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Judicial precedent as a dynamic rationale
for axiomatic bargaining theory
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Axiomatic bargaining theory (e.g., Nash’s theorem) is static. We attempt to provide
a dynamic justification for the theory. Suppose a judge or arbitrator must allocate
utility in an (infinite) sequence of two-person problems; at each date, the judge
is presented with a utility possibility set in R2+. He/she must choose an alloca-
tion in the set, constrained only by Nash’s axioms, in the sense that a penalty is
paid if and only if a utility allocation is chosen at date T that is inconsistent, ac-
cording to one of the axioms, with a utility allocation chosen at some earlier date.
Penalties are discounted with t and the judge chooses any allocation, at a given
date, that minimizes the penalty he/she pays at that date. Under what conditions
will the judge’s chosen allocations converge to the Nash allocation over time? We
answer this question for three canonical axiomatic bargaining solutions—Nash,
Kalai–Smorodinsky, and “egalitarian”—and generalize the analysis to a broad class
of axiomatic models.
Keywords. Axiomatic bargaining theory, judicial precedent, dynamic founda-
tions, Nash’s bargaining solution.

JEL classification. C70, C78, K4.

1. Introduction

Axiomatic bargaining theory is timeless. In Nash’s (1950) original conception, the appa-
ratus is meant to model a bargaining problem between two individuals, each of whom
initially possesses an endowment of objects, and von Neumann–Morgenstern (vNM)
preferences over lotteries on the allocation of these objects to the two individuals. An
impasse point is defined as the pair of utilities each receives if no trade takes place, that
is, if no bargain is reached (here, particular vNM utility functions are employed). Nash
quickly passes to a formulation of the problem in utility space, where a bargaining prob-
lem becomes a convex, compact, comprehensive utility possibilities set, containing the
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impasse point. He then imposes the axioms of Pareto efficiency, symmetry, indepen-
dence, and scale invariance, and proves that the only “solution” that satisfies these ax-
ioms on an unrestricted domain of problems is the Nash solution—for any problem, the
utility point that maximizes the product of the individual gains from the threat point.1

We say the theory is timeless, because of the independence axiom, for this axiom
requires consistency in bargaining behavior between pairs of problems. What kind of
experience might lead the bargainers to respect the independence axiom? Presumably,
if they bargained for a sufficiently long period of time, facing many different problems,
they might come across a pair of problems that are related as the premise of the inde-
pendence axiom requires: problem S is contained in problem Q (as utility possibilities
sets), the bargainers faced problem Q last year and chose allocation q ∈ Q, and it so
happens that q ∈ S. It is certainly reasonable, they reason, to agree upon q when facing
S this year, because of something like Le Chatelier’s principle. (“If we chose q when all
those allocations in Q \ S were available, we effectively had decided to restrict our bar-
gaining to S last year anyway, so let’s choose q ∈ S again now.”) But if this is the way
that bargainers might “learn” how independence bears on decisions, then Nash’s the-
ory seems quite unrealistic. For with an unrestricted domain of problems, how often
will bargainers face two problems that are related as the premise of the independence
axiom requires? Almost never.

Notice that the same argument of timelessness does not apply to the scale invari-
ance axiom, even though that axiom compares the behavior of the solution on pairs
of problems, because that axiom is meant to model the idea that only von Neumann–
Morgenstern preferences count, not their particular representation as utility functions.
While the independence axiom can be viewed as a behavioral axiom, the scale invari-
ance axiom is an informational axiom.

The other axioms—symmetry and Pareto—are also behavioral but not timeless in
our sense. It is not a mystery why bargainers should learn to cooperate (Pareto) or that
two bargainers with the same preferences (and the same strengths) and the same en-
dowments should end up at a symmetric allocation. Thus, the critique we are proposing
of Nash bargaining theory is that one of the behavioral axioms (independence) has no
apparent justification via some kind of learning through history, in the presence of an-
other axiom (unrestricted domain), which essentially precludes that learning could ever
take place.

