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We study the robustness of interim correlated rationalizability to perturbations of
higher-order beliefs. We introduce a new metric topology on the universal type
space, called uniform-weak topology, under which two types are close if they have
similar first-order beliefs, attach similar probabilities to other players having sim-
ilar first-order beliefs, and so on, where the degree of similarity is uniform over
the levels of the belief hierarchy. This topology generalizes the now classic no-
tion of proximity to common knowledge based on common p-beliefs (Monderer
and Samet 1989). We show that convergence in the uniform-weak topology im-
plies convergence in the uniform-strategic topology (Dekel et al. 2006). Moreover,
when the limit is a finite type, uniform-weak convergence is also a necessary con-
dition for convergence in the strategic topology. Finally, we show that the set of
finite types is nowhere dense under the uniform strategic topology. Thus, our re-
sults shed light on the connection between similarity of beliefs and similarity of
behaviors in games.
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1. Introduction

The Bayesian analysis of incomplete information games requires the specification of a
type space, which is a representation of the players’ uncertainty about fundamentals,
their uncertainty about the other players’ uncertainty about fundamentals, and so on,
ad infinitum. Thus the strategic outcomes of a Bayesian game may depend on entire
infinite hierarchies of beliefs. Critically, in some games this dependence can be very
sensitive at the tails of the hierarchies, so that a mispecification of higher-order beliefs,
even at arbitrarily high orders, can have a large impact on the predictions of strategic
behavior, as shown by the Electronic Mail game of Rubinstein (1989). As a matter of
fact, this phenomenon is not special to the E-Mail game. Recently, Weinstein and Yildiz
(2007) have shown that in any game satisfying a certain payoff richness condition, if a
player has multiple actions that are consistent with interim correlated rationalizability—
the solution concept that embodies common knowledge of rationality1—then any of
these actions can be made uniquely rationalizable by suitably perturbing the player’s
higher-order beliefs at any arbitrarily high order. This phenomenon raises a conceptual
issue: if predictions of strategic behavior are not robust to mispecification of higher-
order beliefs, then the common practice in applied analysis of modeling uncertainty
using small type spaces—often finite—may give rise to spurious predictions.

A natural approach to study this robustness problem is topological. Consider the
correspondence that maps each type of player into his set of interim correlated ratio-
nalizable (ICR) actions. The fragility of strategic behavior identified by Rubinstein (1989)
and Weinstein and Yildiz (2007) can be recast as a certain kind of discontinuity of the ICR
correspondence in the product topology over hierarchies of beliefs, i.e., the topology of
weak convergence of k-order beliefs, for each k≥ 1. While in every game the ICR corre-
spondence is upper hemicontinuous in the product topology, lower hemicontinuity can
fail even for the strict ICR correspondence—a refinement of ICR that requires the incen-
tive constraints to hold with strict inequality.2 Strictness rules out incentives that hinge
on a “knife edge,” which can always be destroyed by suitably perturbing the payoffs of
the game. Indeed, nonstrict solution concepts are known to fail lower hemicontinu-
ity in other contexts, e.g., in complete information games, Nash equilibrium, and, in
fact, even best-reply correspondences fail to be lower hemicontinuous with respect to
payoff perturbations. By contrast, the strict Nash equilibrium and the strict best-reply
correspondences are lower hemicontinuous. It is, therefore, surprising that this form of
continuity breaks down when it comes to perturbations of higher-order beliefs.

There exist, of course, finer topologies under which the ICR correspondence is up-
per hemicontinuous and the strict ICR correspondence is lower hemicontinuous in all
games. The coarsest such topology is the strategic topology introduced by Dekel et al.
(2006); it embodies the minimum restrictions on the class of admissible perturbations
of higher-order beliefs necessary to render rationalizable behavior continuous. Thus

1See Dekel et al. (2007, Proposition 2) and Battigalli et al. (2008, Theorem 4).
2Here, the notion of strictness is actually quite strong: the slack in the incentive constraints is required

to be bounded away from zero uniformly on a best-reply set. Despite this, the strict ICR correspondence
fails to be lower hemicontinuous in the product topology.
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the strategic topology gives a tight measure of the robustness of strategic behavior: if
the analyst considers any larger set of perturbations, he is bound to make a nonrobust
prediction in some game. Given this significance, we believe the strategic topology de-
serves closer examination. Indeed, Dekel et al. (2006) only define it implicitly in terms of
proximity of behavior in games, as opposed to explicitly using some notion of proximity
of probability measures. This leaves open the important question as to what proximity
in the strategic topology means in terms of the beliefs of the players.

To address this question, we introduce a new metric topology on types, called
uniform-weak topology, under which a sequence of types (tn)n≥1 converges to a type
t if the k-order belief of tn weakly converges to that of t and the rate of convergence
is uniform over k ≥ 1. More precisely, for each k ≥ 1, we consider the Prohorov met-
ric, dk, over k-order beliefs—a standard metric that metrizes the topology of weak con-
vergence of probability measures—and then define the uniform-weak topology as the
topology of convergence in the metric dUW ≡ supk≥1 d

k. Our first main result, Theo-
rem 1, is that convergence in the uniform-weak topology implies convergence in the
uniform-strategic topology. The latter, also introduced by Dekel et al. (2006), is the coars-
est topology on types under which the ICR correspondence is upper hemicontinuous
and the strict ICR correspondence is lower hemicontinuous, where the continuity is now
required to hold uniformly across all games.3 In particular, Theorem 1 implies that con-
vergence in the uniform-weak topology is a sufficient condition for convergence in the
strategic topology.

The uniform-weak topology is interesting in its own right, as it generalizes the classic
notion of approximate common knowledge due to Monderer and Samet (1989). Given
a payoff-relevant parameter θ, say that a type of a player has common p-belief in θ if he
assigns probability no smaller than p to θ, assigns probability no smaller than p to the
event that θ obtains and the other players assign probability no smaller than p to θ, and
so forth, ad infinitum. A sequence of types (tn)n≥1 has asymptotic common certainty of
θ if for every p < 1, tn has common p-belief in θ for all n large enough. Monderer and
Samet (1989) use this notion of proximity to common knowledge to study the robust-
ness of Nash equilibrium to small amounts of incomplete information. Although they
focus on an ex ante notion of robustness and consider only common prior perturba-
tions, their main result has the following counterpart in our interim, noncommon prior,
nonequilibrium framework.

If a sequence of types (tn)n≥1 has asymptotic common certainty of θ, then, for every game,
every action that is strictly interim correlated rationalizable when θ is common certainty
remains interim correlated rationalizable for type tn, for all n large enough.

It turns out that asymptotic common certainty of θ is equivalent to uniform-weak con-
vergence to the type that has common certainty of θ (i.e., common 1-belief). Thus, our
Theorem 1 is a generalization of Monderer and Samet’s (1989) main result to environ-
ments where the limit game has incomplete information.

3See Section 3 for the precise definition of the modulus of continuity on which the uniformity is based.
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An important corollary of Theorem 1 is that the strategic, uniform-strategic, and
product topologies generate the same σ-algebra.4 Indeed, a fundamental result of
Mertens and Zamir (1985), which is the Bayesian foundation of Harsanyi’s (1967–1968)
model of types, is that the space of hierarchies of beliefs, called the universal type space,
exhausts all the relevant uncertainty of the players when endowed with the product σ-
algebra. It is reassuring to know that this universality property remains valid when the
players can reason about any strategic event.5

Our second main result, Theorem 2, is that uniform-weak convergence is also a nec-
essary condition for strategic convergence when the limit is a finite type, i.e., a type
belonging to a finite type space. Indeed, for any finite type t and for any sequence of
(possibly infinite) types (tn)n≥1 that fails to converge to t uniform-weakly, we construct
a game in which an action is strictly interim correlated rationalizable for t, but not in-
terim correlated rationalizable for tn, infinitely often along the sequence.6 Thus, the
uniform-weak topology fully characterizes the strategic topology around finite types.
Moreover, the assumption that the limit is a finite type cannot be dispensed with. Un-
der the uniform-weak topology, the universal type space is not separable, i.e., it does not
contain a countable dense subset; by contrast, Dekel et al. (2006) show that a countable
set of finite types is dense under the strategic topology.7 This implies the existence of in-
finite types to which uniform-weak convergence is not a necessary condition for strate-
gic convergence. (We explicitly construct such an example in Section 4.) While this fact
imposes a natural limit to our analysis, finite type spaces play a prominent role in both
applied and theoretical work, so it is important to know that our sufficient condition for
strategic convergence is also necessary in this case.

Finite types are also the focus of our third main result, Theorem 3. We show that, un-
der the uniform-strategic topology, the set of finite types is nowhere dense, i.e., its closure
has an empty interior. To understand the conceptual implications of this result, recall
that Dekel et al. (2006) demonstrate the denseness of finite types under the nonuniform
version of the strategic topology.8 Arguably, this result provides a compelling justifica-
tion for why it might be without loss of generality to model uncertainty with finite type
spaces: Irrespective of how large the “true” type space T is, for any given game there is
always a finite type space T ′ with the property that the predictions of strategic behavior

4This is because uniform-weak balls are countable intersections of finite-order cylinders and the strate-
gic topologies are sandwiched between the uniform-weak and the product topologies, by Theorem 1.

5Morris (2002, Section 4.2) raises the question of whether the Mertens–Zamir construction is still mean-
ingful when strategic topologies are assumed.

6This complements the main result of Weinstein and Yildiz (2007), who fix a game (satisfying a payoff-
richness assumption) and a finite type t, and then construct a sequence of types converging to t in the prod-
uct topology such that the behavior of t is bounded away from the behavior of all types in the sequence.
By way of contrast, we fix a sequence of types that fails to converge to a finite type t in the uniform-weak
topology and then construct a game for which the behavior of t is bounded away from the behavior of the
types in the sequence infinitely often.

7While Dekel et al. (2006) state only the weaker result that the set of all finite types is dense in the strategic
topology, their proof actually establishes the stronger result above.

8Mertens and Zamir (1985) prove the denseness of finite types under the product topology. Dekel et al.
(2006) argue that this result does not provide a sound justification for restricting attention to finite types,
for strategic behavior is not continuous in the product topology.
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based on T ′ are arbitrarily close to those based on T . Our nowhere denseness result im-
plies that such finite type space T ′ cannot be chosen independently of the game. This
is particularly relevant for environments such as those of mechanism design, where the
game—both payoffs and action sets—is not a priori fixed. More generally, our result
implies that the uniform-strategic topology is strictly finer than the strategic topology.
Thus, while a priori these two notions of strategic continuity seem equally compelling,
assuming one or the other can have a large impact on the ensuing theory.

The exercise in this paper is similar in spirit to that of Monderer and Samet (1996)
and Kajii and Morris (1998), who, like us, consider perturbations of incomplete infor-
mation games. These papers provide belief-based characterizations of strategic topolo-
gies for Bayesian Nash equilibrium in countable partition models à la Aumann (1976).
However, since both of these papers assume a common prior and adopt an ex ante ap-
proach, while we adopt an interim approach without imposing a common prior, it is
difficult to establish a precise connection.9 Another important difference between their
approach and ours is in the distinct payoff-relevance constraints adopted: we fix the set
of payoff-relevant states, so our games cannot have payoffs that depend directly on play-
ers’ higher-order beliefs; Monderer and Samet (1996) and Kajii and Morris (1998) have
no such payoff-relevance constraint.

The connection between uniform and strategic topologies first appears in Morris
(2002), who studies a special class of games, called higher-order expectation (HOE),
games, and shows that the topology of uniform convergence of higher-order iterated
expectations is equivalent to the coarsest topology under which a certain notion of strict
ICR correspondence—different from the one we consider—is lower hemicontinuous in
every game of the HOE class.10 Compared to the uniform-weak topology, the topology of
uniform convergence of iterated expectations is neither finer nor coarser, even around
finite types. We further elaborate on this relationship in Section 5.

This paper is also related to contemporaneous work by Ely and Pęski (2008). Fol-
lowing their terminology, a type t is critical if, under the product topology, the strict ICR
correspondence is discontinuous at t in some game. Ely and Pęski (2008) provide an in-
sightful characterization of critical types in terms of a common belief property: a type is
critical if and only if, for some p> 0, it has common p-belief in some closed (in product
topology) proper subset of the universal type space.11 Conceptually, this result shows
that the usual type spaces that appear in applications consist almost entirely of critical
types, as these type spaces typically embody nontrivial common belief assumptions. For
instance, all finite types are critical and so are almost all types belonging to a common

9Monderer and Samet (1996) fix the common prior and consider proximity of information partitions,
whereas Kajii and Morris (1998) vary the common prior on a fixed information structure. For this reason,
the precise connection between these papers is already unclear.

