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The paper considers an agent who must choose an action today under uncertainty
about the consequence of any chosen action but without having in mind a com-
plete list of all the contingencies that could influence outcomes. She conceives of
some relevant (subjective) contingencies but she is aware that these contingen-
cies are coarse—they leave out some details that may affect outcomes. Though
she may not be able to describe these finer details, she is aware that they exist and
this may affect her behavior.
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1. I

1.1 Outline

Consider an agent who must choose an action today under uncertainty about the con-
sequence of any chosen action but without having in mind a complete list of all the
contingencies that could influence outcomes. She conceives of some relevant contin-
gencies or states of the world but she is aware that these contingencies are coarse—they
leave out some details that may affect outcomes. Though she may not be able to de-
scribe these finer details, she is aware that they exist and this may affect her behavior.
How does one model such an agent?
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The reason for addressing this question seems clear. Outside of artificial laboratory-
style settings, it would seem impossible for any decision-maker to identify all relevant
and finely detailed contingencies. A sophisticated agent would be aware of her limited
foresight and admit the possibility that her conceptualization of the future is incom-
plete, and then she would take this into account in her decision-making. Think, for ex-
ample, of a portfolio choice setting. An investor may identify some factors that are likely
to influence returns to financial securities. However, few sophisticated investors would
be confident that they have identified all relevant factors. Awareness that her concep-
tualization is missing some details would presumably influence an investor’s choice of
portfolio.

The standard Savage approach to modeling uncertainty, using a primitive state
space, does not capture the agents we have in mind. It is inappropriate for two reasons.
First, each Savage-style state is a complete description of the world—it determines a
unique outcome for any chosen action. Second, even if we knew how to model a “coarse
or incomplete state” and we redefined the Savage state space accordingly, the resulting
approach would still be unsatisfactory if, as in Savage, the state space were adopted as
a primitive and thus presumed observable by the modeler. Ideally, the agent’s concep-
tualization of the future should be taken to be subjective—it should be derived from
preference, that is, from behavior that in principle is observable.

Kreps (1979, 1992) was the first to raise the modeling problem posed above. He,
and also subsequent authors, refer to “unforeseen contingencies,” but it seems that they
have in mind what we prefer to call “coarse contingencies.” Kreps’ seminal idea was that
demand for flexibility is indicative of an individual’s awareness of the coarseness of her
conception. In order to capture demand for flexibility, his model postulates preference
over menus of alternatives (or ex post actions), where the latter are to be chosen at an
unmodeled ex post stage. The subjective state space that he derives may be identified
with the possible future preferences over alternatives.

Nehring (1999) and Dekel et al. (2001) provide alternative extensions. In the models
of Kreps and Nehring, menus consist of alternatives from an abstract (typically finite)
set. We focus primarily on the model of Dekel et al. (henceforth DLR), where menus
consist of lotteries over alternatives. The richer domain permits, given suitable assump-
tions, the derivation of a (unique) subjective state space as part of the representation of
preference. But are these states coarse? DLR describe (p. 893) the agent they view them-
selves as modeling: “. . . she sees some relevant considerations, but knows there may be
others that she cannot specify. For simplicity, we assume henceforth that the agent con-
ceives of only one situation, ‘something happens,’ but knows that her conceptualization
is incomplete.” Later (pp. 919–20), they describe what is needed for a critique of their
model: “. . . just as Ellsberg identified the role of the sure-thing principle in precluding
uncertainty-averse behavior, we believe that one must first find a concrete example of
behavior that is a sensible response to unforeseen contingencies but that is precluded
by our axioms. An important direction for further research is to see if there is such an
Ellsbergian example for this setting and, if so, to explore relaxations of our axioms.” This
is the direction we pursue here.
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Our central argument is that an agent who is aware of, and averse to, the coarseness
of her conceptualization of the future will have an incentive to randomize, and thus will
violate Independence. As an example, suppose that her subjective conceptualization is
trivial—“something happens.” Suppose further that she is indifferent between commit-
ting ex ante to lottery β or to lottery β ′. She is aware ex ante that there are unforeseen
(finer, or back-of-the-mind) contingencies that could affect the desirability of any ac-
tion. Though she does not understand these finer details and is not able to describe
them, she is nevertheless aware that they exist, and she may feel that some may make
β ′ more desirable ex post and some may make β more desirable.

As explained in the next section, randomization may hedge this uncertainty and
thus the mixture might be strictly preferable to either lottery. The value of such hedging
via randomization has been emphasized in the literature on preferences under ambigu-
ity, starting with Schmeidler’s (1989) classic uncertainty aversion axiom. This connec-
tion is not a coincidence. In fact, coarseness can be viewed as a source of ambiguity.
We propose, and our model formalizes, that the impossibility of fully describing all rel-
evant contingencies is one reason, an important one in our view, why decision makers
may not be able to quantify uncertainty about future payoffs with a single probability
measure.

To illustrate, consider again an investor deciding on a portfolio. Ultimately, she need
be concerned only with the possible returns to securities and their likelihoods. How-
ever, in order to assess such likelihoods, she may think in terms of (economic, political,
or other) factors that could influence returns, and first try to assess their likelihoods.
The crucial point is that even if she is able to assign probabilities to these “physical con-
tingencies,” a unique probability distribution for returns is not implied when contin-
gencies are coarse, because then each contingency does not pin down a unique return.
For concreteness, think of the extreme case where the investor’s ‘theory’ of returns is
vacuous—she conceives only that, with probability 1, something will happen tomorrow.
Since this theory is consistent with any probability distribution over returns, ambiguity
about returns is implied. Similarly, in more general choice contexts coarse contingen-
cies induce ambiguity about ex post preferences over alternatives, and thus over the
subjective state space.

We are not the first to highlight the connection between coarse perceptions and am-
biguity. Mukerji (1997) and Ghirardato (2001) argue that an agent who is aware that she
has only a coarse perception of the state space can be thought of as using a non-additive
probability measure (or capacity). Their approach, inspired by Dempster (1967) and
Shafer (1976), is much different from ours in that they take the agent’s coarse perception
as a primitive, while rendering it subjective is the heart of our model. (See Section 4.3 for
further discussion of the connection to the present paper.) In fact, for reasons outlined
above, we go further and dispense also with an exogenously specified Savage-style set
of states. Thus we extend the literature on preferences under ambiguity by dropping the
primitive state space which is universal in that literature. In particular, we axiomatize a
counterpart of Gilboa and Schmeidler’s (1989) multiple-priors utility without relying on
an exogenously specified state space.
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1.2 Utility functions and interpretations

DLR assume the Independence axiom only in their most restrictive model (the additive
EU representation). We focus also on their weakest Independence-style axiom, called
Indifference to Randomization (IR), which they adopt (either explicitly or implicitly) in
all of their representation theorems.1 We argue that the case for IR is not clear-cut, at
least given a particular conception of coarse perceptions. Thus we are led to explore two
alternative directions: one which continues to assume IR and relaxes DLR’s Indepen-
dence axiom, and a second model which differs more substantially from DLR—not only
is IR dropped, but the domain of preference is expanded to include random menus.2 In
both cases, we describe axioms for preference that arguably capture ambiguity due to
coarse perceptions and that characterize functional forms for utility representing pref-
erence. The two alternative axiomatic models of preference are the main results of the
paper.

In DLR’s most restrictive model, the utility of any menu x has the form

W DLR (x ) =

∫

max
β∈x

u (β )dµ(u ),

where µ is a probability measure on ex post vNM utility functions u . (More precise
statements are given below.) Given u , the choice out of x maximizes u (β ), but ex ante,
the agent does not know which preference will prevail ex post. The support of µ, cor-
responding to the set of ex post preferences that she views as possible, constitutes her
subjective state space. To evaluate x , she computes its expected payoff assuming an
optimal choice of lottery in each subjective state. The representation suggests that sub-
jective states are foreseen by the agent, and we therefore interpret the DLR model as one
where states are foreseen.3

For ease of comparison, we describe informally also the two generalizations of W DLR

axiomatized below. In the model where IR is satisfied, utility of a menu is given by

W M P (x ) =min
π∈Π

∫

max
β∈x

u (β )dπ(u ),

where Π is a set of probability measures on the set of ex post vNM utility functions u .
(DLR is the special case where Π is a singleton.) As in the interpretation of W DLR , the
agent observes the realization of some u and then chooses out of the menu x by maxi-
mizing u .

1DLR (p. 911) mention the case where ex post utilities are not vNM in the context of establishing a result
regarding minimality of the subjective state space. But such violations are not described as germane to the
issue of coarse contingencies.

2Nehring (1996, 1999) also adopts the domain of random menus. For more on the connection between
our second model and Nehring’s work see Appendix B.2.

3Kreps (1992) suggests that one can interpret the functional form alternatively as an “as if” representa-
tion for an agent who does not foresee the states, and that it is impossible to distinguish between these two
interpretations by observing only choice between menus.
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In our second model, where IR is violated, utility has the form

W (x ) =

∫

max
β∈x

min
u∈U

u (β )dµ(U ),

where µ is a probability measure over suitable sets U of vNM utilities.
The main difference between the two models lies in ex post ambiguity. In the first

model, W M P , the agent ex ante expects that ex post, before choosing from a menu, all
uncertainty will be resolved and a complete state will be realized. Therefore, there is no
ex post ambiguity. However, because of the coarseness of her ex ante perception, the
agent is not sure then about the likelihoods of her ex post preferences. Hence, W M P

has the multiple-priors functional form axiomatized by Gilboa and Schmeidler (1989),
where the likelihoods of subjective states are ambiguous.

In contrast, in the second model, W , the agent ex ante expects that even ex post she
will only have an incomplete perception of all relevant contingencies. As a result, she
expects to receive ex post only an ambiguous signal about her ex post preferences. In
the representation, this ambiguous signal is modeled by the set U . Since points within
each U are foreseen, the minimization over U suggests complete ignorance within U—
the agent foresees and can describe the details within U but has no idea how likely they
are.4 From an ex ante perspective, utility W can then be interpreted as reflecting the ex-
pectation of future ambiguity, due to the realization of an ambiguous signal.5 Ambiguity
persists ex post, and this makes ex post randomization valuable, thus violating IR.

The paper proceeds as follows. Next we outline the DLR model and argue that their
axioms preclude coarse contingencies and ambiguity. Then we describe two alternative
models to capture them. Proofs are relegated to appendices.

2. T DLR 

The DLR model has the following primitives.

• B : finite set of actions—let | B |= B

• ∆(B ): set of probability measures over B , endowed with the weak convergence
topology; generic lotteries are β ,β ′,γ, . . .

• X : closed subsets of∆(B ), endowed with the Hausdorff metric; generic elements
are denoted x ,x ′, y , . . . and are called menus6

• preference � is defined onX .

4Minimizing over U is equivalent to minimizing over all probability measures on U .
5If one overlooks the fact that the state space is exogenous only in Gilboa and Schmeidler (1989), then

our second model can be viewed as a special case of recursive multiple-priors, a multi-period extension of
the Gilboa–Schmeidler model—see Epstein and Schneider (2003).

6DLR do not restrict menus to be closed but this difference from their model is unimportant and we
overlook it throughout.
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The agent ranks menus at time 0 (ex ante) using � with the understanding that at
time 1 (ex post), she will choose a lottery from the previously chosen menu (see the
following time line).

• ——— • ——— • ——— •
choose state choose payoff

x realized β ∈ x

One can think of a menu as corresponding to an action to be taken ex ante, where the
significance of an ex ante action is that it limits options for further action ex post, that
is, for the choice of β in∆(B ). There are no exogenous states of the world, but the agent
may envisage some scenarios for time 1. She anticipates learning which scenario is real-
ized before making her choice out of the menu. Thus her subjective conceptualization
of the future affects her expected choices out of menus and hence also her ex ante eval-
uation of menus. In other words, her subjective state space underlies the preference �
and (under suitable assumptions) is revealed by it.

For example, the ranking
{β ,β ′} � {β} � {β ′}

reveals that the agent conceives of a circumstance in which she would strictly prefer
β over β ′ and also another circumstance in which she would strictly prefer β ′ over β .
Under DLR’s set of axioms, subjective contingencies concern only the possible ex post
preference over lotteries. This is natural—payoffs rather than ex post physical states per
se are ultimately all that matter.

DLR assume throughout that preference satisfies the following two axioms.

