),

R1,0(t1, bG ,ε) = {N , I } for all t1

R2,0(t2, bG ,ε) = {N , I } for all t2

R1,1(t1, bG ,ε) =

(

{N } if t1 = t11

{N , I } if t1 ∈ {t12, t13, . . .}∪ {t1∞}

R2,1(t2, bG ,ε) = {N , I }

R1,2(t1, bG ,ε) =

(

{N } if t1 = t11

{N , I } if t1 ∈ {t12, t13, . . .}∪ {t1∞}

R2,2(t2, bG ,ε) =

(

{N } if t2 = t21

{N , I } if t2 ∈ {t22, t23, . . .}∪ {t2∞}

R1,3(t1, bG ,ε) =

(

{N } if t1 ∈ {t11, t12}
{N , I } if t1 ∈ {t13, t14, . . .}∪ {t1∞}

R2,3(t2, bG ,ε) =

(

{N } if t2 = t21

{N , I } if t2 ∈ {t22, t23, . . .}∪ {t2∞}
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R1,2m (t1, bG ,ε) =

(

{N } if t1 ∈ {t11, . . . , t1m }
{N , I } if t1 ∈

�

t1,m+1, t1,m+2, . . .
	

∪{t1∞}

R2,2m (t2, bG ,ε) =

(

{N } if t2 ∈ {t21, . . . , t2m }
{N , I } if t2 ∈

�

t2,m+1, t2,m+2, . . .
	

∪{t2∞}

for m = 2, 3, . . .

and

R1,2m+1(t1, bG ,ε) =

(

{N } if t1 ∈
�

t11, . . . , t1,m+1
	

{N , I } if t1 ∈
�

t1,m+2, t1,m+3, . . .
	

∪{t1∞}

R2.,2m+1(t2, bG ,ε) =

(

{N } if t2 ∈ {t21, . . . , t2m }
{N , I } if t2 ∈

�

t2,m+1, t2,m+2, . . .
	

∪{t2∞}

for m = 2, 3, . . . .

So

R1(t1, bG ,ε) =

(

{N } if t1 ∈ {t11, t12, . . .}
{N , I } if t1 = t1∞

R2(t2, bG ,ε) =

(

{N } if t2 ∈ {t21, t22, . . .}
{N , I } if t2 = t2∞.

Now observe that

h1(t1k | I , bG ) =











2 if k = 1

1+α
2−α

if k = 2, 3, . . .

0 if k =∞

while h1(t1k |N , bG ) = 0 for all k .

Thus d (t1k , t1∞)≥β2(1+α)/(2−α) for all k = 2, 3, . . . and we do not have d (t1k , t1∞)→ 0.

6. RESULTS

6.1 The relationships among the notions of convergence

We first demonstrate that both lower strategic convergence and upper strategic conver-
gence imply product convergence.

THEOREM 1. Upper strategic convergence implies product convergence. Lower strategic
convergence implies product convergence.

These results follow from a pair of lemmas. The product topology is generated by
the metric

ed (t i , t ′i ) =
∑

k

βk
ed k (t i , t ′i )

where 0 < β < 1 and ed k is a metric on the k th level beliefs that generates the topology
of weak convergence. One such metric is the Prokhorov metric, which is defined as
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follows. For any metric space X , letF be the Borel sets, and for A ∈F set Aγ = {x ∈ X :
infy∈A |x−y | ≤ γ}. Then the Prokhorov distance between measuresδ andδ′ is d P (δ,δ′) =
inf{γ |δ(A)≤δ′(Aγ)+γ for all A ∈F }, and ed k (t i , t ′i ) = d P (δk (t i ),δk (t ′i )).

LEMMA 4. For all k and c > 0, there exist ε > 0 and m such that if ed k (t i , t ′i ) > c , there
exist g ∈Gm and a i such that h i (t ′i | a i , g )+ ε < h i (t i | a i , g ).

PROOF. To prove this we construct a variant of a “report your beliefs” game and show
that any two types whose k th order beliefs differ by δ will lose a non-negligible amount
by playing an action that is rationalizable for the other type.

To define the finite games we use for the proof, it is useful to first think of a very
large infinite action game where the action space is the type space T ∗. Thus the first
component of player i ’s action is a probability distribution over Θ: a 1

i ∈∆(Θ). The sec-
ond component of the action is an element of ∆(Θ×∆(Θ)), and so on. The idea of the
proof is to start with a proper scoring rule for this infinite game (so that each player has
a unique rationalizable action, which is to truthfully report his type), and use it to define
a finite game where the rationalizable actions are “close to truth telling.”

To construct the finite game, we have agents report only the first k levels of beliefs,
and impose a finite grid on the reports at each level. Specifically, for any fixed integer z 1

let A1 be the set of probability distributions a 1 onΘ such that for all θ ∈Θ, a 1(θ ) = j /z 1

for some integer j , 1 ≤ j ≤ z 1. Thus A1 = {a ∈ R|Θ| : a θ = j /z 1 for some integer j ,
1 ≤ j ≤ z 1,

∑

θ a θ = 1}; it is a discretization of the set ∆(Θ) with grid points that are
evenly spaced in the Euclidean metric.

Let D1 = Θ× A1. Note that this is a finite set. Next pick an integer z 2 and let A2

be the set of probability distributions on D1 such that a 2(d ) = j /z 2 for some integer j ,
1 ≤ j ≤ z 2. Continuing in this way we can define a sequence of finite action sets A j ,
where every element of each A j is a probability distribution with finite support. The
overall action chosen is a vector in A1×A2× · · ·×Ak .

We call the a m the “m th-order action.” Let the payoff function be17

g i (a 1, a 2,θ ) = 2a 1
i (θ )−

∑

θ ′

(a 1
i (θ
′))2

+
k
∑

m=2

�

2a m
i (a

1
j , .., a m−1

j ,θ )−
∑

ea 1
j ,..,ea m−1

j ,eθ

(a m
i (ea

1
j , .., ea m−1

j , eθ ))2
�

.

Note that the objective functions are strictly concave and that the payoff to the m th-
order action depends only on the state θ and on actions of the other player up to the
(m − 1)th level (so the payoff to a 1

i does not depend on player j ’s action at all). This
allows us to determine the rationalizable sets recursively, starting from the first-order
actions and working up.