10Morris (2002) defines his strategic topology for HOE games using a distance that makes no reference
to ICR. But, as we claimed above, it can be shown that his strategic topology coincides with the coarsest
topology under which a certain notion of strict ICR correspondence is continuous in every HOE game. The
notion of strictness implicit in Morris (2002) analysis, unlike ours, does not require the slack in the incentive
constraints to be uniform.

11Moreover, they show that under the product topology the regular types, i.e., those types which are not
critical, form a residual subset of the universal type space—a standard topological notion of a “generic” set.
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prior type space. Thus Ely and Pęski’s (2008) result tells us when—based on the common
beliefs of the players—there will be some game and some product-convergent sequence
along which strategic behavior is discontinuous, whereas we identify a condition for an
arbitrary sequence to display continuous strategic behavior in all games.

The rest of the paper is organized as follows. Section 2 introduces the standard
model of hierarchies of beliefs and type spaces, and reviews the solution concept of ICR.
Section 3 reviews the strategic and uniform-strategic topologies of Dekel et al. (2006),
introduces the uniform-weak topology, and presents our two main results concerning
the relationship between these topologies (Theorems 1 and 2). Section 4 examines the
nongenericity of finite types under the uniform-strategic and uniform-weak topologies,
and presents the nowhere denseness result (Theorem 3). Section 5 discusses the relation
with some other topologies. Section 6 concludes with some open questions for future
research.

2. Preliminaries

Throughout the paper, we fix a two-player set I and a finite set� of payoff-relevant states
with at least two elements.12 Given a player i ∈ I, we write −i to designate the other
player in I. All topological spaces, when viewed as measurable spaces, are endowed
with their Borel σ-algebra. For a topological space S, we write �(S) to designate the
space of probability measures over S equipped with the topology of weak convergence.
Unless explicitly noted, all product spaces are endowed with the product topology and
subspaces are endowed with the relative topology.

2.1 Hierarchies of beliefs and types

Our formulation of incomplete information follows Mertens and Zamir (1985).13 Define
X0 =�, andX1 =X0 ×�(X0), and, for each k≥ 2, define recursively

Xk =
{
(θ�μ1� � � � �μk) ∈X0 ×

k×
�=1

�(X�−1) : margX�−2 μ� = μ�−1 ∀�= 2� � � � �k

}
�

By virtue of the above coherency condition on marginal distributions, each element
of Xk is determined by its first and last coordinates, so we can identify Xk with
� × �(Xk−1). For each i ∈ I and k ≥ 1, we let T k

i = �(Xk−1) designate the space of
k-order beliefs of player i, so that T k

i = �(�× T k−1
−i ). The space Ti of hierarchies of beliefs

of player i is

Ti =
{
(μk)k≥1 ∈×

k≥1
�(Xk) : margXk−2 μk = μk−1 ∀k≥ 2

}
�

12We restrict attention to two-player games for ease of notation. Our results remain valid with any finite
number of players.

13An alternative, equivalent formulation is found in Brandenburger and Dekel (1993).
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Since � is finite, Ti is a compact metrizable space. Moreover, there is a unique mapping
μi : Ti → �(�× T−i) that is belief preserving, i.e., for all ti = (t1i � t2i � � � �) ∈ Ti and k≥ 1,

μi(ti)[θ× (πk−i)−1(E)] = tk+1
i [θ×E] for all θ ∈� and measurable E ⊆ T k

−i�

where πki is the natural projection of Ti onto T k
i . Furthermore, the mapping μi is a

homeomorphism, so to save on notation, we identify each hierarchy of belief ti ∈ Ti with
its corresponding belief μi(ti) over �× T−i. Similarly, for each ti ∈ Ti, we write tki ∈ T k

i
instead of the more cumbersome πki (ti).

Hierarchies of beliefs can be implicitly represented using a type space, i.e., a tuple
(Ti�φi)i∈I , where each Ti is a Polish space of types and each φi :Ti → �(� × T−i) is a
measurable function. Indeed, every type ti ∈ Ti is mapped into a hierarchy of beliefs
νi(ti)= (νki (ti))k≥1 in a natural way: ν1

i (ti)= marg�φi(ti) and, for k≥ 2,

νki (ti)[θ×E] =φi(ti)[θ× (νk−1
−i )

−1(E)] for all θ ∈� and measurable E ⊆ T k−1
−i �

The type space (Ti�μi)i∈I is called the universal type space, since for every type space
(Ti�φi)i∈I there is a unique belief-preserving mapping from Ti into Ti, namely the map-
ping νi above.14 When the mappings (νi)i∈I are injective, the type space (Ti�φi)i∈I is
called nonredundant. In this case, (νi)i∈I are measurable embeddings onto their im-
ages (νi(Ti))i∈I , which are measurable and can be viewed as a nonredundant type space,
since we have μi(νi(ti))[�× ν−i(T−i)] = 1 for all i ∈ I and ti ∈ Ti. Conversely, any (Ti)i∈I
such that Ti ⊆ Ti and μi(ti)[�× T−i] = 1 for all i ∈ I and ti ∈ Ti can be viewed as a nonre-
dundant type space.

2.2 Bayesian games and interim correlated rationalizability

A game is a tuple G = (Ai�gi)i∈I , where Ai is a finite set of actions for player i and gi :
Ai ×A−i ×�→ [−M�M] is his payoff function, with M > 0 an arbitrary bound on pay-
offs that we fix throughout.15 We write G to denote the set of all games and, for each
integerm≥ 1, we write Gm for the set of games with |Ai| ≤m for all i ∈ I.

The solution concept of interim correlated rationalizability (ICR) was introduced in
Dekel et al. (2007). Given a γ ∈ R, a type space (Ti�φi)i∈I , and a game G, for each player
i ∈ I, integer k ≥ 0, and type ti ∈ Ti, we let Rki (ti�G�γ)⊆Ai designate the set of k-order
γ-rationalizable actions of ti. These sets are defined as:

R0
i (ti�G�γ)=Ai�

and recursively for each integer k ≥ 1, Rki (ti�G�γ) is the set of all actions ai ∈ Ai for
which there is a conjecture, i.e., a measurable functionσ−i :�×T−i → �(A−i) such that16

suppσ−i(θ� t−i)⊆Rk−1
−i (t−i�G�γ) ∀(θ� t−i) ∈�× T−i (1)

14To say that νi is belief-preserving means that μi(νi(ti))[θ×E] =φi(ti)[θ× (ν−i)−1(E)] for all θ ∈� and
measurable E ⊆ T−i.

15We will also denote by gi the payoff function in the mixed extension ofG, writing gi(αi�α−i� θ)with the
obvious meaning for any αi ∈ �(Ai) and α−i ∈ �(A−i).

16Relaxing condition (1) by requiring it to hold only for φi(ti)-almost every (θ� t−i) would not alter the
definition of rationalizability. Indeed, any conjecture that has a (k− 1)-order rationalizable support φi(ti)-
almost everywhere can be changed into one that yields the same expected payoff and satisfies the condition
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and for all a′
i ∈Ai,∫

�×T−i

[
gi(ai�σ−i(θ� t−i)� θ)− gi(a′

i�σ−i(θ� t−i)� θ)
]
φi(ti)(dθ× dt−i)≥ −γ� (2)

For future reference, a conjecture σ−i :�×T−i → �(A−i) that satisfies the former condi-
tion will be called a (k− 1)-order γ-rationalizable conjecture. The set of γ-rationalizable
actions of type ti is then defined as

Ri(ti�G�γ)=
⋂
k≥1

Rki (ti�G�γ)�

Finally, following Ely and Pęski (2008), an action ai ∈Ai is strictly interim correlated γ-
rationalizable for type ti and we write ai ∈

◦
Ri (ti�G�γ) if ai ∈Ri(ti�G�γ′) for some γ′ < γ.

As shown in Dekel et al. (2007), Ri(ti�G�γ) is nonempty for every game G, type ti
and γ ≥ 0.17

Interim correlated rationalizability has a characterization in terms of best-reply sets.
A pair of measurable functions ςi :Ti → 2Ai , i ∈ I, has the γ-best-reply property if for
each i ∈ I and ti ∈ Ti, each action ai ∈ ςi(ti) is a γ-best reply for ti to a conjecture σ−i :
�× T−i → �(A−i) with

suppσ−i(θ� t−i)⊆ ς−i(t−i) ∀(θ� t−i) ∈�× T−i�

If (ςi)i∈I has the γ-best-reply property, then ςi(ti)⊆Ri(ti�G�γ) for all i ∈ I and ti ∈ Ti. As
shown in Dekel et al. (2007), the pair (Ri(·�G�γ))i∈I is the maximal pair of correspon-
dences with the γ-best-reply property. This means there is no other pair (ςi)i∈I with
the γ-best-reply property such that Ri(ti�G�γ) ⊆ ςi(ti) for each i ∈ I and ti ∈ Ti, with
strict inclusion for some i ∈ I and ti ∈ Ti. Therefore, an action is γ-rationalizable for a
type ti if and only if it is a γ-best reply to a γ-rationalizable conjecture, i.e., a conjecture
σ−i :�× T−i → �(A−i) such that

suppσ−i(θ� t−i)⊆R−i(t−i�G�γ) ∀(θ� t−i) ∈�× T−i�

Dekel et al. (2007) also show that the set of γ-rationalizable actions of a type is deter-
mined by the induced hierarchy of beliefs. Indeed, for any k≥ 1, any two types (possibly
belonging to different type spaces) mapping into the same k-order belief must have the
same set of k-order γ-rationalizable actions. This has two implications. First, for interim
correlated rationalizability, it is without loss of generality to identify types with their cor-
responding hierarchies. Thus, in what follows we restrict attention to type spaces (Ti)i∈I
with Ti ⊆ Ti and ti[�× T−i] = 1 for all i ∈ I and ti ∈ Ti.18 Accordingly, we take the univer-
sal type space Ti to be the domain of the correspondence Ri(·�G�γ) : Ti ⇒Ai. Second,

everywhere. This is possible because the correspondence Rk−1
−i is upper hemicontinuous, and hence it ad-

mits a measurable selection by the Kuratowski–Ryll–Nardzewski selection theorem (see, e.g., Aliprantis and
Border 1999).

17Note that for γ <−2M , we have Ri(ti�G�γ)= ∅, and for γ > 2M we have Ri(ti�G�γ)=Ai .
18Recall that we identify each type ti ∈ Ti with his belief μi(ti) ∈ �(�× T−i).
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to establish whether an action is k-order γ-rationalizable for a type ti, we can restrict
attention to (k− 1)-order γ-rationalizable conjectures σ−i, which are measurable with
respect to (k− 1)-order beliefs.19

Finally, the following result shows that, similar to rationalizability in complete in-
formation games, interim correlated rationalizability has a characterization in terms of
iterated dominance, where the notion of dominance now becomes an interim one.

Proposition 1. Fix γ and a gameG= (Ai�gi)i∈I . For each k≥ 1, player i ∈ I, type ti ∈ Ti,
and action ai ∈Ai, we have ai ∈Rki (ti�G�γ) if and only if, for each αi ∈ �(Ai \ {ai}), there
exists a measurable σ−i :�× T−i → �(A−i) with

suppσ−i(θ� t−i) ∈Rk−1
−i (t−i�G�γ) ∀(θ� t−i) ∈�× T−i (3)

such that ∫
�×T−i

[
gi(ai�σ−i(θ� t−i)� θ)− gi(αi�σ−i(θ� t−i)� θ)

]
ti(dθ× dt−i)≥ −γ�

The proof of this proposition, relegated to the Appendix, uses a separation argument
analogous to that which establishes the equivalence between strictly dominated and
never best-reply strategies in complete information games. Here, too, the usefulness of
the result comes from the fact that to check whether an action is rationalizable for a type,
we are able to reverse the order of quantifiers and seek a possibly different conjecture for
each possible (mixed) deviation.

