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Incomplete markets with no Hart points
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We provide a geometric test of whether a general equilibrium incomplete markets
(GEI) economy has Hart points—points at which the rank of the securities payoff
matrix drops. Condition (H) says that, at each nonterminal node, there is an affine
set (of appropriate dimension) that intersects all of a well-specified set of convex
polyhedra. If the economy has Hart points, then Condition (H) is satisfied; conse-
quently, if condition (H) fails, the economy has no Hart points. The shapes of the
convex polyhedra are determined by the number of physical goods and the divi-
dends of the securities, but are independent of the endowments and preferences
of the agents. Condition (H) fails, and thus there are no Hart points, in inter-
esting classes of economies with only short-lived securities, including economies
obtained by discretizing an economy with a continuum of states and sufficiently
diverse payoffs.

KEYWORDS. Incomplete markets, GEI model, Hart points.

JEL CLASSIFICATION. D52.

1. INTRODUCTION

In the general equilibrium with incomplete markets (GEI) model, the usual proofs of
existence of equilibrium that apply in the Arrow–Debreu complete markets case do not
hold. Moreover, existence holds generically but not universally: given the preferences
of the agents, a tree describing the states, and a fixed number of securities, there is a
generic set (an open set of full measure) in the space of endowments and security pay-
offs such that an equilibrium exists.
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The barrier to universal existence, and to the use of the usual complete markets
proofs, lies in the existence of Hart points: points where the rank of the security returns
matrix drops. At Hart points, budget sets fail to be upper hemicontinuous, and conse-
quently demand need not be upper hemicontinuous. Hart (1974) showed that equilib-
rium may fail to exist; in his example, the natural candidate for an equilibrium price
is itself a Hart point. For this reason, the proofs in the literature starting from Duffie
and Shafer (1985, 1986) make use of mathematical constructs such as the Grassmanian
(the space of all J -dimensional vector subspaces of RS). The proofs work through the
Grassmanian to avoid the Hart point problem and establish universal existence of pseu-
doequilibria. They then show that the pseudoequilibrium price is generically not a Hart
point, and hence is an equilibrium. These proofs are quite difficult, and the standard
text on the GEI model, Magill and Quinzii (1996), does not contain a proof.1 For this
reason, it is very desirable to obtain interesting classes of GEI economies in which the
usual complete markets proof works.

In this paper, we provide a geometric test on the securities payoffs to determine
whether the economy has Hart points. Suppose there are S states, J securities, and L
physical goods. In that case, there are S convex polyhedra, each a subset of the J − 1
dimensional simplex. Each convex polyhedron is the intersection of L half-spaces. Con-
dition (H) is that there is a hyperplane in the J − 1-dimensional simplex that intersects
every convex polyhedron. If J = 2, a hyperplane in the J − 1-dimensional simplex is
a point, so condition (H) simply says that the convex polyhedra have nonempty inter-
section. We show that if an economy has Hart points, then condition (H) is satisfied;
consequently, if condition (H) fails, the economy does not have any Hart points. We
show also that if the economy has only short-lived securities, then condition (H) holds
if and only if there are Hart points.

The geometric characterization we give is equivalent to the nonexistence of solu-
tions of a set of polynomial equations. As a consequence, the methods of algebraic ge-
ometry give effective algorithms to determine whether the geometric characterization
is satisfied for a given economy. In addition, if the characterization fails, so Hart points
exist, the collection of Hart points is an algebraic variety; effective algorithms exist to de-
scribe the set of Hart points, for example by determining an upper bound on the number
of isolated Hart points. See Raimondo (2003) for more details.

For any securities payoff matrix for which condition (H) fails, the usual complete
markets proof suffices to establish existence of equilibrium for all possible endowment
vectors, not just for endowment vectors in a generic set. Moreover, one can prove exis-
tence of equilibrium using an index-theoretic argument, and thereby establish that the
number of equilibria is generically odd.

Economies with long-lived securities typically have Hart points. However, there are
interesting classes of economies with short-lived securities in which condition (H) fails,
and thus there are no Hart points. For example, suppose we begin with a discrete-time
economy with a continuum of states in which the securities payoffs are multivariate

1Magill and Quinzii indicate the proof will be presented in a planned second volume, but we understand
that this second volume is unlikely to appear in the foreseeable future.
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lognormal.2 Multivariate lognormal random variables are ubiquitous in finance; for ex-
ample, the securities prices in the geometric Brownian motion model are multivariate
lognormal. If we discretize the economy in a straightforward way, condition (H) fails in
all sufficiently fine discretizations, and consequently these discretizations have no Hart
points.

Discretized versions of economies with continuous distributions are important for
several reasons.

• Except in quite special cases, equilibria of the continuous models cannot be com-
puted in closed form. The only practical way to solve these models is to discretize
them and apply standard algorithms for computing discrete equilibria. While
there are algorithms to compute equilibria of discrete GEI economies with Hart
points, these algorithms are complex because demand typically exhibits an un-
bounded discontinuity in the neighborhood of each Hart point. In complete mar-
kets economies, simpler and faster methods work fine. We believe that, in GEI
economies without Hart points, these simpler, faster methods should also work
well. In particular, we hope they will make it tractable to compute the equilibria
of more complex economies than is currently possible.

• Many people regard discrete models as the appropriate models for “real” econo-
mies. For example, the prices of securities are in practice constrained to lie on a
discrete grid. For those who take this view, continuous models are useful ideal-
izations, but reality is a discrete approximation to a normal or other continuous
model. Our results identify a substantial class of discrete models that are well-
behaved.

• The Capital Asset Pricing Model (CAPM) and the Black–Scholes Model are the two
most important models in finance. CAPM is a discrete-time GEI model with a
continuum of states. Surprisingly little is known about existence of equilibrium
in such models with more than two periods; see Mas-Colell and Zame (1996) and
Raimondo (2002). The Black–Scholes model is a continuous-time GEI model with
a continuum of states that allows pricing and replication of options in closed form.
The Cox–Ross–Rubinstein model (Cox et al. 1979) is a discrete-time, discrete-state
version of the Black–Scholes model that provides a mathematically simpler ap-
proach to the basic results on option pricing and replication.