Order � is complete and transitive.

Continuity For every menu x , the sets {y ∈X : y � x } and {y ∈X : y � x } are closed.

They occasionally, though not universally, adopt also the next axiom.

Monotonicity For all menus x ′ and x , x ′ ⊃ x =⇒ x ′ � x .

The axiom states that flexibility has non-negative value. For concreteness, we restrict
attention here to models satisfying this property.

The first problematic axiom that we consider is Independence.7 It refers to mixtures
of two menus as defined by

αx +(1−α)y = {αβ +(1−α)γ :β ∈ x ,γ∈ y }.

Formally, the indicated mixture of x and y is another menu and thus when the agent
contemplates that menu ex ante, she anticipates choosing out of αx + (1−α)y ex post.
It follows that one should think of the randomization corresponding to the α and (1−α)
weights as taking place at the end—after she has chosen some mixed lotteryαβ+(1−α)γ
out of the menu.

7DLR use the term Independence to refer to a condition weaker than the one stated below. However, the
two axioms are equivalent given their continuity axiom.
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Independence For all menus x ′, x and y and 0<α< 1,

x ′ � x ⇐⇒αx ′+(1−α)y �αx +(1−α)y .

In the introduction we asserted that the axiom is not intuitive for an agent who is
aware of the coarseness of her perception of the relevant contingencies. Here we elab-
orate. The typical rationale for Independence (DLR, p. 905, for example) relies on two
claims. The first claim is the intuitive appeal of the condition

x ′ � x =⇒αx ′⊕ (1−α)y � x ⊕ (1−α)y , (1)

where αx ⊕ (1−α)y denotes the lottery over menus that delivers x with probability α
and y with probability (1−α), and where the lottery is played out immediately, that is,
before any uncertainty is resolved. The second claim is that the agent should be indif-
ferent between the mixture αx + (1−α)y and the two-stage object αx ⊕ (1−α)y . The
difference between these two ‘mixtures’ is in the timing of the randomization (or coin
toss). In the latter, the coin is tossed immediately—a specific menu is realized before the
agent sees a subjective state and chooses from the menu. In contrast, in αx + (1−α)y
the randomization is completed only at the end after choice out of the mixed menu.
However, we argue that this difference in timing matters when the agent is aware of the
incompleteness of her conceptualization, and that it is intuitive only that

αx +(1−α)y �αx ⊕ (1−α)y , (2)

thus refuting the case for the invariance asserted in Independence.
That the timing of randomization matters can be understood as follows: an agent

who is aware of the coarseness of her conception of the future might behave as though
she were playing a game against a malevolent nature. She suspects that, after realization
of a coarse contingency and after she has chosen an action (or lottery) ex post, nature
will complete the missing details in a way that is unfavorable for her. (She need not be
able to describe the details in order to feel this way.) Then, randomization that is com-
pleted immediately, before nature acts, does nothing to impede persecution by nature.
However, when randomization is completed only after nature moves, then nature is at
a disadvantage. For example, if x = {β} and y = {γ}, nature may be able to choose un-
derlying details that lead to a low payoff for β and other (different) details that lead to
an equally low payoff for γ, but then, in general, she cannot be as effective in sabotaging
the mixture αβ + (1−α)γ. The agent can expect this to be true in particular if states in
which β leads to a high (low) payoff are those in which γ has a low (high) payoff, that
is, if β hedges γ. Though the agent cannot describe these fine states, it suffices that the
preceding lies beneath her coarse conception and is in the ‘back of her mind.’ Then late
randomization will be preferable, consistent with (2), and the latter can be understood
as due to the gain from hedging.8 The bottom line is that, because of hedging, the agent

8It is well-known in the theory of preference over lotteries (see Machina 1984, for example), that the
timing of randomization matters for the normative appeal of Independence if the agent must choose an
auxiliary action before the risk is resolved. Independence is intuitive if the coin toss corresponding to the
randomization is completed before the action choice, but not if it is completed only after the action must
be chosen. The argument here about timing is similar except that it is nature, rather than the agent, who
takes the auxiliary action.
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might exhibit the ranking
{αβ +(1−α)γ} � {β} ∼ {γ},

violating Independence.
DLR show that in conjunction with Order and Continuity, Independence implies the

following axiom.9

Indifference to randomization (IR) For every menu x , x ∼ co(x ).

To evaluate this axiom, it is important to understand precisely the meaning of the
time line sketched above. It describes the agent’s ex ante expectations, for example, that
ex post she will be able to choose from the menu that is chosen initially. The critical issue
is what information she expects to have at that point. In fact, it may very well be that
the true complete (Savage-like) state will be realized before she has to choose out of the
menu. But since she does not conceive of them ex ante, she cannot be thinking explicitly
in terms of the complete states that might be realized ex post. Rather, given her ex ante
conceptualization in terms of coarse contingencies, one natural assumption is that she
expects only to know which of these is true before choosing out of the menu. In that case,
she expects coarseness to persist even ex post. On the other hand, she need not foresee
all the complete states in order to believe that one of them will be realized ex post. Thus
an alternative assumption is that the agent anticipates that some complete state will be
realized ex post. The intuitive appeal of IR depends on which of these assumptions is
adopted.

If the agent anticipates that some complete state will be realized ex post, then she
can be certain that her ex post preference over lotteries will conform to vNM. Thus
she anticipates choosing out of the previously chosen menu x in order to maximize a
mixture linear utility over lotteries, which means that she will do as well choosing out of
x ex post as out of co(x ). Being certain of this ex ante, she will be indifferent between x
and co(x ). This is the justification for Indifference to Randomization put forth by DLR.

Suppose, however, that coarseness is expected to persist ex post. Then the agent ex-
pects to be concerned ex post not only with how any given lottery β will play out, but
also with how (payoff-relevant) back-of-the-mind uncertainty will be resolved eventu-
ally. Then, just as described above in the discussion of Independence, randomization
may be valuable ex post. Anticipating this ex ante, she might strictly prefer co(x ) to x ,
violating IR. Both hypotheses concerning the agent’s expectations seem to us to be de-
scriptively plausible. Thus we formulate two alternative axiomatic models—one where
IR is imposed and one where the axioms reflect coarse perceptions that are expected to
persist.

Finally, we describe the most restrictive utility functional form characterized by
DLR—the so-called non-negative additive EU representation. To express it, note that
each mixture linear u :∆(B )−→R1 can be identified with a (unique) vector in N ⊂RB ,
where the role of the subset N is to normalize vNM utilities so that each u corresponds

9co(x ) = {αβ + (1−α)β ′ : β ,β ′ ∈ x , 0 ≤ α ≤ 1} denotes the convex hull of x . As in the case of Indepen-
dence, one should think of the randomization as occurring after choice is made out of the menu.
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to a unique ordering of lotteries. (DLR’s specification of N is not important here; later
we adopt a different specification.) The utility of any menu has the form

W DLR (x ) =

∫

max
β∈x

u (β )dµ(u ), (3)

where µ is a probability measure on N and u (β ) = Σb∈Bβ (b )ub = u ·β .

3. M 1: S- 

Here we consider an agent who has coarse contingencies in mind ex ante, but who ex-
pects to see a complete state ex post before choosing out of a menu. As in DLR, prefer-
ence is defined on the setX of menus, and satisfies Order, Monotonicity, and Indiffer-
ence to Randomization. Other axioms are relaxed or modified as we now describe.

First exclude total indifference.

Nondegeneracy x ′ � x for some menus x ′ and x .

Our principal deviation from DLR is to relax Independence. From the argument
surrounding (1)–(2) regarding the gains from hedging, we are led to the following weak-
ening of Independence.

Preference convexity x ′ � x =⇒αx ′+(1−α)x � x .

The intuition that ‘hedging’ motives may render randomization valuable recalls the
intuition provided in Gilboa and Schmeidler (1989) for their relaxation of Independence
designed to accommodate ambiguity aversion. Preference Convexity can in fact be un-
derstood as arising from the ambiguity aversion of an agent who is not sure about the
likelihoods of her subjective states.

Suppose the agent ex ante foresees each possible u , an ex post utility function over
lotteries. Then she presumably anticipates choosing out of any given menu condition-
ally on the realization of each u . For example, given x , she anticipates choosing the
lottery βu if u is realized. Thus the menu x is equivalent for her to the (lottery-valued)
act given by u 7−→ βu . Similarly, x ′ can be identified with an act u 7−→ β ′u . Then x ′ � x
translates into the weak preference for the primed act over the unprimed one. If states
are ambiguous for her, then, as argued by Gilboa and Schmeidler, she may strictly prefer
the α-mixture of these two acts to βu . But the mixed act is feasible for her by choosing
conditionally on each u if she has the menu αx ′+(1−α)x , and thus she can do at least
as well with the latter menu as with x , which ‘proves’ Preference Convexity.

We adopt two additional axioms that are admittedly “excess baggage”—they express
ex ante certainty about the payoffs to a specific alternative b∗ in B and certainty also
that it will be the worst outcome (hence also lottery) ex post.

Fix b∗ in B . Define a dominance relation on lotteries by

β ≥D β
′ if β (b∗)≤β ′(b∗) and β (b )≥β ′(b ) for all b 6=b∗.
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Thus β may be obtained from β ′ by shifting probability mass from b∗ to other actions.
Since the agent is certain that b∗ will be worst ex post (and that ex post preference will
conform to vNM), she can be certain that she will prefer β to β ′ and hence that she
would not choose β ′ (alone) if β is available; that is, β ′ has no flexibility value if β is
feasible ex post. We extend this intuition by first extending the dominance relation to
menus. Say that x dominates x ′, written x ≥D x ′, if for every β ′ in x ′ there exists β in x
such that β ≥D β ′. If x ≥D x ′, the agent can be certain of doing as well choosing out of x
as out of x ∪x ′. This explains the next axiom.

Worst For all menus x ′ and x , if x ≥D x ′, then x ∼ x ∪x ′.

Given our other axioms, Worst implies that, for all menus x ,

∆(B )∼ B � x � {b∗} and B � {b∗}.

By IR and Monotonicity, B ∼ ∆(B ) � x . On the other hand, x ≥D {b∗} for any x . Thus
Worst and Monotonicity imply that x ∼ x ∪{b∗} � {b∗}. We conclude that

B � x � {b∗}. (4)

Finally, B ∼ {b∗}would imply total indifference, contrary to Nondegeneracy.
Though certain that b∗ will be worst and ∆(B ) (or B) best, the agent may never-

theless be uncertain about the cardinal payoffs to each; moreover, cardinal payoffs are
important when the agent evaluates menus ex ante and must weigh payoffs across all
possible contingencies. We assume that, in fact, expected cardinal payoffs to both b∗
and∆(B ) are certain ex ante, where the payoff to∆(B ) refers to the payoff to the lottery
chosen out of ∆(B ) ex post—the chosen lottery, but not its payoff, may vary with the
(back-of-the-mind) state. If the cardinal payoffs to b∗ and ∆(B ) are certain, then so are
the payoffs to all lotteries of the form xp = p∆(B )+ (1−p )b∗, for any p in the unit inter-
val.10 Therefore, mixing with such lotteries provides no hedging gains, which suggests
that the invariance required by Independence should be satisfied for such mixtures. This
explains:

Certainty independence For all menus x ′ and x , and xp = p∆(B )+ (1−p )b∗, and for all
0<α< 1,

x ′ � x ⇐⇒αx ′+(1−α)xp �αx +(1−α)xp .

Finally, we assume a mild form of continuity à la Herstein and Milnor (1953).

Mild continuity For all menus x , the sets {p ∈ [0, 1] : xp � x } and {p ∈ [0, 1] : xp � x } are
closed.

10p∆(B )+ (1−p )b∗ = {pq +(1−p )δb∗ : q ∈∆(B )}, a menu of lotteries.
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To describe the implied functional form, note that any vNM ex post preference that
is not degenerate and that ranks b∗ as worst can be identified with a unique vector u in
N , where

N = {u ∈RB
+ : u (b∗) = 0, max

B
u (b ) = 1}.

Note also that11

β ≥D β
′⇐⇒ u ·β ≥ u ·β ′ for all u in N . (5)

Our first model is summarized in the following result.