17The payoff function given in the text is independent of the payoff bound M , and need not satisfy it if M
is small—in that case we can simply multiply the payoff function by a sufficiently small positive number.
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Define l (t i , a 1
i ) = Eδ1(t i )[2a 1

i (θ )−
∑

θ ′ (a
1
i (θ
′))2]. This is the loss to type t i of choosing

a 1
i when δ1(t1) is a feasible first-order action. For all c > 0, there is b > 0 such that if
ed (δ1(t i ),δ1(t ′i )) > c , then l (t i ,δ1(t ′i )) > b . In the game with a given finite grid, δ1(t1) is

not in general feasible, and the rationalizable first-order action(s) for type t1 is the point
or points a ∗1(δ1(t1)) ∈ A1 closest to δ1(t1); picking any other point involves a greater
loss. Thus the loss to t i from playing an element of a ∗1(δ1(t ′i )) instead of an element
of a ∗1(δ1(t i )) is at least l (t i ,δ1(t ′i ))− ε2 − ε3, where ε2 is the loss from playing a ∗1(δ1(t i ))
instead of the (infeasible)δ1(t i ), and ε3 is the absolute value of the difference in i ’s payoff
from playing a ∗1(δ1(t ′i )) instead of δ1(t ′i ). Both ε2 and ε3 go to 0 in z 1, uniformly in t i , so

for all c > 0, if ed (δ1(t i ),δ1(t ′i ))> c , there are ε1 > 0 and z 1 such that

h i (t i | a ∗1(δ1(t i )), g )+ ε1 < h i (t ′i | a
∗
1(δ1(t i )), g ).

This proves the claim for the case k = 1.
Now let δ2(t i ) ∈ ∆(Θ×∆(Θ)) be the second-order belief of t i . For any fixed first-

level grid z 1, we know from the first step that there is an ε1 > 0 such that for any δ1, the
only ε1-rationalizable first-order actions are the point or points a ∗1 in the grid that are
closest to δ1. Suppose that player i believes player j is playing a first-order action that
is ε1-rationalizable. Then player i ’s beliefs about the finite set D1 = Θ×A1 correspond
to any probability measure δ∗2 on D1 such that for any X ⊂ Θ×A1, δ∗2(X ) ≤ δ2({(θ ,δ1) :
{θ } × a ∗1(δ1) ⊂ X }). That is, for each δ1 that i thinks j could have, i expects that j will
play an element of the corresponding a ∗1(δ1). Because A2 is a discretization of ∆(D1),
player i may not be able to choose a 2 = δ∗2. However, because of the concavity of the
objective function, the constrained second-order best reply of i with beliefs δ2 is the
point a ∗2 ∈ A2 that is closest to δ∗2 in the Euclidean metric, and choosing any other action
incurs a non-zero loss. Moreover, a ∗2 is at (Euclidean) distance from δ∗2 that is bounded
by the distance between grid points, so there is a bound on the distance that goes to zero
as z 2 goes to infinity, uniformly over all δ∗2. We extend the domain of δ∗2 to all ofΘ×∆(Θ)
by setting δ∗2(Θ×Y ) =δ∗2(Θ× (A1 ∩Y )).

Next we claim that if there is a c > 0 such that ed 2(t i , t ′i ) > c , then δ∗2(t i ) 6= δ∗2(t
′
i )

for all sufficiently fine grids A1 on ∆(Θ1). To see this, note from the definition of the
Prokhorov metric, if ed 2(t i , t ′i )> c there is a Borel set A in Θ×∆(Θ) such that δ2(t i )(A)>
δ2(t ′i )(A

c )+ c . Because the first-order actions a ∗1 converge uniformly to δ∗1 as z 1 goes to
infinity, (θ , a ∗1(δ1))∈ Ac for every (θ ,δ1)∈ A, so for all γ such that c/2>γ> 0 there is a z 2

such that δ∗2(t i )(Ac )≥δ∗2(t i )(A)>δ2(t i )(A)−γ>δ2(t ′i )(A
c )−γ+ c ≥δ∗2(t

′
i )(A

c )−2γ+ c >
δ∗2(t

′
i )(A

c ), where the first inequality follows from set inclusion, the second and fourth

from the uniform convergence of the a ∗1, and the third from ed 2(t i , t ′i )> c .

As with the case of first-order beliefs and actions, this implies that when ed 2(t i , t ′i )> c
there is a z 2 and ε2 > 0 such that

h i (t i | a ∗2(t i ), g )+ ε2 < h i (t ′i | a
∗
2(t i ), g )

for all z 2 > z 2. We can continue in this way to prove the result for any k . �
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LEMMA 5. Suppose that t i is not the limit of the sequence t n
i in the product topology.

Then (t n
i , t i ) satisfies neither the lower convergence property nor the upper convergence

property.

PROOF. Failure of product convergence implies that there exists k such that ed k (t n
i , t i )

does not converge to zero, so there exists δ> 0 such that for all n in some subsequence

ed k (t n
i , t i )>δ.

By Lemma 4, there exists ε and m such that, for all n ,

∃a i ∈ Am
i , g ∈Gm s.t. h i (t i | a i , g )+ ε < h i (t n

i | a i , g ) and (1)

∃a i ∈ Am
i , g ∈Gm s.t. h i (t n

i | a i , g )+ ε < h i (t i | a i , g ). (2)

Now suppose that the lower convergence property holds. Therefore

∃ηn → 0 s.t. h i (t n
i | a i , g )< h i (t i | a i , g )+ηn , a i ∈ Am

i , g ∈Gm .

This combined with (1) gives a contradiction.
Similarly, upper convergence implies that

∃ηn → 0 s.t. h i (t i | a i , g )< h i (t n
i | a i , g )+ηn , a i ∈ Am

i , g ∈Gm .

This gives a contradiction when combined with (2). �

Lemma 5 immediately implies Theorem 1.

THEOREM 2. Product convergence implies upper strategic convergence.

PROOF. Suppose that t n
i product-converges to t i . If upper strategic convergence fails

there are m , a i ∈ Am
i , and g ∈ Gm such that for all εn → 0 and N , there is n ′ > N such

that
h i (t i | a i , g )> h i (t n ′

i | a i , g )+ εn ′ .