Our goal in this article is to replace the timelessness of axiomatic bargaining theory
with a dynamic approach in which decision makers learn from history. Indeed, there
is, we think, an obvious judicial practice, which provides a way to render the theory
dynamic. Suppose a judge or a court or an arbitrator faces a number of cases over time.
There is a constitution that prescribes what the judicial decision must be in certain clear
and polar cases. But most cases do not fit the specifications of these constitutionally

1Axiomatic bargaining theory has two major applications: one to bargaining and the other to distribu-
tive justice. Of course, Nash (1950) pioneered the first interpretation, and the second was pioneered by
Thomson and Lensberg (1989), who showed that many of the classical bargaining solutions (Nash, Kalai–
Smorodinsky, egalitarian) could be characterized by sets of axioms with ethical interpretations. See Roemer
(1996) for a history of the subject in its two variants.
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described cases, so judges rely on judicial precedent or case law: they look for a case in
the past that is similar in important respects, or related, to the one at hand and decide
the present case in like manner. Thus judicial precedent is a procedure that provides
a link to the past that is similar to the links between problems that the independence
axiom—and, indeed, from a formal viewpoint, the scale invariance axiom—impose.

Of course, there is a possibility that the case being considered at present time, i, has
two precedent cases j and k, each of which is related to i in some important way, but
which were decided differently. In general, the judge cannot decide the present case in a
way to satisfy both precedents, and we will represent this conflict in our formal model.2

Imagine, then, that there is a domain of “cases” D, which is some set of Nash-type
bargaining problems (convex, compact, comprehensive sets in R2+). Suppose that the
domain is rich enough that there are pairs of cases that are related by the scale invariance
axiom, and pairs of cases that are related by the independence axiom; there are also
some symmetrical cases in D. At each date t = 1�2�3� � � � , a case is drawn randomly by
Nature, according to some probability distribution on D. This infinite sequence of cases
is called a history. The judge must decide each case sequentially (here, how to choose a
feasible utility allocation) and he is restricted to obey the Nash axioms. What does this
mean? If the case is symmetric, he must choose a symmetric point in the case or pay a
penalty of 1; for every case, he must choose a Pareto efficient point or pay a penalty of 1.
If a case is related to a prior case in the history by the scale invariance or independence
axiom, and he does not choose the allocation in the present case that is consistent with
his prior choice according to the salient axiom, he must pay a penalty of δt if the prior
case appeared t periods ago, where 0 < δ < 1 is a given discount factor. (Thus, paying a
penalty of 1 if a Pareto efficient point is not chosen in the case at hand is just a special
case of this rule, because δ0 = 1.) If a case comes up that is not symmetric and is not
related to any prior case by scale invariance or independence, he can choose any Pareto
efficient point with zero penalty. At each date, the judge must choose an allocation that
minimizes his penalty. In general, at a given date, he may end up paying penalties with
respect to a number of cases in the past that are precedents, and so his penalty would
be a sum of the form

∑
i∈P δt for some set of nonnegative integers P .

Now suppose that we consider a domain D where Nash’s theorem is true: that is, any
solution ϕ :D → R2+ that satisfies ϕ(i) ∈ i for all i ∈ D that satisfies the Nash axioms on
D is, in fact, the Nash solution on D, denoted N . Call such a domain a Nash domain.
(The simplest Nash domain consists of precisely one symmetric set. Any solution on
this domain must obey the symmetry and Pareto axioms. Thus any solution obeying the
axioms coincides with N on this domain.) Our question is this: When is it the case that
a judge who plays by the above rules and faces an infinite history of cases, will converge
over time almost surely to prescribing the Nash solution to the cases he faces?