T 1. Preference � on X satisfies Order, Monotonicity, Indifference to Random-
ization, Nondegeneracy, Preference Convexity, Worst, Certainty Independence, and Mild
Continuity, if and only if it admits a representation by W M P :X →R of the form

W M P (x ) =min
π∈Π

∫

max
β∈x

u (β )dπ(u ), (6)

where Π is a convex and weak∗-compact set of Borel probability measures on N .
Moreover, there exists Π that is smallest (in the sense of set inclusion) amongst sets

satisfying the above. The set Π is a singleton (and so W M P has the DLR form) if and only
if, for all x , x ′ ∈X and all α∈ [0, 1],

x ∼ x ′ =⇒αx +(1−α)x ′ � x . (7)

If preference satisfies Independence, then every menu satisfies (7), and the theo-
rem yields (a variant of) the DLR representation result for the non-negative additive EU
representation (3).

We pointed out earlier that the axioms, particularly Preference Convexity, are intu-
itive for an agent who foresees complete states whose likelihoods are ambiguous. Thus
the theorem can be viewed as extending Gilboa and Schmeidler’s (1989) multiple-priors
utility model by dispensing with an exogenous state space. At a formal level, Theorem 1
is not a trivial variation of the representation result in Gilboa and Schmeidler (1989).
Our axioms deliver a (superlinear and translation invariant) preference functional de-
fined only on the convex cone of support functions, a meager subset of the set of all
continuous functions on N ; in particular, the cone has an empty interior under the sup-
norm topology. For this reason we have to use techniques different from the ones used
in Gilboa and Schmeidler (1989), and we exploit the notion of niveloid developed in
Maccheroni et al. (2006). The smallness of the domain on which the preference func-
tional is defined results in the non-uniqueness of the set Π of the representation (6), the
domain not being big enough to pin down a single set of priors, but only a smallest one.

11If there exists b ′ 6= b∗ such that β (b ′)<β ′(b ′), then u ·β < u ·β ′ for u defined by ub ′ = 1 and ub = 0 for
b 6=b ′.
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4. M 2: P 

Section 2 argued that IR is not intuitive if ex ante coarseness is expected to persist. Here
we describe a second model designed to capture this conception of coarseness. We de-
viate more drastically from DLR, beginning with the adoption of an expanded domain
for preference—we assume that the agent ranks not only menus but all random menus.
In this respect, and also in the nature of our central axiom called Dominance, our ap-
proach is closer to that of Nehring (1996, 1999), as developed and generalized by Epstein
and Seo (2007).

The sets B , ∆(B ), andX are as above. Preference � is defined on ∆(X ).12 Generic
elements of ∆(X ) are denoted P , P ′, Q , . . . and are referred to as random menus. As
indicated by the time line below, for any random menu P chosen ex ante, a menu x is
realized next, and then, as in DLR and in our first model, the agent expects to see some
subjective uncertainty resolved and finally to choose from the realized menu. A differ-
ence from our first model is that here, if the agent thinks in terms of coarse contingencies
ex ante, then she expects only to see one of those coarse contingencies ex post.

• ——— • ——— • ——— •
choose x coarse state choose

P realized realized β ∈ x

4.1 Utility

Ex post payoff functions are continuous functions v :∆(B )→ R satisfying suitable nor-
malizations. To express them, fix two actions b∗ and b ∗, identified with degenerate lot-
teries, interpreted as the worst and best lotteries ex post. This exacerbates somewhat
the problem of “excess baggage” in our first model, since we now assume that not only
the worst, but also the best lottery is fixed exogenously. Every vNM ex post preference
over lotteries that (is not total indifference and that) ranks b∗ as worst and b ∗ as best may
be represented by some u in N ∗, where

N ∗ = {u ∈ [0, 1]B : u (b∗) = 0, u (b ∗) = 1}.

However, the agent does not conceive of all of these possibilities ex ante—rather she
thinks in terms of subsets of N ∗. Denote byK (N ∗) the set of closed subsets of N ∗, en-
dowed with the Hausdorff metric, which renders it compact metric. Say that U ⊂ N ∗

is comprehensive if U = {u ′ ∈ N ∗ : u ′ ≥ u for some u ∈U}. Denote byK c c (N ∗) the set
of closed, convex, and comprehensive subsets of N ∗. (Then K c c (N ∗) is also compact
metric.)

The utility of any random menu P is given by

W (P) =
∫

X

 

∫

K c c (N ∗)

max
β∈x

min
u∈U

u (β )dµ(U )

!

d P(x ), (8)

12The setX is compact metric (and so Polish) under the Hausdorff metric. It is endowed with the Borel
σ-algebra. Thus ∆(X ) is the set of Borel probability measures. It is also compact Polish under the weak-
convergence topology. The set∆(X ) has similar meaning for any metric space X .
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for some Borel probability measure µ ∈ ∆(K c c (N ∗)). Say that µ represents the corre-
sponding preference.

To interpret, note first that preference conforms to vNM theory when evaluating lot-
teries over menus—it has the expected utility form

W (P) =
∫

X
W (x )d P(x ),

for the vNM index W :X →R given by

W (x ) =

∫

K c c (N ∗)

max
β∈x

min
u∈U

u (β )dµ(U ), x ∈X . (9)

Since W represents the ranking of (nonrandom) menus, it can be compared with DLR’s
utility function (3), to which W reduces if µ has support on singletons.13 More generally,
the functional form (9) might describe an agent who conceives ex ante of the complete
states in N ∗, but does not expect to see the true state ex post. Rather, she expects only
a “signal” U to be realized ex post. There is no prior ambiguity about the likelihoods
of signals; however, each signal is “ambiguous”—it will inform the agent that the true
subjective state u lies in U , but leave her completely ignorant otherwise.14

Note that the restriction to sets U that are convex and comprehensive is without
loss of generality—for any closed set U , minu∈U u (β ) is unchanged if we replace U by
its convex hull, or if we add to U points u ′ in N ∗ such that u ′ ≥ u for some u ∈ U .
The normalization to convex and comprehensive sets permits us to show below that the
representing measure µ is unique.

Finally, for perspective, consider the alternative functional form obtained by revers-
ing the order of the max and min appearing inside the integral in (9). That is, consider

W rev(x ) =

∫

min
u∈U

max
β∈x

u (β )dµ(U ), x ∈X .

In general, W rev is ordinally distinct from W . This is suggested by the fact that the mini-
max theorem justifying such reversals of order requires that both sets x and U be convex,
but menus need not be convex. Preference represented by W rev satisfies all the assump-
tions of Theorem 1, including IR, and so it is a special case of that model. However,
preference represented by W violates IR in general.

4.2 Axioms and representation result

Let � be a preference order on ∆(X ). We assume that it is complete and transitive (Or-
der), continuous in the usual sense (Continuity), and that it is not total indifference
(Nondegeneracy).

13More precisely, since µ is defined only on comprehensive sets, DLR is the special case where µ has
support on sets of the form {u ′ ∈N ∗ : u ′ ≥ u } for some u in N ∗.

14It can be shown that this is a special case of the recursive multiple-priors utility studied by Epstein and
Schneider (2003) (though the information structure is exogenous there and subjective here).
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We assume also that preference satisfies a form of independence. To distinguish it
from the Independence axiom in DLR, we give it another name.

First-stage independence For all random menus P , P ′ and Q and for all 0 < α < 1, P ′ �
P⇐⇒αP ′+(1−α)Q �αP +(1−α)Q .

Since a mixture such as αP + (1−α)Q is a random menu, it follows from the time
line described above that a specific menu is realized before the agent sees a subjective
state and chooses from the menu. In particular, therefore, all randomization in both
component measures P and Q as well as in the mixing is completed before then. As
explained in our discussion of the DLR model, this difference in timing differentiates
First-Stage Independence from DLR’s Independence, and there are no hedging gains
from immediate randomization.15

Our key axiom is adapted from Nehring (1996, 1999) and Epstein and Seo (2007).
Its statement makes use of the fact that, by Aliprantis and Border (1994, Theorem 3.63),
{x ∈ X : x ⊂G } is open inX for every open subset G ⊂∆(B ). Therefore, for any menu
y ,

{x ∈X : x ∩ y 6=∅}=X \{x ∈X : x ⊂∆(B ) \ y }

is closed, hence Borel measurable.
Let Y be a set of menus, each of which is interpreted as an upper contour set for

some ex post preference order that the agent views as possible. Deferring for a moment
the precise specification of Y , consider the following axiom.

Dominance If P ′({x ∈X : x ∩ y 6=∅})≥ P({x ∈X : x ∩ y 6=∅}) for all menus y in Y , then
P ′ � P .

Say that P ′ dominates P if the condition in the axiom is satisfied.
Consider two implications of the axiom.16 First, when P ′ = δx ′ and P = δx are de-

generate, then δx ′ dominates δx if x ′ ⊃ x . Therefore, Dominance implies Monotonicity:

x ′ ⊃ x =⇒ x ′ � x .

It also implies (given First-Stage Independence) Kreps’ (1979) second key axiom (condi-
tion (1.5)): given any menus x and x ′, let

P ′ = 1
2δx + 1

2δx ′ and P = 1
2δx∩x ′ +

1
2δx∪x ′ .

Then P ′ dominates P , and thus Dominance implies that

1
2δx + 1

2δx ′ � 1
2δx∩x ′ +

1
2δx∪x ′ .

15First-Stage Independence corresponds to, and generalizes, condition (1). A difference is that since only
here is preference defined on random menus, then only here is the axiom formally meaningful.

16Nehring (1996, 1999) makes a similar observation for his setting. Note that these implications are valid
for any specification of Y , and not just for the one given below.
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Deduce from First-Stage Independence that

δx ′ ∼δx∩x ′ =⇒δx �δx∪x ′ .

Since Monotonicity is also implied, we have finally that (in the obvious notation)

x ∩x ′ ∼ x ′ =⇒ x ∼ x ∪x ′,

which is equivalent to Kreps’ axiom.17

To understand further the meaning of the axiom, think of each y in Y as an upper
contour set for some conceivable ex post preference. Thus lotteries in y are “desirable”
according to that ex post preference and x ∩ y 6= ; indicates that x contains at least one
desirable action, in which case we might refer to x as being desirable. Accordingly, P ′

dominates P if the probability of the realization of a desirable menu is larger under P ′,
and if this is true for every set y and hence for every conceivable definition of “desirable.”
The set Y specifies which upper contour sets are relevant, or, in other words, Dominance
for the given Y implies certainty that ex post upper contour sets lie in Y .

The content of the axiom depends on the specification of Y , which we now describe.
Fix actions b∗ and b ∗, and say that β ′ is an elementary improvement of β if

either β ′−β = κδb ∗ −κδb for some b 6=b ∗

or β ′−β =−κδb∗ +κδb for some b 6=b∗.

In the first case, probability mass is shifted from some outcome b to b ∗ and in the second
mass is shifted from b∗ to some other outcome. Both shifts are unambiguous improve-
ments if b ∗ and b∗ are the best and worst actions respectively. In particular, if that is the
case, then β ′ dominates β in the sense of the first-order-stochastic dominance relation
induced by the ranking of actions.

Assume that Y consists of all nonempty sets y satisfying the following properties.18

Y1 y is closed and convex.

Y2 If β ′ is an elementary improvement of β , and β ∈ y , then β ′ ∈ y .

Y3 [β0 6∈ y , βq 6∈ y for all q < p ] =⇒αβ0+(1−α)βp 6∈ y for all α> 0.

To interpret these conditions in the context of Dominance, think again of Y as con-
sisting of ex post upper contour sets that the agent thinks possible ex ante. For Y1, y
being closed reflects certainty that ex post preferences will be (upper semi) continuous.
Convexity expresses the certainty that randomization will be (weakly) valuable. The ex-
pectation of indifference to randomization ex post would be captured by adding the
requirement that the complement y c (a strict lower contour set) also be convex.19 The
absence of this requirement permits a role for randomization ex post.

17The latter is usually stated in the form x ∼ x ′ ∪x =⇒ x ∪x ′′ ∼ x ′ ∪ (x ∪x ′′).
18βp denotes the lottery (b ∗, p ;b∗, 1−p ).
19Suppose that y c is convex for every y in Y . Then y ∩x =∅=⇒ x ⊂ y c =⇒ co(x )⊂ y c =⇒ y ∩ co(x ) =∅,

and δx dominates δco(x ). By Dominance, therefore, x � co(x ). Thus they must be indifferent by Monotonic-
ity.
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Property Y2 states that any elementary improvement of a lottery in an upper contour
set y is also in y . Thus it expresses certainty that b ∗ and b∗ are the best and worst actions
respectively. An immediate implication is that

[βq ∈ y and p >q ] =⇒βp ∈ y . (10)

Iterating Y2 yields

b ∗ ∈ y for every y

and

b∗ ∈ y only if y =∆(B ).