We may relabel so that t n
i is the subsequence where this inequality holds. Pick δ so that

h i (t i | a i , g )> h i (t n
i | a i , g )+δ

for all n . Since, for each n and t n
i , a i ∈ Ri (t n

i ,G , h i (t i | a i , g )− δ), there exists νn ∈
∆(T ∗j ×Θ×A j ) such that

(1) νn
�

(t j ,θ , a j ) : a j ∈R j (t j , g , h i (t i | a i , g )−δ)
�

= 1

(2) margT ∗×Θν
n =π∗i (t

n
i )

(3)

∫

(t j ,θ ,a j )

�

g i (a i , a j ,θ )− g i (a ′i , a j ,θ )
�

dνn ≥−h i (t i | a i , g )+δ for all a ′i ∈ Am
i .
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Since under the product topology, T ∗ is a compact metric space, and since A j andΘ are
finite, so is T ∗ ×Θ× A j . Thus ∆(T ∗ ×Θ× A j ) is compact in the weak topology, so the
sequence νn has a limit point, ν .

Now since (1), (2) and (3) hold for every n and ν = limn νn , we have

(1*) ν
�¦

(t j ,θ , a j ) : a j ∈R j (t j , g , h i (t i | a i , g )−δ)
©�

= 1

(2*) margT ∗×Θν =π
∗
i (t i )

(3*)

∫

(t j ,θ ,a j )

�

g i (a i , a j ,θ )− g i (a ′i , a j ,θ )
�

dν ≥−h i (t i | a i , g )+δ for all a ′i ∈ Am
i .

Here (1*) follows from the fact that {(t j ,θ , a j ) : a j ∈ R j (t j , g , h i (t i | a i , g )−δ)} is closed.
To see why (2*) holds, note that margT ∗×Θνn → margT ∗×Θν , since νn → ν . It remains
to show that π∗i (t

n
i ) → π

∗
i (t i ), i.e., t i = π∗−1

i (limπ∗i (t
n
i )), whenever t n

i →∗ t i . This can
be inferred from the Mertens-Zamir homeomorphism and standard results about the
continuity of marginal distributions in the joint, but a direct proof is about as short:
Recall that δk (t ) is the k th level belief of type t , that margXk−1π

∗(t ) = δk (t ), and that (by
definition) t i =π∗−1

i (limπ∗i (t
n
i )) if and only if for all k , δk (t i ) =δk (π∗−1

i (limπ∗i (t
n
i ))). Now

δk (π∗−1
i (limπ∗i (t

n
i ))) =margXk−1 limπ∗i (t

n
i ) = lim margXk−1π

∗
i (t

n
i ) = limδk (t n

i ) = δk (t i ) by
product convergence. This proves (2*); (3*) follows from νn → ν .

This implies a i ∈Ri (t i , g , h i (t i | a i , g )−δ), a contradiction. �

COROLLARY 1. Lower strategic convergence implies convergence in the strategic topology.

PROOF. We have t n
i →L t i ⇒ t n

i →∗ t i (by Theorem 1); t n
i →∗ t i ⇒ t n

i →U t i (by Theo-
rem 2); and t n

i →L t i and t n
i →U t i ⇒ d (t n

i , t i )→ 0 (by Lemma 3). �

6.2 Finite types are dense in the strategic topology

THEOREM 3. Finite types are dense under d .

Given Corollary 1, the theorem follows from Lemma 6 below, which shows that, for
any type in the universal type space, it is possible to construct a sequence of finite
types that lower converge to it. The proof of Lemma 6 is long, and broken into many
steps. In outline, we first find a finite grid of games that approximate all games with
m actions and show that any game has ε-rationalizable actions that are close to the ε-
rationalizable actions of some game in the finite grid. This allows us to work with such
finite grids. We also take a finite grid of ε’s, {εj }mj=1. We then define maps f i taking each
type of i into a function that specifies for every action of i and every game from the
finite grid of games the minimal εj under which the action is εj rationalizable. Each
such function is one of finitely many types for i . We then define a belief hierarchy for
each type in this finite set of types by arbitrary taking the belief hierarchy of one of the
types in the universal type space to which it is mapped. This gives us a finite type space.
We show that this map “preserves ε”: a i ∈ Ri (t i , g ,ε)⇒ a i ∈ Ri ( f i (t i ), g ,ε). Finally we
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show that for any type in the universal space there is a sequence of these finite types that
“lower converge” to it.

Our proof thus follows Monderer and Samet (1996) in constructing a mapping from
types in one type space to types in another type space that preserves approximate best
response properties. Their construction worked for equilibrium, while our construc-
tion works for interim correlated rationalizability, and thus the approximation has to
work for many conjectures over opponents’ play simultaneously. We assume neither a
common prior nor a countable number of types, and we develop a topology on types
based on the play of the given types as opposed to a topology on priors or information
systems.18

A distinctive feature of our construction is that we identify types in our constructed
type space with sets of ε-rationalizable actions for a finite set of ε’s and a finite set of
games. The recent paper of Ely and Pęski (2006) similarly identifies types with sets of ra-
tionalizable actions, although for their different purpose (constructing a universal type
space for the interim-independent-rationalizability solution concept), no approxima-
tion is required.

LEMMA 6. For any t i , there exists a sequence of finite types et n
i such that [(et n

i )
∞
n=1, t i ] satisfy

lower strategic convergence.

PROOF. The two critical stages in the proof are as follows. We first prove that there is a
finite set of m -action games, Gm

, that approximate the set Gm .

LEMMA 7. For any integer m and ε > 0, there exists a finite collection of m action games
Gm

such that, for every g ∈Gm , there exists g ′ ∈Gm
such that for all i , t i and a i ∈ Am

i ,

�

�h i (t i | a i , g )−h i (t i | a i , g ′)
�

�≤ ε.

Next we use this to prove that there is a finite approximating type space.

LEMMA 8. Fix the number of actions m and ξ > 0. There exists a finite type space ( eTi ,
eπi )i=1,2 and functions ( f i )i=1,2, each f i : T ∗ → eTi , such that h i ( f i (t i ) | a i , g ) ≤ h i (t i |
a i , g )+ξ for all t i , g ∈Gm , and a i .

The key step in this proof is constructing the type space, so we present that here. The
remaining details are provided in the appendix.

Fix a finite set of gamesGm
. Write 〈x 〉δ for the smallest number in the set {0,δ, 2δ, . . .}

greater than x , and let Γm be the set of all maps from Am
i ×G

m
into {0,δ, . . . , 〈2M 〉δ}. We

build the type spaces ( eTi , eπi )i=1,2 using subsets of Γm as the types. Specifically, define
the function f i : T ∗i → Γm by f i (t i ) = (




h i (t i | a i , g )
�δ)a i ,g .

Let eTi be the range of f i ; note that eTi is a finite set. Thus for given δ each type of
i in the universal type space is mapped into a function that specifies for each one of

18It is not clear how one could develop a topology based on the equilibrium distribution of play in a
setting without a common prior.
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the finitely many games and actions of i the smallest multiple j of δ under which that
action is jδ-rationalizable. These functions constitute the types in a finite type space.
The beliefs in this finite type space are defined next.