3. Topologies on types

The strategic (or simply S) topology introduced in Dekel et al. (2006) is the coarsest topol-
ogy on the universal type space Ti under which the ICR correspondence is upper hemi-
continuous and the strict ICR correspondence is lower hemicontinuous in all games.
More explicitly, following a formulation due to Ely and Pęski (2008), the S topology is the
topology generated by the collection of all sets of the form

{ti ∈ Ti :ai /∈Ri(ti�G�γ)} and {ti ∈ Ti :ai ∈
◦
Ri (ti�G�γ)}�

whereG= (Ai�gi)i∈I , ai ∈Ai, and γ ∈ R.20

The S topology on Ti is metrizable by the distance dS
i , defined as follows.21 For each

gameG= (Ai�gi)i∈I , action ai ∈Ai, and type ti ∈ Ti, let

hi(ti|ai�G)= inf{γ :ai ∈Ri(ti�G�γ)}�
19This means that σ−i(θ� s−i)= σ−i(θ� t−i) for all θ and all types s−i� t−i with the same (k− 1)-order be-

liefs.
20The strategic topology can be given an equivalent definition that makes no direct reference to γ-

rationalizability for γ �= 0. Indeed, by Ely and Pęski (2008, Lemma 4), a subbasis of the strategic topology is

the collection of all sets of the form {ti :ai /∈R(ti�G�0)} and {ti :ai ∈
◦
Ri (ti�G�0)}.

21Dekel et al. (2006) define the S topology directly using the distance dS
i , rather than using the topological

definition above.
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Then, for each si and ti ∈ Ti,

dS
i (si� ti)=

∑
m≥1

2−m sup
G=(Ai�gi)i∈I∈Gm

max
ai∈Ai

∣∣hi(si|ai�G)− hi(ti|ai�G)
∣∣�

In terms of convergence of sequences, Dekel et al. (2006) show that for every ti ∈ Ti and
every sequence (ti�n)n≥1 in Ti, we have dS

i (ti�n� ti)→ 0 if, and only if, for every game G=
(Ai�gi)i∈I , action ai ∈ Ai, and γ ∈ R, the following upper hemicontinuity (u.h.c.) and
lower hemicontinuity (l.h.c.) properties hold: For every sequence γn → γ,

ai ∈Ri(ti�n�G�γn) ∀n≥ 1 �⇒ ai ∈Ri(ti�G�γ)� (u.h.c.)

and for some sequence γn ↘ γ,

ai ∈Ri(ti�G�γ) �⇒ ai ∈Ri(ti�n�G�γn) ∀n≥ 1� (l.h.c.)

Dekel et al. (2006) also introduce the uniform-strategic (US) topology, which
strengthens the definition of the strategic topology by requiring the convergence to be
uniform over all games. More precisely, the US topology is the topology of convergence
under the metric dUS

i , which is defined as

dUS
i (ti� si)= sup

G=(Ai�gi)i∈I∈G
max
ai∈Ai

∣∣hi(ti|ai�G)− hi(si|ai�G)
∣∣�

This uniformity renders the US topology particularly relevant for environments where
the game—both payoffs and action sets—is not fixed a priori, such as in a mechanism
design environment.

We now introduce a metric topology on types, which we call uniform-weak (UW)
topology, under which two types of player are close if they have similar first-order be-
liefs, attach similar probabilities to other players having similar first-order beliefs, and
so on, where the degree of similarity is uniform over the levels of the belief hierarchy.
Thus, unlike the S and US topologies, which are behavior-based, the UW topology is a
belief-based topology, i.e., a metric topology defined explicitly in terms of proximity of
hierarchies of beliefs. The two main results of this section, Theorems 1 and 2 below,
establish a connection between these behavior- and belief-based topologies.

Before we present the formal definition of the UW topology, recall that for a complete
separable metric space (S�d), the topology of weak convergence on �(S) is metrizable
by the Prohorov distance ρ, defined as

ρ(μ�μ′)= inf{δ > 0 :μ(E)≤ μ′(Eδ)+ δ for each measurable E ⊆ S} ∀μ�μ′ ∈ �(S)�
where Eδ = {s ∈ S : infs′∈S d(s� s′) < δ}. The UW topology is the metric topology on Ti
generated by the distance

dUW
i (si� ti)= sup

k≥1
dki (si� ti) ∀si� ti ∈ Ti�

where d0 is the discrete metric on� and recursively for k≥ 1, dki is the Prohorov distance
on �(�× T k−1

−i ) induced by the metric max{d0� dk−1
−i } on �× T k−1

−i .
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In the remainder of Section 3 we explore the relationship between the UW topology
and the S and US topologies. First, we show that the UW topology is finer than the US
topology (Theorem 1). Second, we prove a partial converse, namely that around finite
types, i.e., types belonging to a finite type space, the S topology (and hence also the US
topology) is finer than the UW topology (Theorem 2).

3.1 UW convergence implies US convergence

Theorem 1. For each player i ∈ I and for all types si� ti ∈ Ti,

dUS
i (si� ti)≤ 4MdUW

i (si� ti)�

Thus the UW topology is finer than the US topology.

This theorem is a direct implication of the following proposition.

Proposition 2. Fix a gameG, γ ≥ 0 and δ > 0. For each integer k≥ 1,

dki (si� ti) < δ �⇒ Rki (ti�G�γ)⊆Rki (si�G�γ+ 4Mδ) ∀i ∈ I�∀si� ti ∈ Ti�

The main challenge in proving this result is due to the fact that (k− 1)-order ratio-
nalizable conjectures σ−i :�× T−i → �(A−i) need not be continuous under the topology
of weak convergence of (k− 1)-order beliefs. This implies that, keeping the conjecture
fixed, the incentive constraints of player i for k-order γ-rationalizability (cf. (2)) may be
discontinuous in his type under the topology of weak convergence of k-order beliefs.
Our proof overcomes this issue by endowing close-by types with similar, but not iden-
tical, conjectures. Indeed, the characterization of ICR from Proposition 1 implies that
for a given action ai ∈ Ai and a given mixed deviation αi ∈ �(Ai), there always exists
a (k − 1)-order rationalizable conjecture that is optimal to γ-rationalize ai against αi
at order k.22 Following this observation, in our proof we endow type ti with an opti-
mal conjecture for γ-rationalizability and endow type si with an optimal conjecture for
(γ + 4Mδ)-rationalizability. Using these optimal conjectures, we then prove, using an
integration-by-parts type argument, that every action that is k-order γ-rationalizable
for ti remains k-order (γ+ 4Mδ)-rationalizable for si.

Proof of Proposition 2. Fix a game G= (Ai�gi)i∈I , γ ≥ 0 and δ > 0. The proof is by
induction on k. For k = 1, let si and ti ∈ Ti be such that d1

i (si� ti) < δ. Fix an arbitrary
ai ∈ R1

i (ti�G�γ) and let us show that ai ∈ R1
i (si�G�γ + 4Mδ) using Proposition 1. Fix

αi ∈ �(Ai \ {ai}) and let σ−i :�→ �(A−i) be a conjecture such that23

∑
θ∈�

(
gi(ai�σ−i(θ)�θ)− gi(αi�σ−i(θ)�θ)

)
t1i [θ] ≥ −γ� (4)

22To be precise, when we say that σ−i is an optimal conjecture to γ-rationalize ai against α−i at order k,
we mean that σ−i is a (k− 1)-order γ-rationalizable conjecture that satisfies the following property: for any
type ti, the expected payoff difference between ai and αi for type ti is at least −γ under some (k− 1)-order
γ-rationalizable conjecture if and only if this expected payoff difference is at least −γ under σ−i.

23Recall that t1i designates the first-order belief of type ti .
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(Note that condition (3) is trivial for k= 1.) Pick any function a−i :�→A−i such that

a−i(θ) ∈ arg max
a−i∈A−i

[gi(ai� a−i� θ)− gi(αi� a−i� θ)] ∀θ ∈�

and define

h(θ)= gi(ai�a−i(θ)�θ)− gi(αi�a−i(θ)�θ) ∀θ ∈��
so that

h(θ)≥ gi(ai�σ−i(θ)�θ)− gi(αi�σ−i(θ)�θ) ∀θ ∈�� (5)

To conclude the proof for k= 1, we now show that
∑
θ∈� h(θ)s1i [θ] ≥ −γ− 4Mδ. Indeed,

let {θn}Nn=1 be an enumeration of� such that h(θn)≥ h(θn+1) for all 1 ≤ n≤N − 1. Thus,
it follows from d1

i (si� ti) < δ and |h(θ)| ≤ 2M for all θ that

∑
θ∈�

h(θ)(s1i [θ] − t1i [θ]) =
N−1∑
n=1

(h(θn)− h(θn+1))

n∑
m=1

(s1i [θm] − t1i [θn])

=
N−1∑
n=1

(h(θn)− h(θn+1))︸ ︷︷ ︸
≥0

(
s1i [{θm}nm=1] − t1i [{θm}nm=1]

)︸ ︷︷ ︸
≥−δ

≥ −δ
N−1∑
n=1

h(θn)− h(θn+1)

= −δ(h(θ1)− h(θN))
≥ −4Mδ�

hence∑
θ∈�

h(θ)s1i [θ] =
∑
θ∈�

h(θ)(s1i [θ] − t1i [θ])+
∑
θ∈�

h(θ)t1i [θ] ≥ −4Mδ+
∑
θ∈�

h(θ)t1i [θ]

≥ −4Mδ+
∑
θ∈�

(
gi(ai�σ−i(θ)�θ)− gi(αi�σ−i(θ)�θ)

)
t1i [θ] ≥ −γ− 4Mδ�

where the penultimate inequality follows from (5) and the last inequality follows from
(4). Thus, ai ∈ R1

i (si�G�γ + 4Mδ) by Proposition 1, which proves the desired result for
k= 1.

Proceeding by induction, we now suppose the result is valid for some k≥ 1 and show
that it remains valid for k+ 1. Let si� ti ∈ Ti be such that dk+1

i (si� ti) < δ. Fix an arbitrary
ai ∈ Rk+1

i (ti�G�γ) and let us show that ai ∈ Rk+1
i (si�G�γ + 4Mδ). Fix αi ∈ �(Ai \ {ai})

and let σ−i :�× T k
−i → �(A−i) be a k-order γ-rationalizable conjecture such that24

∫
�×T k

−i

(
gi(ai�σ−i(θ� tk−i)� θ)− gi(αi�σ−i(θ� tk−i)� θ)

)
tk+1
i (dθ× dtk−i)≥ −γ� (6)

24Recall that tki designates the k-order belief of type ti.
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Pick any measurable function a−i :�× T k
−i →A−i such that

a−i(θ� tk−i) ∈ arg max
a−i∈Rk−i(tk−i�G�γ+4Mδ)

(gi(ai� a−i� θ)− gi(αi� a−i� θ)) ∀(θ� tk−i) ∈�× T k
−i�

By construction, a−i is a k-order (γ+ 4Mδ)-rationalizable conjecture. Thus, by Proposi-
tion 1, to conclude that ai ∈Rk+1

i (si�G�γ+ 4Mδ), we need show only that∫
�×T k

−i

(
gi(ai�a−i(θ� tk−i)� θ)− gi(αi�a−i(θ� tk−i)� θ)

)
sk+1
i (dθ× dtk−i)≥ −γ− 4Mδ� (7)

Let Ā1� � � � � ĀL be an enumeration of the nonempty subsets ofA−i and define

h�(θ)= max
a−i∈Ā�

[gi(ai� a−i� θ)− gi(αi� a−i� θ)] ∀θ ∈��∀1 ≤ �≤L�

Next, define a partition {P1� � � � �PL} of T k
−i as

P� = {tk−i ∈ T k
−i :R

k
−i(t

k
−i�G�γ)= Ā�} ∀1 ≤ �≤L�

Since σ−i is a k-order γ-rationalizable conjecture, we have

h�(θ)≥ gi(ai�σ−i(θ� tk−i)� θ)− gi(αi�σ−i(θ� tk−i)� θ) ∀(θ� tk−i) ∈�× P�
and, therefore,

∑
θ∈�

L∑
�=1

h�(θ)t
k+1
i [θ× P�]

(8)
≥

∫
�×T k

−i

[
gi(ai�σ−i(θ� tk−i)� θ)− gi(αi�σ−i(θ� tk−i)� θ)

]
tk+1
i (dθ× dtk−i)�

Likewise, define a partition {Q1� � � � �QL} as

Q� = {tk−i ∈ T k
−i :R

k
−i(t

k
−i�G�γ+ 4Mδ)= Ā�} ∀1 ≤ �≤L�

Thus we have∫
�×T k

−i

[
gi(ai�a−i(θ� tk−i)� θ)− gi(αi�a−i(θ� tk−i)� θ)

]
sk+1
i (dθ× dtk−i)

=
∑
θ∈�

L∑
�=1

h�(θ)s
k+1
i [θ×Q�]�

which, together with (6) and (8), implies∫
�×T k

−i

[
gi(ai�a−i(θ� tk−i)� θ)− gi(αi�a−i(θ� tk−i)� θ)