• The proof of existence of equilibrium in discrete GEI models uses a fixed-point
theorem on a finite-dimensional manifold, called the Grassmanian. Adapting that
proof to GEI models with a continuum of states appears impossible because it is
unlikely that the infinite-dimensional analogue of the Grassmanian has a fixed-

2A family of random variables X1, . . . , Xn is multivariate normal if there is a symmetric n × n matrix σ
such that the probability density of the joint distribution of (X1, . . . , Xn ) at x = (x1, . . . ,xn ) is proportional
to e−x ′σx , where x ′ is the transpose of the column vector x . A family of random variables (Z1, . . . ,Zn ) is
multivariate lognormal if the family (logZ1, . . . , logZn ) is multivariate normal.
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point property. Proofs of existence of equilibrium with complete markets and
infinite-dimensional commodity spaces analyze the set of Pareto optima, a finite-
dimensional manifold to which a fixed-point argument can be applied. Adapting
that proof to GEI models with a continuum of states appears impossible because
with incomplete markets, equilibria need not be Pareto optimal. Discretization
appears to be the only possible approach to resolving the existence question with
incomplete markets and a continuum of states. Discretization is used by Mon-
teiro (1996) in a two-period, continuum of states GEI model. Continuous-time
finance models are GEI models with a continuum of states. Anderson and Rai-
mondo (2006) provide the first complete proof of the existence of equilibrium in
continuous-time financial markets with multiple agents without relying on en-
dogenous assumptions. Their theorem applies to the case in which there are
enough securities to potentially dynamically complete the markets. It would be
highly desirable to extend the equilibrium existence result to the case in which
there are too few securities to achieve dynamic completeness. Their argument fo-
cuses on an appropriate discretization of the continuous-time economy. Getting a
better understanding of the behavior of discretizations of continuous economies
is a necessary first step in trying to extend their argument to the dynamically in-
complete case.

2. THE GEOMETRIC TEST

The security market we consider is the event-tree commodity space described in Section
18 of Magill and Quinzii (1996), except that our securities pay off in physical goods. The
set of time periods is T= {0, 1, . . . , T }. There are L physical goods, numbered `= 1, . . . , L.
The set of states is S= {1, 2, . . . ,S}. There is a filtration on the set of states that determines
the nodes that traders can distinguish at any time period. The set of nodes is denoted
D = {0, . . . , D}, where 0 is the unique node in period 0; the set of nonterminal nodes is
denoted D−. Given a nonterminal node ξ ∈ D−, the set of immediate successor nodes
is denoted ξ+, and b (ξ) = |ξ+| is the branching number of the tree at ξ. Let D+(ξ) de-
note the set of all nodes, other than ξ itself, in the event subtree beginning at ξ. Given
a non-initial node ξ, the immediate predecessor node is denoted by ξ−. The set of se-
curities available for purchase at each nonterminal node ξ is J(ξ), with |J(ξ)| = J (ξ); let
J=∪ξ∈D−J(ξ) and J = |J|.

In each period except the terminal period T , the securities pay dividends in goods,
then spot markets for goods and securities open (so securities in these markets are
priced ex dividend). There is no spot market for securities in the terminal period T
(since there is no period T + 1, they cannot pay dividends, so if there were a market,
the securities would be priced at zero). A short-lived security is a security that can be
bought only at some single node ξ ∈ D and that pays dividends only in the immediate
successor nodes of ξ. Securities that are not short-lived are called long-lived.

Security j pays dividend a j (ξ)∈RL
+ at node ξ. We assume that every security j ∈ J(ξ)

that is available for purchase at node ξ pays a nonzero dividend at some (not necessarily
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immediate) successor node ξ′ ∈D+(ξ) of ξ.3 We assume also that, for every ξ ∈D− and
every immediate successor node ξ′ ∈ ξ+, there is some security j ∈ J(ξ) available for
purchase at ξ and some ξ′′ ∈ (D+(ξ′)∪ {ξ′}) such that a j (ξ′′) 6= 0.4 At each node ξ ∈ D,
we denote the vector of goods prices by p (ξ) ∈ RL

+ and the vector of securities prices by

q (ξ) ∈ RJ
+; since the dividends of the securities are nonnegative, absence of arbitrage

requires that the prices of the securities be nonnegative. As usual in GEI models, there is
a free normalization at each node of the prices of the goods and securities traded at that
node, so we assume that

∑L
`=1 p (ξ)` +
∑J

j=1 q (ξ)j = 1. Some price systems (p ,q ) admit
arbitrage (see Magill and Quinzii 1996).

It is well known that even if preferences and endowments satisfy standard assump-
tions, economies of this type need not have equilibria. However, Duffie and Shafer
(1985, 1986) prove that if preferences satisfy standard assumptions, there exists an open
set Ω of security payoffs and endowments, whose complement has Lebesgue measure
zero, such that an equilibrium exists for any economy with (ω, a ) in Ω.

The reason that existence fails for certain (ω, a ) (and the reason that the generic ex-
istence theorem is hard) is that the rank of the asset payoff matrix may fall at certain
points, called Hart points. At Hart points, the budget set fails to be lower hemicontin-
uous, and consequently the demand may fail to be continuous.5 Indeed, if the natural
candidate for the equilibrium price is itself a Hart point, equilibrium may fail to exist
(Hart 1974). We present a more formal definition of Hart points.

Let W (p ,q , a ) denote the (D+1)× (
∑

ξ∈D− J (ξ))matrix (see Magill and Quinzii 1996,
p. 227) constructed as follows. There is one row for each node ξ ∈D, and J (ξ) columns
for each nonterminal node ξ ∈ D−. For each nonterminal ξ ∈ D−, the entries in the
columns corresponding toξ are zero except for the row corresponding to the nodeξ and
the rows corresponding to the immediate successor nodes of ξ. The entries in the row
corresponding to ξ are the coordinates of −q (ξ), the negative of the vector of prices of
securities in J(ξ) (those securities available for purchase at ξ). This represents the price
of purchasing a portfolio of the securities in J(ξ) to carry forward. For each immediate
successor node ξ′ ∈ ξ+, the entries in the row corresponding to ξ′ are the coordinates of

V (p , a ,ξ′)+q (ξ′) = (p (ξ′) ·a 1(ξ′)+q1(ξ′), . . . , p (ξ′) ·a J (ξ)(ξ′)+q J (ξ)(ξ′))

with qj (ξ′) = 0 if j 6∈ J(ξ′). This represents the value (at the spot prices p (ξ′)) of the

3This assumption is for notational convenience, and is essentially without loss of generality. If a j (ξ′) = 0
for all ξ′ ∈ D+(ξ), then the security is a dummy at the node ξ, and any arbitrage-free pricing system must
assign the security a value of zero at node ξ. One can apply our results to the economy in which the security
is not available for sale at node ξ.