Define eπi : eTi → ∆( eTj ×Θ) as follows. For each et i ∈ eTi , fix any t i ∈ T ∗ such that
f i (t i ) = et i . Label this type ζi (et i ) and let

eπi (et i )[{(et j ,θ )}] =π∗i (ζi (et i ))[{(t j ,θ ) : f j (t j ) = et j }].

Now the proof of Lemma 6 can be completed as follows. Lemma 8 implies that for
any fixed m and t i there exists a finite type et n ,m

i such that

h i (et
n ,m
i | a i , g )≤ h i (t i | a i , g )+

1

n

for all a i ∈ Am
i and g ∈Gm . Thus et n ,m

i →L t i as n→∞. �

7. DISCUSSION

7.1 Outline of issues

The key implication of our denseness result is that there are “enough” finite types to
approximate general ones. In this section we discuss some caveats regarding the inter-
pretation of this result.

• We show that there is a sense in which the set of finite types is small.

• We show that finite common-prior types are not dense in the set of finite types
and thus in the set of all types.

• We discuss approaches to generalizing our results to alternative solution concepts.

• We describe a topology that is uniform over all games: the denseness result does
not hold with such a topology, and hence the same finite type cannot approximate
strategic behavior for an infinite type in all games simultaneously.

• We discuss relaxing the uniform bound on payoffs that we have used throughout
the paper.

• Finally, we emphasize that caution is needed in working with finite types despite
our result.

7.2 Is the set of finite types “generic”?

Our denseness result does not imply that the set of finite types is “generic” in the uni-
versal type space. While it is not obvious why this question is important from a strategic
point of view, we nonetheless briefly report some results showing that the set of finite
types is not generic in either of two standard topological senses.

First, a set is sometimes said to be generic if it is open and dense. But the set of finite
types is not open. To show this, it is enough to show that the set of infinite types is dense.
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This implies that the set of infinite types is not closed and so the set of finite types is not
open.

Let T ∗n be the collection of all types that exist on finite belief closed subsets of the
universal type space where each player has at most n types. The set of finite types is the
countable union TF =∪n T ∗n . The set of infinite types is the complement of TF in T ∗.

THEOREM 4. If #Θ≥ 2, infinite types are dense under the product topology and the strate-
gic topology.

Thus the “open and dense” genericity criterion does not discriminate between finite
and infinite types. A more demanding topological genericity criterion is that of “first
category.” A set is first category if it is the countable union of closed sets with empty
interiors. Intuitively, a first category set is small or “non-generic.” For example, the set
of rationals is dense in the interval [0, 1] but not open and not first category.

THEOREM 5. If #Θ ≥ 2, the set of finite types is first category in T ∗ under the product
topology and under the strategic topology.

PROOF. Theorem 4 already established that the closure of the set of infinite types is the
whole universal type space. This implies that each T ∗n has empty interior (in the product
topology and in the strategic topology). Since the set of finite types is the countable
union of the T ∗n , it is then enough to establish that each T ∗n is closed, in the product
topology and thus in the strategic topology.

By Mertens and Zamir (1985), →∗ corresponds to the weak topology on the com-
pact set T ∗. We will repeatedly use the following implications of weak convergence. If
a sequence of measures µk on a metric space X converges weakly to µ, and the sup-
port of every µk has n or fewer elements, then (a) the support of µ has at most n el-
ements; (b) every element x of the support of µ is the limit of a sequence of elements
x k ∈ support(µk ); moreover, (c) there exists an integer K and, for each k > K and x ∈
support(µ), χk (x ) ∈ support(µk ), such that, (i) for all x ∈ support(µ), χk (x ) converges to
x and (ii) x ,x ′ ∈ support(µ) and x 6= x ′ implies χk (x ) 6=χk (x ′) for all k > K .

Now recall from Remark 2 that, for k even, we write Z (k , t1) for the set of types of
player 1 reached in k or less steps from t1 of player 1; and, for k odd, we write Z (k , t1)
for the set of types of player 2 reached in k or less steps from t1. This implies that for
even k ,

Z (k , t1) = {t1}∪ (∪t∈Z (k−1,t1)r (t1))

and for odd k ,

Z (k , t1) = (∪t∈Z (k−1,t1)r (t1)).

Now fix an n , and suppose t
k
1 →∗ t 1 and t

k
1 ∈ T ∗n for all k . So t

k
1 ∈ T k

1 , where T k
1 ×T k

2
is a belief-closed type space with #T k

i ≤ n . We will establish inductively the following
claim.
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CLAIM. Fix any positive integer L. (1) Z (L, t 1) has at most n elements. (2) There exists
KL such that for every k > KL and every t ∈ Z (L, t1), there exists τk (t ) ∈ T k

i such that
τk (t )→ t and τk (t ) 6=τk (t ′) for all t , t ′ ∈Z (L, t1)with t 6= t ′ (where i = 1 if L is even and
i = 2 if L is odd).

We first establish the claim for L = 1. Since π∗(t k ) is a sequence of measures con-
verging to π∗(t ), we have that (a) Z (1, t 1) has at most n elements; (b) there is a sequence
τk

2 (t2)∈ T k
2 s.t. τk

2 (t2)→ t2; and (c) there exists K1 such that for all k > K1, τk
2 (t2) 6=τk

2 (t
′
2)

if t2 6= t ′2.
Now suppose that the claim holds for all L ≤ L−1, where L is even. We establish the

claim for L. For k > KL−1, we know that

�

�{t k
1 }∪ (∪t2∈Z (L−1,t 1)r (τ

k
2 (t2)))

�

�≤
�

�T k
1

�

�≤ n .

Now |{t k
1 } ∪ (∪t2∈Z (L−1,t 1)r (τ

k
2 (t2)))| ≤ n implies |{t 1} ∪ (∪t2∈Z (L−1,t 1)r (t2))| ≤ n since t

k
1 →

t 1, τk
2 (t2)→ t2 and supports cannot grow. Thus Z (L, t 1) has at most n elements. Also

observe that for each t1 ∈ Z (L, t 1), there is a sequence τk
1 (t1) ∈ T k

1 s.t. τk
1 (t1)→ t1. This

is true by assumption if t1 = t 1; otherwise t1 is the limit of a sequence of types in r (t k
2 )

for some t k
2 ∈ T k

2 . Since Z (L, t 1) is finite, there exists KL such that for all k > KL and all
t1 ∈Z (L, t 1), there is a sequence of τk

1 (t1)∈ T k
1 converging to t1 with with τk

1 (t1) 6=τk
1 (t
′
1)

if t1 6= t ′1.
Now suppose that the claim holds for all L ≤ L − 1, where L is odd. Essentially the

same argument establishes the claim for L (apart from labelling, the only difference
from the case of even L is that we do not have t 1 in Z (k , t 1)).

