Theoretical Economics 3 (2008), 283-285 1555-7561/20080283

“Topologies on types”: Correction
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We show by an example that Proposition 2 in “Topologies on types” by Dekel, Fu-
denberg, and Morris [Theoretical Economics 1 (2006), 275-309] is not true.
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In arecent paper, Dekel et al. (2006) (hereafter, DFM) propose the strategic topology,
which is defined to be just strong enough to guarantee that the correspondence map-
ping types into e-interim-correlated-rationalizable actions is continuous. That is, two
types are close under the strategic topology if and only if they have similar £-interim-
correlated-rationalizable actions in every finite game. They show that the strategic topol-
ogy is still weak enough that finite types are dense in the universal type space.

In contrast to the strategic topology, DFM consider also the uniform strategic topol-
ogy, which requires the degree of similarity of strategic behavior to be uniform over all
finite games. DFM use their Proposition 2 to argue that finite types are not dense un-
der the uniform strategic topology. In this note, we present a counterexample to show
that the direction of Proposition 2 that DFM use in their non-denseness argument is not
correct.! We also fill a gap in their proof of the other direction of Proposition 2.

In order to make our discussion self-contained, we briefly define the following nota-
tion. For any topological space Y, let A(Y) be the space of Borel probability measures on
Y endowed with the standard weak* topology. Let Y? = © be the finite set of basic un-
certainty endowed with the discrete topology. For every k > 1, let Y* = Yk=1 x A(Yk-1),
Let (T*, *) be the resulting Mertens-Zamir universal type space, where T* C x22 A( Yk)
and 7* is the homeomorphism between T* (endowed with the product topology) and
A(© x T*). For i =1,2,let T} = T* and 7] = *. Forany y € Y, let 6, denote the Dirac
measureon y.
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'Tn Chen and Xiong (2008), we nonetheless confirm their conclusion by explicitly constructing a type
that is not the limit of any sequence of finite types under the uniform strategic topology.
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Let G = (A;, gi)i=1,2 be a finite game, where A; is a finite set of actions and g; :
A1 X Ap x © — [-1,1] is the payoff function for player i. For any ¢ > 0, DFM define
the e-interim-correlated-rationalizable set R(G, ¢) to be the largest (with respect to set
inclusion) set in ((24/)%");—; » with the best reply property that for any i = 1,2, j =3 — i,
and a; € R;(t;,G, ¢), there exists v € A(Aj x © x Tj*) such that

v[{(aj,H,tj):aj ERj(tj,G,l;‘)}] =1

margv = 7;[#;]
Gij*

J (gi(ai,aj,0)—gi(a},a;,0)]dv>—¢foralla’ € A;.
(aj,ﬁ,tj)

For each t; € T, define h;(t;la;, G) =min{e : a; € R;(t;,G, €)}.
The purpose of DFM’s Proposition 2 is to establish the equivalence between the two
metrics dVS and d** on T}, which are defined as follows. For ¢;, ! € T},

d"S(t;,t))=  sup |hi(tila;,G)— hi(t]|a;,G)|
a;€Ai(G),G

d*(t;, 1]) = sup sup |E(f|n*[t;])— E(f17*[£]])|,
k feF

where Fj is the collection of bounded real-valued functions on ® x T* that are measur-
able with respect to k-order beliefs. In particular, they aim to show d VS convergence
implies d** convergence, so that an argument in Morris (2002) can be invoked to show
that finite types are not dense under dYS.

First, we present an example showing that dYS(¢", t) — 0 does not necessarily im-
ply d*(t",t) — 0. Let © = {0,1}. Consider a hierarchy ¢ = (u1,u2,us...), where it
is common 1-belief that & = 0. Let t” = (u{',u},uY ...) be a hierarchy under which
both players believe § = 0 with probability 1 — 1/n and it is common 1-belief that
both players believe 8 = 0 with probability 1 —1/n. Hence, 7*[t] = 0(o,r) and 7*[t"] =
(1-1/n)60,tn)+(1/n)b(1,in) (cf. Mertens and Zamir 1985). Now consider the measur-
able function f : A(©) — [0,1] such that f(u;) = 1if yu; = 0yp=0; and f(u1) = 0 oth-
erwise. Observe that f can be identified with a bounded function f*: © x T* — [0, 1]
by defining f*(8, i1, 2, Us,...) = f({i1) for every (0, i1, U2, Us,...) in @ x T*. Hence,
the value of f* depends only on A(®) and f* is measurable with respect to A(®), i.e.,
f* € . Observe that E(f*|r*[t]) = 1 and E(f*|n*[t"]) = 0 for every n. Therefore,
|E(f*|7'f*[t])—E(f*ln*[t”])} = 1 and hence d**(¢",t) > 1 for every n. However, it is
straightforward to verify that the Prohorov metric between the k™-order beliefs of ¢”
and t equals 1/n for every n and k > 1, which can be used to show that dUS(¢",t) — 0.
(A detailed proof is provided in Chen and Xiong 2008.)

Second, DFM also show that d*(t;,t]) — 0 implies dUS(t;,t/) — 0. They start with
two types ¢; and ¢ with d*(¢;,t!) < € and aim to show that R;(¢;,G,7) C R;(t!,G,y +4¢)
for any y > 0, which implies dYS(t;, t/) < 4¢. However, for a; € R;(t;,G,7), when DFM
choose a conjecture v’ to (y 4 4¢)-rationalize a; for ¢, they do not explicitly check if
v'[{(a;,0,t;): a; € Rj(tj,G,y +4¢€)}] = 1 is true. We propose one way to deal with this
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issue. Suppose that a; € R;(¢;,G,y) and v is a conjecture that y-rationalizes a;. Since
Aj xO X T]* is a standard separable measure space, there exist conditional probabilities
v(+10,t;) € A(A;). Also, since t; — R;(j, G,y + 4¢) is upper hemicontinuous under the
product topology on Tj*, by the Kuratowski-Ryll-Nardzewski Theorem (see Aliprantis
and Border 1999), there is a measurable function 4 : T]* — Ajwith d(t;) € Rj(tj,G,y+4¢)
forall ¢; € T]* Let §* = {(0, t;) : support[v(:|0, ;)] € R;(t;,G,y)}. To define v/, we first
define a measurable function b; : © x T]* — A(A;j) by

v(-|8,t;), if(8,t;)eS*
b](e,t])z 7 . J N
5d(tj) if(0,1;)¢S"

Then we define the conjecture v/ € A(A; x © x T7') such that for any measurable set
E C T]* and (a;j,0) € Aj x 0, v/(E x{(a;,0)}) = fEbj(ajIH, t))mi(t)(0,dt;)]. Observe
that marg@XTjw’ = m¥[t!]. Moreover, we have v/[{(a;,0,t;): a; € Rj(t;,G,y +4¢)}] =1,
because support[b;(0, ;)] € R;(tj,G,y +4¢) for all t; € T]* by the definitions of S* and
d(-). Then, we can use equation (8) in Dekel et al. (2006, p. 306) to verify that a; is a
(r+4¢)-bestreply to v’. (A detailed proofis provided in Chen and Xiong 2008.) Therefore,
a; €Ri(t},G,y +4¢)and dUS(1;,t]) < 4e.
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