Turn finally to Y3. Letβ0 6∈ y , and suppose also thatβp 6∈ y , which, by (10), is stronger
than the stated hypothesis. We argue above that randomization can be valuable to hedge
coarseness. But suppose that, after the realization of some coarse contingency, the agent
is certain not only that b ∗will be best ex post, but also that its payoff is constant across all
back-of-the-mind details; and similarly for b∗. Thus there is conditional certainty about
the cardinal payoffs to b ∗ and b∗, from which it follows that there should be conditional
certainty also about the cardinal payoffs to all mixtures βp = (b ∗, p ;b∗, 1−p ). But then
mixing with βp (or with any βq ) should provide no hedging gains. In that case, the agent
should not expect αβ0 + (1−α)βp to be better than both component lotteries, each of
which is undesirable (in the sense of not lying in y ). In other words, αβ0+(1−α)βp 6∈ y .

Finally, suppose that βp does indeed lie in y , but only barely in the sense that
βq 6∈ y for all q < p . Since y is closed and β0 6∈ y , it falls short by a discrete amount
from being desirable according to y . Since βp is just barely in y , mixing with βp is
not enough to compensate for the deficiency in β0. Therefore, again we conclude that
αβ0+(1−α)βp 6∈ y .

If the cardinal payoffs to b ∗ and b∗ are expected to be certain conditional on each
coarse contingency, then not only should randomization with any βp be of no value ex
post, as just argued in connection with Y3, but also ex ante there should be no hedging
gains. But hedging gains were the only reason for arguing that the timing of randomiza-
tion should matter and hence that indifference in (2) is not intuitive. This explains the
final axiom.20

Certainty reversal of order For every menu x ′ ∈X , 0<α< 1, and 0≤ p ≤ 1,

αx ′⊕ (1−α){βp } ∼αx ′+(1−α){βp }.

We can now state our second main result.

T 2. � satisfies Order, Continuity, Nondegeneracy, First-Stage Independence,
Dominance, and Certainty Reversal of Order if and only if it has a representation of the
form (8). Moreover, the representing measure µ in (8) is unique.

20In more accurate but less friendly notation, the axiom asserts that αδx ′ +(1−α)δ{βp } ∼δαx ′+(1−α){βp }.
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If Certainty Reversal of Order is strengthened so as to apply to all pairs of menus, that
is, to require indifference in (2) for all x ′ and x , then First-Stage Independence implies
Independence, and all subjective states are singletons (up to being comprehensive) as in
DLR—coarseness is excluded. Alternatively, the latter model is obtained if Dominance
is strengthened by shrinking Y so that, in addition to Y1–Y3, every y in Y is required to
have a convex complement (which leads to indifference to randomization (IR)).

Finally, with respect to uniqueness of the measure, the theorem establishes unique-
ness of µ amongst all representations that use N ∗ as the state space. However, there is
nothing special about our choice of normalizing the lowest and highest utility levels at
0 and 1 respectively. We could equally well have used any other state space for which
payoffs to b∗ and b ∗ are constant, that is, where u 1(b∗) = u 2(b∗)< u 1(b ∗) = u 2(b ∗) for all
u 1 and u 2 in the state space. Let N ′ and N ′′ be two such sets and letµ′ andµ′′ be the cor-
responding representations as delivered by Theorem 2 (suitably extended). Then there
exist α> 0 and β ∈R such that N ′′ =αN ′+β , and such that U ′′ ∈K c c (N ′′) if and only if
α−1(U ′′−β ) ∈K c c (N ′). Therefore, the uniqueness part of the theorem implies, assum-
ing finite supports for simplicity, that µ′′(U ′′) =µ′(α−1(U ′′−β )) for all U ′′ ∈K c c (N ). The
representing measure is unique up to such linear transformations, reflecting the choice
of normalization for b∗ and b ∗.

4.3 Dempster and Shafer-style models

Finally, we relate the model (9) to the Dempster–Shafer-style models of Mukerji (1997)
and Ghirardato (2001) mentioned in the introduction. They suppose that while there
exists a Savage-style state space S, the agent does not conceive of all the complete states
in S and has coarse perceptions. These are modeled through an auxiliary epistemic state
space Ω and a correspondence Γ from Ω into S. (See the figure below.) There is a proba-
bility measure p representing beliefs on Ω.

(Ω, p )
Γ  (S,ν )
↘
bf

↓ f

X

(11)

Unlike a Savage agent who would view each physical action as an act from S to the out-
come set X , and who would evaluate it via its expected utility (using a probability mea-
sure on S), the present agent views each action as a (possibly multi-valued) act on Ω.

Ghirardato assumes that each bf is multi-valued, where the nonsingleton nature of
bf (ω) reflects her awareness thatω is a coarse contingency. Its utility is given by

V G ( bf ) =

∫

Ω

�

min
x∈ bf (ω)

u (x )
�

d p .

In this formulation, bothΩ and the acts bf are taken to be objective and hence observable
to the analyst. One can view our model (9) as one possible way to render them subjec-
tive: take X =R1, Ω= Supp(µ)⊂K c c (N ∗), and p =µ, where µ is the measure appearing
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in our representation; and identify each lottery β in∆(B )with the multi-valued act bβ ,

bβ : U −→{u (β ) : u ∈U}.

Then
V G ( bβ ) =W ({β}).

Turn to the rest of the triangle (11). It is commutative if bf (ω) = f (Γ(ω)). This is
satisfied in our model if we take S =N ∗ and Γ(U ) =U ⊂N ∗.

Finally, we can write

V G ( bf ) =

∫

S

u ( f )dν (s ),

where ν is the non-additive measure or capacity21

ν (A) =µ({ω : Γ(ω)⊂ A}),

and the integral on the right is in the sense of Choquet (see Schmeidler 1989). Since
Schmeidler’s Choquet expected utility model was devised in order to accommodate am-
biguity, this demonstrates once again the close connection between coarse perceptions
and ambiguity.

Though there are differences in detail, similar remarks apply to Mukerji (1997); in
particular, our model can be viewed as a way to endogenize the state spaces Ω and S, as
well as the correspondence Γ, all of which are taken as primitives by Mukerji.

A

A. A: P  T 

This appendix proves Theorem 1. Necessity is immediate; for example, IR is satisfied
because

max
β∈x

u ·β = max
β∈co(x )

u ·β for any x .

The proof of sufficiency is quite long. We provide the complete argument here, in-
cluding preliminary results on niveloids which are formulated for a setting more abstract
than ours and which extend some results of Maccheroni et al. (2006). The proof of the
minimality of the set Π is based on a result of Ergin and Sarver (2005).

A.1 Preliminaries

We begin with some preliminaries. Let C be a convex subset of a normed vector space.
A function h : C →R is quasiconvex if

h(tβ ′+(1− t )β ′′)≤max{h(β ′), h(β ′′)} ∀β ′,β ′′ ∈C .

It is quasiconcave if− f is quasiconvex, and it is quasimonotone if it is both quasiconvex
and quasiconcave.

The following result is due to Greenberg and Pierskalla (1971, p. 1559).

21More precisely, it corresponds to the special case where ν is a belief function.
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L A.1. Let h : C →R be continuous. Then h is quasimonotone if and only if the sets
{β : h(β ) = c} are convex for all c ∈R.

Suppose K is a compact set in some topological space, and let h : C →R be given by

h(β ) =min
y∈K

T (β , y ), (A.1)

where T : C ×K →R is continuous on K and affine on C , i.e., for each β ′,β ′′ ∈C ,

T (tβ ′+(1− t )β ′′, y ) = t T (β ′, y )+ (1− t )T (β ′′, y ) ∀y ∈ K .

The function h : C →R defined in (A.1) is easily seen to be concave.
Define

Θ(β ) = arg min
y∈K

T (β , y ) ∀β ∈C .

Say that h is affine on some convex subset Q ⊆ C if h(λβ1 + (1 − λ)β2) = λh(β1) +
(1−λ)h(β2) for all λ∈ [0, 1] and all β1,β2 ∈Q .

L A.2. (i) For any finite collection {βi }i∈I ⊆C ,

h

� n
∑

i=1

λiβi

�

=
n
∑

i=1

λi h(βi ) (A.2)

for some collection {λi }i∈I withλi ∈ (0, 1) and
∑

i∈I λi = 1 if and only if ∩i∈IΘ(βi ) 6=
;. In this case, ∩i∈IΘ(βi ) =Θ

�
∑n

i=1λiβi
�

.

(ii) Let Q ⊆C be a convex set. Then h is affine on Q if and only if ∩β∈QΘ(β ) 6= ;.

(iii) Given c ∈R, the set h−1(c ) = {β ∈C : h(β ) = c} is convex only if ∩β∈h−1(c )Θ(β ) 6= ;.

P. In points (i) and (ii) we prove the “only if,” the converse being trivial.
(i) Let by ∈Θ

�
∑n

i=1λiβi
�

and byi ∈Θ(βi ) for i ∈ I . As T (·, by ) is affine, by (A.2) we have

n
∑

i=1

λi T (βi , by ) = T

� n
∑

i=1

λiβi , by

�

=
n
∑

i=1

λi T (βi , byi ). (A.3)

On the other hand, byi ∈Θ(βi ) implies

T (βi , byi )≤ T (βi , by ) ∀i ∈ I .

Hence, by (A.3) we have
n
∑

i=1

λi T (βi , by ) =
n
∑

i=1

λi T (βi , byi ),

which in turn implies T (βi , by ) = T (βi , byi ) for each i ∈ I . This shows that Θ
�
∑n

i=1λiβi
�

⊆
∩i∈IΘ(βi ). The converse inclusion is trivial, and we conclude that Θ

�
∑n

i=1λiβi
�

=
∩i∈IΘ(βi ) 6= ;.
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(ii) Suppose h is affine on Q . As Q is convex, this implies that h
�
∑n

i=1λiβi
�

=
∑n

i=1λi h(βi ) for any finite collection {βi }i∈I ⊆ Q and any {λi }i∈I with λi ∈ [0, 1] and
∑

i∈I λi = 1. By the previous point, ∩i∈IΘ(βi ) 6= ;. As all setsΘ(β ) are compact, the Finite
Intersection Property implies that ∩β∈QΘ(β ) 6= ;.

(iii) Let β1,β2 ∈ h−1(c ). As h−1(c ) is convex,

h(λβ1+(1−λ)β2) =λh(β1)+ (1−λ)h(β2) ∀λ∈ [0, 1].

By the previous point, ∩β∈h−1(c )Θ(β ) 6= ;. �

L A.3. Let Q ⊆C be a convex set and suppose h is continuous. Then h is affine on Q
if and only if h is quasiconvex on Q and there exists γ ∈Q such that, for all λ ∈ [0, 1] and
all β ∈Q,

h(β )≥ h(γ) and h(λβ +(1−λ)γ) =λh(β )+ (1−λ)h(γ).

In this case, there exists y ∈ K such that

h(β ) = T (β , y ) ∀β ∈Q. (A.4)

P. For “only if,” take γ ∈ arg minβ∈∆(B )h(β ). Consider now the “if” part. First ob-
serve that h is quasimonotone, and so by Lemma A.1 its level sets h−1(c ) = {β : h(β ) = c}
are convex for all c ∈R. By Lemma A.2(iii),

∩β∈h−1(c )Θ(β ) 6= ; ∀c ∈R. (A.5)

Set eQ = {β ∈Q : h(β )> h(γ)}. Let β1,β2 ∈ eQ and suppose h(β1)≥ h(β2). If h(β1) = h(β2),
then

h(λβ1+(1−λ)β2) =λh(β1)+ (1−λ)h(β2) ∀λ∈ [0, 1]

since h is quasimonotone. Suppose h(β1) > h(β2). There exists λ ∈ (0, 1) such that
h(β2) = λh(β1) + (1− λ)h(γ) = h(λβ1 + (1− λ)γ). Set c = h(β2). By (A.5), there is by ∈
Θ(β2)∩Θ(λβ1+(1−λ)γ). Hence

h(λβ1+(1−λ)γ) = T (λβ1+(1−λ)γ, by )

≥λT (β1, by )+ (1−λ)T (γ, by )

≥λh(β1)+ (1−λ)h(γ)
= h(λβ1+(1−λ)γ),

so that T (β1, by ) = h(β1). Hence by ∈ Θ(β1), and we conclude that Θ(β1)∩Θ(β2) 6= ;. By
Lemma A.2(i), h(λβ1 + (1− λ)β2) = λh(β1) + (1− λ)h(β2) for all λ ∈ [0, 1], and so the
function h is affine on eQ .