4This assumption is made for simplicity. Our theorems go through without this assumption, provided
that one makes appropriate modifications to the definitions of conditions (H) and (H+) below.

5In financial markets, there is typically an infinite discontinuity of demand at Hart points. As prices con-
verge to a Hart point, agents can go unboundedly long in some assets and short in other assets; since the
assets are nearly linearly dependent, the risk in holding such positions is bounded. Moreover, agents typi-
cally choose to go unboundedly long in some assets and short in other assets in order to transfer bounded
amounts of consumption among nodes.
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securities at node ξ′, coming from their dividends (V (p , a ,ξ′)) and (if they are available
for trade at ξ′) their ex dividend prices q (ξ′).6

For a short-lived security that can be purchased at node ξ and pays dividends only
at the immediate successor nodes, we have q (ξ′) = 0 for each immediate successor
node ξ′. If there are only short-lived securities in the model, then for each nontermi-
nal ξ ∈ D−, the entries in the columns corresponding to ξ are zero except for the row
corresponding to the node ξ and the rows corresponding to the immediate successor
nodes of ξ. The entries in the row corresponding to ξ are the coordinates of −q (ξ), the
negative of the security price vector at the node ξ; this represents the cost of purchasing
a portfolio of the J (ξ) securities to carry forward. For each immediate successor node ξ′

of ξ, the entries in the row corresponding to ξ′ are the coordinates of

V (p , a ,ξ′) = (p (ξ′) ·a 1(ξ′), . . . , p (ξ′) ·a J (ξ)(ξ′)).

This represents the value (at the spot prices p (ξ′)) of the securities at node ξ′, coming
solely from their dividends (V (p , a ,ξ′)).

DEFINITION 1. Fix the asset payoff matrix a . A Hart point is an arbitrage-free price sys-
tem (p ,q ) such that

rank W (p ,q , a )<
∑

ξ∈D−
min{b (ξ), J (ξ)}.

Let

∆J (ξ)−1 =
n

q ∈RJ (ξ)
+ :

J (ξ)
∑

j=1

qj = 1
o

denote the (J (ξ)−1)-dimensional simplex. Given a nonterminal node ξ∈D− and an im-
mediate successor node ξ′ ∈ ξ+, let L(ξ,ξ′) ⊂ J(ξ′) denote the set of securities available
for purchase at ξwhich pay a nonzero dividend at some node ξ′′ ∈D+(ξ′).

DEFINITION 2. a. Let ξ ∈D− be a nonterminal node and ξ′ ∈ ξ+ an immediate succes-
sor of ξ. Let Pξ′ denote the convex polyhedron7

{(p ·a 1(ξ′), . . . , p ·a J (ξ)(ξ′))+q ∈∆J (ξ)−1 : p ∈RL
++,q ∈RJ (ξ)

+ ,qj > 0⇔ j ∈ L(ξ,ξ′)}.

By our assumptions, for every ξ′ ∈ ξ+, there exists j ∈ J(ξ) such that either a j (ξ′) 6=
0 or j ∈ L(ξ,ξ′), so Pξ′ 6= ;.

b. An economy satisfies condition (H) if there is a nonterminal node ξ ∈ D− and an
affine subspace H ⊂∆J (ξ)−1 with dim H <min{b (ξ), J (ξ)}−1 such that

H ∩Pξ′ 6= ;

for every immediate successor ξ′ ∈ ξ+.

6This form imposes a slight restriction on the securities, namely that each security is available for trade
at every node between the one in which it is first introduced and the one at which it pays its last dividend.

7The polyhedron P̃ξ′ is open in the affine space it generates; its closure is a convex polyhedron in the
affine space.
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c. An economy satisfies condition (H+) if there is a nonterminal node ξ ∈ D− with
L(ξ,ξ′) = ; for all ξ′ ∈ ξ+ and an affine subspace H ⊂ ∆J (ξ)−1 with dim H <

min{b (ξ), J (ξ)}−1 such that
H ∩Pξ′ 6= ;

for every immediate successor ξ′ ∈ ξ+.

EXAMPLE 1. Let T = {0, 1} (there are two time periods), D = {0, 1, 2}, with 0+ = {1, 2}
(there is one initial node with two immediate successor nodes), and L = 2 (there are two
physical goods). Let J(0) = {1, 2} (there are two securities available for purchase at the
initial node) with dividends

a 1(1) = (1, 2) a 1(2) = (2, 1)

a 2(1) = (1, 1) a 2(2) = (1, 1).

Since L(0, 1) = L(0, 2) = ;, we have

P1 = {(p ·a 1(1), p ·a 2(1))∈∆1 : p ∈R2
++}

= {(p1+2p2, p1+p2) : p ∈R2
++, p1+2p2+p1+p2 = 1}

= {(x , 1−x ) : x ∈
� 1

2 , 2
3

�

}

P2 = {(p ·a 1(2), p ·a 2(2))∈∆1 : p ∈R2
++}

= {(2p1+p2, p1+p2) : p ∈R2
++, 2p1+p2+p1+p2 = 1}

= {(x , 1−x ) : x ∈
� 1

2 , 2
3

�

}

= P1.

Since ∆1 is 1-dimensional, a 0-dimensional affine subspace of ∆1 is just a single point.
If we take any x0 ∈ ( 1

2 , 2
3 ) and set H = {(x0, 1−x0)}, then H ∩P1 =H ∩P2 6= ;, so condition

(H) is satisfied; since L(0, 1) = L(0, 2) = ;, condition (H+) is also satisfied.
Fix any spot price vector p (1) = (p (1)1, p (1)2) ∈ R2

++ for node 1. Consider the spot
price vector p (2) = (p (1)2, p (1)1) for node 2. Then we have

V (p , a , 2) = (p (2) ·a 1(2), p (2) ·a 2(2))

= (2p (2)1+p (2)2, p (2)1+p (2)2)

= (2p (1)2+p (1)1, p (1)2+p (1)1)

= (p (1)1+2p (1)2, p (1)1+p (1)2)

= (p (1) ·a 1(1), p (1) ·a 2(1))

=V (p , a , 1).