We have now established the claim for all L by induction, and thus that type t 1 is an
element of T ∗n . �

Thus the set of finite types is not generic under two standard topological notions of
genericity.

Heifetz and Neeman (2006) use the non-topological notion of “prevalence” to dis-
cuss genericity on the universal type space. Their approach builds in a restriction to
common prior types, and it is not clear how to extend their approach to non common
prior types. They also show that the generic set has the property that any convex com-
bination of an element in the set with an element of its complement is in the set. This
property is satisfied here as well: convex combinations of finite types with infinite types
are infinite.

7.3 Types with a common prior

We say that t is a finite common-prior type if it belongs to a finite belief-closed subspace
(Ti ,π∗i )

2
i=1 and there is a probability distribution π∗ on T ∗ (the common prior) that as-

signs positive probability to every type of every player, such thatπ∗i (t i ) =π∗(· | t i ). The set
of finite common-prior types is not dense in the set of finite types, and thus is not dense
in the set of all types. Intuitively, this is because the strategic implications of a common
prior (such as certain no-trade theorems) do not extend to general types. Since Lipman
(2003) shows that the set of finite common prior types is dense in the product topology,
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this observation demonstrates a general distinction between the product topology and
the strategic topology.

To demonstrate this observation, it is enough to give a single game that separates
common prior types from non common-prior types. Suppose there are two states, L
and R . Each player has two actions, Y (trade) and N (no trade). If a player says N she
gets zero, if they both say Y they get (1,−2) and (−2, 1) in states L and R respectively
(a negative-sum trade) and in case one says Y and the other says N the one who said
Y gets −2 (independent of the state). Clearly both players saying Y is 0-rationalizable
for some non-common prior type: if a player believes there is common certainty that
each player believes the state is the one favorable to him, they may both say Y . But
with common priors, the only ε-rationalizable action, for ε small enough, is N : Let eT
be the set of common-prior type pairs for whom Y is 1

4 -rationalizable; for each t1 ∈ eT1,

the probability of state L and eT has to be at least 7
12 (since 7

12 − 2( 5
12 ) = −

1
4 ). However,

a similar property, replacing R for L, must also hold for all t2 ∈ eT2, so there cannot be a
common prior on eT ×{L, R}with such conditionals.

7.4 Alternative solution concepts

We used the solution concept of interim correlated rationalizability to define the strate-
gic topology. We noted two reasons for doing this: the set of interim correlated rational-
izable actions depend only on hierarchies of beliefs and the solution concept captures
the implications of common knowledge of rationality.

One might wonder what would happen with alternative solution concepts, such as
Nash equilibrium or interim independent rationalizability. But the set of Nash equilib-
rium actions or interim-independent-rationalizable actions depend in general not just
on the belief hierarchies but also on “redundant” types: those that differ in their abil-
ity to correlate their behavior with others’ actions and states of the world. In defining
a topology for these solution concepts, one would have to decide what to do about this
dependence.

Suppose one wanted to define a topology on hierarchies of beliefs (despite the fact
that hierarchies of beliefs do not determine these other solution concepts). One ap-
proach would be to examine all actions that could be played by any type with a given hi-
erarchy of beliefs under that solution concept (allowing for all possible type spaces and
not only the universal type space as we do here). Dekel et al. (2006) show that, given any
game and fixed hierarchy of beliefs, the union—over all type spaces that contain a type
with that hierarchy of beliefs—of the equilibrium actions equals the interim-correlated-
rationalizable actions for that hierarchy of beliefs. The same arguments can be used to
prove the same conclusion for interim-independent-rationalizability.

Another approach would be to fix a solution concept and construct a larger rep-
resentation of types that included hierarchies of beliefs but also incorporated the re-
dundant types that are relevant for the solution concept. One would then construct a
topology on this larger space. The first part of this approach—constructing the larger
type space that incorporates the redundant types relevant for the solution concept—is
carried out by Ely and Pęski (2006) for the solution concept of interim-independent-
rationalizability for two-person games.
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7.5 A strategic topology that is uniform on games

The upper and lower convergence conditions we took as our starting point are not uni-
form over games. As we said earlier, when the number of actions is unbounded, there is
usually a metric on actions and accompanying constraints on the set of admissible pay-
off functions. Uniformity over all games without such restrictions seems too demanding
and hence of less interest. Despite this, it seems useful to understand how our results
would change if we did ask for uniformity over games.

Let A i (G ) denote the set of actions for player i in a given game G . A distance on types
that is uniform in games is:

d ∗(t i , t ′i ) = sup
a i∈A i (G ),G

d (t i , t ′i | a i ,G ).

This metric yields a topology that is finer than that induced by the metric d , so the topol-
ogy is finer than necessary for the upper and lower convergence properties that we took
as our goal. Finite types are not dense with this topology. To show this we use the fact
that convergence in this topology is equivalent to convergence in the following uniform
topology on beliefs:

d ∗∗(t i , t ′i ) = sup
k

sup
f ∈Fk

�

�E ( f |π∗(t i ))−E ( f |π∗(t ′i ))
�

� ,

where Fk is the collection of bounded functions mapping T ∗ ×Θ that are measurable
with respect to k th level beliefs.

PROPOSITION 2. The metrics d ∗ and d ∗∗ are equivalent.

An argument of Morris (2002) implies that finite types are not dense in the uniform
topology on beliefs.19 Together with the preceding proposition this implies that finite
types are not dense in the uniform strategic topology generated by d ∗.

7.6 Bounded versus unbounded payoffs

We have studied topologies on the class of games with uniformly bounded payoffs. If
arbitrary payoff functions are allowed, we can always find a game in which any two types
will play very differently, so the only topology that makes strategic behavior continuous
is the discrete topology. From this perspective, it is interesting to note that full surplus
extraction results in mechanism design theory (Crémer and McLean 1985, McAfee and
Reny 1992) rely on payoffs being unbounded. Thus it is not clear to us how the results
in this paper can be used to contribute to a debate on the genericity of full-surplus-
extraction results.20

19For a fixed random variable on payoff states, we can identify the higher-order expectations of a type,
i.e., the expectation of the random variable, the expectation of the other player’s expectation of the random
variable, and so on. Convergence in the metric d ∗∗ implies that there is uniform convergence of these higher
order expectations. Morris (2002) shows that finite types are not dense in a topology defined in terms of
uniform convergence of higher order expectations. Thus finite types are not dense under d ∗∗.