Let β ∈ Q be such that h(β ) = h(γ). If β ∗ ∈ Q is also such that h(β ∗) = h(γ), then
h(tβ ∗+(1− t )β ) = t h(β ∗)+ (1− t )h(β ) since h is quasimonotone. Suppose that β ∗ ∈ eQ .
Given λ∈ [0, 1], set βλ =λβ ∗+(1−λ)β . Since h is concave and h(β ∗)> h(β ), we have

h(βλ)≥λh(β ∗)+ (1−λ)h(β )> h(β ) ∀λ∈ (0, 1]
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and so βλ ∈ eQ for each λ∈ (0, 1]. By the continuity of h, we then have

t h(β ∗)+ (1− t )h(β ) = lim
λ→0

t h(β ∗)+ (1− t )h(βλ)

= lim
λ→0

h(tβ ∗+(1− t )βλ)

= h(tβ ∗+(1− t )β ),

and so we can conclude that h is affine on Q . By Lemma A.2(ii), ∩β∈QΘ(β ) 6= ;. Any
y ∈∩β∈QΘ(β ) satisfies (A.4). �

A.2 Niveloids

Let (E ,≥,‖ · ‖) be a normed Riesz space and let H be a convex cone in E containing an
order unit e .22 Say that ‖ · ‖ is an e -norm if there exists k > 0 such that | f | ≤ k‖ f ‖e for all
f ∈ E . Throughout we consider only e -norms.

E A.1. Each normed Riesz space has a natural e -norm, called the e -uniform
Riesz norm, given by

‖ f ‖e = inf{k ≥ 0 : | f | ≤ k e }.

In this case, | f | ≤ ‖ f ‖e e for all f ∈ E (see de Jonge and van Rooij 1977, p. 103). For
example, if E is a function space and e is 1Ω, then ‖ · ‖e is the supnorm. ◊

L A.4. If h1, h2 ∈H, then h1+h2 ∈H.

A functional I : H →Rwith I (0) = 0 is an e -niveloid if it is monotone, I (e ) = 1, and

I (h +αe ) = I (h)+α for all h ∈H and α≥ 0.

If the preceding is true also for all α< 0 such that h +αe ∈H , say that I is e -translation
invariant.

L A.5. Any e -niveloid I : H → R is Lipschitz continuous and e -translation invari-
ant. Moreover, I is concave if and only if it is quasiconcave.

R. Observe that Lemma A.5 applies to any e -niveloid on a convex cone.

P. For translation invariance, if α< 0, then

I (h)+α= I (h +αe −αe )+α= I (h +αe )−α+α= I (h +αe ).

For the Lipschitz property, argue as follows. If f , g ∈H , then f − g ≤ | f − g |. As ‖ ·‖ is
an e -norm, we have | f − g | ≤ k‖ f − g ‖e , and so f ≤ g +k‖ f − g ‖e . By the monotonicity
of I , we have I ( f )− I (g )≤ k‖ f − g ‖.

22That is, E is a lattice under the order≥ and the norm ‖·‖ is such that, for all f , g ∈ E , ‖ f ‖ ≤ ‖g ‖whenever
| f | ≤ |g |. Recall that | f |= f ++ f − = f ∨0+(− f )∨0, and that e ∈ E+ is an order unit if for each f ∈ E there is
α> 0 such that | f | ≤αe .
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Finally, suppose I is quasiconcave. Let f , g ∈ H with I ( f ) ≥ I (g ) and set α = I ( f )−
I (g ). Then I is concave, because, for all t ∈ [0, 1],

I (t f +(1− t )g )+ (1− t )α= I (t f +(1− t )(g +αe ))

≥ t I ( f )+ (1− t )I (g +αe )

= t I ( f )+ (1− t )I (g )+ (1− t )α. �

Let (E ,≥,‖ · ‖) be a Banach lattice with topological dual E ∗. Denote by E ∗+ the set of
all monotone elements in E ∗ and let ∆ = {L ∈ E ∗+ : L(e ) = 1}. Recall that a functional
I : H →R is superlinear if it is positively homogeneous and superadditive, i.e., I ( f +g )≤
I ( f ) + I (g ) for all f , g ∈ H . Superlinearity and concavity are equivalent properties for
positively homogeneous functionals.

T A.1. Suppose E is a separable Banach lattice with E = H −H. Let I : H → R
be a quasiconcave and positively homogeneous e -niveloid. Then there exists a greatest
superlinear e -niveloid bI : E →R that extends I , that is, J ≤ bI pointwise for any extension
J : E →R of I . In particular, there exists a smallest convex and weak∗-compact set Γ⊆∆
such that

I ( f ) =min
L∈Γ

L( f ) ∀ f ∈H.

The set Γ is a singleton if and only if I is additive.

P. Define I ′ : E →R by

I ′( f ) = sup
g∈H ,α∈R

{I (g )+α : g +αe ≤ f }.

Then I ′ is a superlinear e -niveloid that extends I : It is readily verified that I ′ = I on H ,
and that I ′ is monotone and e -translation invariant. In addition,

• I ′ is superadditive: Suppose that f 1, f 2 ∈ E and I ′( f 1 + f 2) < I ′( f 1) + I ′( f 2). Then
there exist g 1, g 2 ∈ H and α1,α2 ∈ R, with g 1 +α1e ≤ f 1 and g 2 +α2e ≤ f 2, such
that

I ′( f 1+ f 2)< I (g 1)+α1+ I (g 2)+α2 ≤ I (g 1+ g 2)+α1+α2,

a contradiction because g 1+ g 2 ∈H and g 1+ g 2+(α1+α2)e ≤ f 1+ f 2.

• I ′ is positively homogeneous: Given any β ≥ 0 and f ∈ E , we have

I ′(β f ) = sup
g∈H ,α∈R

{I (g )+α : g +αe ≤β f }

= sup
g∈H ,α∈R

�

I

�

g

β

�

β +
α

β
β :

g

β
+
α

β
e ≤ f

�

=β sup
g∈H ,α∈R

�

I

�

g

β

�

+
α

β
:

g

β
+
α

β
e ≤ f

�

=β sup
h∈H ,γ∈R

{I (h)+γ : h +γe ≤ f }=β I ′( f ).
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Let eI : E → R be any superlinear e -niveloid that extends I . The superdifferential
∂ eI ( f ) at f ∈ E is given by

∂ eI ( f ) = {L ∈ E ∗ : eI (g )≤ eI ( f )+ L(g − f )∀g ∈ E }. (A.6)

Since eI is concave and Lipschitz continuous (by Lemma A.5), ∂ eI ( f ) is nonempty, convex
and weak∗-compact for each f ∈ E (see Phelps 1993, Proposition 1.11).

We now show that eI ( f ) = minL∈∂ eI (0) L( f ): Let L ∈ ∂ eI ( f ). If we take g = 0 in (A.6),

we get eI ( f ) ≥ L( f ), while if we take g = 2 f , then we get eI ( f ) ≤ L( f ). We conclude that
eI ( f ) = L( f ). This implies that ∂ eI ( f ) = {L ∈ ∂ eI (0) : L( f ) = eI ( f )} and eI ( f ) =minL∈∂ eI (0) L( f ).

Next we show that ∂ eI (0) ⊆ ∆. Fix f ∈ E and L ∈ ∂ eI (0). Then eI ( f +αe ) ≤ L( f +αe )
for all α ∈R, and so eI ( f )≤ L( f )+α(L(e )− eI (e )) for all α ∈R. This contradicts eI ( f )>−∞
unless L(e ) = eI (e ) = 1. It remains to prove that ∂ eI (0)⊆ E ∗+: L ∈ ∂ eI (0) =⇒ L( f )≥ eI ( f )≥ 0
for every f ∈ E+ by the monotonicity of eI . Therefore ∂ eI (0)⊆∆.

Define I ∗ : E ∗ → R by I ∗(L) = infh∈H {L(h)− I (h)}. Then I ∗(L) = 0 for L ∈ ∂ eI (0).
Therefore, for each f ∈ E ,

eI ( f ) = min
L∈∂ eI (0)

L( f ) = min
L∈∂ eI (0)

{L( f )− I ∗(L)}.

By Ergin and Sarver (2005, Propn. 2), there is a convex weak∗-compact set Γ such that23

I (h) =min
L∈Γ
{L(h)− I ∗(L)} ∀h ∈H ,

and such that Γ is smallest in this respect, that is, Γ ⊆ Φ for any convex weak∗-compact
set Φ satisfying

I (h) =min
L∈Φ
{L(h)− I ∗(L)} ∀h ∈H .

Since
I (h) = eI (h) = min

L∈∂ eI (0)
L(h) = min

L∈∂ eI (0)
{L(h)− I ∗(L)} ∀h ∈H ,

it follows that Γ⊆ ∂ eI (0). Hence the functional bI : E →R given by

bI ( f ) =min
L∈Γ

L( f ) ∀ f ∈ E

is the greatest superlinear e -niveloid that extends I on E , that is, bI ≥ eI for any superlin-
ear e -niveloid eI extending I .

As a result, Γ is the desired smallest set. In fact, let Γ′ ⊆ ∆ be any other convex and
weak∗-compact set such that I ( f ) = minL∈Γ′ L( f ) for all f ∈ H . Define eI : E → R by
eI ( f ) =minL′∈Γ L( f ). The functional eI is a superlinear e -niveloid that extends I , and so
bI ≥ eI , which in turn implies Γ⊆ Γ′.

Finally, suppose I is additive. By Lemma A.5, I is Lipschitz and so by the Hahn–
Banach Theorem it admits a unique linear extension J : E →R. Hence J ≤ bI and

J ( f ) =−J (− f )≥−bI (− f )≥ bI ( f )≥ J ( f ) ∀ f ∈ E ,

which implies J = bI and Γ= {J }. �
23Ergin and Sarver’s result shows the existence of a smallest weak∗-compact set. Its closed convex hull is

then the smallest convex and weak∗-compact set.
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Given a convex subset G containing both 0 and e , let 〈G 〉 be the vector subspace it
generates.

C A.1. Let G be a convex subset containing both 0 and e of a separable Banach
lattice E , with E = 〈G 〉. Let W : G →R be quasiconcave and monotone, such that W (0) =
0 and

W (t f +(1− t )γe ) = t W ( f )+ (1− t )γ ∀ f ∈G ,∀t ,γ∈ [0, 1].

Then there exists a smallest convex and weak∗-compact set Γ⊆∆ such that

W ( f ) =min
L∈Γ

L( f ) ∀ f ∈G . (A.7)

The set Γ is a singleton if and only if W is affine.

P. Let H =
⋃

α>0αG be the cone generated by G . For each h ∈H , there exists α> 0
such that h/α∈H . Define I : H →R by I (h) =αW (h/α).

The functional I is well defined: suppose that, for a given h ∈H , there exist α,β > 0
such that h/α, h/β ∈G . Without loss of generality suppose β ≤α. Then

W

�

h

α

�

=W

�

β

α

h

β

�

=W

�

β

α

h

β
+
�

1−
β

α

�

0

�

=
β

α
W

�

h

β

�

,

as desired. Observe that h/β ∈G and β ≤α imply h/α∈G . Hence, given any h1, h2 ∈H ,
there exists α ≥ 1 such that h i /α ∈ G and I (h i ) = αW (h i /α) for each i = 1, 2. This
property will be tacitly used in the sequel.

The functional I is clearly positively homogeneous and is an e -niveloid. We now
show that it is quasiconcave on H . Given any h1, h2 ∈ H , there exists α > 0 such that
h1/α, h2/α∈G . For any t ∈ [0, 1],

I (t h1+(1− t )h2) = I

�

tα
h1

α
+(1− t )α

h2

α

�

=αI

�

t
h1

α
+(1− t )

h2

α

�

=αW

�

t
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α
+(1− t )

h2

α

�

≥αmin

�

W

�

h1

α

�

, W

�

h2

α

��

=min{I (h1), I (h2)}.