To be precise, consider a superdomain HD of all possible histories over a given Nash
domain, D, endowed with the product probability measure induced on histories by the

2Real judges tend to decide which precedent fits the case at hand more closely and arguments revolve
around the proximity of various precedents to the case at hand, but we will not follow this tack.
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given probability measure on D. When would the judge almost surely converge to pre-
scribing the Nash solution as time passes on histories in HD? We prove, under some sim-
ple additional assumptions, that convergence to the Nash solution occurs almost surely
for every set of histories HD, where D is a finite Nash domain that satisfies a specific con-
dition if and only if 0 < δ ≤ 1

3 , that is, if and only if history is discounted at a sufficiently
high rate. (Recall that the discount factor δ and the discount rate r are related by the
formula δ= 1/(1 + r).) This is our dynamic justification of Nash’s theorem. However, we
also show that there are Nash domains for which convergence to the Nash solution does
not occur almost surely. In that sense, we can say that the Nash characterization theo-
rem is dynamically imperfect. In contrast, we show that Kalai and Smorodinsky’s (1975)
characterization of their alternative solution, as well as Kalai’s (1977) characterization
of the egalitarian solution, are dynamically perfect in the sense that for every finite do-
main on which the theorem is true, almost sure convergence to the solution is obtained
for appropriate values of δ.

We extend the results to more general penalty systems and to a general class of ax-
iomatic theorems. The rest of the paper is structured as follows. Section 2 introduces
the axiomatic framework. Sections 3 and 4 successively deal with the Nash solution,
the Kalai–Smorodinsky solution, and the egalitarian solution. Section 5 shows how such
results can be generalized and applied to any characterization theorem in a general ax-
iomatic framework. Section 6 considers the possibility for the judge to make decisions
not only on the basis of penalties currently incurred, but also on the basis of future pos-
sible penalties. Section 7 concludes.

2. Framework and axioms

A domain D = {i� j�k� � � �} contains problems, namely, subsets of R2+ that are compact,
convex, and comprehensive.3 We restrict attention throughout the paper to finite do-
mains. For simplicity, we also restrict attention to sets that have a nonempty intersection
with R2++. Let ∂i denote the upper frontier of i, i.e.,4

∂i = {x ∈ i | �y ∈ i� y � x}�

and let ∂∗i denote the subset of Pareto efficient points of i:

∂∗i = {x ∈ i | �y ∈ i� y > x}�

Let I(i) denote the vector of ideal points, i.e.,

I(i) = (
max{x1 ∈ R+ | ∃x2� (x1�x2) ∈ i}�max{x2 ∈ R+ | ∃x1� (x1�x2) ∈ i})�

For any α ∈ R2++, a set j is an α-rescaling of i if

j = {x ∈ R2+ | ∃y ∈ i� x1 = α1y1�x2 = α2y2}�
3A set i is comprehensive when for all x ∈ i and all y ≤ x, one has y ∈ i.
4Vector inequalities are denoted ≥, >, and �.
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A solution ϕ :D → R2+ is a mapping such that for all i ∈ D, ϕ(i) ∈ i. The following
axioms appear in the landmark theorems by Nash (1950), Kalai and Smorodinsky (1975),
and Kalai (1977).

Weak Pareto ( WP). For all i ∈D, ϕ(i) ∈ ∂i.

Symmetry (Sym). For all i ∈D, if i is symmetric, then ϕ1(i) = ϕ2(i).

Scale Invariance (ScInv). For all i� j ∈ D, if j is an α-rescaling of i for some α ∈ R2++,
then

ϕ(j) = (α1ϕ1(i)�α2ϕ2(i))�

Nash Independence (Ind). For all i� j ∈D, if i ⊆ j and ϕ(j) ∈ i, then ϕ(i) = ϕ(j).

Monotonicity (Mon). For all i� j ∈D, if i ⊆ j, then ϕ(i) ≤ ϕ(j).

Individual Monotonicity (IMon). For all i� j ∈ D and p ∈ {1�2}, if i ⊆ j and
Ip(i) = Ip(j), then ϕ3−p(i) ≤ ϕ3−p(j).