]
sk+1
i (dθ× dtk−i)

≥
∫
�×T k

−i

[
gi(ai�σ−i(θ� tk−i)� θ)− gi(αi�σ−i(θ� tk−i)� θ)

]
tk+1
i (dθ× dtk−i)
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+
∑
θ∈�

L∑
�=1

h�(θ)(s
k+1
i [θ×Q�] − tk+1

i [θ× P�])

≥ −γ+
∑
θ∈�

L∑
�=1

h�(θ)(s
k+1
i [θ×Q�] − tk+1

i [θ× P�])�

Therefore, to prove (7) and conclude that ai ∈Rk+1
i (si�G�γ + 4Mδ), we need only show

that

∑
θ∈�

L∑
�=1

h�(θ)(s
k+1
i [θ×Q�] − tk+1

i [θ× P�])≥ −4Mδ�

To prove this inequality first note that the induction hypothesis implies

Pδ� ⊆
⋃

n:Ān⊇Ā�
Qn ∀1 ≤ �≤L� (9)

Next, letN = |�|L and consider an enumeration {(θn� �n)}Nn=1 of�× {1� � � � �L} such that
for all n,

h�n(θn)≥ h�n+1(θn+1)�

and for allm, n,

(θm = θn and Ā�m ⊇ Ā�n) �⇒ m≤ n�25 (10)

Thus, for each n= 1� � � � �N ,

sk+1
i

[
n⋃

m=1

θm ×Q�m
]

≥ sk+1
i

[
n⋃

m=1

θm × Pδ�m
]

(by (9) and (10))

= sk+1
i

[(
n⋃

m=1

θm × P�m
)δ]

≥ tk+1
i

[
n⋃

m=1

θm × P�m
]

− δ (by dk+1
i (si� ti) < δ)

and, therefore,

∑
θ∈�

L∑
�=1

h�(θ)(s
k+1
i [θ×Q�] − tk+1

i [θ× P�])

=
N∑
n=1

h�n(θn)(s
k+1
i [θn ×Q�n ] − tk+1

i [θn × P�n ])

25To see why an enumeration of �× {1� � � � �L} that satisfies these two properties exists, note that it fol-
lows directly from the definition of h�(θ) that Ā� ⊇ Ām implies h�(θ)≥ hm(θ).
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=
N−1∑
n=1

(h�n(θn)− h�n+1(θn+1))

n∑
m=1

(sk+1
i [θm ×Q�m] − tk+1

i [θm × P�m])

=
N−1∑
n=1

(h�n(θn)− h�n+1(θn+1)︸ ︷︷ ︸
≥0

)

(
sk+1
i

[
n⋃

m=1

θm ×Q�m
]

− tk+1
i

[
n⋃

m=1

θm × P�m
]

︸ ︷︷ ︸
≥−δ

)

≥ −δ
N−1∑
n=1

(h�n(θn)− h�n+1(θn+1))= −δ[h�1(θ1)− h�N (θN)] ≥ −4Mδ

as required. �

Corollary 1. The Borel σ-algebras of the UW, US, S, and product topologies coincide.

Proof. Theorem 1 implies that the Borel σ-algebra of the US topology is contained in
the Borel σ-algebra of the UW topology. Moreover, Lemma 4 in Dekel et al. (2006) im-
plies that the Borel σ-algebra of the strategic topology contains the product σ-algebra.
Hence, it suffices to show that the product σ-algebra contains the UW σ-algebra. In ef-
fect, every uniform-weak ball is a countable intersection of cylinders, therefore, every
uniform-weak ball is product-measurable, which implies that every UW-measurable set
is product measurable. �

An important implication of this corollary is that the Mertens–Zamir universal type
space (Ti�μi)i∈I remains a universal type space when equipped with any of the topolo-
gies S, US, or UW instead of the product topology, a fact that was not known prior
to this paper. Indeed these topologies leave the measurable structure unchanged, so
μi : Ti → �(�× T−i) remains the unique belief-preserving mapping and a Borel isomor-
phism, albeit no longer a homeomorphism.

3.2 S convergence to finite types implies UW convergence

Here we provide a partial converse to Theorem 1. We show that, as far as convergence to
finite types is concerned, convergence in the S topology implies convergence in the UW
topology (and hence also in the US topology).

Theorem 2. Around finite types the S topology is finer than the UW topology, i.e., for
each player i ∈ I, finite type ti ∈ Ti and δ > 0 there exists ε > 0 such that for each si ∈ Ti,

dS
i (si� ti)≤ ε �⇒ dUW

i (si� ti)≤ δ�

This theorem is a direct implication of Proposition 3 below, which in turn relies on
the following result.
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Lemma 1. Let (Ti)i∈I be a finite type space. For every δ > 0, there exist ε > 0 and a game
G= (Ai�gi)i∈I withAi ⊇ Ti for all i ∈ I, such that for every i ∈ I and ti ∈ Ti,

ti ∈ arg max
ai∈Ai

∑
θ∈�

∑
t−i∈T−i

gi(ai� t−i� θ)ti[θ� t−i]� (11)

and for every ψ ∈ �(�×A−i) such that ψ[D] ≤ ti[D] − δ for someD⊆�× T−i,

min
ai∈Ai

∑
θ∈�

∑
a−i∈A−i

(gi(ti� a−i� θ)− gi(ai� a−i� θ))ψ[θ�a−i]<−ε� (12)

The proof of this lemma, given in the Appendix, uses a “report-your-beliefs” game
embedded in a “coordination” game. More precisely, we construct a game where each
player i chooses a point in a finite grid Ai ⊆ �(� × T−i) that includes all types in Ti
(viewed as probability distributions over �× T−i). If player −i chooses an action in T−i
the payoff to player i is given by a proper scoring rule,26�27 which guarantees that coor-
dinating on truthful reporting has the best-reply property, as shown in (11). If, instead,
player −i chooses an action in A−i \ T−i, then the payoff to player i is no greater than
the minimum payoff under the scoring rule and strictly less when choosing an action in
Ti. Thus, if the gridAi ⊆ �(�×T−i) is sufficiently fine, no action ti ∈ Ti can be an ε-best
reply to a conjecture ψ ∈ �(�×A−i) that is far from ti (viewed as a probability distrib-
ution over �×A−i), as shown in (12). Indeed, either ψ assigns large probability to −i
choosing an action inA−i \T−i, which makes any ai ∈Ai \Ti a profitable deviation, or it
assigns enough probability to�×T−i so that the conditional ψ̄=ψ(·|�×T−i) is close to
ψ and hence far from ti. Thus, in both cases, any grid point ai ∈Ai \ Ti sufficiently close
to ψ̄ is a profitable deviation.

Proposition 3. Let (Ti)i∈I be a finite type space. For each δ > 0, there exist ε > 0 and a
gameG such that for each integer k≥ 1, each player i ∈ I, and each (ti� si) ∈ Ti × Ti,

dki (si� ti) > δ �⇒ Ri(ti�G�0)�Rki (si�G�ε)�

26A proper scoring rule on a measurable space � is a measurable function f :� × �(�)→ R such that∫
f (ω�μ)μ(dω) ≥ ∫

f (ω�μ′)μ(dω) for all μ, μ′ ∈ �(�), with strict inequality whenever μ′ �= μ. In the
proof of the lemma, we use the scoring rule fi :� × T−i × �(� × T−i) → [−1�1] such that (θ� t−i�ψ) �→
2ψ[θ� t−i] − ‖ψ‖2

i .
27Dekel et al. (2006) use a report-your-beliefs game to prove their Lemma 4, which states that for every

k ≥ 1 and δ > 0, there exists ε > 0 such that for all ti� si ∈ Ti, dki (si� ti) ≥ δ implies dS
i (si� ti) ≥ ε. However,

it can be shown that, as k→ ∞, the number of actions in their game grows without bound and ε shrinks
to 0. Thus, we cannot use a similar construction to prove our result. The game we construct differs from
theirs in two respects: First, in our game the players report infinite hierarchies of beliefs, albeit in a finite
type space, whereas in their game players report only finitely many orders; second, Dekel et al. (2006) use
a pure report-your-beliefs game, while we embed a report-your-beliefs game in a coordination game. The
coordination feature ensures that the rationalizable outcomes of our game hinge on infinitely many levels
of the hierarchy. This is important because when types fail to be close under dUW

i , there is no upper bound
on the lowest order at which the failure of proximity occurs.
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Proof. Fix a finite type space (Ti)i∈I and δ > 0. Choose 0<η< δ such that for all k≥ 1,
i ∈ I and ti� ui ∈ Ti,28

tki �= uki �⇒ dki (ti� ui) > 2η� (13)

By Lemma 1, there exist ε > 0 and a gameG= (Ai�gi)i∈I withAi ⊇ Ti such that (11) and
(12) hold for every ti ∈ Ti and every ψ ∈ �(�×A−i) such that ψ[D] ≤ ti[D] −η for some
D⊆�×T−i. Thus, for each (ti� si) ∈ Ti× Ti and each measurable function σ−i :�× T−i →
�(A−i), if for someD⊆�× T−i,∑

(θ�a−i)∈D

∫
T−i
σ−i(θ� s−i)[a−i]si(θ× ds−i)︸ ︷︷ ︸

ψ(θ�a−i)

≤ ti[D] −η�

then for some ai ∈Ai,∫
�×T−i

[
gi(ti�σ−i(θ� s−i)� θ)− gi(ai�σ−i(θ� s−i)� θ)

]
si(dθ× ds−i) <−ε� (14)

We now show that for each i ∈ I,

ti ∈Ri(ti�G�0) ∀ti ∈ Ti (15)

dki (si� ti)≥ η �⇒ ti /∈Rki (si�G�ε) ∀k≥ 1�∀(ti� si) ∈ Ti × Ti� (16)

For i ∈ I and ti ∈ Ti consider the conjecture σ−i :�×T−i → �(A−i)with σ−i(θ� t−i)[t−i] =
1 for all (θ� t−i) ∈ �× T−i. Then action ti is a best reply for type ti to conjecture σ−i by
(11), hence ti ∈Ri(ti�G�0) by the characterization of ICR in terms of best-reply sets, thus
proving (15).

To prove (16) for k = 1, pick si ∈ Ti with d1
i (si� ti) ≥ η. Then there exists E ⊆ � such

that s1i [E] ≤ t1i [E] −η and, hence, for every σ−i :�× T−i → �(A−i), lettingD=E × T−i,

∑
(θ�a−i)∈D

∫
T−i
σ−i(θ� s−i)[a−i]si(θ× ds−i) =

∑
θ∈E

∫
T−i
σ−i(θ� s−i)[T−i]si(θ× ds−i)

≤ s1i [E] ≤ t1i [E] −η= ti[D] −η�
It follows from (14) that ti /∈R1

i (si�G�ε).
Proceeding by induction, let k≥ 2 and assume that (16) holds for k− 1. Fix i ∈ I and

ti ∈ Ti, and pick si ∈ Ti with dki (ti� si)≥ η. Then there exists some E ⊆�×πk−1
−i (T−i)with

ski [Eη] ≤ tki [E] −η� (17)

Define D= {(θ� t−i) ∈�× T−i : (θ� tk−1
−i ) ∈ E}, so that ti[D] = tki [E]. Consider an arbitrary

(k− 1)-order ε-rationalizable conjecture σ−i :�× T−i → �(A−i), i.e.,

suppσ−i(θ� s−i)⊆Rk−1
−i (s−i�G�ε) ∀(θ� s−i) ∈�× T−i�

28Such positive η exists because, given any finite type space (Ti)i∈I , there exists K ≥ 1 such that

dki (ti� ui)= dKi (ti� ui) for all k≥K and ti� ui ∈ Ti.
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By the induction hypothesis and the condition above,

dk−1
−i (s−i� t−i)≥ η �⇒ σ−i(θ� s−i)[t−i] = 0 ∀(θ� s−i� t−i) ∈�× T−i × T−i� (18)

Thus,∑
(θ�a−i)∈D

∫
T−i
σ−i(θ� s−i)[a−i]si(θ× ds−i)

=
∑

(θ�tk−1
−i )∈E

∫
T−i
σ−i(θ� s−i)[T−i ∩ (πk−1

−i )
−1(tk−1

−i )]si(θ× ds−i)

≤
∑

(θ�tk−1
−i )∈E

∫
(πk−1

−i )−1({tk−1
−i }η)

σ−i(θ� s−i)[T−i ∩ (πk−1
−i )

−1(tk−1
−i )]si(θ× ds−i)

≤
∑

(θ�tk−1
−i )∈E

ski [θ× {tk−1
−i }η] = ski [Eη] ≤ tki [E] −η= ti[D] −η�

where the first inequality follows from (18), the second equality follows from (13), and
the last inequality follows from (17). By (14), this implies ti /∈Rki (si�G�ε). �

Theorems 1 and 2 combined yield the following corollary.