20A result in Bergemann and Morris (2001) (which does not appear in the published version of the paper,
Bergemann and Morris 2005), shows that both the set of full-surplus-extraction types and the set of non-
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7.7 Interpreting the denseness result

That any type can be approximated with a finite type provides only limited support for
the use of simple finite type spaces in applications. The finite types that approximate
arbitrary types in the universal type space are quite complex. The approximation re-
sult shows that finite types could conceivably capture the richness of the universal type
space and does not of course establish that the use of any particular simple type space
is without loss of generality.

In particular, applying notions of genericity to the belief-closed subspace of finite
types must be done with care. Standard notions of genericity for such finite spaces do
not in general correspond to strategic convergence. Therefore, results regarding strate-
gic interactions that hold on such “generic” subsets of the finite spaces need not be close
to the results that would obtain with arbitrary type spaces. For example, our results com-
plement those of Neeman (2004) and Heifetz and Neeman (2006) on the drawbacks of
analyzing genericity with respect to collections of (in their case, priors over) types where
beliefs about Θ determine the entire hierarchy of beliefs, as is done, for instance, in
Crémer and McLean (1985), McAfee and Reny (1992), and Jehiel and Moldovanu (2001).

APPENDIX

For some proofs we use an alternative characterization of the interim-correlated-ration-
alizable actions.

DEFINITION 10. Fix a game G = (A i , g i )i∈I and a belief-closed subspace (Ti ,π∗i )i∈I . Given
S = (S1,S2), where each Si : Ti → 2A i \∅, we say that S is an ε-best response set if Si (t i )⊆
BRi (t i ,S j ,G ,ε).

In Dekel et al. (2006) we prove that if S is a 0-best response set then Si (t i ) ⊆ R(t i ,G , 0);
the extension to positive ε is immediate.

Let
D(g , g ′) = sup

i ,a ,θ

�

�g i (a ,θ )− g ′i (a ,θ )
�

� .

LEMMA 9. For any integer m and ε > 0, there exists a finite collection of m action games
Gm

such that, for every g ∈Gm , there exists g ′ ∈Gm
such that D(g , g ′)≤ ε.

PROOF. Assume without loss of generality that M is an integer. For any integer N , we
write

GN =

¨

g : {1, . . . , m }2×Θ→
�

−M ,−M +
1

N
,−M +

2

N
, . . . , M −

1

N
, M

�2
«

.

For any game g , choose g ′ ∈GN to minimize D(g , g ′). Clearly D(g , g ′)≤ 1/(2N ). �

full-surplus-extraction types are dense in the product topology among finite common prior types, and the
same argument would establish that they are dense in the strategic topology identified in this paper. But
of course it is trivial that neither set is dense in the discrete topology, which is the “right” topology for the
mechanism design problem.
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LEMMA 10. For all i , t i , m , a i ∈ Am
i , and g , g ′ ∈Gm

h i (t i | a i , g )≤ h i (t i | a i , g ′)+2D(g , g ′).

PROOF. By the definition of R , we know that R(g ′,δ) is a δ-best response set for g ′.
Thus R(g ′,δ) is a (δ+ 2D(g , g ′))-best response set for g . So Ri (t i , g ′,δ) ⊆ Ri (t i , g ,δ+
2D(g , g ′)). Now if a i ∈ Ri (t i , g ′,δ), then a i ∈ Ri (t i , g ,δ+2D(g , g ′)). So δ≥ h i (t i | a i , g ′)
implies δ+2D(g , g ′)≥ h i (t i | a i , g ). So h i (t i | a i , g ′)+2D(g , g ′)≥ h i (t i | a i , g ). �

LEMMA 11. (i) If for each m and each g ∈Gm there exists bεn → 0 such that h i (t i | a i , g )<
h i (t n

i | a i , g )+ bεn for every n and a i ∈ Am
i , then for each m there exists εn → 0 such

that h i (t i | a i , g )< h i (t n
i | a i , g )+ εn for every n, g ∈Gm , and a i ∈ Am

i .

(ii) If for each m and each g ∈ Gm there exists bεn → 0 such that h i (t n
i | a i , g )< h i (t i |

a i , g ) + bεn for every n and a i ∈ Am
i , then for each m there exists εn → 0 such that

h i (t n
i | a i , g )< h i (t i | a i , g )+ εn for every n, g ∈Gm , and a i ∈ Am

i .

PROOF. Lemma 10 implies that for fixed m , h i is continuous in g . Assume now to the
contrary that part (i) was false. Then there exists m and δ > 0 such that for all n there is
g n ∈ Gm with h i (t i | a i , g n ) ≥ h i (t n

i | a i , g n ) +δ. Since Gm is a compact metric space,
the sequence g n has a convergent sub-sequence; denote the limit of that subsequence
by g . Then h i (t i | a i , g ) ≥ h i (t n

i | a i , g ) +δ/2, contradicting the hypothesis. The same
argument proves part (ii). �

LEMMA 7. For any integer m and ε > 0, there exists a finite collection of m action games
Gm

such that, for every g ∈Gm , there exists g ′ ∈Gm
such that for all i , t i , and a i ∈ Am

i

�

�h i (t i | a i , g )−h i (t i | a i , g ′)
�

�≤ ε.

PROOF. By Lemma 9, we can choose a finite collection of gamesGm
such that, for every

g ∈ Gm , there exists g ′ ∈ Gm
such that D(g , g ′) ≤ ε/2. Lemma 10 now implies that we

also have
h i (t i | a i , g )≤ h i (t i | a i , g ′)+ ε

and
h i (t i | a i , g ′)≤ h i (t i | a i , g )+ ε. �

LEMMA 12. Fix any finite collection of m action gamesGm
and δ> 0. There exists a finite

type space ( eTi , eπi )i=1,2 and functions ( f i )i=1,2, each f i : T ∗ → eTi , such that Ri (t i , g ,ε) ⊆
Ri ( f i (t i ), g ,ε) for all t i ∈ T ∗ and ε ∈ {0,δ, 2δ, . . .}.