Consider a domain D and an infinite number of periods t = 1�2� � � � . A history H is a
sequence of problems and chosen points

H = ((i1�x1)� (i2�x2)� � � �)

such that at every period t, xt ∈ it . At each t, a random process picks it ∈ D. For any
given i ∈ D, the probability that it = i may depend on the previous part of the history
((i1�x1)� � � � � (it−1�xt−1)). We assume throughout the paper that the random process is
regular in the sense that it never ascribes a zero probability (or a probability converging
to zero) to any given problem, i.e., if for every i ∈D, there exists πi > 0 such that for every
t ∈ N and for every past history ((i1�x1)� � � � � (it−1�xt−1))� the probability that it = i is at
least πi.

At each period t, the judge chooses xt ∈ it . His objective at each period is to minimize
the penalty for this period, which is the sum of penalties incurred for a violation of each
axiom. Each violation of an axiom implies a penalty of 1 unit. However, the penalty
for violating an axiom involving a reference to past problems is discounted by a factor
δ ∈ (0�1): the farther back in the past the reference problem is, the lower is the penalty.
Let r denote the corresponding discount rate: δ= 1/(1 + r).

To avoid any ambiguity, it is useful to specify what a violation of an axiom is exactly.
Choosing xt ∈ it may entail the following penalties.

• WP: Penalty of 1 if xt /∈ ∂it .

• Sym: Penalty of 1 if it is symmetric and ϕ1(it) 
= ϕ2(it).

• ScInv: Penalty of δs if it is an α-rescaling of it−s and ϕ(it) 
= (α1ϕ1(it−s)�α2ϕ2(it−s)).
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• Ind: Penalty of δs if ϕ(it) 
= ϕ(it−s) and either [it ⊆ it−s�ϕ(it−s) ∈ it] or
[it−s ⊆ it �ϕ(it) ∈ it−s].

• IMon: Penalty of δs if for some p ∈ {1�2}, either it+1 ⊆ it , Ip(it+1) = Ip(it), and
ϕ3−p(it+1) � ϕ3−p(it) or it ⊆ it+1, Ip(it+1)= Ip(it), and ϕ3−p(it) � ϕ3−p(it+1).

• Mon: Penalty of δs if either it ⊆ it−s and ϕ(it) � ϕ(it−s) or it−s ⊆ it and
ϕ(it−s) � ϕ(it).

One restriction of this system of penalties is that the violation of any axiom that in-
volves the past always counts less than the violation of any axiom that does not refer to
the past. We examine more general systems of penalties in Section 5.

Given a domain D and a random process to select problems, we say that the judge
converges almost surely to the solution ϕ if with probability 1 there is a date T such that
for all t ≥ T , the judge chooses ϕ(it).

3. Nash

The Nash solution, denoted N , is defined by

N(i)= {x ∈ i | ∀y ∈ i� x1x2 ≥ y1y2}�

The domain D is called a Nash domain if Nash’s theorem holds on D, i.e., if N(·) is the
only solution that satisfies WP, Sym, ScInv, and Ind on D.

We are interested in domains that satisfy the following condition.

Condition CN. For all i ∈ D, there exists a sequence j1� � � � � jn ∈ D such that j1 = i, jn is
symmetric, and for all t = 1� � � � � n− 1, either

(i) jt ⊆ jt+1 and N(jt+1) ∈ jt or

(ii) ∃α ∈ R2++, jt+1 is an α-rescaling of jt .

Call such a sequence a special chain beginning at i.

Proposition 1. Domain D is a Nash domain if it satisfies Condition CN . The converse
is not true.

Proof. If: Let ϕ be any solution on D that satisfies Nash’s axioms. Let i ∈ D. By Condi-
tion CN, there is a special chain j1� � � � � jn beginning at i. By Sym and WP, ϕ(jn) = N(jn).
One can now roll back along the special chain to i, and at each step, ϕ(jk) =N(jk) either
by Ind (case (i)) or by ScInv (case (ii)). For k = 1, we have ϕ(i) = N(i). It follows that
ϕ= N on D.