Corollary 2. The UW, US, and S topologies are all equivalent around finite types.

To end this section, we remark that in Theorem 2 we cannot dispense with the as-
sumption that ti is a finite type. Indeed, in the next section we prove that the US topol-
ogy is strictly finer than the S topology. Thus, the UW topology cannot be equivalent to
the S topology, for we have shown that the UW topology is finer than the US topology
(Theorem 1).

A more direct way to argue that the UW topology is strictly finer than the S topol-
ogy is to note that the universal type space is not separable under the UW topology
(a result that is interesting in its own right), whereas Dekel et al. (2006) show that a
countable set of finite types is dense under the strategic topology. To see why the
uniform-weak topology is not separable, fix two states θ0 and θ1 in �, and consider
the nonredundant type space (Xi)i∈I , where Xi = {0�1}N and each type xi = (xi�n)n∈N

assigns probability 1 to the pair (θxi�1�Li(xi)), where Li :Xi →X−i is the shift operator,
i.e., L((xi�1�xi�2� � � �)) = (xi�2�xi�3� � � �) for each xi = (xi�n)n∈N. Clearly, the UW distance
between any two different types in Xi is 1 and, hence, under the UW metric, Xi is a
discrete subset of the universal type space. Since Xi is uncountable, it follows that the
universal type space is not separable under the UW topology.

4. Nongenericity of finite types

Dekel et al. (2006) show that finite types are dense under the S topology, thus strength-
ening an early result of Mertens and Zamir (1985) that finite types are dense under the
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product topology. In contrast, in Theorem 3 below we show that under the US topology,
finite types are nowhere dense, i.e., the closure of finite types has an empty interior.29 An
implication of this result and Theorem 1 is that the US topology is strictly finer than the
S topology.30

The proof of Theorem 3 relies on Lemmas 2 and 3 below. Lemma 2 states that finite
types are not dense under the UW topology. To prove this, we consider an instance of the
countably infinite common-prior type space from Rubinstein’s (1989) E-Mail game and
show that none of its types can be UW-approximated by a sequence of finite types. In
Lemma 3 we show that any sequence of types that fails to converge to a type in the E-Mail
type space under the UW topology must also fail to converge under the US topology.
Together, these lemmas imply that finite types are bounded away from the E-mail type
space in US distance, which we state as Proposition 4 below. This implies that the set of
finite types is not dense under the US topology. Using this result, the proof of Theorem 3
shows that every finite type can be US-approximated by a sequence of infinite types,
none of which is the US limit of a sequence of finite types, thereby establishing nowhere
denseness.

In effect, consider the following instance of the E-Mail type space. Let � = {θ0� θ1}
and let the type space (U1�U2) be31

U1 = {u1�0�u1�1�u1�2� � � �}� U2 = {u2�0�u2�1�u2�2� � � �}�

where u1�0[θ0�u2�0] = 1, u2�0[θ0�u1�0] = 2/3, u2�0[θ1�u1�1] = 1/3,

u1�n[θ1�u2�n−1] = 2/3� u1�n[θ1�u2�n] = 1/3 ∀n≥ 1

u2�n[θ1�u1�n] = 2/3� u2�n[θ1�u1�n+1] = 1/3 ∀n≥ 1�

We have the following result.

Proposition 4. For every i ∈ I, finite type ti ∈ Ti, and n≥ 0, dUS
i (ti� ui�n)≥M/6.

The proposition is a direct consequence of the following two lemmas.

Lemma 2. For every i ∈ I, finite type ti ∈ Ti, and n≥ 0, dUW
i (ti� ui�n)≥ 1/3.

Lemma 3. For every i ∈ I, ti ∈ Ti, and n≥ 0, dUS
i (ti� ui�n)≥ (M/2)dUW

i (ti� ui�n).

29This is equivalent to saying that the complement of the set of finite types contains an open and dense
set under the US topology.

30Dekel et al. (2006) state the result that the US topology is strictly finer than the S topology. However, as
reported in Chen and Xiong (2008), the proof in that paper contains a mistake.

31This type space is an instance of the E-Mail type space where the more informed player 1 who received
k messages attaches probability p= 2/3 (resp. 1 −p= 1/3) to player 2 having received k− 1 (resp. k) mes-
sages, and the less informed player 2 who received kmessages attaches probabilityp (resp. 1−p) to player 1
having received k (resp. k+ 1) messages. Our choice that p= 2/3 is immaterial; our results hold true if we
assume any other value for p.
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Figure 1. The game from Lemma 3 forN = 1 andM = 4.

In the proof of Lemma 2, given in the Appendix, we first show that the UW distance
between any two distinct types of any player in the E-Mail type space above is at least
2/3.32 Second, we show that any finite type t2�n whose UW distance from u2�n is less than
1/3 must attach positive probability to (and hence implies the existence, in the same
finite type space, of) a type t1�n+1 whose UW distance from u1�n+1 is less than 1/3, which
in turn implies the existence in the same finite type space of some type t2�n+1 whose
UW distance from u2�n+1 is less than 1/3 and so on. These two facts together imply the
contradiction that the types ti�1� ti�2� � � � are all different but belong to the same finite type
space, whence the result follows.

Turning to Lemma 3, the proof, also in the Appendix, constructs, for each δ≥ 0 and
N ≥ 0, a game such that for each 0 ≤ n ≤ N , a certain action ai�n is rationalizable for
ui�n but is not δ-rationalizable for any type ti with dki (ti� ui�n) > 2δ/M , where the order k
grows with the difference N − n. To provide intuition, we sketch the argument for the
caseN = 1. The game corresponding to this case is depicted in Figure 1, with the payoff
bound normalized toM = 4.

It is clear that in this game, for all i = 1�2 and n = 0�1, action ai�n is rationalizable
for ui�n.33 However, ai�n is weakly dominated by si, and the payoffs from bi�n and ci�n are
such that whenever the beliefs of a type ti are sufficiently far from those of ui�n, then any
δ-rationalizable conjecture about player −i that δ-rationalizes ai�n against si cannot do
so against both bi�n and ci�n as well. Indeed, we have

dki (ti� ui�n) > 2δ/M �⇒ ai�n /∈Rki (ti� δ) ∀1 ≤ k≤ 2 − n� (19)

To see this for k= 1, first note that a1�0 is weakly dominated by s1, hence a1�0 /∈ R1
1(ti� δ)

for any type t1 with d1
1(t1�u1�0) > δ/2. Indeed, u1

1�0[θ0] = 1 and hence d1
1(t1�u1�0) > δ/2

implies t11 [θ0]< 1 − δ/2, so the highest possible expected payoff for t1 under a1�0 is −2δ,
whereas s1 yields 0. By the same token, a1�1 /∈ R1

1(t1� δ) for any t1 with d1
1(t1�u1�1) > δ/2

and a2�1 /∈ R1
2(t2� δ) for any t2 with d1

2(t2�u2�1) > δ/2. Consider action a2�0 now and pick
any t2 such that d1

2(t2�u2�0) > δ/2. Since u1
2�0[θ1] = 1/3, we must have either t12 [θ1] <

32The type u1�k of player 1 who received k messages assigns probability 2/3 to the other player having
received k− 1 messages, while u1�k+1 attaches probability 0 to that event, and similarly for player 2.

33The pair (ς1� ς2) with ςi(ui�n)= ai�n if n≤ 1 and ςi(ui�n)= si if n≥ 2 has the best-reply property.
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1/3 −δ/2 or t12 [θ0]< 2/3 +δ/2. Pick any conjecture σ1 that δ-rationalizes a2�0, so that the
difference in expected payoff between s1 and a2�0 is at most δ. This requires the induced
distribution over �×A1 to satisfy

Pr[θ0� a1�0|t2�σ1] + Pr[θ1� a1�1|t2�σ1] ≥ 1 − δ/4�
hence the difference in expected payoffs between b2�0 and a2�0 is

Pr[θ0� a1�0|t2�σ1] − 2 Pr[θ1� a1�1|t2�σ1] ≥ −3 Pr[θ1� a1�1|t2�σ1] + 1 − δ/4�
which is greater than δ when t12 [θ1] < 1/3 − δ/2. Likewise, the difference in expected
payoffs between c2�0 and a2�0 is

−Pr[θ0� a1�0|t2�σ1] + 2 Pr[θ1� a1�1|t2�σ1] ≥ −3 Pr[θ0� a1�0|t2�σ1] + 2 − δ/2�
which is greater than δwhen t12 [θ0]< 2/3+δ/2. Thus, in any case, a2�0 /∈R1

2(t2� δ) and the
proof of (19) for k= 1 is complete. The proof for n= 0 and k= 2 uses the arguments just
given for the case k = 1 and is completely analogous—for instance, those arguments
show that if σ2 is a first-order δ-rationalizable conjecture that δ-rationalizes a1�0 for a
type t1, then we must have 1 −δ/4 ≤ Pr[θ0� a2�0|t1�σ2] ≤ t21 [θ0 ×{u1

2�0}2δ/M ] and hence the
distance between the second-order beliefs of t1 and u1�0 is at most δ.

We are now ready to prove the main result of this section.

Theorem 3. Finite types are nowhere dense under the US and the UW topology.

Proof. It suffices to prove that every finite type can be UW-approximated by a se-
quence of infinite types, none of which is the US limit of a sequence of finite types.34

Fix a finite type space (T1�T2) and a type t2 ∈ T2. For each n ≥ 1, let δn = 1/(n+ 1) and
define the infinite type t2�n by the requirement that, for every k≥ 1 and every measurable
E ⊆�× T k−1

1 ,

tk2�n[E] = (1 − δn)tk2 [E] + δnuk2�0[E]�
Note that for all n≥ 1, k≥ 1, and measurable E ⊆�× T k−1

1 , we have

tk2�n[E] = (1 − δn)tk2 [E] + δnuk2�0[E] ≤ tk2�n[Eδn] + δn�

hence dUW
2 (t2�n� t2)≤ δn −→ 0.

It remains to prove that none of the types in the sequence (t2�n)n≥1 is in the US clo-
sure of the set of finite types, i.e., for every n ≥ 1, there exists εn > 0 such that the US
distance between t2�n and every finite type in T2 is at least εn. Thus, fix n ≥ 1, pick any
0 < εn <min{M/6�M/(3n+ 1)}, any finite type space (S1� S2), and any type s2 ∈ S2, and
let us show that dUS

2 (t2�n� s2)≥ εn. Using Lemma 2, chooseN ≥ 1 large enough so that

d
2(N+1)
1 (t1�u1�0)≥ 1/3 ∀t1 ∈ T1 ∪ S1 (20)

34Indeed, by Theorem 1, the sequence also US-approximates the finite type, hence nowhere denseness
in the US topology follows. By the same theorem, none of the types in the sequence will be the UW limit of
a sequence of finite types, thus nowhere denseness in the UW topology also follows.
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and letGN = (Ai�N�gi�N)i=1�2 be the game defined in the proof of Lemma 3. Now define
another gameG′

N = (A′
i�N�g

′
i�N)i=1�2 as

A′
1�N =A1�N� A′

2�N =A2�N × {0�1}�

and for all a1 ∈A1�N , a2 ∈A2�N , x ∈ {0�1} and θ ∈�,

g′
1�N(a1� a2�x�θ) = 1

2g1�N(a1� a2� θ)

g′
2�N(a1� a2�x�θ) = 1

2g2�N(a1� a2� θ)+
⎧⎨
⎩
M/2 if x= 1 and a1 = a1�0

−M/(3n+ 1) if x= 1 and a1 �= a1�0

0 otherwise.

Note that since all payoffs inGN are between −M andM , the same is true for all payoffs
inG′

N . Moreover, we have the following lemma, which is proved in the Appendix.