PROOF. Let ( eTi , eπi ) and ( f i )i=1,2 be as constructed in Section 6.2. Fix ε ∈ {0,δ, . . . , 〈2M 〉δ}.
Let Si (et i ) =Ri (ζi (et i ), g ,ε).

We argue that S is an ε-best response set on the type space ( eTi , eπi )i=1,2. To see why,
suppose that

a i ∈Ri (t i , g ,ε)
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and let et i = f i (t i ). Because ε ∈ {0,δ, . . . , 〈2M 〉δ}, we have Ri (t i , g ,ε) = Ri (ζi (et i ), g ,ε) and
thus

a i ∈Ri (ζi (et i ), g ,ε).

This implies that there exists ν ∈∆(T ∗×Θ×A j ) such that

ν [{(t j ,θ , a j ) : a j ∈R j (t j , g ,ε)}] = 1

margT ∗×Θν =π
∗
i (ζi (et i ))

∫

(Tj×Θ×A j )

�

g i (a i , a j ,θ )− g i (a ′i , a j ,θ )
�

dν ≥−ε for all a ′i ∈ A i .

Now define ev ∈∆( eTj ×Θ×A j ) by

ev (et j ,θ , a j ) = ν [{(t j ,θ , a j ) : f j (t j ) = et j }].

By construction,

ev [{(et j ,θ , a j ) : a j ∈S j (et j )}] = 1

marg
eTj×Θ ev = eπi (et i )

∑

eTj×Θ×A j

�

g i (a i , a j ,θ )− g i (a ′i , a j ,θ )
�

ev (et j ,θ , a j )≥−ε for all a ′i ∈ A i .

So a i ∈BRi (S)(et i ).
Since S is an ε-best response set on the type space ( eTi , eπi )i=1,2, Si (et i )⊆Ri (et i , g ,ε).
Thus a i ∈Ri (t i , g ,ε)⇒ a i ∈Ri ( f i (t i ), g ,ε). �

LEMMA 13. Fix any finite collection of m action games Gm
and δ > 0. There exists a

finite type space ( eTi , eπi )i=1,2 and functions ( f i )i=1,2, each f i : T ∗→ Ti , such that h i ( f i (t i ) |
a i , g )≤ h i (t i | a i , g )+δ for all t i , g ∈Gm

, and a i ∈ Am
i .

PROOF. We use the type space from Lemma 12, which has the property that

Ri (t i , g ,ε)⊆Ri ( f i (t i ), g ,ε) (3)

for all ε ∈ {0,δ, 2δ, . . .}. By definition,

a i ∈Ri (t i , g , h i (t i | a i , g )).

By monotonicity,
a i ∈Ri (t i , g ,




h i (t i | a i , g )
�δ).

By (3),
Ri (t i , g ,




h i (t i | a i , g )
�δ)⊆Ri ( f i (t i ), g ,




h i (t i | a i , g )
�δ).

Thus
h i ( f i (t i ) | a i , g )≤




h i (t i | a i , g )
�δ ≤ h i (t i | a i , g )+δ. �
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LEMMA 8. Fix the number of actions m and ξ > 0. There exists a finite type space (Ti ,
bπi )i=1,2 and functions ( f i )i=1,2, each f i : T ∗ → eTi , such that h i ( f i (t i ) | a i , g ) ≤ h i (t i |
a i , g )+ξ for all t i , g ∈Gm , and a i ∈ Am

i .

PROOF. Fix m and ξ> 0. By Lemma 7, there exists a finite collection of m -action games
Gm

such that for every finite-action game g , there exists g ′ ∈Gm
such that

h i (t i | a i , g )≤ h i (t i | a i , g ′)+ 1
3ξ and h i (t i | a i , g ′)≤ h i (t i | a i , g )+ 1

3ξ (4)

for all i , t i , and a i . By Lemma 13, there exists a finite type space ( eTi , eπi )i=1,2 and func-
tions ( f i )i=1,2, each f i : T ∗→ eTi , such that

h i ( f i (t i ) | a i , g )≤ h i (t i | a i , g )+ 1
3ξ (5)

for all t i , g ∈Gm
, and a i ∈ Am

i .
Now fix any i , t i , a i and g . By (4), there exists g ′ such that

h i (t i | a i , g ′)−h i (t i | a i , g )≤ 1
3ξ

and
h i ( f i (t i ) | a i , g )−h i ( f i (t i ) | a i , g ′)≤ 1

3ξ.

By (5),
h i ( f i (t i ) | a i , g ′)−h i (t i | a i , g ′)≤ 1

3ξ.

So

h i ( f i (t i ) | a i , g )−h i (t i | a i , g )

≤ (h i ( f i (t i ) | a i , g )−h i ( f i (t i ) | a i , g ′))+ (h i ( f i (t i ) | a i , g ′)−h i (t i | a i , g ′))

+ (h i (t i | a i , g ′)−h i (t i | a i , g ))

≤ ξ. �

THEOREM 4. If #Θ≥ 2, infinite types are dense under the product topology and the strate-
gic topology.

PROOF. It is enough to argue that for an arbitrary n and t ∗ ∈ T ∗n , we can construct a se-
quence t k that converges to t ∗ in the strategic topology (and thus the product topology)
such that each t k /∈ TF . Let T1 = T2 = {1, . . . , n} and πi : {1, . . . , n} →∆({1, . . . , n}×Θ) (as
before these are to be viewed as a belief-closed subspace of the universal type space.)
Without loss of generality, we can identify t ∗ ∈ T ∗n with type 1 of player 1.

The strategy of proof is simply to allow player i to have an additional signal about
Tj ×Θ (which requires an infinite number of types for each player) but let the informa-
tiveness of those signals go to zero. Thus we will have a sequence of types not in TF but
converging to t ∗ in the strategic topology (and thus the product topology).