Converse: Let D= {i� j�k� l�m} for

i = co{(0�0)� (3�0)� (2�2)� (0�4)}
j = co{(0�0)� (3�0)� (2�2)� (0�3)}
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k = co{(0�0)� (2�0)� (2�2)� (0�4)}
l = co{(0�0)� (4�0)� (4�4)� (0�8)}

m = co{(0�0)� (8�0)� (0�8)}�
By WP and Sym, ϕ(j) = N(j) = (2�2) and ϕ(m) = N(m) = (4�4). By Ind, due to l ⊆ m,
ϕ(l) = N(l)= (4�4). By ScInv, as k is a rescaling of l, ϕ(k) =N(k)= (2�2).

Now consider i. There is no special chain that begins at i. It is not symmetric, it is
not the rescaling of another set, and it is not included in another set for which the Nash
point is in i.

Yet one must have ϕ(i) = N(i) = (2�2). By WP, ϕ(i) must belong either to the seg-
ment (3�0)(2�2) or to the segment (2�2)(0�4). Suppose one took ϕ(i) from a point
x of the segment (3�0)(2�2) different from (2�2). Then, as j ⊆ i, by Ind one should
have ϕ(j) = x, a contradiction. Suppose one took ϕ(i) from a point y of the segment
(2�2)(0�4) different from (2�2). Then, as k ⊆ i, by Ind one should have ϕ(k) = y, a con-
tradiction. Therefore, Nash’s theorem holds on D even though Condition CN does not
hold. �

We can now study the convergence of the judge’s decisions toward the Nash solu-
tion. The following proposition states that with probability 1 the judge’s decisions will
exactly coincide with the Nash solution within a finite number of periods. The argu-
ment is that when Condition CN holds for D, with probability 1, there will be some finite
time at which all the elements of D appear in a row, each preceded by the special chain
beginning at it, in reverse order: jn� jn−1� � � � � j2� i. When encountering jn, the judge will
choose N(jn) to avoid the penalties for violation of WP and Sym, and this will induce him
to choose the Nash point in the subsequent problems to avoid the penalties for violation
of Ind or ScInv. This happens, however, only if earlier possible “mistakes,” and the re-
lated penalties, are not overwhelming. Therefore, this requires the past to be sufficiently
discounted. When the past is strongly discounted, however, one may fear that once this
particular sequence is past, the judge may err again when confronted with an arbitrary
following sequence of problems. We prove, however, that the particular sequence of spe-
cial chains is powerful enough to impose the Nash solution on all subsequent problems.

Theorem 1. The judge converges almost surely to the Nash solution on every domain
satisfying Condition CN if and only if δ≤ 1

3 .

Proof. If: Let D be a domain satisfying Condition CN. Recall that by assumption, D is
finite and the random process is regular.

Step 1. Enumerate the problems in D as 1�2� � � � �M . For each problem i, define the
special chain beginning at i as i� j2(i)� � � � � jn(i)(i). Consider the sequence of problems

jn(1)(1)� jn(1)−1(1)� � � � �1� jn(2)(2)� � � � �2� jn(3)(3)� � � � �3� � � � � jn(M)(M)� � � � �M�

At every period, the probability that this sequence will occur at the next period is, by the
assumption that the random process is regular, at least

πjn(1)(1)πjn(1)−1(1) · · ·π1πjn(2)(2) · · ·π2 · · ·πjn(M)(M) · · ·πM > 0�
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Therefore, with probability 1, this sequence occurs at a finite date T .
If N(jn(1)(1)) is not chosen, the penalty is at least 1, since either WP or Sym is vio-

lated. If, however, N(jn(1)(1)) is chosen, this entails at most two violations with respect
to all previous choices—namely, for any previous date, a violation of ScInv and/or Ind.
So the worst penalty that can be incurred is 2

∑T−1
t=1 δt . As δ > 0,

2
T−1∑
t=1

δt < 2
∞∑
t=1

δt = 2
δ

1 − δ
�

Since δ≤ 1
3 , one has

2
δ

1 − δ
≤ 1�

so the judge will choose N(jn(1)(1)). Indeed, this argument shows that any symmetric
problem will be assigned the Nash point by the judge when it occurs.