Thus I is quasiconcave. By Theorem A.1, there is a smallest convex and weak∗-compact
set Γ⊆∆ such that

I ( f ) =min
L∈Γ

L( f ) ∀ f ∈H .

In particular, Γ is a singleton if and only if I is additive. Hence, Γ is such that (A.7) holds,
and it is the smallest such set: Suppose Γ′ ⊆∆ is another set for which (A.7) holds. Define
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eI : E →R by eI ( f ) =minL′∈Γ L( f ). Then eI ( f ) = I ( f ) for all f ∈H , and by Theorem A.1 we
then have

min
L∈Γ

L( f )≥min
L∈Γ′

L( f ) ∀ f ∈ E ,

which implies Γ ⊆ Γ′. Since I is additive if and only if W is affine, this completes the
proof. �

A.3 Application

Let ∆(N ) be the set of all Borel probability measures on N and C (N ) be the set of all
continuous functions on N . EndowC (N )with the supnorm ‖ · ‖s and define an order ≥
onC (N ) by f ≥ g if f (u )≥ g (u ) for all u ∈N .

The triple (C (N ),≥,‖·‖s ) forms a separable Banach lattice; its dual is given by the set
of all bounded Borel measures and the set∆ of Theorem A.1 is given by∆(N ). Moreover,
1N is an order unit e that makes ‖ · ‖s an e -norm, while the 0 is the function on N that is
identically zero.

Denote by Σ the set of all support functions σx : N → R, given by σx (u ) =
maxβ∈x β ·u for each u ∈ N and x ∈ X . Then Σ is a convex subset of C (N ) contain-
ing both e and 0. For the latter, note thatσ∆(B ) = 1N andσ{b∗} = 0.

For this setting we have the following version of a classic result of Hörmander (1955).

L A.6. C (N ) is the supnorm closure of 〈Σ〉.

P. Since 0 ∈ Σ, we have 〈Σ〉 = ∪α>0αΣ−∪α>0αΣ. By proceeding as in Hörmander
(1955, p. 185), we can show that 〈Σ〉 is a Riesz subspace ofC (N ). Moreover, given u , u ′ ∈
N with u 6= u ′ there is β ∈∆(N ) such that β ·u 6= β ·u ′. Hence, σ{β}(u ) 6=σ{β}(u ′) and
so 〈Σ〉 separates the points of N . Since 〈Σ〉 also contains 1N , application of the lattice
version of the Stone–Weierstrass Theorem completes the proof. �

The next result is an immediate consequence of Corollary A.1 and Lemmas A.3, A.5,
and A.6. Observe that a weak∗-compact subset of∆(N ) is weakly compact.

C A.2. Let W :Σ→R be monotone and quasiconcave and satisfy the conditions
W (0) = 0, W (e ) = 1, and

W (ασx +(1−α)γe ) =αW (σx )+ (1−α)γ ∀σx ∈Σ∀α,γ∈ [0, 1].

There exists a smallest convex and weakly compact subset Π⊆∆(N ) such that

W (σx ) =min
π∈Π

∫

N

σx (u )dπ ∀σx ∈Σ.

The set Π is a singleton if and only if W is quasimonotone.

We turn finally to the proof of Theorem 1. Adopt the hypotheses stated there.
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L A.7. There existsW :X → R that represents � and such that, for each x ,x ′ ∈ X ,
α∈ [0, 1], and xp ∈C ,

W (αx +(1−α)xp ) =αW (x )+ (1−α)p
W (αx +(1−α)x ′)≥min{W (x ),W (x ′)}.

The functionalW is unique up to positive affine transformations.

P. The set C = {xp ≡ p∆(B )+ (1−p )b∗ : p ∈ [0, 1]} is a convex subset of the vector
space {λ∆(B )+νb∗ :λ,ν ∈R}. In fact, for all xp ,xq ∈C and all α∈ [0, 1],

σαxp+(1−α)xq =ασxp +(1−α)σxq =ασp∆(B )+(1−p )b∗ +(1−α)σq∆(B )+(1−q )b∗

=α(pσ∆(B )+(1−p )σb∗ )+ (1−α)(qσ∆(B )+(1−q )σb∗ )

= (αp +(1−α)q )σ∆(B )+(1−αp − (1−α)q )σb∗

=σ(αp+(1−α)q )∆(B )+(1−αp−(1−α)q )b∗ =σxαp+(1−α)q

and so αxp +(1−α)xq = xαp+(1−α)q .
Because � satisfies the vNM axioms on C (for example, Mild Continuity implies the

Archimedean axiom on C ), there exists an affine function u : C →R, unique up to posi-
tive affine transformations, such that xp � xp ′ if and only if u (xp )≥ u (xp ′ ). Normalize u
so that u (b∗) = 0 and u (∆(B )) = 1. Hence,

u (xp ) = u (p∆(B )+ (1−p )b∗) = p u (∆(B ))+ (1−p )u (b∗) = p . (A.8)

Any x ∈X satisfies (4), that is,∆(B )� x � b∗. By Mild Continuity there exists a p ∈ [0, 1]
such that xp ∼ x . Such p is unique since, by (A.8), xp ∼ xq if and only if p =q .

Set W (x ) = u (xp ) = p . Clearly, x � x ′ if and only if W (x ) ≥ W (x ′), and W is the
unique functional onX representing � that reduces to u on C .

Consider x ∈ X and xp ∈ C . There exists xq ∈ C such that x ∼ xq . By Certainty
Independence,

x ∼ xq ⇐⇒αx +(1−α)xp ∼αxq +(1−α)xp ∀α∈ [0, 1],

and so

W (αx +(1−α)xp ) =W (αxq +(1−α)xp )

=αW (xq )+ (1−α)W (xp )

=αW (x )+ (1−α)W (xp ).

Finally, quasiconcavity ofW is a direct consequence of Preference Convexity. �

For any menu x , define its ≥D -hull by

hull(x ) = {β ′ ∈∆(B ) :β ≥D β
′ for some β ∈ x }.

If x is convex, then so is hull(x ).
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L A.8. (i) For any convex x and β0 ∈∆(B ) \hull(x ), there exists u in N such that

σx (u )< u (β0). (A.9)

(ii) For any convex x and y ,

σy =σx =⇒ y ∼ x

σy ≥σx =⇒ y � x

P. (i) Define≥∗D onRB by β ≥∗D β ′⇐⇒ u ·β ≥ u ·β ′ for all u in N . By (5),≥∗D agrees
with ≥D on∆(B ); hence we denote both orders by ≥D . Let

H = {β ∈RB :Σbβb = 1}

and
hullH (x ) = {β ′ ∈H :β ≥D β

′ for some β ∈ x }.

Then β0 /∈ hullH (x ), a closed convex set. Therefore, there exists a v in RB such that

sup
β∈hullH (x )

v ·β < v ·β0. (A.10)

Since b∗ ∈ hullH (x ), it follows that v ·b∗ < v ·β0. This implies that v is not a constant.
Without loss of generality let vb∗ = 0, so that v ·β0 > 0. It remains only to show that

vb ≥ 0 for all b 6=b∗. (A.11)

In that case, we can renormalize v to obtain u ∈N satisfying (A.9).
To prove (A.11), given any b 6=b∗ and κ< 0, define

γk ≡ κδb +(1−κ)δb∗ .

If κ< 0, then β ≥D γκ for all β ∈∆(B ), and hence γκ ∈ hullH (x ). By (A.10),

vb =
1

κ
(vbκ) =

1

κ
(v ·βκ)>

1

κ
(v ·β0).

Since this holds for every κ< 0, vb ≥ 0.
(ii) We have

x ≥D hull(x ) and y ≥D hull(y ).

By Worst,
x ∼ hull(x ) and y ∼ hull(y ). (A.12)

Thus it suffices to show that

σx =σy =⇒ hull(x ) = hull(y ).

Suppose that β0 ∈ hull(x ) \hull(y ). Then by (i) there exists u in N such that

σy (u )<β0 ·u ≤σx (u ), (A.13)

a contradiction. We conclude that hull(x ) = hull(y ).
Finally, let σy ≥ σx on N . By (A.12), it is enough to show that hull(x ) ⊆ hull(y ).

Otherwise, there exists β0 ∈ hull(x ) \ hull(y ), which implies (A.13), contradicting our
hypothesis. �
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Define W :Σ→R by
W (σx ) =W (x )for each x ∈X .

Then W is well-defined because, by Lemmas A.7–A.8 and IR,

σx =σx ′ =⇒σco(x ) =σco(x ′) =⇒ co(x )∼ co(x ′) =⇒
W (co(x )) =W (co(x ′)) =⇒W (x ) =W (x ′).

Also by Lemma A.8, W is monotone, with W (0) = 0 and W (e ) = 1. Moreover,

W (ασx +(1−α)γσB ) =W (σαx+(1−α)xγ ) =W (αx +(1−α)xγ)
=αW (x )+ (1−α)W (xγ)
=αW (σx )+ (1−α)γW (σB )

and

W (ασx +(1−α)σx ′ ) =W (σαx+(1−α)x ′ ) =W (αx +(1−α)x ′)
≥min{W (x ),W (x ′)}=min{W (x ), W (x ′)}.

Hence W satisfies the hypotheses of Corollary A.2, and so there exists a smallest convex
and weakly compact subset Π⊆∆(N ) such that, for eachσ ∈Σ,

W (x ) =W (σx ) =min
π∈Π

∫

N

σx (u )dπ=min
π∈Π

∫

N

max
β∈x

u (β )dπ.

Finally, if (7) holds, then Preference Convexity implies

x ∼ x ′ =⇒αx +(1−α)x ′ ∼ x ∀x ,x ′ ∈X∀α∈ [0, 1],

and so W is quasimonotone by Lemma A.1. By Corollary A.2, Π is a singleton.

B. A: P  T 

B.1 Upper contour sets

Refer to the menu y as an upper contour set if

y = {β ∈∆(B ) : min
u∈U

u ·β ≥ s } (B.1)

for some 0≤ s ≤ 1 and some closed, convex and comprehensive U ⊂N ∗.

P B.1. y is an upper contour set if and only if it satisfies Y1–Y3. Moreover, the
corresponding pair (U , s ) is unique.

Thus

Y = {y ∈X : y = {β ∈∆(B ) : min
u∈U

u ·β ≥ s }, 0≤ s ≤ 1, U ∈K c c (N ∗)}. (B.2)

Since K c c (N ∗) is compact, it is straightforward to show that Y is compact (and hence
also measurable).24

We now turn to the proof of the proposition.

24In Lemma B.3, we prove the continuity of U × s 7−→ {β ∈∆(B ) : minu∈U u ·β ≥ s }.
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L B.1. Let y satisfy Y1–Y3. If β0 ∈∆(B ) \ y , then there exists u ∈N ∗ such that

u ·β0 < s ≤ u ·β for every β ∈ y , (B.3)

where
s =min{p ∈ [0, 1] :βp ∈ y }. (B.4)

P. Define the partial order≥D on∆(B ) as the smallest transitive relation satisfying
the condition that β ′ ≥D β if β ′ is an elementary improvement of β . Note that, for all
lotteries β ,

b ∗ ≥D β ≥b∗ for all β ∈∆(B ), and (B.5)

[β ′ ≥D β ,β ∈ y ] =⇒β ′ ∈ y . (B.6)

As a result, {p ∈ [0, 1] :βp ∈ y } is nonempty because it contains β1 =b ∗, and is closed
by Y1. Therefore, s is well-defined and βs ∈ y . Moreover, by Y3,

co({β0,βs })∩ y = {βs }, (B.7)

where co({β0,βs }) = {αβ0+(1−α)βs :α∈ [0, 1]}.
The definition of ≥D admits the obvious extension to all of RB . Let

H = {β ∈RB :Σbβb = 1}

and
PhullH (y ) = {β ∈H :β 6=βs ,β ≥D β

′ for some β ′ ∈ y }.

It follows from Y1 that PhullH (y ) is convex. Define also

D0 = {β ∈H :β ′ ≥D β for some β ′ ∈ co({β0,βs })}.