At these spot prices, the “dollar” payouts of the two securities are the same in state 1
as in state 2; moreover, if we multiply the spot price vectors p (1) and p (2) by any two
positive scalars, the vectors of “dollar” payouts of the securities in the two states are
collinear. If we choose α∈ (0, 1) and define securities prices at time 0 by

q (0)1 =αp (1) ·a 1(1)+ (1−α)p (2) ·a 1(2)

q (0)2 =αp (1) ·a 2(1)+ (1−α)p (2) ·a 2(2),

then (p ,q ) is an arbitrage-free pricing system and a Hart point. ◊
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EXAMPLE 2. Let T = {0, 1} (there are two time periods), D = {0, 1, 2}, with 0+ = {1, 2}
(there is one initial node with two immediate successor nodes), and L = 2 (there are two
physical goods). Let J(0) = {1, 2} (there are two securities available for purchase at the
initial node) with dividends

a 1(1) = (1, 2) a 1(2) = ( 1
2 , 1)

a 2(1) = (1, 1) a 2(2) = (1, 1).

Since L(0, 1) = L(0, 2) = ;, we have

P1 = {(p ·a 1(1), p ·a 2(1))∈∆1 : p ∈R2
++}

= {(p1+2p2, p1+p2) : p ∈R2
++, p1+2p2+p1+p2 = 1}

= {(x , 1−x ) : x ∈
� 1

2 , 2
3

�

}

P2 = {(p ·a 1(2), p ·a 2(2))∈∆1 : p ∈R2
++}

= {(p1/2+p2, p1+p2) : p ∈R2
++, p1/2+p2+p1+p2 = 1}

= {(x , 1−x ) : x ∈
� 1

3 , 1
2

�

}.

Since ∆1 is 1-dimensional, a 0-dimensional affine subspace of ∆1 is just a single point.
If we take any x0 ∈ (0, 1), and set H = {(x0, 1−x0)}, then either H ∩P1 = ; or H ∩P2 = ; or
both, so condition (H) fails.

Fix any spot price vectors p (1) = (p (1)1, p (1)2) ∈ R2
++ for node 1 and p (2) =

(p (2)1, p (2)2)∈R2
++ for node 2. Then we have

V (p , a , 2) = (p (2) ·a 1(2), p (2) ·a 2(2))

= (p (2)1/2+p (2)2, p (2)1+p (2)2)

V (p , a , 1) = (p (1) ·a 1(1), p (1) ·a 2(1))

= (2p (1)2+p (1)1, p (1)2+p (1)1).

We see that V (p , a , 2)1 < V (p , a , 2)2, while V (p , a , 1)1 > V (p , a , 1)2, so V (p , a , 1) and
V (p , a , 2) are not collinear; the economy has no Hart point. ◊

REMARK 1. Note that if there are only short-lived securities, the following two facts hold.

• For every nonterminal node ξ and every immediate successor node ξ′ ∈ ξ+,
L(ξ,ξ′) = ;, so condition (H) is equivalent to condition (H+).

• Since L(ξ,ξ′) = ;, our assumptions imply that
∑

j∈J(ξ)a j (ξ′) 6= 0. The set Pξ′ is the
interior of the closed polyhedron whose vertices are

¨

(a 1(ξ′)`, . . . , a J (ξ)(ξ′)`)
�
∑

j∈J(ξ)a j (ξ′)
�

`

:

�

∑

j∈J(ξ)

a j (ξ′)

�

`

6= 0

«

.

On the other hand, if there are long-lived securities, then there is a great deal of freedom
in pricing the securities in an arbitrage-free pricing system, and typically there are Hart
points.
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THEOREM 1. Fix the event tree structure and the asset return matrix a .

• If the economy has a Hart point, then it satisfies condition (H).

• If the economy satisfies condition (H+), then it has a Hart point.

PROOF. Suppose (p̂ , q̂ ) is a Hart point, so (p̂ , q̂ ) is an arbitrage-free price system with
rank W (p̂ , q̂ , a )<

∑

ξ∈D−min{b (ξ), J (ξ)}. For each nonterminal node ξ∈D−, let

ρ(ξ) = dim span
n

�

p̂ (ξ′) ·a 1(ξ′), . . . , p̂ (ξ′) ·a J (ξ′)
�

+ q̂ (ξ′) : ξ′ ∈ ξ+
o

.

By Proposition 22.2 of Magill and Quinzii (1996),
∑

ξ∈D− ρ(ξ) = rank W (p̂ , q̂ , a ). Thus
there exists ξ ∈D− such that ρ(ξ)<min{b (ξ), J (ξ)}. If ξ′ ∈ ξ+ and j ∈ J(ξ), our assump-
tions imply that either a j (ξ′) 6= 0, in which case p̂ (ξ′) · a j (ξ′) > 0, or j ∈ L(ξ,ξ′), which
implies that q̂j (ξ′)> 0 since (p̂ , q̂ ) is arbitrage-free. Let

Ĥ = span
n

�

p̂ (ξ′) ·a 1(ξ′), . . . , p̂ (ξ′) ·a J (ξ)(ξ′)
�

+ q̂ (ξ′) : ξ′ ∈ ξ+
o

⊂RJ (ξ)

H = Ĥ ∩∆J (ξ)−1.

Since Ĥ is a vector space, Ĥ ⊃ {αh :α ∈R, h ∈H}. Therefore dim H < dim Ĥ , so dim H <
min{b (ξ), J (ξ)}−1. Let

p (ξ′) =
p̂ (ξ′)

∑J (ξ)
j=1 (p̂ (ξ

′) ·a j (ξ′)+ q̂ (ξ′)j )

q (ξ′) =
q̂ (ξ′)

∑J (ξ)
j=1 (p̂ (ξ

′) ·a j (ξ′)+ q̂ (ξ′)j )
.