Step 2. Now consider a later element jn(1)−k in the sequence, for k = 1� � � � � n(1) − 1.
If the judge does not choose N(jn(1)−k(1)), he violates either ScInv or Ind with respect
to the previous date, so the penalty is at least δ. If he does choose N(jn(1)−k(1)), he is
penalized at most

2
T∑

t=k+1

δt < 2
∞∑

t=k+1

δt = 2
δk+1

1 − δ
�

As one has

2
δk+1

1 − δ
≤ δk ≤ δ�

the judge chooses N(jn(1)−k(1)). In this way, we see that we have the Nash choice on the
whole sequence.

Step 3. Now let the element that occurs after this sequence be i. If the judge does
not choose N(i), he violates two axioms with respect to the previous occurrence of i in
the sequence—namely, ScInv and Ind. The penalty is, therefore, at least 2δt for some
1 ≤ t ≤ ∑M

j=2 n(j)+ 1. (The lowest penalty is when i = 1.) Let Q = ∑M
j=2 n(j)+ 1. Alterna-

tively, if he chooses N(i), he at most violates ScInv and Ind with respect to all problems
preceding the sequence (from the beginning of the history until Q + 1 periods before)
and is, therefore, penalized by no more than

2
∞∑

t=Q+1

δt = 2
δQ+1

1 − δ
�

So he will choose N(i) as long as

2
δQ+1

1 − δ
≤ 2δQ�

This is equivalent to δ ≤ 1
2 , which holds true.
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Step 4. Assume that the judge has chosen the Nash point for S periods after the end of
the sequence (in the previous step we showed this to be true for S = 1). Let the element
that occurs at S + 1 be i. If the judge does not choose N(i), he violates at least ScInv
and Ind with respect to the previous occurrence of i in the sequence, and the penalty is,
therefore, at least 2δt for some S + 1 ≤ t ≤ S +Q. If he chooses N(i), he at most violates
ScInv and Ind with respect to all problems preceding the sequence (from the beginning
of the history until S +Q+ 1 periods before), and is penalized by no more than

2
∞∑

t=S+Q+1

δt = 2
δS+Q+1

1 − δ
�

So he will choose N(i) as long as

2
δS+Q+1

1 − δ
≤ 2δS+Q�

which is equivalent to δ≤ 1
2 .

By induction he chooses Nash henceforth.
Only if: Suppose 1

3 < δ < 1. Let D = {i� j}, as described in Figure 1. The problem j is
symmetric.

The fact that δ > 1
3 is equivalent to

1
2

(
1 − δ

δ

)
< 1�

Let T be an integer that satisfies

T >
ln

(
1 − 1

2

( 1−δ
δ

))
lnδ

�

There is a positive probability (at least πT
i ) that history starts with T occurrences of i.

Suppose the judge picks point x in i for t = 1� � � � �T .

Figure 1. Example: the domain D= {i� j}.
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Let j occur at t = T + 1. If the judge chooses N(j), he violates ScInv and Ind with
respect to the previous T periods and the penalty is 2

∑T
t=1 δ

t . If he chooses x, he violates
Sym and the penalty is 1. If he chooses another point, the penalty is 1 + 2

∑T
t=1 δ

t . This
last option is, therefore, dominated by N(j). We have

2
T∑
t=1

δt > 1 ⇔ 2δ
1 − δT

1 − δ
> 1

⇔ T >
ln

(
1 − b

c+d

( 1−δ
δ

))
lnδ

�

which is true by assumption. Therefore, the judge picks x.
Consider a period S > T + 1 and assume that x has been chosen at all times before

(we know this to be true for S = T + 2). If i occurs, x is picked again without any penalty,
while any other point costs a penalty. If j occurs, picking x costs 1, while picking N(j)

costs 2
∑S−1

t=1 δt > 2
∑T

t=1 δ
t . So, again x is chosen.