This set is also closed and convex, and it does not intersect PhullH (y ): if β ∈ D0 ∩
PhullH (y ), then there exists α> 0 and β ′ in y such that

αβ0+(1−α)βs ≥D β ≥D β
′.

Since ≥D is transitive, αβ0 + (1−α)βs ≥D β ′ and αβ0 + (1−α)βs ∈ y by (B.6). But this
contradicts (B.7).

Therefore, there exists a separating hyperplane v in RB such that

v ·β0 < v ·βs ≤ v ·β for all β ∈ PhullH (y ), and (B.8)

v ·β ≤ v ·βs for all β ∈D0. (B.9)

Since b ∗ ∈ PhullH (y ), by (B.5), it follows that

v ·β0 < v ·b ∗ = vb ∗ .

Claim 1. vb ≤ vb ∗ for all b : Let vb > vb ∗ for some b , and consider β ′ ∈H of the form

β ′b =−κ, β ′b ∗ = 1+κ, and β ′b ′ = 0 for b ′ 6=b ,b ∗, where κ> 0.
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Then for any lottery β , β ′ ≥D b ∗ ≥D β . Hence β ′ ≥D β and β ′ ∈ PhullH (y ). But v ·β ′ =
vb ∗ +(vb ∗ −vb )κ< v ·β0 for sufficiently large κ, contradicting (B.8).
Claim 2. vb∗ ≤ vb for all b : Let vb < vb∗ for some b and consider β ∈H of the form

βb =−κ, βb∗ = 1+κ, and βb ′ = 0 for b ′ 6=b ,b∗, where κ> 0.

Then, using (B.5), β0 ≥D b∗ ≥D β , which implies β0 ≥D β . Hence β ∈ D0. However,
v ·β = (1+κ)vb∗ −κvb > v ·βs for sufficiently large κ, contradicting (B.9).

Finally, normalize v to obtain u in N ∗ (ub∗ = 0, ub ∗ = 1). Then u ·βs = s and (B.3) is
satisfied. �

P  P B.. We prove only sufficiency. Define s by (B.4), so that, by (10),

βp ∈ y if and only if p ≥ s . (B.10)

Let
U = {u ∈N ∗ : u ·β ≥ s ∀β ∈ y }.

Then U is closed, convex, and comprehensive. We claim that s and U satisfy (B.1).
That y ⊂ {β ∈∆(B ) : minu∈U u ·β ≥ s } is immediate from the definition of U . Thus it

remains to prove that
min
u∈U

u ·β ≥ s =⇒β ∈ y .

Suppose to the contrary that

min
u∈U

u ·β0 ≥ s and β0 6∈ y . (B.11)

Then by the lemma, there exists u ∈N ∗ such that

u ·β0 < s ≤ u ·β for every β ∈ y . (B.12)

Because s ≤ u ·β for every β ∈ y , it follows that u ∈U . By (B.11), u ·β0 ≥ s . But this
contradicts (B.12).

We now turn to uniqueness. Suppose that

y = {β ∈∆(B ) : min
u∈U

u ·β ≥ s }= {β ∈∆(B ) : min
u ′∈U ′

u ′ ·β ≥ s ′}, (B.13)

where U and s are as above and where U ′ is closed, convex, and comprehensive. That
s ′ = s follows from (B.10). Evidently, U ′ ⊂U . To prove equality, let u ∈U \U ′. Separate
u and U ′ by some γ∈RB :

u ·γ< u ′ ·γ for all u ′ ∈U ′.

Suppose that there exists γ∈∆(B ) satisfying the preceding (existence of such a γ follows
from a separation argument inRB and from comprehensiveness of U ′). Then, by mixing
γ suitably with b∗ and b ∗, it is without loss of generality to assume that u ·γ < s < u ′ ·γ
for all u ′ ∈U ′. But this is impossible: by (B.13), γ ∈ y (using the U ′-representation) and
γ 6∈ y (using the U-representation). �
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B.2 An intermediate result

In the sufficiency part of the proof, we use some results from Epstein and Seo (2007).
They prove a representation result for preferences over random menus satisfying axioms
that are collectively weaker than Order, Continuity, Nondegeneracy, and First-Stage In-
dependence, plus a form of Dominance whose formal statement is identical to the one
in this paper, but where the set Y of upper contour sets is required to satisfy a set of reg-
ularity conditions much weaker than Y1–Y3. (One qualification is that Epstein and Seo
permitB ∈ Y , but this is a matter of a harmless difference in normalizations. Otherwise,
their conditions are trivial implications of (B.2).)

Therefore, deduce from Epstein and Seo (2007) that � satisfying our axioms has a
representation:

W (P) =
∫

m ({y ∈X : x ∩ y 6=∅})d P(x ) for all P ∈∆(X ), (B.14)

for some countably additive probability measure m ∈ ∆(X ), viewed as a measure over
upper contour sets, such that m (Y ) = 1.25

The rationale for (B.14) can be understood roughly as follows: Order, Continuity, and
First-Stage Independence imply that there exists an expected utility representation for
�, that is,

W (P) =
∫

W (x )d P(x )

for some continuous vNM index W :X → [0, 1]. The normalizations

W ({b∗}) = 0 and W ({b ∗}) = 1

can be shown to be without loss of generality given the remaining axioms. It is well-
known that, under suitable assumptions, a set function, such as W , can be expressed in
the form

W (x ) =m ({y ∈X : x ∩ y 6=∅}) ∀x ∈X (B.15)

for some unique countably additive probability measure on the Borel σ-algebra gener-
ated by the Hausdorff topology on X (see Choquet 1954, Theorems 50.1 and 51.1, as
well as the more recent works surveyed in Marinacci and Montrucchio 2004). The key
property of W that permits such a representation is that it is infinitely alternating: for
any finite set of menus {x i }ni=1,

W (∩n
i=1x i )≤

∑

{I :∅ 6=I⊆{1,...,n}}
(−1)|I |+1W (∪i∈I x i ). (B.16)

25They prove also uniqueness of m , but we rely on Epstein and Seo (2007) only for the existence of m . In
order to be as self-contained as possible, the uniqueness property that we need here is proven below—see
Lemma B.6.
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One way to understand the representation result (B.14) in Epstein and Seo (2007) is that
it shows that the axioms for preference � adopted there imply that W is infinitely alter-
nating.26

Finally, Dominance leads to the restriction m (Y ) = 1 (thanks to a version of (B.15)
derived in Epstein and Seo 2007). This is because, as described in the text, Dominance
imposes ex ante certainty that only upper contour sets in Y will be relevant ex post.

We use (B.14), including the restriction m (Y ) = 1, heavily below where we derive the
further implications of Certainty Reversal of Order. We also use the following lemma
from Aliprantis and Border (1994, Theorem 14.69).

L B.2. The Borel σ-algebra onX coincides with theσ-algebra generated by the sets
of the form

{y ∈X : x ∩ y 6=∅} for x ∈X .

B.3 The remainder of the proof

Necessity: Only Dominance requires proof. The utility function W can be rewritten in
the form (B.14). (Such a representation is implied not only by the axioms, as noted
above, but also by the functional form (8); the measure m is described in (B.23) below.)
Therefore,

W (P) =
∫

X

∫

Y

max
β∈x

1y (β )d m (y )d P(x ) =

∫ ∫

max
β∈x

1y (β )d P(x )d m (y )

=

∫

Y

P({x : x ∩ y 6=∅})d m (y )

and

W (P ′)−W (P) =
∫

Y

(P ′({x : x ∩ y 6=∅})−P({x : x ∩ y 6=∅}))d m (y ),

which is non-negative if P ′ dominates P .
The remainder of the proof establishes sufficiency of the axioms, and then the as-

serted uniqueness.
We sometimes adopt the abbreviation

B =∆(B ).

Set
hU (β ) =min

u∈U
uβ , (B.17)

and define Ψ :K c c (N ∗)× [0, 1]→ Y by

Ψ(U , s ) = {β : hU (β )≥ s }. (B.18)

26Nehring (1996) was the first to show a connection between an ordinal property analogous to Domi-
nance (that he calls Indirect Stochastic Dominance) and the cardinal property “infinitely alternating.” He
derives a representation similar to (B.14) for his setting where menus consist of alternatives from the finite
set B rather than lotteries over B .
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Given D ⊂K c c (N ∗), Ψ(D, [0, s ]) is the image of D × [0, s ], that is,

Ψ(D, [0, s ]) = {Ψ(U , s ′) : U ∈D, s ′ ∈ [0, s ]}.

By Proposition B.1, Ψ is one-to-one and onto.

L B.3. For any Borel set D ⊂ K c c (N ∗), Ψ(D, [0, s ]) is a Borel-measurable subset of
X .

P. First observe that

(β ,U ) 7−→ hU (β ) is continuous. (B.19)

By the Maximum Theorem, it suffices to show that (i) (β , u ) 7−→ uβ is jointly continuous,
and (ii) the correspondence Γ :B×K c c (N ∗) N ∗ defined by

Γ(β ,U ) =U

is continuous. Condition (i) is clear. For (ii), when viewed as a function from B ×
K c c (N ∗) intoK c c (N ∗), Γ is continuous under the Hausdorff metric. Therefore, (ii) fol-
lows from Aliprantis and Border (1994, Theorem 14.16).

We claim that Ψ is continuous. By Aliprantis and Border (1994, Theorem 14.16), it
suffices to show that Ψ is a continuous correspondence.

To show that Ψ is upper hemicontinuous, we let (Un , sn )→ (U , s ) and βn ∈Ψ(Un , sn )
and prove that βn has a limit point inΨ(U , s ). SinceB is compact, there is a convergent
subsequence βn k . Let βn k → β . Then hUnk

(βn k ) ≥ sn k for every k , which, by (B.19),
implies that hU (β )≥ s .

We now show that Ψ is lower hemicontinuous. Let (Un , sn )→ (U , s ) and β ∈Ψ(U , s ).
We need to show that there is a sequence βn ∈Ψ(Un , sn ) such that βn →β . Define

tn =







min

�

1− sn

1−hUn (β )
, 1

�

if hUn (β )< 1

1 if hUn (β ) = 1

βn = tnβ +(1− tn )b ∗.

If hUn (β )< 1, then

hUn (βn ) = tn hUn (β )+ (1− tn )

=−tn (1−hUn (β ))+1

≥−
1− sn

1−hUn (β )
(1−hUn (β ))+1≥ sn ,

and if hUn (β ) = 1, then
hUn (βn ) = hUn (β ) = 1≥ sn .

Hence, βn ∈ Ψ(Un , sn ). And by (B.19), limn (1− hUn (β )) ≤ limn (1− sn ), which implies
tn → 1 and βn →β .
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Finally, fix s ∈ [0, s ] and let D be the set of measurable sets D such that Ψ(D, [0, s ]) is
Borel measurable. Since Ψ is one-to-one, D is easily seen to be a σ-algebra. Moreover,
when D is closed, it is compact and hence, by continuity ofΨ,Ψ(D, [0, s ]) is also compact
and hence measurable. Thus D contains every closed set and thus also every Borel-
measurable set. �

L B.4. Let m ∈ ∆(X ) be the probability measure satisfying (B.14). Then Certainty
Reversal of Order implies that, for each measurable D ⊂K c c (N ∗),

m (Ψ(D, [0, s ])) = s ·m (Ψ(D, [0, 1])).

P. Recall that m (Y ) = 1. Therefore, by Proposition B.1, it suffices to consider up-
per contour sets of the form y = {β : hU (β )≥ s }. For any such set y and 0≤ t ≤ 1, define
t ∗ y = {β : hU (β )≥ t s }. For A ⊂ Y and 0≤ t ≤ 1, let

t ∗A = {t ∗ y : y ∈ A}.

S 1. t ∗ {y ∈ Y : y ∩x 6=∅}= {y ∈ Y : y ∩ (t x +(1− t ){b∗}) 6=∅}

P. When t = 0, both sets are empty. Let 0< t ≤ 1. It suffices to show that

y ′ ∈ Y and y ′ = t ∗ y for some y ∈ Y such that y ∩x 6=∅
⇐⇒ [y ′ ∈ Y and y ′ ∩ (t x +(1− t ){b∗}) 6=∅].

=⇒: Assume that y ′ = t ∗ y and y ∩x 6=∅. Let bβ ∈ y ∩x and β ′ = t bβ +(1− t )b∗. Then,

min
u∈U

uβ ′ =min
u∈U

u (t bβ +(1− t )b∗) = t min
u∈U

u bβ ≥ t s .