Lemma 4. For all k≥ 0 and all ε≥ 0,

Rk1 (t1�GN�2ε) = Rk1 (t1�G
′
N�ε) ∀t1 ∈ T1 (21)

Rk2 (t2�GN�2ε) = projA2�N
Rk2 (t2�G

′
N�ε) ∀t2 ∈ T2� (22)

We now prove that (a2�1) ∈ R2(t2�n�G
′
N�0) for some a2 ∈ A2�N , but (a2�1) /∈ R2(s2�

G′
N�εn) for all a2 ∈A2�N , reaching the desired conclusion that dUS

2 (t2�n� s2)≥ εn.
To show that (a2�1) ∈ R2(t2�n�G

′
N�0) for some a2 ∈ A2�N , it suffices to construct a

rationalizable conjecture σ ′
1 in game G′

N under which, for all a2 ∈A2�N , actions (a2�0)
and (a2�1) give t2�n the same expected payoff. Let σ1 :�× T1 → �(A1�N) be an arbitrary
rationalizable conjecture inGN and define σ ′

1 :�× T1 → �(A′
1�N) as

σ ′
1(θ� t1)[a1] = σ1(θ� t1)[a1] ∀t1 ∈ T1 \U1�∀a1 ∈A′

1�N

σ ′
1(θ�u1�k)[a1�k] = 1 ∀k≥ 0�

From the proof of Lemma 3, it follows, using (21) with ε = 0, that σ ′
1 is a rationalizable

conjecture inG′
N and also, using (20) and the fact that εn <M/6, it follows that

a1�0 /∈R1(t1�GN�εn) ∀t1 ∈ T1 ∪ S1� (23)

Thus, σ ′
1(θ� t1)[a1�0] = 0 for all θ ∈� and t1 ∈ T1, hence for all a2 ∈A2�N we have∫

�×T1

[
g′

2�N(σ
′
1(θ� t1)�a2�1� θ)− g′

2�N(σ
′
1(θ� t1)�a2�0� θ)

]
t2�n(dθ× dt1)

= 2δn
3
M

2
−

(
1 − 2δn

3

)
M

3n+ 1
= 0�

This proves that (a2�0) and (a2�1) give type t2�n the same expected payoff under σ ′
1 for

all a2 ∈A2�N , as was to be shown.
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Turning to the proof that (a2�1) /∈ R2(s2�G
′
N�εn) for all a2 ∈ A2�N , consider an ar-

bitrary εn-rationalizable conjecture σ ′
1 in game G′

N . By (21) and (23), for all θ ∈ � and
s1 ∈ S1, we must have σ ′

1(θ� s1)[a1�0] = 0. Thus, for all a2 ∈A2�N ,

∑
(θ�s1)∈�×S1

s2[θ� s1]
[
g′

2�N(σ1(θ� s1)�a2�1� θ)− g′
2�N(σ1(θ� s1)�a2�0� θ)

] = − M

3n+ 1
<−εn�

which proves that (a2�1) is not εn-rationalizable for s2 in gameG′
N . �

5. Discussion

5.1 Relation with common p-beliefs

As we mentioned in the Introduction, the uniform-weak topology is related to the notion
of common p-belief due to Monderer and Samet (1989). Fix a state θ ∈� and p ∈ [0�1].
For each player i ∈ I, define

B
1�p
i (θ)= {t1i ∈ T 1

i : t1i [θ] ≥ p} and B
k�p
i (θ)= {

tki ∈ T k
i : tki [θ×Bk−1�p

−i (θ)] ≥ p}
recursively for all k ≥ 2. A type ti has common p-belief in θ, and we write ti ∈ Cpi (θ), if

tki ∈ Bk�pi (θ) for all k≥ 1. A sequence of types (ti�n)n≥1 has asymptotic common certainty
of θ if for every p< 1, we have ti�n ∈ Cpi (θ) for n large enough.

Monderer and Samet (1989) use this notion of proximity to common certainty,
i.e., common 1-belief, to study the robustness of Nash equilibrium to small amounts
of incomplete information. Their main result states that for any game and any sequence
of common-prior type spaces, a sufficient condition for Nash equilibrium to be robust to
incomplete information (relative to the given sequence of type spaces) is that for some
sequence pn ↗ 1, the prior probability of the event that the players have common pn-
belief on the payoffs from the complete information game converges to 1 as n→ ∞. A re-
lated paper, Kajii and Morris (1997), shows that asymptotic common certainty is actually
a necessary condition for robustness in all games. Since both results are formulated for
Bayesian Nash equilibrium in common-prior type spaces, to facilitate comparison with
our results, we report (without proof) an analogue of their results for interim correlated
rationalizability without imposing common priors.

Proposition 5. A sequence of types (ti�n)n≥1 has asymptotic common certainty of θ if
and only if for every game and every ε > 0, every action that is rationalizable for player i
when θ is common certainty remains interim correlated ε-rationalizable for type ti�n for
all n large enough.

Thus the “only if” part is an interim version of Monderer and Samet (1989, Theo-
rem B∗) and the “if” part is an interim version of Kajii and Morris (1997, Proposition 10).

As it turns out, the uniform-weak topology can be viewed as an extension of the
concept of asymptotic common certainty: these two notions of convergence coincide
when the limit type has common certainty of some state. Indeed, letting ti�θ designate
the type of player iwho has common certainty of θ, we can make the following proposal.
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Proposition 6. A sequence (ti�n)n≥0 has asymptotic common certainty of θ if and only if
dUW
i (ti�n� ti�θ)→ 0 as n→ ∞.

Proof. It suffices to show that for each i ∈ I, p ∈ [0�1], and k ≥ 1, we have Bk�pi (θ) =
{tki�θ}1−p. For k= 1, this follows directly from t1i�θ[θ] = 1. Now suppose this holds for k− 1
and let us show that it also holds for k. Indeed,

B
k�p
i (θ) = {

tki ∈ T k
i : tki [θ×Bk−1�p

−i (θ)] ≥ p}
= {

tki ∈ T k
i : tki [θ× {tk−1

−i�θ}1−p] ≥ p} = {tki�θ}1−p�

where the second equality follows from the induction hypothesis and the third equality
follows from the fact that tki�θ[θ� tk−1

−i�θ] = 1. �

Thus, taken together, Theorems 1 and 2 extend Proposition 5 to environments where
the limit type has nondegenerate incomplete information.35

5.2 Other uniform metrics

The Prohorov metric, on which the uniform-weak topology is based, is but one of many
equivalent distances that metrize the topology of weak convergence of probability mea-
sures. For any such distance, one can consider the associated uniform distance over
hierarchies of beliefs. Interestingly, these metrics can generate different topologies over
infinite hierarchies, even though the induced topologies over k-order beliefs coincide
for each k≥ 1. Below we provide such an example.

Given a metric space (S�d), let BL(S�d) designate the vector space of real-valued,
bounded, Lipschitz continuous functions over S, endowed with the norm

‖f‖BL = max
{

sup
x

|f (x)|� sup
x �=y

|f (x)− f (y)|
d(x� y)

}
∀f ∈ BL(S�d)�

Recall that the bounded Lipschitz distance over �(S�d) is

β(μ�μ′)= sup
{∣∣∣∣

∫
f dμ−

∫
f dμ′

∣∣∣∣ : f ∈ BL(S�d)with ‖f‖BL ≤ 1
}

∀μ�μ′ ∈ �(S�d)�

This distance metrizes the topology of weak convergence and it relates to the Prohorov
metric ρ as36

(2/3)ρ2 ≤ β≤ 2ρ�

Now define a uniform metric βUW
i over hierarchies of beliefs as follows. Let β0 denote

the discrete metric over � and, recursively, for k ≥ 1, let βki denote the bounded Lip-
schitz metric on �(�× T k−1

−i )when�× T k−1
−i is equipped with the metric max{β0�βk−1

−i }.
Then

βUW
i = sup

k≥1
βki �

35Note that ti�θ is a finite type.
36See Dudley (2002, pp. 398 and 411).
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For each k≥ 1, the metric βki is equivalent to dki , as they both induce the weak topol-
ogy on k-order beliefs. However, as we now show, βUW

i is not equivalent to dUW
i .37 Sup-

pose that �= {θ0� θ1} and for each n≥ 1, consider the type space (Ti�n)i∈I , where

Ti�n = {ui�0�ui�1� ti�n} ∀i ∈ I

and beliefs are

ui�0[θ0�u−i�0] = 1� ui�1[θ1�u−i�1] = 1 ∀i ∈ I

and

ti�n[θ0�u−i�0] = 1/n� ti�n[θ1� t−i�n] = 1 − 1/n ∀i ∈ I�

Thus dki (ti�n�ui�1) = 1/n for all k ≥ 1 and, therefore, dUW
i (ti�n�ui�1) → 0 as n → ∞. We

now show that βUW
i (ti�n�ui�1) �→ 0. Let f be the indicator function of {θ1}, i.e., f (θm)=m

for m ∈ {0�1}. Then define the k-order iterated expectation of f for each k≥ 1 and each
player i, denoted fki : T k

i → R, as

f 1
i (t

1
i )=

∫
f dt1i = t1i [θ1] and f ki (t

k
i )=

∫
fk−1
−i dtki for k≥ 2�

Thus, we have ∫
fk−1
−i duki�1 = 1 and

∫
fk−1
−i dtki�n = (1 − 1/n)k�

Since it can be shown that f ki ∈ BL(T k
i �β

k
i ) and ‖fki ‖BL ≤ 1, we have βki (ti�n�ui�1) ≥ 1 −

(1 − 1/n)k and hence βUW
i (ti�n�ui�1)≥ 1 for every n≥ 1.

This example is also relevant for the comparison between our work and Morris
(2002), who shows that the topology of uniform convergence of iterated expectations
is equivalent to the strategic topology associated with a restricted class of games, called
higher-order expectations (HOE) games. By this result and the example above, uniform-
weak convergence is not sufficient for convergence in the strategic topology for HOE
games. This might seem puzzling at first, given that uniform-weak convergence has
been shown to imply convergence in Dekel et al. (2006) strategic topology, which is de-
fined by requiring lower hemicontinuity of the strict ICR correspondence in all games,
not just HOE games. To reconcile these facts, we note that the notion of strict ICR cor-
respondence implicitly used in Morris (2002) is different from the one we use, in that
it does not require the slack in the incentive constraints to hold uniformly in a best-
reply set. Thus, for a given game, continuity of Morris (2002) notion of strict ICR is more
demanding than ours.

37The example below actually shows that the two metrics are not equivalent even around complete in-
formation types. In particular, asymptotic common certainty does not guarantee convergence under βUW

i .
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6. Conclusion

Our results shed light on the connection between similarity of beliefs and similarity of
behaviors in games, but leave open a number of interesting questions for future re-
search. One question is whether uniform-weak convergence is also a necessary con-
dition for uniform-strategic convergence. We believe the answer is in the affirmative
and are pursuing this conjecture in ongoing research. This question is of particular
interest because of the tension between Theorem 2 and Theorem 3, which imply that
the uniform-weak and the uniform-strategic topologies are equivalent around types
in a nowhere dense set. Another important avenue of research is to characterize the
(nonuniform) strategic topology in terms of proximity of beliefs; we are also explor-
ing this question in ongoing work. Finally, it would be interesting to examine strategic
topologies for solution concepts that refine ICR, such as Bayesian equilibrium, incom-
plete information versions of correlated equilibrium, or interim independent rational-
izability.