By induction, at no period in the future can the Nash point be chosen. �

Note that the result holds only if, as assumed in this paper, δ > 0. When δ = 0 the
judge is tied only by WP and Sym, and this is clearly insufficient to make him converge
to the Nash solution.

Remark 1. Theorem 1 remains true if we assume that the judge takes his office at a
certain point in time, after an arbitrary history has unfolded, and feels bound by the
previous decisions and the attached penalties. No matter how far from the Nash solution
the antecedent decisions have been, he will converge almost surely to the Nash solution
under the conditions of the theorem.

Remark 2. These results depend on the judge being myopic. For instance, in the second
part of the proof of Theorem 1, the judge could anticipate that j will occur at some date
and that the only way not to incur any penalty is to take N(i) right from the beginning.
More on this issue will be said in Section 6.

The main limitation of Theorem 1 is that it applies only to domains for which Con-
dition CN holds. By Proposition 1, this is a strict subset of the set of Nash domains. It is
easy to weaken Condition CN in such a way that Theorem 1 remains valid over the cor-
responding larger set of domains, but the next proposition shows that Theorem 1 does
not generalize to the full set of all Nash domains. Moreover, this problem is indepen-
dent of the particular system of penalties adopted. (This result does not even require
the random process to be regular.)

Proposition 2. There exist Nash domains such that, whatever δ, whatever the value of
the penalty attached to each axiom, and whatever the random process, convergence to N

does not occur almost surely on such domains.
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The proof involves a tedious example with a 10-problem domain and is available as
a supplementary file on the journal website.5 This negative result is due to the partic-
ular way in which Ind may work in the characterization of the Nash solution for some
domains. Observe that in the example given in the proof of Proposition 1, one must
have ϕ(i) = N(i) because j�k ⊆ i and the constraints known about ϕ(j) and ϕ(k) force
ϕ(i) to belong to two different segments of ∂i, the intersection of which is {N(i)}. This
is the static form of the axiomatic analysis. In the dynamic setting in which the judge
operates, this kind of constraint may be too weak to force him to choose N(i).6 This
does not happen in this particular example because the constraints on ϕ(j) and ϕ(k)

are ϕ(j) = ϕ(k) = N(i), so that, given the shape of these sets, a violation of Ind in j or k
would occur if the judge chose any non-Nash point in i. The proof, therefore, requires a
more complicated example in which the constraints on the smaller sets are less precise
so that the judge may pick points other than the Nash point in these sets and then also
pick non-Nash points in the large set.

One can see from the example that proves Proposition 2 that the failure of conver-
gence is not a convergence to another solution, but an oscillation between several so-
lutions. One may then wonder if a stronger form of failure can occur, namely, conver-
gence to another solution. The answer is, fortunately for the Nash approach, negative.
(We assume again that the random process is regular.)

Proposition 3. If δ ≤ 1
3 and convergence to a particular solution ϕ occurs with positive

probability in a Nash domain, then ϕ =N .

Proof. Let D be a Nash domain and assume that convergence to a particular solution ϕ

occurs with positive probability. This means that there is a set H of histories, occurring
with positive probability, such that for every history h ∈ H, there is a finite Th such that
for all t ≥ Th, ϕ(it) is chosen in every it .

Define the subset of H:

H0 = {h ∈H | ∃i� j ∈D� the sequence (i� j) occurs only a finite number of times in h}�
Subset H0 is a set of histories of measure zero because the process is regular. Thus, the
set of histories H ′ =H \H0 is not empty (it has the same mass as H) and for every h ∈H ′,
for every i� j ∈ D, the sequence (i� j) occurs an infinite number of times. A fortiori, note
that every i also occurs an infinite number of times.

We now prove that ϕ obeys all the Nash axioms on D; since D is a Nash domain, it
must be that ϕ= N .

First, ϕ must satisfy Sym, because δ ≤ 1
3 and, therefore, as shown in the proof of

Theorem 1, the judge always selects the Nash point (which is symmetric) in symmetric
sets.