Then
(p (ξ′) ·a 1(ξ′), . . . , p (ξ′) ·a J (ξ′))+q (ξ′)∈H ∩Pξ′

for each ξ′ ∈ ξ+, so condition (H) is satisfied.
Now, suppose condition (H+) is satisfied, so there is a nonterminal node ξ∈D− with

L(ξ,ξ′) = ; for allξ′ ∈ ξ+ and an affine space H ⊂∆J (ξ)−1 with dim H <min{b (ξ), J (ξ)}−1
such that H ∩Pξ′ 6= ; for every ξ′ ∈ ξ+. Let xξ′ ∈H ∩Pξ′ , so that we have

xξ′ =
�

p (ξ′) ·a 1(ξ′), . . . , p (ξ′) ·a J(ξ′)(ξ′)
�

+q (ξ′)

for some p (ξ′) ∈ RL
++ and some q (ξ′) ∈ RJ (ξ)

+ , with qj (ξ′) > 0 ⇔ j ∈ L(ξ,ξ′). Since
L(ξ,ξ′) = ; for all ξ′ ∈ ξ+, we must have q (ξ′) = 0. Let p̂ (ξ′) = p (ξ′) for ξ′ ∈ ξ+, and
choose p̂ (ξ′) to be an arbitrary element of RL

++ for every ξ′ 6∈ ξ+. Then, for every ξ′ ∈D,
let

q̂j (ξ′) =
∑

ξ′′∈D+(ξ′)

p̂ (ξ′′) ·A j (ξ′′)

be the expected future payoff of the j th security on all the nodes that follow ξ′. The
price system (p̂ , q̂ ) is arbitrage-free, and q̂ (ξ′) = 0 for all ξ′ ∈ ξ+, so (p̂ , q̂ ) agrees with
(p ,q ) on ξ+. Then by Proposition 22.2 of Magill and Quinzii (1996), rank W (p̂ , q̂ , a ) <
∑

ξ∈D−min{b (ξ), J (ξ)}, so (p̂ , q̂ , a ) is a Hart point. �
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3. AN EXISTENCE THEOREM

On its face, the market excess demand for physical goods is a function of both the spot
prices p and the security prices q . However, it is well known that existence of equilib-
rium can be demonstrated by writing market excess demand as a function of the spot
prices alone. Given a spot price system, we set the price of each security at a node to
equal the expected value of its future dividends on the subtree starting at that node.
One can then compute the market excess demand function using the Cass trick: the
first agent is allowed to trade using a complete set of Arrow–Debreu contingent claims,
while the remaining agents must trade using only the available securities and the spot
markets. One finds a zero of this market excess demand function, and shows that this
zero is a no-arbitrage equilibrium. In a no-arbitrage equilibrium, the spot prices are
linked across states by state prices: the state price is the shadow price of income in that
state, and as a result, the equilibrium securities prices must equal the expected value of
future dividends. Thus, one shows that if one takes any no-arbitrage equilibrium and
defines the securities prices to equal the expected value of their future dividends, the re-
sulting price system is an equilibrium of the GEI economy. Sections 10 and 25 of Magill
and Quinzii (1996) give a detailed exposition of this in the case in which L = 1 (there is
only one physical good at each state); Magill and Shafer (1991) cover the case of more
than one physical good.

THEOREM 2. Consider a GEI economy. Assume the following:

(i) all goods are perfectly divisible;

(ii) each agent’s preference is continuous, irreflexive, transitive, strongly monotonic,
and strictly convex;

(iii) the social endowment of each good is strictly positive in each state;

(iv) for every nonterminal node ξ ∈ D− and every immediate successor node ξ′ ∈ ξ+,
there exists a security j ∈ J(ξ) available for purchase at ξ and a node ξ′′ ∈ (D+(ξ′)∪
{ξ′}) such that a j (ξ′′) 6= 0;

(v) the asset return matrix a does not satisfy condition (H).

Then the economy has a GEI equilibrium.

PROOF. The assumptions imply that the market excess demand is a function

Z :∆LS−1→RLS

where ∆LS−1 is the LS − 1-dimensional price simplex, which is bounded below (by the
negative of the social endowment), and satisfies Walras’ Law and the boundary condi-
tion (if pn → p on the boundary of the price simplex, then |Z (pn )| →∞) (see Magill and
Shafer 1991, pages 1558–1562). The function Z is continuous except at Hart points; since
there are no Hart points, Z is continuous. Hence, there exists p such that Z (p ) = 0, and
hence p is a pseudoequilibrium. Since there are no Hart points, p is not a Hart point,
and hence p is an equilibrium price. �
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4. AN INDEX THEOREM

Dierker (1972) first used index-theoretic arguments to show that in complete markets
with C 1 demand functions the number of equilibria is generically odd. Because the
Grassmanian may or may not be orientable,8 his argument does not extend to GEI mar-
kets. Hens (1991) establishes the index theorem and the generic oddness of equilibria
for the case L = 1 (one physical good). Schmedders (1999) establishes the index theorem
for an open (but not necessarily generic) set of two-period economies using a homotopy
algorithm. Kubler and Schmedders (2000) extend the index theorem in Schmedders
(1999) to an open (but not necessarily generic) set of economies in a multiple-period
model. Momi (2003) proves the index theorem for a two-period model in which the
degree of market incompleteness (S− J ) is even.

If there are no Hart points, then Dierker’s argument goes through unchanged. The
index of an equilibrium p is defined by index(p ) = sign

�

�− JZ (p )
�

�, where JZ (p ) is the
Jacobian matrix of the market excess demand function9 at the price p and the absolute
value sign denotes the determinant.

THEOREM 3. Consider a GEI economy. Assume the following:

(i) all goods are perfectly divisible;

(ii) each agent’s preference is defined on RLS
++ and is continuous, irreflexive, transitive,

strongly monotonic, C 2, differentiably strictly convex, and the closure in RLS of each
indifference curve is contained in RLS

++;

(iii) for every nonterminal node ξ ∈ D− and every immediate successor node ξ′ ∈ ξ+,
there exists a security j ∈ J(ξ) available for purchase at ξ and a node ξ′′ ∈ (D+(ξ′)∪
{ξ′}) such that a j (ξ′′) 6= 0;

(iv) the asset return matrix a does not satisfy condition (H).

Then for an open set of endowments of full measure, the economy is regular and
∑

p∈Z−1(0)

index p =+1

and hence the number of equilibria is odd.