Appendix: Omitted Proofs

Proof of Proposition 1. Fix k≥ 1, ti ∈ Ti, and ai ∈Ai. Let �−i denote the set of equiv-
alence classes of measurable functions σ−i :�× T−i → �(A−i) such that

suppσ−i(θ� t−i)⊆Rk−1
−i (t−i�G�γ) for ti-almost every (θ� t−i) ∈�× T−i,

where we identify pairs of functions that are equal ti-almost surely. The set �−i can be
viewed as a compact convex subset of the topological vector space L of (equivalence
classes of) R|A−i|-valued measurable functions over �× T−i.38

Consider the function F :�(Ai \ {ai})×�−i → R such that

F(αi�σ−i)=
∫
�×T−i

[
gi(ai�σ−i(θ� t−i)� θ)− gi(αi�σ−i(θ� t−i)� θ)

]
ti(dθ× dt−i)�

Thus, F is the restriction of a continuous bilinear functional on R(|Ai|−1)×L to the Carte-
sian product of compact, convex sets. By a minmax theorem of Fan (1953),

min
αi∈�(Ai\{ai})

max
σ−i∈�−i

F(αi�σ−i)= max
σ−i∈�−i

min
αi∈�(Ai\{ai})

F(αi�σ−i)�

38The space L is equipped with the weak* topology induced by the probability measure ti ∈ �(�× T−i).
Under this topology, a sequence (fn)n∈N in L converges to f ∈ L if and only if for each continuous and
bounded function h :�× T−i → R|A−i |,∫

〈h(θ� t−i)� fn(θ� t−i)〉ti(dθ× dt−i)→
∫

〈h(θ� t−i)� f (θ� t−i)〉ti(dθ× dt−i) as n→ ∞�

where 〈·� ·〉 designates the Euclidean inner product in R|A−i |. To see why �−i is compact, note that the
disintegration property of probability measures yields a natural homeomorphism between �−i and{

ν ∈ �(�× T−i ×A−i) :ν
({(θ� t−i� a−i) :a−i ∈Rk−1

−i (t−i�G�γ)}
) = 1�marg�×T−i ν = ti

}
�

which is a closed subset of the compact space �(�× T−i ×A−i).
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Now, ai ∈ Rki (ti�G�γ) if and only if the right-hand side is greater than or equal to −γ.
Thus, ai ∈Rki (ti�G�γ) if and only if for every αi ∈ �(Ai \ {ai}), there exists σ−i ∈ �−i such
that F(αi�σ−i)≥ −γ, which is the desired result. �

Proof of Lemma 1. For each i ∈ I, let ρi and ‖ ·‖i denote the Prohorov distance on
�(� × T−i) and the Euclidean norm on R|�||T−i|, respectively. Also, let fi :� × T−i ×
�(�× T−i)→ R be the function defined by

fi(θ� t−i�ψ)= 2ψ[θ� t−i] − ‖ψ‖2
i

and let Fi :�(�× T−i)×�(�× T−i)→ R be the function defined by

Fi(ψ
′�ψ)=

∑
(θ�t−i)∈�×T−i

fi(θ� t−i�ψ′)ψ[θ� t−i]�

Note that Fi(ψ�ψ)− Fi(ψ′�ψ)= ‖ψ−ψ′‖2
i for all ψ�ψ′ ∈ �(�× T−i), hence

η≡ 1
2 min

{
Fi(ψ�ψ)− Fi(ψ′�ψ) :ψ′�ψ ∈ �(�× T−i)�ρi(ψ�ψ′)≥ 1

2δ
}
> 0�

and also39

ρi(ψ�ψ
′) < η/2 �⇒ Fi(ψ�ψ)− Fi(ψ′�ψ) < η ∀ψ�ψ′ ∈ �(�× T−i)�

The compact set �(� × T−i) can be covered by a finite union of open balls of radius
η/2. (These balls are taken according to the metric ρi.) Choose one point in each of
these balls and letAi ⊆ �(�×T−i) denote the finite set of selected points. EnlargeAi, if
necessary, to ensure Ai ⊇ Ti. (Recall that we identify each ti ∈ Ti with μi(ti).) Thus, for
every ψ ∈ �(�× T−i), there exists ai ∈Ai \ Ti such that Fi(ψ�ψ)− Fi(ai�ψ) < η.

Now define the payoff function gi :�×Ai ×A−i → R, as

gi(θ�ai� a−i)=
⎧⎨
⎩
fi(θ�a−i� ai) if a−i ∈ T−i
−4/δ if ai ∈ Ti and a−i /∈ T−i
−1 if ai /∈ Ti and a−i /∈ T−i.

It follows directly from the definition of gi and the fact that ti[�× T−i] = 1 that each ai ∈
Ai yields an expected payoff of Fi(ai� ti) to type ti under the conjecture σ−i :�× T−i →
�(A−i) such that σ−i(θ� t−i)[t−i] = 1 for all (θ� t−i) ∈ � × T−i. Since Fi(ti� ti) ≥ Fi(ai� ti)

for all ai ∈Ai, (11) follows.
Fix any 0 < ε < min{η(1 − δ/2)�δ/2}. We shall prove (12) now. Fix ti ∈ Ti and ψ ∈

�(�×A−i), and assume that there exists D⊆�× T−i such that ψ[D] ≤ ti[D] − δ. First

39Letting h :� × T−i → [−1�1] denote the mapping (θ� t−i) �→ h(θ� t−i) = ψ[θ� t−i] − ψ′[θ� t−i], for each
ζ ≥ 0, we have

Fi(ψ�ψ)− Fi(ψ′�ψ)= ‖ψ−ψ′‖2 =
∑

(θ�t−i)∈�×T−i

ψ[θ� t−i]h(θ� t−i)−
∑

(θ�t−i)∈�×T−i

ψ′[θ� t−i]h(θ� t−i)≤ 2ζ

whenever ρi(ψ�ψ′)≤ ζ.
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suppose ψ[�× T−i]< 1 − δ/2. Pick any ai ∈Ai \ Ti. Since fi maps into [−1�1],∑
θ∈�

∑
a−i∈A−i

(gi(ti� a−i� θ)− gi(ai� a−i� θ))ψ[θ�a−i] ≤ 2(1 − δ/2)+ (δ/2)(−4/δ+ 1)

= −δ/2<−ε�

which proves (12) for the case ψ[� × T−i] < 1 − δ/2. Now suppose that ψ[� × T−i] ≥
1 − δ/2. Consider the conditional probability ψ̄(·)≡ψ(·|�× T−i). Then

ψ̄[D] ≥ψ[D] = ψ̄[D]ψ[�× T−i] ≥ ψ̄[D] − δ/2�

hence

|ψ̄[D] − ti[D]| ≥ |ψ[D] − ti[D]| − |ψ[D] − ψ̄[D]| ≥ δ− δ/2 = δ/2�
which implies Fi(ψ̄� ψ̄)− Fi(ti� ψ̄)≥ 2η by the definition of η. Now pick any ai ∈Ai \ Ti
with ρi(ψ̄� ai) < η/2, so that Fi(ai� ψ̄)−Fi(ψ̄� ψ̄) >−η. Then Fi(ai� ψ̄)−Fi(ti� ψ̄) > η and
hence∑

θ∈�

∑
a−i∈A−i

(gi(ti� a−i� θ)− gi(ai� a−i� θ))ψ[θ�a−i]

= (Fi(ti� ψ̄)− Fi(ai� ψ̄))ψ[�× T−i] + (−4/δ+ 1)(1 −ψ[�× T−i])
≤ (Fi(ti� ψ̄)− Fi(ai� ψ̄))ψ[�× T−i]< (1 − δ/2)(−η) <−ε�

which proves (12) also for the case ψ[�× T−i] ≥ 1 − δ/2.40 �

Proof of Lemma 2. First we prove by induction that

dUW
i (ui�n�ui�m)≥ 2/3 ∀i= 1�2�∀n≥ 0�∀m≥ 0 s.t. m �= n� (24)

For all n ≥ 1 we have u1
1�0[θ0] = 1 and u1

1�n[θ0] = 0, hence d1
1(u1�0�u1�n)= 1 > 2/3; more-

over, u1
2�0[θ0] = 2/3 and u1

2�n[θ0] = 0, hence d1
2(u2�0�u2�n) ≥ 2/3. Assume that we have

proved dni (ui�n−1�ui�m) ≥ 2/3 for all i = 1�2, some N ≥ 1, all 1 ≤ n ≤ N , and all m ≥ n.
Then, for all m> n, since u1�n[θ1 × u2�n−1] = 2/3 and u1�m[θ1 × u2��] = 0 for all � < n, we
obtain un+1

1�n [θ1 × un2�n−1] = 2/3 and un+1
1�m [θ1 × {un2�n−1}2/3] = 0, hence dn+1

1 (u1�n�u1�m) ≥
2/3. Since u2�n[θ1 × u1�n] = 2/3 and u2�m[θ1 × u1��] = 0 for all � ≤ n, we also get
un+1

2�n [θ1 ×un1�n] = 2/3 and un+1
2�m [θ1 ×{un1�n}2/3] = 0, hence dn+1

2 (u2�n�u2�m)≥ 2/3. The proof
of (24) is complete.

Now let (T1�T2) be a finite type space, and for every i= 1�2 and every n≥ 0, define

Ti�n = {ti ∈ Ti : dUW
i (ti� ui�n) < 1/3}�

We must show that each Ti�n is empty. Note that (24) implies Ti�n ∩ Ti�m = ∅ for each
player i, and all n≥ 0 andm≥ 0 such thatm �= n. Thus, it suffices to show that if Ti�n �= ∅

40To ensure that the payoffs are bounded byM , we can multiply gi and ε by a factor ofMδ/4, if necessary.
This normalization does not affect the validity of (12).
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for some player i and some n ≥ 0, then T1�m �= ∅ and T2�m �= ∅ for all m > n, as this
contradicts the finiteness of T1 and T2.

Assume that T1�0 �= ∅. Pick any t1�0 ∈ T1�0 and 1/3> δ> dUW
1 (t1�0�u1�0). Then

tk1�0[θ0 × {uk−1
2�0 }δ] ≥ uk1�0[θ0 × uk−1

2�0 ] − δ= 1 − δ ∀k≥ 1�

and hence, using the fact that δ < 1/3 and t1�0[θ0 × T2] = t1�0[θ0 × T2], also

t1�0[θ0 × T2�0] ≥ t1�0
[
θ0 × {t2 ∈ T2 :dUW

2 (t2�u2�0) < δ}
] ≥ 1 − δ > 0�

implying that T2�0 �= ∅ as well. Now let n ≥ 0 and assume T2�n �= ∅. Pick any t2�n ∈ T2�n

and 1/3> δ> dUW
2 (t2�n�u2�n). Then

tk2�n[θ1 × {uk−1
1�n+1}δ] ≥ uk2�n[θ1 × uk−1

1�n+1] − δ= 1/3 − δ ∀k≥ 1

and hence, as before,

t2�n[θ1 × T1�n+1] ≥ t2�n
[
θ1 × {t1 ∈ T1 :dUW

1 (t1�u1�n+1) < δ}
] ≥ 1/3 − δ > 0�

so T1�n+1 �= ∅. Similarly, we can show that T1�n �= ∅ implies T2�n �= ∅ for all n≥ 1. �

Proof of Lemma 3. For any givenN ≥ 1 we construct a gameGN with action sets

A1�N = {a1�0� a1�1� b1�1� c1�1� � � � � a1�N�b1�N� c1�N� s1}
A2�N = {a2�0� b2�0� c2�0� � � � � a2�N−1� b2�N−1� c2�N−1� a2�N� s2}

such that

ai�n ∈Ri(ui�n�GN�0) ∀i ∈ I�∀0 ≤ n≤N (25)

and, moreover, for every δ≥ 0 and 0 ≤ k≤N ,

a1�n ∈R2(k+1)
1 (t1�GN�δ) �⇒ d2(k+1)

1 (t1�u1�n)≤ 2δ/M ∀n≤N − k�∀t1 ∈ T1 (26)

a2�n ∈R2k+1
2 (t2�GN�δ) �⇒ d2k+1

2 (t2�u2�n)≤ 2δ/M ∀n≤N − k�∀t2 ∈ T2� (27)

Indeed, this implies the statement of the lemma.
Fix N ≥ 1. For convenience, throughout the proof let a1�N+1 = s1 and θn = θ1 for

every n≥ 2. The payoffs inGN are as follows. Actions s1 and s2 give constant payoffs

g1�N(θ� s1� a2)= g2�N(θ�a1� s2)= 0 for every θ ∈�, a1 ∈A1�N , and a2 ∈A2�N �

Actions a1�0� � � � � a1�N and a2�0� � � � � a2�N are weakly dominated by s1 and s2, respectively:

g1�N(θ�a1�n� a2) =
⎧⎨
⎩

0 if n= 0 and (θ�a2)= (θ0� a2�0)

0 if n > 0 and (θ�a2) ∈ {(θ1� a2�n−1)� (θ1� a2�n)}
−M otherwise

g2�N(θ�a1� a2�n) =
{

0 if (θ�a1) ∈ {(θn�a1�n)� (θ1� a1�n+1)}
−M otherwise.
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The payoffs for actions b1�1� c1�1� � � � � b1�N� c1�N are

g1�N(θ�b1�n� a2) = −g1�N(θ� c1�n� a2)=
{
M/4 if (θ�a2)= (θ1� a2�n−1)

−M/2 if (θ�a2)= (θ1� a2�n)

g1�N(θ�b1�n� a2) = g1�N(θ� c1�n� a2)= −M otherwise.

Finally, the payoffs for b2�0� c2�0� � � � � b2�N−1� c2�N−1 are

g2�N(θ�a1� b2�n) = −g2�N(θ�a1� c2�n)=
{
M/4 if (θ�a1)= (θn�a1�n)

−M/2 if (θ�a1)= (θ1� a1�n+1)

g2�N(θ�a1� b2�n) = g2�N(θ�a1� c2�n)= −M otherwise.