We now define a sequence of type spaces ((T k
i ,πk

i )i∈I ) for k = 1, 2, . . . ,∞. Let us
suppose each player i observes an additional signal z i ∈ {1, 2, . . .}, and define T k

i =
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Ti ×{1, 2, . . .}, with typical element (n i , z i ). ) Fix λ∈ (0, 1) and for each k = 1, 2, . . ., choose
πk

i : T k
i →∆(T

k
j ×Θ) to satisfy the following two properties:

�

�πk
i ((n j , z j ),θ | (n i , z i ))− (1−λ)λz j−1πi (n j ,θ | n i )

�

�≤
1

k
(6)

for all n j , z j ,θ , n i , z i ; and

πk
i (θ | (n i , z i )) 6=πk

i (θ
′ | (n ′i , z ′i )) (7)

for all θ ,θ ′, and all (n i , z i ) 6= (n ′i , z ′i ).
For k =∞, set

π∞i ((n j , z j ),θ | (n i , z i )) = (1−λ)λz j−1πi (n j ,θ | n i ),

where (7) is not satisfied (but holds instead with equality).
We distinguish the different copies of T k

i with the superscript k because we identify
a type (n i , z i ) in T k

i as potentially distinct from (n i , z i )∈ T k ′
i when viewed as types in the

universal type space . Note that in the type space (T∞i ,π∞i ), for each n i ∈ Ti every type
(n i , z i )∈ Ti ×{1, 2, . . .} corresponds to the same type in the universal type space, namely
the type in the universal type space that corresponds to type n i in the type space (Ti ,πi ).
On the other hand, from (7) we see that for all other type spaces with k 6=∞, each distinct
pair of types (n i , z i ) 6= (n ′i , z ′i ) in (T k

i ,πk
i ) corresponds to distinct types in the universal

type space. Let t k ∈ T ∗ be the type in the universal type corresponding to type (1, 1) in
the type space (T k

i ,πk
i )i=1,2.

Now (7) also implies that each t k /∈ TF .
We argue that the sequence t k converges to t ∗ in the strategic topology. To see

why, for any (n i , z i ) ∈ T k
i = Ti × {1, 2, . . .}, let Si (n i , z i ) = Ri (n i ,G ,η) (i.e., the set of

η-rationalizable actions of type n i of player i in game G on the original type space).
First observe that S is an η-best-response set in game G on the type space (T∞i ,π∞i )i=1,2.
This is true because, as noted, the type space (T∞i ,π∞i )i=1,2 and the original type space
(Ti ,πi )i=1,2 correspond to the same belief-closed subspace of the universal type space.
(The only difference is that in (T∞i ,π∞i )i=1,2 it is common knowledge that each player i
observes a conditionally independent draw with probabilities (1−λ)λz i−1 on {1, 2, . . .}.)
But now by (6), S is an η+ 2M/k best response set for G . Thus if a i ∈ Ri (t ∗,G ,η), then
a i ∈ Ri (t k ,G ,η+2M/k ). Thus the sequence (t k , t ∗) satisfies the lower strategic conver-
gence property. By Corollary 1, this implies strategic convergence. By Theorem 1, we
also have product convergence. �

PROPOSITION 2. d ∗∗ is equivalent to d ∗.

PROOF. First observe that if d ∗∗(t i , t ′i )≤ ε, then for any measurable f : T ∗j ×Θ→ [−M , M ],

�

�E ( f |π∗(t i ))−E ( f |π∗(t ′i ))
�

�≤ 2ε. (8)
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To see this, for any k , we define f k : T ∗j ×Θ→ [−M , M ] that is measurable with respect

to i ’s k th level beliefs. Let

f k (t j ,θ ) =

∫

¦

(t j ,θ ):(bπj l (t j ))k−1
l=0=(bπj l (t j ))k−1

l=0

©

f (t j ,θ )d (π∗(t i )).

That is, f k is the expected value according to π∗(t i ) of the function f evaluated over all
t j with the same first k levels. Now f k → f pointwise so by the bounded convergence
theorem, E ( f k | π∗(t ′i )) → E ( f | π∗(t ′i )). By the definition (and iterated expectations)
E ( f k | π∗(t i )) = E ( f | π∗(t i )). Since d ∗∗(t i , t ′i ) ≤ ε we know that for all k , |E ( f k | π∗(t i ))−
E ( f k |π∗(t ′i ))| ≤ ε.

Now suppose that a i ∈Ri (t i ,G ,δ). Then there exists ν ∈∆(T ∗j ×Θ×A j ) such that

ν
�¦

(t j ,θ , a j ) : a j ∈R j (t j ,G ,δ)
©�

= 1

margT ∗×Θν =π
∗
i (t i )

∫

(t j ,θ ,a j )

�

g i (a i , a j ,θ )− g i (a ′i , a j ,θ )
�

dν ≥−δ for all a ′i ∈ A i .

Let ν ′ be a measure whose marginal on T ∗ ×Θ is π∗i (t
′
i ) and whose probability on A j ,

conditional on (t j ,θ ), is the same as ν . Since T ∗j ×Θ×A j is a separable standard measure
space there exist conditional probabilities (see Parthasarathy 1967, Theorem 8.1) ν (· |
T ∗j ×Θ) ∈ ∆(A−i ), measurable as a function of T ∗j ×Θ. Define ν ′ ∈ ∆(T ∗j ×Θ×A−i ), by

setting, for measurableF ⊂ T ∗j , ν ′(F × {θ , a j }) =
∫

F
(ν (a j | t j ,θ )×πi (t i ))[dt j ,θ ].21 Let

f a i ,a ′i
be a function taking the value

∫

A j
(g i (a i , a j ,θ )− g i (a ′i , a j ,θ ))dν (a j | T ∗j ×Θ) at

each (t j ,θ ). So by (8),

∫

(t j ,θ ,a j )

�

g i (a i , a j ,θ )− g i (a ′i , a j ,θ )
�

dν ′

≥
∫

(t j ,θ ,a j )

�

g i (a i , a j ,θ )− g i (a ′i , a j ,θ )
�

dν −2ε(2)≥−δ−4ε.

Thus a i ∈Ri (t ′i ,G ,δ+4ε). Since this argument holds for every game G independent
of the cardinality of the action sets, we have d ∗(t i , t ′i )≤ 4ε.

On the other hand, if d ∗∗(t i , t ′i )≥ ε then there exists k such that
�

�E ( f |π∗(t i ))−E ( f |π∗(t ′i ))
�

�≥ 1
2ε

for some bounded f that is measurable with respect to k th level beliefs. Now Lemma 4
states that that we can construct a game G and action a i such that h i (t ′i | a i ,G ) + 1

2ε <

h i (t i | a i ,G ). Thus d ∗(t i , t ′i )≥
1
2ε.

21A similar construction appears in Dekel et al. (2006).
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We conclude that
1
2 d ∗∗(t i , t ′i )≤ d ∗(t i , t ′i )≤ 4d ∗∗(t i , t ′i )

or equivalently
1
4 d ∗(t i , t ′i )≤ d ∗∗(t i , t ′i )≤ 2d ∗(t i , t ′i ).

Thus d ∗∗(t n
i , t i )→ 0 if and only if d ∗(t n

i , t i )→ 0. �
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