PROOF. As in the previous section, the market excess demand Z satisfies Walras’ Law, is
bounded below, and satisfies the boundary condition. Because preferences are smooth,
and there are no Hart points, Z is C 1. Then for an open set of endowments of full mea-
sure, the economy is regular, and hence satisfies the conditions of Proposition 5.6.1 of
Mas-Colell (1985), which proves the theorem. �

8In the two-period model, with one state in period 0 and S states in period 2, the Grassmanian is ori-
entable if and only if S+1 is even (Dold 1972, page 331), i.e. if and only if S is odd. In the multiperiod model,
one must consider a product of Grassmanians.

9The function Z is defined as in Section 3, with agent 1 unconstrained.
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5. ECONOMIES WITH A CONTINUUM OF STATES

In this section, we study sequences of economies obtained by discretizing an economy
in which each nonterminal node has a continuum of immediate successor nodes.

Each nonterminal node ξ has a probability space of immediate successor nodes.
Specifically, fix a complete separable10 atomless probability space (Ω0,B , P). The set
of states is Ω =

∏T
t=0(Ω0 × {t }), endowed with the product measure. The set of nodes

is Ω× {0, . . . , T }. A typical node is ξ = (((ω0, 0), . . . , (ωT , T )), t ) where ωs ∈ Ω0 for each
s ∈ {0, . . . , T }. In situations where only ωt and t matter, we abuse notation by referring
to this node as (ωt , t )withωt ∈Ω0. At each nonterminal node ξ= (ω, t ), let

ξ+ = {(ω′, t +1) :ω′s =ωs for 0≤ s ≤ t }

denote the set of immediate successor nodes of ξ. The filtration is given by

Ft =
t
∏

s=0

(B ×{s }).

There are J short-lived securities available for purchase at each nonterminal node.
Although each security expires the period after it is purchased, it is convenient to iden-
tify the securities available across all nodes as {1, . . . , J }. Security j pays a dividend
a j (ωt , t ) at node (ωt , t ), t ∈ {1, . . . , T }; we assume that a j (·, t ) ∈ L2(Ω0)+ is a measurable
function ofωt ∈Ω0 and that a j (·, t )> 0 except on a set of measure zero.

A vector of spot prices is a process p ∈ L2(Ω×{0, . . . , T }, RL)+ that is adapted with re-
spect to the filtration such that for every node (ω, t ), |p (ω, t )|= 1 (here, |p (ω, t )| denotes
the Euclidean length of p (ω, t )∈RL).

The specification of an economy is completed by specifying endowments in
L2(Ω, RL)+ that are adapted with respect to the filtration, and preferences for the agents;
we assume that the social endowment of each good is strictly positive in almost every
state, and that the preferences are continuous, irreflexive, transitive, strongly mono-
tonic, and strictly convex.

REMARK 2. Note that our formulation imposes a restriction on the event tree. Given two
nodes ξ = (ω, t ) and ξ′ = (ω′, t ), the random variable a j (·, t + 1) is the same random
variable on ξ+ and ξ′+, not just the same distribution. However, at time t , agents’ en-
dowments and trading strategies, as well as the security and spot prices, are allowed to
depend on the whole history up to and including time t . Moreover, we do not assume
that the utility function is additively separable over time.

DEFINITION 3. A Hart point for this economy is a vector of strictly positive spot prices
p ∈ L2(Ω, RL)++ that is adapted with respect to the filtration such that there exists a time

10 Given a familyC of subsets ofΩ, letσ(C ) be the smallestσ-algebra containingC . The space (Ω0,B , P)
is complete with respect to P if C ⊂ B ∈ B and P(B ) = 0⇒ C ∈ B . Let σ(C ) denote the smallest com-
plete σ-algebra containing C . The space (Ω0,B , P) is complete separable if there is a countable family
B0 ⊂ B such thatB = σ(B0). The Lebesgue probability space is complete separable; it is, for example,
σ({(p ,q ) : p ,q ∈Q}).
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t and a set of states Ω′ ⊂Ω of positive probability such that, for all ξ= (ω, t )withω∈Ω′,
there is a subspace H ⊂RJ with dim H < J such that for almost all ξ′ ∈ ξ+,

(p (ξ′) ·a 1(ξ′), . . . , p (ξ′) ·a J (ξ′))∈H .

A weak Hart point for this economy is a vector of nonnegative spot prices p ∈ L2(Ω, RL)+
that is adapted with respect to the filtration such that there exists a time t and a set of
states Ω′ ⊂ Ω of positive probability such that, for all ξ = (ω, t ) with ω ∈ Ω′, there is a
subspace H ⊂RJ with dim H < J such that for almost all ξ′ ∈ ξ+,

(p (ξ′) ·a 1(ξ′), . . . , p (ξ′) ·a J (ξ′))∈H .

REMARK 3. Because the random variables a j `(·, t +1) are the same random variables on
(ω, t )+ as on (ω′, t )+, there is a Hart point in the economy if and only if there exists a
time t ∈ {1, . . . , T }, a strictly positive p ∈ L2(Ω0, RL)++ with |p (ω)|= 1 for allω∈Ω0, and a
subspace H ⊂RJ with dim H < J such that for almost allω∈Ω0,

(p (ω) ·a 1(ω, t ), . . . , p (ω) ·a J (ω, t ))∈H .

Similarly, there is a weak Hart point in the economy if and only if there exists a time
t ∈ {1, . . . , T }, a nonnegative p ∈ L2(Ω0, RL)+ with |p (ω)|= 1 for allω∈Ω0, and a subspace
H ⊂RJ with dim H < J such that for almost allω∈Ω0,

(p (ω) ·a 1(ω, t ), . . . , p (ω) ·a J (ω, t ))∈H .

Because the proof of existence of equilibrium considers only strictly positive spot prices,
the existence of a weak Hart point does not pose a barrier to proving existence. However,
the fact that the set of Hart points is generally not closed presents technical problems in
analyzing the Hart points of similar economies. Working with weak Hart points allows
us to get around this problem.

We discretize the continuum model by considering finite partitions of Ω0. If P is
a finite partition of Ω0, the elements of P are subsets of Ω0. Given ω ∈ Ω0, let Pω be
the element B ∈ P such that ω ∈ B . We can form a discrete model in which, at time t ,
agents know that for each s ≤ t , (ω, s ) ∈Pωs . In other words, agents know the partition
set in which the state is located, but not the actual value of the state. The endowments
of the agents and the securities payoffs in the discrete model are the expected values of
the endowments and securities payoffs from the continuum model, conditional on the
partition set in which the actual state lies. In particular, the securities are

aPj = E (a j |P ).