It is immediate to verify that (25) holds. To see this, just note that the mappings
ςi :Ui → 2Ai�N such that ςi(ui�n) = ai�n for 0 ≤ n ≤ N and ςi(ui�n) = si for n > N have the
best reply property.

It remains to prove that (26) and (27) hold for every 0 ≤ k≤N . To do this, we now fix
δ ≥ 0 and establish the following three claims. First, we show that (27) holds for k = 0.
Second, we prove that (27) implies (26) for all 0 ≤ k≤N . Third, we show that if (26) holds
for some 0 ≤ k < N , then (27) holds with k + 1 substituted for k, thus concluding the
proof. To ease notation, for every player i, type ti ∈ Ti, and conjecture σ−i :� × T−i →
�(A−i�N), in what follows we write Pr[·|ti�σ−i] for the probability distribution over
�×A−i�N induced by ti and σ−i, i.e.,

Pr[θ�a−i|ti�σ−i] =
∫

T−i
σ−i(θ� t−i)[a−i]ti(θ× dt−i) ∀(θ�a−i) ∈�×A−i�N �

To prove our first claim, namely that (27) is valid for k= 0, fix any t2 ∈ T2 and 0 ≤ n≤
N , assume that a2�n ∈ R1

2(t2�GN�δ), and let σ1 :� × T1 → �(A1�N) be a corresponding
0-order δ-rationalizable conjecture. Since a2�n is a δ-best reply to σ1, the difference in
expected payoff when choosing s2 instead of a2�n under σ1 must be at most δ, hence

Pr[θn�a1�n|t2�σ1] + Pr[θ1� a1�n+1|t2�σ1] ≥ 1 − δ/M� (28)

Similarly, the difference in expected payoff when choosing b2�n or c2�n instead of a2�n

under σ1 must be at most δ, hence

−δ≤ 1
4M Pr[θn�a1�n|t2�σ1] − 1

2M Pr[θ1� a1�n+1|t2�σ1] ≤ δ�
The latter inequalities together with (28) imply

Pr[θn�a1�n|t2�σ1] ≥ 2/3 − 2δ/M� Pr[θ1� a1�n+1|t2�σ1] ≥ 1/3 − 2δ/M� (29)

hence t12 [θn] ≥ 2/3 − 2δ/M and t12 [θ1] ≥ 1/3 − 2δ/M . Moreover, if n > 0, then (28) implies
t12 [θ1] ≥ 1 − 2δ/M . Thus, d1

2(t2�u2�n)≤ 2δ/M , as (27) requires for k= 0.
To prove our second claim, namely that (27) implies (26) for all 0 ≤ k ≤ N , fix any

such k, any t1 ∈ T1, and any 0 ≤ n ≤ N , assume that a1�n ∈ R2(k+1)
1 (t1�GN�δ), and let

σ2 :� × T2 → �(A2�N) be a corresponding (2k + 1)-order δ-rationalizable conjecture.
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First consider the case n= 0. Since a1�0 is a δ-best reply to σ2, it must give an expected
payoff within δ of the one from s1, hence

Pr[θ0� a2�0|t1�σ2] ≥ 1 − δ/M ≥ 1 − 2δ/M�

Since σ2 is (2k+ 1)-order δ-rationalizable, from (27) we thus obtain

t2(k+1)
1 [θ0 × {u2k+1

2�0 }2δ/M ] ≥ 1 − 2δ/M�

as required by (26) when n= 0. Next consider the case n > 0. Since a1�n is a δ-best reply
to σ2, it must give an expected payoff within δ of the one from s1, hence

Pr[θ1� a2�n−1|t1�σ2] + Pr[θ1� a2�n|t1�σ2] ≥ 1 − δ/M�
Similarly, comparing a1�n to b1�n and c1�n, we must have

−δ≤ 1
4M Pr[θ1� a2�n−1|t1�σ2] − 1

2M Pr[θ1� a2�n|t1�σ2] ≤ δ�
The latter three inequalities together imply

Pr[θ1� a2�n−1|t1�σ2] + Pr[θ1� a2�n|t1�σ2] ≥ 1 − 2δ/M (30)

Pr[θ1� a2�n−1|t1�σ2] ≥ 2/3 − 2δ/M (31)

Pr[θ1� a2�n|t1�σ2] ≥ 1/3 − 2δ/M� (32)

Since σ2 is (2k + 1)-order δ-rationalizable, by (27) we have σ2(θ1� t2)[a2�n−1] = 0 for all
t2 ∈ T2 such that d2k+1

2 (t2�u2�n−1) > 2δ/M and σ2(θ1� t2)[a2�n] = 0 for all t2 ∈ T2 such that

d2k+1
2 (t2�u2�n) > 2δ/M . By (30), (31), and (32) this implies

t
2(k+1)
1 [θ1 × {u2k+1

2�n−1�u
2k+1
2�n }2δ/M ] ≥ 1 − 2δ/M

t2(k+1)
1 [θ1 × {u2k+1

2�n−1}2δ/M ] ≥ 2/3 − 2δ/M

t2(k+1)
1 [θ1 × {u2k+1

2�n }2δ/M ] ≥ 1/3 − 2δ/M�

as required by (26) when n > 0.
It remains to prove our third claim. Assuming (26) for some 0 ≤ k < N , we must

show that (27) remains valid when k is replaced by k+ 1. Pick any t2 ∈ T2 and 0 ≤ n ≤
N − k − 1, assume that a2�n ∈ R2(k+1)+1

2 (t2�GN�δ), and let σ1 :� × T1 → �(A1�N) be a
corresponding 2(k + 1)-order δ-rationalizable conjecture. Since a2�n is a δ-best reply
to σ1, the difference in expected payoff when choosing s2 or b2�n or c2�n instead of a2�n
under σ1 must be at most δ. Thus, as before, (28) and (29) must hold. Moreover, since σ1
is 2(k+ 1)-order δ-rationalizable, by (26) we have σ1(θn� t1)[a1�n] = 0 for all t1 ∈ T1 with

d2(k+1)
1 (t1�u1�n) > 2δ/M and σ1(θ1� t1)[a1�n+1] = 0 for all t1 ∈ T1 with d2(k+1)

1 (t1�u1�n+1) >

2δ/M . This implies

t2(k+1)+1
2 [θn × {u2(k+1)

1�n }2δ/M ] ≥ 2/3 − 2δ/M

t2(k+1)+1
2 [θ1 × {u2(k+1)

1�n+1 }2δ/M ] ≥ 1/3 − 2δ/M�
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and, if n > 0, also

t
2(k+1)+1
2 [θ1 × {u2(k+1)

1�n �u
2(k+1)
1�n+1 }2δ/M ] ≥ 1 − 2δ/M�

as required by (27) when k is replaced by k+ 1. �

Proof of Lemma 4. Fix ε ≥ 0 and note that (21) and (22) are trivially true for k = 0.
Now we assume they are true for some k ≥ 0 and prove that they hold for k + 1. Note
that since (22) holds for k, there exists a mapping ξ : T2 ×A2�N → {0�1} that satisfies

(a2� ξ(t2� a2)) ∈Rk2 (t2�G′
N�ε) ∀t2 ∈ T2�∀a2 ∈Rk2 (t2�GN�2ε)� (33)

Let us prove (21) for k + 1 now. Fix any t1 ∈ T1 and a1 ∈ Rk+1
1 (t1�GN�2ε), and let

σ2 :�× T2 → �(A2�N) be a corresponding k-order 2ε-rationalizable conjecture. Define
the conjecture σ ′

2 :�× T2 → �(A′
2�N) for gameG′

N as

σ ′
2(θ� t2)[a2� ξ(t2� a2)] = σ2(θ� t2)[a2] ∀θ ∈��∀t2 ∈ T2�∀a2 ∈A2�N �

By (33), σ ′
2 is a k-order ε-rationalizable conjecture. Moreover, the difference in expected

payoff for t1 between any a′
1 ∈A′

1�N and a1 under σ ′
2 in gameG′

N is

∫
�×T k

2

[
g′

1�N(a
′
1�σ

′
2(θ� t2)�θ)− g′

1�N(a1�σ
′
2(θ� t2)�θ)

]
tk+1
1 (dθ× dtk2 )

= 1
2

∫
�×T k

2

[
g1�N(a

′
1�σ2(θ� t2)�θ)− g1�N(a1�σ2(θ� t2)�θ)

]
tk+1
1 (dθ× dtk2 )≤ 1

2 2ε= ε�

where the inequality follows from the fact that a1 ∈ Rk+1
1 (t1�GN�2ε). This proves that

a1 ∈ Rk+1
1 (t1�G

′
N�ε), and we have thus shown that Rk+1

1 (t1�GN�2ε)⊆ Rk+1
1 (t1�G

′
N�2ε).

Conversely, pick any a1 ∈Rk+1
1 (t1�G

′
N�ε) and let σ ′

2 :�× T2 → �(A′
2�N) be a correspond-

ing k-order ε-rationalizable conjecture. Define σ2 :�× T2 → �(A2�N) as

σ2(θ� t2)= margA2�N
σ ′

2(θ� t2) ∀θ ∈��∀t2 ∈ T2�

Since (22) holds for k, this is a k-order 2ε-rationalizable conjecture in GN . Moreover,
the difference in expected payoff for t1 between any a′

1 ∈A1�N and a1 under σ2 in game
GN is∫

�×T k
2

[
g1�N(a

′
1�σ2(θ� t2)�θ)− g1�N(a1�σ2(θ� t2)�θ)

]
tk+1
1 (dθ× dtk2 )

= 2
∫
�×T k

2

[
g′

1�N(a
′
1�σ

′
2(θ� t2)�θ)− g′

1�N(a1�σ
′
2(θ� t2)�θ)

]
tk+1
1 (dθ× dtk2 )≤ 2ε�

hence a1 ∈Rk+1
1 (t1�GN�2ε). This shows thatRk+1

1 (t1�G
′
N�2ε)⊆Rk+1

1 (t1�GN�2ε), so the
proof of (21) for k+ 1 is complete.
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Now we show that (22) also remains true for k + 1, thus concluding the proof. Fix
t2 ∈ T2, let a2 ∈ Rk+1

2 (t2�GN�2ε), and let σ1 :� × T1 → �(A1�N) be a corresponding k-
order 2ε-rationalizable conjecture. Choose any

x∗ ∈ arg max
x∈{0�1}

∫
�×T k

1

g′
2�N(σ1(θ� t1)�a2�x�θ)t

k+1
2 (dθ× dtk1 )�

Then the difference in expected payoff for t2 between any (a′
2�x) ∈ A′

2�N and (a2�x
∗)

under σ1 in gameG′
N is∫

�×T k
1

[
g′

2�N(σ1(θ� t1)�a
′
2�x�θ)− g′

2�N(σ1(θ� t1)�a2�x
∗� θ)

]
tk+1
2 (dθ× dtk1 )

≤
∫
�×T k

1

[
g′

2�N(σ1(θ� t1)�a
′
2�x�θ)− g′

2�N(σ1(θ� t1)�a2�x�θ)
]
tk+1
2 (dθ× dtk1 )

= 1
2

∫
�×T k

1

[
g2�N(σ1(θ� t1)�a

′
2� θ)− g2�N(σ1(θ� t1)�a2� θ)

]
tk+1
2 (dθ× dtk1 )≤ 1

2 2ε= ε�

hence (a2�x
∗) ∈ Rk+1

2 (t2�G
′
N�ε). This proves Rk+1

2 (t2�GN�2ε) ⊆ projA2�N
Rk2 (t2�G

′
N�ε).

Conversely, let (a2�x) ∈ Rk+1
2 (t2�G

′
N�ε) and let σ ′

1 :�× T1 → �(A′
1�N) be a correspond-

ing k-order ε-rationalizable conjecture. Then the difference in expected payoff for t2
between any a′

2 ∈A2�N and a2 under σ ′
1 in gameGN is∫

�×T k
1

[
g2�N(σ

′
1(θ� t1)�a

′
2� θ)− g2�N(σ

′
1(θ� t1)�a2� θ)

]
tk+1
2 (dθ× dtk1 )

= 2
∫
�×T k

1

[
g′

2�N(σ
′
1(θ� t1)�a

′
2�x�θ)− g′

2�N(σ
′
1(θ� t1)�a2�x�θ)

]
tk+1
2 (dθ× dtk1 )≤ 2ε�

hence a2 ∈ Rk+1
2 (t2�GN�2ε). This proves projA2�N

Rk2 (t2�G
′
N�ε) ⊆ Rk+1

2 (t2�GN�2ε), so
the proof of (22) for k+ 1 is complete. �
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