Hence β ′ ∈ y ′. Also, t bβ +(1− t )b∗ ∈ t x +(1− t ){b∗}. Therefore, y ′∩ (t x +(1− t ){b∗}) 6=∅.
⇐=: Let y ′ ∈ Y and y ′ ∩ (t x + (1− t ){b∗}) 6=∅. By the latter condition, there exists bβ ∈ x
such that

β ′ = t bβ +(1− t )b∗ ∈ y ′.

Since y ′ ∈ Y , there exist U ∈ K c c (N ∗) and s ∈ [0, 1] such that y ′ = {β : hU (β ) ≥ s }.
Moreover s ≤ t , because

s ≤min
u∈U

uβ ′ =min
u∈U

u · (t bβ +(1− t )b∗) = t min
u∈U

u bβ ≤ t .

Let y = {β : hU (β )≥ s/t }. Then

t ∗ y = {β : min
u∈U

uβ ≥ t · (s/t )}= y ′.

Moreover, bβ ∈ y because

t min
u∈U

u bβ =min
u∈U

u · (t bβ +(1− t )b∗) =min
u∈U

uβ ′ ≥ s .

Hence bβ ∈ x ∩ y 6=∅. This completes the step. Ã
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S 2. m (t ∗ {y ∈ Y : y ∩x 6=∅}) = t ·m ({y ∈ Y : y ∩x 6=∅})

P. By Step 1, (B.14), and Certainty Reversal of Order,

m (t ∗ {y ∈ Y : y ∩x 6=∅}) =m ({y ∈ Y : y ∩ (t x +(1− t ){b∗}) 6=∅})
=m ({y ∈X : y ∩ (t x +(1− t ){b∗}) 6=∅})
=W (t x +(1− t ){b∗})
= t ·W (x ) = t ·m ({y ∈ Y : y ∩x 6=∅}). Ã

S 3. For any Borel set A ⊂ Y , we have m (t ∗A) = t ·m (A)

P. Let Σ be the collection of all Borel sets A ⊂ Y satisfying the noted condition. It
is easy to verify that Σ is a Dynkin system: (i) Y ∈ Σ; (ii) if A, A ′ ∈ Σ and A ⊂ A ′, then
A ′ \A ∈Σ; (iii) if a sequence {An} in Σ is such that An ↗ A, then A ∈Σ. The proofs are as
follows.

(i) m (t ∗Y ) =m (t ∗ {y ∈ Y : y ∩B 6=∅}) = t ·m ({y ∈ Y : y ∩B 6=∅}) = t ·m (Y ), where
the second equality is by Step 2.

(ii) Since t ∗ (A ′ \A) = (t ∗A ′) \ (t ∗A) and t ∗A ⊂ t ∗A ′,

m (t ∗ (A ′ \A)) =m (t ∗A ′)−m (t ∗A)

= t ·m (A ′)− t ·m (A) = t ·m (A ′ \A).

(iii) m (t ∗A) = lim m (t ∗An ) = lim t ·m (An ) = t ·m (A).

Let F be the π-system generated by sets of the form {y ∈ Y : y ∩ x 6= ∅}. That is,
F is the smallest family of subsets such thatF is closed under finite intersections and
{y ∈ Y : y ∩x 6=∅} ∈F .

We show thatF ⊂Σ. LetFn = {∩n
i=1{y ∈ Y : y ∩x i 6=∅} : x i ∈X }. It suffices to show

thatFn ⊂Σ for all n ≥ 1. We argue by induction. By Step 2,F1 ⊂Σ. We supposeFn ⊂Σ
and show that Fn+1 ⊂ Σ. Let An = ∩n

i=1{y ∈ Y : y ∩ x i 6= ∅} and An+1 = An ∩ {y ∈ Y :
y ∩xn+1 6=∅} ∈Fn+1. Then

m (t ∗An+1) =m (t ∗An )+m (t {y ∈ Y : y ∩xn+1 6=∅})
−m [t ∗ (An ∪{y ∈ Y : y ∩xn+1 6=∅})].

The last term can be rewritten as

m [t ∗ ([∩n
i=1{y ∈ Y : y ∩x i 6=∅}]∪{y ∈ Y : y ∩xn+1 6=∅})]

=m [t ∗ (∩n
i=1[{y ∈ Y : y ∩x i 6=∅}∪ {y ∈ Y : y ∩xn+1 6=∅}])]

=m [t ∗ (∩n
i=1{y ∈ Y : y ∩ (x i ∪xn+1) 6=∅})]

= t ·m [∩n
i=1{y ∈ Y : y ∩ (x i ∪xn+1) 6=∅}] (byFn ⊂Σ)

= t ·m [(∩n
i=1{y ∈ Y : y ∩x i 6=∅})∪{y ∈ Y : y ∩xn+1 6=∅}]

= t ·m [An ∪{y ∈ Y : y ∩xn+1 6=∅}].
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Thus

m (t ∗An+1) = t ·m (An )+ t ·m ({y ∈ Y : y ∩xn+1 6=∅})− t ·m [An ∪{y ∈ Y : y ∩xn+1 6=∅}]
= t ·m (An+1).

HenceF ⊂Σ.
Therefore, by Dynkin’s Lemma (Aliprantis and Border 1994, Theorem 8.10), Σ in-

cludes theσ-algebra generated byF , which is the Borelσ-algebra (Lemma B.2). Ã

Finally, note that Ψ(D, [0, s ]) = s ∗ Ψ(D, [0, 1]) and Ψ(D, [0, 1]) ⊂ Y . Therefore, by
Lemma B.3 and Step 3, m (Ψ(D, [0, s ])) = s ·m (Ψ(D, [0, 1])). �

The desired representation will be established using the measure µ ∈ ∆(K c c (N ∗))
defined by

µ(D) =m (Ψ(D, [0, 1])) for each Borel set D ⊂K c c (N ∗).

L B.5. The functionW in (B.14) satisfies

W (P) =
∫ ∫

max
β∈x

min
u∈U

uβ dµ(U )d P(x ) for each P ∈∆(K (B)).

P. First we claim that, for any x ∈K (B),27

{Ψ(U , s ) : max
β∈x

hU (β )≥ s }= {y ∈ Y : y ∩x 6=∅}. (B.20)

⊂: maxβ∈x hU (β )≥ s =⇒∃β ∈ x , hU (β )≥ s =⇒Ψ(U , s )∈ {y ∈ Y : y ∩x 6=∅}.

⊃: If y ∈ Y and y ∩ x 6= ∅, then y = Ψ(U , s ) for some (U , s ) ∈K c c (N ∗)× [0, 1], and ∃β ∈
Ψ(U , s )∩x . Then hU (β )≥ s . Thus maxβ∈x hU (β )≥ s and y =Ψ(U , s ) ∈ {Ψ(U ′, s ′) :
maxβ∈x hU ′ (β )≥ s ′}.

Since U 7→maxβ∈x minu∈U u ·β is bounded and continuous, it is µ-integrable. Thus
there is a decreasing sequence of step functionsφn (U ) =

∑n
i=1αn ,i IDn ,i (U ) such thatφn

converges to the function U 7→maxβ∈x hU (β ) and such that

∫

max
β∈x

hU (β )dµ(U ) = lim

∫

φn dµ.

27Recall that hU and Ψ are defined in (B.17) and (B.18).
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Then

∫

max
β∈x

hU (β )dµ(U )

= lim
n
∑

i=1

αn ,iµ(Dn ,i )

= lim
n
∑

i=1

αn ,i m (Ψ(Dn ,i , [0, 1])) (by definition of µ)

= lim
n
∑

i=1

m (Ψ(Dn ,i , [0,αn ,i ])) (by Lemma B.4)

= lim m

� n
⋃

i

Ψ(Dn ,i , [0,αn ,i ])
�

(the sets Ψ(Dn ,i , [0,αn ,i ]) are disjoint)

= lim m ({Ψ(U , s ) : s ≤φn (U )}). (by definition ofΨ andφn )

=m

�

⋂

n

{Ψ(U , s ) : s ≤φn (U )}
�

(since m is c.a.).

Since
⋂

n

{Ψ(U , s ) : s ≤φn (U )}= {Ψ(U , s ) : max
β∈x

hU (β )≥ s },

we have

∫

max
β∈x

hU (β )dµ(U ) =m ({Ψ(U , s ) : max
β∈x

hU (β )≥ s })

=m ({y ∈ Y : y ∩x 6=∅}) (by (B.20)).

Therefore, by (B.14),

∫ ∫

max
β∈x

hU (β )dµ(U )d P(x ) =

∫

m ({y ∈ Y : y ∩x 6=∅})d P(x ) =W (P). �

It remains to prove the uniqueness assertion.

L B.6. Given anyµ∈∆(K c c (N ∗)) such that preference� is represented by the utility
function in (8), define W :X →R by

W (x ) =

∫

K c c (N ∗)

max
β∈x

hU (β )dµ(U ). (B.21)

Then there exists a unique Borel probability measure mµ onX such that

W (x ) =mµ({y : x ∩ y 6=∅}) ∀x ∈X . (B.22)
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Further, for all Borel measurable sets B,

mµ(B ) =

∫ 1

0

µ({U :Ψ(U , s )∈ B})dλ(s ), (B.23)

where λ denotes the Lebesgue measure.

P. The set function W is infinitely alternating, that is, it satisfies (B.16). More-
over, since µ is countably additive, the Monotone Convergence Theorem implies that
W (xn ) ↓W (x ) whenever xn ↓ x . Thus the existence of a unique measure mµ satisfying
(B.22) follows from Choquet (1954, Theorems 50.1, 51.1). (In fact, existence of mµ was
asserted in Section B.2 and was used in Lemma B.4—the new claim here is uniqueness.)

For each s ∈ [0, 1], defineΨs :K c c (N ∗)→ Y byΨs (U ) =Ψ(U , s ). As a correspondence,
Ψs is compact-valued and upper hemicontinuous. By Aliprantis and Border (1994, The-
orem 14.11), it is a closed correspondence. Hence, by Aliprantis and Border (1994, The-
orem 14.68) it is measurable, and so by Aliprantis and Border (1994, Corollary 14.70),
when viewed as a function, Ψs is Borel measurable, that is, Ψ−1

s (B ) = {U :Ψ(U , s ) ∈ B} is
Borel measurable for every measurable B ⊂X .

Therefore, s 7−→µ◦Ψ−1
s (B ) is well-defined for each measurable B ; it is also Lebesgue

integrable (see Epstein and Seo 2007, Lemma B.2). Define, for every measurable B ,

m ′
µ(B ) =

∫ 1

0

µ ◦Ψ−1
s (B )dλ(s ).

By the Monotone Convergence Theorem, m ′
µ is easily seen to be a Borel measure. More-

over, for all x ∈X ,

W (x ) =

∫

V

max
β∈x

hU (β )dµ(U ) =

∫ 1

0

µ({U : max
β∈x

hU (β )≥ s })dλ(s )

=

∫ 1

0

µ({U : x ∩{β ∈B : hU (β )≥ s } 6=∅})dλ(s )

=

∫ 1

0

µ ◦Ψ−1
s (ex )dλ=m ′

µ(ex ),

where ex = {y ∈ Y : x ∩ y 6= ∅}. Therefore, by (B.22), m ′
µ(ex ) = mµ(ex ) for all x ∈ X . By

Lemma B.2 and the uniqueness property established in first part of the proof, we con-
clude that m ′

µ(B ) =mµ(B ) for all measurable B . �

L B.7. Suppose that µ and µ′ represent the same preference as in (8). Then µ=µ′.

P. Define W and W ′ as in (B.21). Since both W and W ′ are vNM indices for ex-
pected utility functions representing�, they must be identical (given also that they agree
on {b∗} and {b ∗}). Let mµ and mµ′ be the Borel probability measures onX correspond-
ing to µ and µ′ as in Lemma B.6. Then by Lemma B.6, mµ = mµ′ . Therefore, for each
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Borel set D ⊂K c c (N ∗),

µ(D) =

∫ 1

0

µ(D)d s =

∫ 1

0

µ({U :Ψ(U , s )∈Ψ(D, [0, 1])})d s

=mµ(Ψ(D, [0, 1])) =mµ′ (Ψ(D, [0, 1])) =µ′(D). �
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