Since the consumption set in the discrete model is a subset of the consumption set in
the continuum model, the preferences of agents are just the restrictions to the discrete
consumption set. Assumptions (i)–(iv) of Theorem 2 are inherited from the assumptions
on preferences and endowments in the continuum economy.
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THEOREM 4. Suppose the (undiscretized) economy has no weak Hart points. Let Pn be a
sequence of finite partitions such that for each n,Pn+1 is finer thanPn and such that

B =σ(∪∞n=1Pn ).

Then for n sufficiently large,

• the economy discretized by Pn does not satisfy condition (H), and therefore has no
Hart points

• the economy discretized by Pn has an equilibrium

• if the preferences in the economy discretized by Pn satisfy Assumption (ii) of Theo-
rem 3, then for an open set of endowments of full measure, the economy is regular
and

∑

p∈Z−1(0)

index p =+1

and hence the number of equilibria is odd.

PROOF. Fix t ∈ {0, . . . , T }. Let

∆= {π∈ L2(Ω0, RL)+ : |π(ω0)|= 1 almost surely}
M =max{‖a 1(·, t )‖2, . . . ,‖a J (·, t )‖2}+1

Γ= {α∈ L2(Ω0, RL) : ‖α‖2 ≤M }
S J−1 = {θ ∈RJ : |θ |= 1}

Φ= {α∈ L2(Ω0, R) : ‖α‖2 ≤
p

J M }.

Define
Z :∆×ΓJ ×S J−1→Φ

by
Z (π, (α1, . . . ,αJ ),θ )(ω0) = (π(ω0) ·α1(ω0), . . . ,π(ω0) ·αJ (ω0)) ·θ .

Since the undiscretized economy has no weak Hart points,

0 6∈Z
�

∆×{(a 1(·, t ), . . . , a J (·, t ))}×S J−1�

where 0 is the zero element of L2(Ω0, R).
Endow ∆ and Φ with the weak-star topology, ΓJ with the L2-norm topology, S J−1

with the Euclidean topology, and∆×ΓJ ×S J−1 with the product of the topologies on its
components.

We claim that Z is continuous. Note first that since Ω0 is a separable probability
space, the weak-star topologies on ∆ and Φ are metrizable (see Conway 1990, Theo-
rem 5.1, page 134). Hence, in showing the continuity of Z , it is sufficient to consider
sequences. Consider a sequence (πn ,αn ,θn )→ (π,α,θ ). We need to show that

Z (πn ,αn ,θn )→Z (π,α,θ ).
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Thus, we must show that for every h ∈ L2(Ω0, R),
∫

Ω0

(Z (πn ,αn ,θn )−Z (π,α,θ ))h dω0→ 0.

Write
∫

Ω0

(Z (πn ,αn ,θn )−Z (π,α,θ ))h dω0

=

∫

Ω0

(Z (πn ,αn ,θn )−Z (πn ,αn ,θ ))h dω0 (1)

+

∫

Ω0

(Z (πn ,αn ,θ )−Z (πn ,α,θ ))h dω0 (2)

+

∫

Ω0

(Z (πn ,α,θ )−Z (π,α,θ ))h dω0. (3)

We consider the pieces in turn. For term (1),
�

�

�

�

�

∫

Ω0

(Z (πn ,αn ,θn )−Z (πn ,αn ,θ ))h dω0

�

�

�

�

�

=

�

�

�

�

�

∫

Ω0

((πn (ω0) ·αn1(ω0), . . . ,πn (ω0) ·αn J (ω0)) · (θn −θ ))h(ω0) dω0

�

�

�

�

�

≤
∫

Ω0

|θn −θ | × |(πn (ω0) ·αn1(ω0), . . . ,πn (ω0) ·αn J (ω0))| × |h(ω0)| dω0

≤ |θn −θ |
∫

Ω0

|πn (ω0)| × |(αn1(ω0), . . . ,αn J (ω0))| × |h(ω0)| dω0

≤ |θn −θ |
∫

Ω0

|(αn1(ω0), . . . ,αn J (ω0))| × |h(ω0)| dω0

≤ |θn −θ | × ‖(αn1, . . . ,αn J )‖2×‖h(ω0)‖2

≤ |θn −θ | ×
p

J M ×‖h(ω0)‖2
→ 0.

For term (2),
�

�

�

�

�

∫

Ω0

(Z (πn ,αn ,θ )−Z (πn ,α,θ ))h dω0

�

�

�

�

�

=

�

�

�

�

�

∫

Ω0

(πn (ω0) · (αn1(ω0)−α1(ω0)), . . . ,πn (ω0) · (αn J (ω0)−αJ (ω0))) ·θ ×h(ω0) dω0

�

�

�

�

�

≤
∫

Ω0

|θ | × |(πn (ω0) · (αn1(ω0)−α1(ω0)), . . . ,πn (ω0) · (αn J (ω0)−αJ (ω0)))| × |h(ω0)| dω0
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≤ ‖(πn (ω0) · (αn1(ω0)−α1(ω0)), . . . ,πn (ω0) · (αn J (ω0)−αJ (ω0)))‖2 ‖h‖2
≤ ‖(|πn (ω0)| × |αn1(ω0)−α1(ω0)|, . . . , |πn (ω0)| × |αn J (ω0)−αJ (ω0)|)‖2‖h‖2
= ‖(|αn1(ω0)−α1(ω0)| , . . . , |αn J (ω0)−αJ (ω0)|)‖2 ‖h‖2
= ‖αn −α‖2‖h‖2
→ 0.

For term (3), we claim that ‖πn −π‖2→ 0. To see this, note that πn →π in the weak-star
topology so

〈πn ,π〉→ 〈π,π〉= 1= 〈πn ,πn 〉

so

‖πn −π‖2 = 〈πn −π,πn −π〉
= 〈πn ,πn 〉−2〈πn ,π〉+ 〈π,π〉
→ 0.

Therefore, πn −π→ 0 in measure, so

((πn −π) ·α1, . . . , (πn −π) ·αJ )→ 0 in measure.

In addition,

�

�(πn (ω0)−π(ω0)) ·αj (ω0)
�

�≤
p

2
�

�αj (ω0)
�

�∈ L2(Ω0, R) for j = 1, . . . , J

so by the Lebesgue Dominated Convergence Theorem11

∫

Ω0

�

�((πn −π) ·α1, . . . , (πn −π) ·αJ )
�

�

2
dω0→ 0.

Therefore
�

�

�

�

�

∫

Ω0

(Z (πn ,α,θ )−Z (π,α,θ ))h dω0

�

�

�

�

�

=

�

�

�

�

�

∫

Ω0

(((πn (ω0)−π(ω0)) ·α1(ω0), . . . , (πn (ω0)−π(ω0)) ·αJ (ω0))) ·θ ×h(ω0) dω0

�

�

�

�

�

≤
∫

Ω0

|θ | × |((πn (ω0)−π(ω0)) ·α1(ω0), . . . , (πn (ω0)−π(ω0)) ·αJ (ω0))| × |h(ω0)| dω0

≤ ‖h‖2‖((πn −π) ·α1, . . . , (πn −π) ·αJ )‖2
→ 0

which proves that Z is continuous.

11We use the version of the Dominated Convergence Theorem for sequences that converge in measure,
rather than almost everywhere; see Halmos (1950, Theorem D, page 110).
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We claim there exists ε > 0 such that if ‖α−a (·, t )‖2 < ε, then 0 6∈Z (∆×{α}×S J−1). If
not, we may find a sequence (πn ,αn ,θn ) ∈∆×ΓJ ×S J−1 with Z (πn ,αn ,θn ) = 0. Since ∆
and SJ−1 are compact and αn → a , we can choose a subsequence such that

(πn ,αn ,θn )→ (π, a ,θ )∈∆×{a }×S J−1.

Since Z is continuous, Z (π, a ,θ ) = 0, a contradiction, which proves our claim.
By the Martingale Convergence Theorem, there is b ∈ L2(Ω0, RL) such that ‖aPn (·, t )−

b (·, t )‖2 → 0 and E (b | Pn ) = aPn = E (a | Pn ) almost everywhere. Therefore, for every
A ∈∪n∈NPn ,
∫

A
(b−a )d P = 0. The set {A ∈B :

∫

A
(b−a )d P = 0} is aσ-algebra and con-

tains ∪n∈NPn , so it contains σ(∪n∈NPn ); it is complete, so it containsB = σ(∪∞n=1Pn ).
Therefore, a =b almost everywhere, so ‖aPn (·,t )−a (·, t )‖2→ 0. Hence

0 6∈Z (∆×{aPn (·, t )}×S J−1)

for all t ∈ {1, . . . , T } and for sufficiently large n . Thus, for sufficiently large n , the dis-
cretized economy does not satisfy condition (H), and hence has no Hart point. The
existence and index theorems then follow from Theorems 2 and 3. �

REMARK 4. The condition that the continuum limit economy contain no weak Hart
points is essentially a condition on the dispersion of the securities payoffs. In order
to show that there are no weak Hart points in the continuum limit, we need to show two
things.

• There are states for which the corresponding convex polyhedra are not too large.
If, for all states, the corresponding cone nearly filled the simplex, all the polyhedra
would intersect, so condition (H) would necessarily be satisfied.

• The locations of the polyhedra corresponding to the various states are widely dis-
persed within the simplex. If all the polyhedra were located in a small region of
the simplex, there would always be a hyperplane intersecting all of the polyhedra,
even if the polyhedra were relatively small, so condition (H) would necessarily be
satisfied.

Multivariate normal random variables are ubiquitous in economics and finance. In fi-
nance, as in our setting, basic securities typically have nonnegative payoffs, so it is cus-
tomary to consider multivariate lognormal random variables, i.e. the exponentials of
multivariate normal random variables; these form the basis of the geometric Brownian
motion model, including the Black–Scholes model. The following corollary shows that
nondegenerate multivariate lognormal random variables are sufficiently dispersed to
ensure that they generate no weak Hart points in the continuum limit. Consequently,
all sequences of models generated by discretizing continuum models with multivariate
lognormal random variables eventually fail to satisfy condition (H), and thus have no
Hart points.
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COROLLARY 1. Suppose that the securities a 1, . . . , a J satisfy a j `(·, t ) = e b j `(·,t ), where for
each t = 1, . . . , T and each `= 1, . . . , L,

(b1`(·, t ), . . . ,b J `(·, t ))

is J -dimensional multivariate normal with arbitrary mean µ`t ∈ RJ and nonsingular
variance-covariance matrix σ`t . Let Pn be a sequence of finite partitions such that for
each n, Pn+1 is finer than Pn and such that B = σ(∪∞n=1Pn ). Then for n sufficiently
large, the discretized economy has no Hart points.

PROOF. Since for each t and each `, the securities (a 1`(·, t ), . . . , a J `(·, t )) are multivariate
lognormal with nonsingular variance-covariance matrix, the conditional distribution of
any one a k`(·, t ), given {a j `(·, t ) : j 6= k }, has full support on (0,∞), and in particular has
support that is unbounded above. Fix t ∈ {1, . . . , T }. Therefore, we can find Ω1, . . . ,ΩJ ⊂
Ω0 with P(Ωk )> 0 for each k = 1, . . . , J , such that for all ξk ∈Ωk ×{t }, a k`(ξk )≥ 1 and

Qξk =

¨

(a 1`(ξk ), . . . , a J `(ξk ))
∑J

j=1 a j `(ξk )
: `= 1, . . . , L

«

is contained in Rk = {x ∈S J−1 : xk ≥ 2
3}. Since securities are short-lived, we have

Pξk = {(p ·a 1(ξk ), . . . , p ·a J (ξk ))∈∆J−1 : p ∈RL
+}

which is just the closed polyhedron in ∆J−1 with vertices in Qξk , so Pξk is contained in
Rk . Since there is no affine subspace H ⊂∆J−1 with dim H < J−1 that intersects each set
Rk , and t ∈ {1, . . . , T } is arbitrary, Theorem 1 implies that the continuum economy has
no weak Hart points. Theorem 4 then implies that for n sufficiently large, the discretized
economy has no Hart points. �
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