Second, suppose ϕ does not satisfy WP. Let h ∈ H ′ and let date t be the first date in h

at which ϕ(it) /∈ ∂it . By the argument of the previous paragraph, it is not symmetric. If

5http://econtheory.org/supp/588/supplement.pdf.
6When Ind imposes a penalty on the judge only when the past set is the larger set, this constraint simply

vanishes.

http://econtheory.org/supp/588/supplement.pdf
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the judge selects ϕ(it), the penalty is at least 1 (for a violation of WP). If the judge selects
a point in ∂it , he does not violate WP or Sym, but may at worst violate ScInv and Ind with
respect to all t − 1 periods, so that the penalty is less than

2(δ+ δ2 + · · ·) = 2
δ

1 − δ
�

The penalty is therefore less than 1, as δ ≤ 1
3 . Therefore, the judge will never choose ϕ(it).

As h ∈ H ′, it occurs an infinite number of times, which contradicts the assumption that
convergence to ϕ occurs in every h ∈H ′.

Third, suppose that ϕ violates ScInv with respect to a particular pair (i� j). Let h ∈ H ′.
As ϕ selects the Nash point in symmetric sets, and i and j occur infinitely many times
in h, i and j are not symmetric if convergence to ϕ is obtained in h. Moreover, h contains
infinitely many occurrences of (i� j). When such a sequence occurs, the fact that the
combination of ϕ(i) and ϕ(j) violates ScInv implies that choosing ϕ(j) costs at least δ.
Choosing a point x ∈ ∂j \ϕ(j) costs less than

2(δ2 + δ3 + · · ·)= 2
δ2

1 − δ
�

which is less than δ as δ ≤ 1
3 . Therefore, it is impossible for the judge to choose ϕ(j) from

j when (i� j) occurs. Convergence to ϕ cannot occur in h, a contradiction.
Fourth, ϕ must satisfy Ind. Suppose that it violates it with respect to a particular

pair (i� j). As ϕ selects the Nash point in symmetric sets, necessarily one of them is not
symmetric, say j. One can then repeat the rest of the argument developed for ScInv and
derive a contradiction. �

4. Other solutions

We now examine how similar results can be obtained for the other two classical solu-
tions of bargaining theory, the Kalai–Smorodinsky solution and the egalitarian solution.
They reveal interesting differences with the Nash solution. One difference is that special
chains can now be found that exactly delineate the domains for which the characteriza-
tion theorems hold true. Another difference is that the theorem that characterizes the
egalitarian solution has a smaller number of axioms.

4.1 Kalai–Smorodinsky

The Kalai–Smorodinsky solution is denoted KS. One has

KS(i) = {x ∈ ∂i | x1/x2 = I1(i)/I2(i)}�
A domain D is called a Kalai–Smorodinsky domain if the Kalai–Smorodinsky theorem
holds on D, i.e., if KS(·) is the only solution satisfying WP, Sym, ScInv, and IMon on D.

Condition CKS. For all i ∈ D, there exists a sequence j1� � � � � jn such that j1 = i, jn is
symmetric and for all t = 1� � � � � n− 1, either
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(i) jt ⊆ jt+1 (or jt ⊇ jt+1), I(jt) = I(jt+1), and KS(jt+1) ∈ ∂jt or

(ii) ∃α ∈ R2++, jt+1 is an α-rescaling of jt .

Again, and without risk of confusion with the previous section, let us call such a
sequence a special chain beginning at i.

Proposition 4. A domain D is a Kalai–Smorodinsky domain if and only if it satisfies
Condition CKS.

The proof of this proposition is tedious and is available as a supplementary file on
the journal website.7 This result makes it possible to obtain the following theorem.

Theorem 2. The judge converges to KS almost surely on all Kalai–Smorodinsky domains
if and only if δ ≤ 1

3 .

The proof closely mimics the proof of Theorem 1, with IMon replacing Ind.

4.2 Egalitarian solution

The egalitarian solution is denoted E. One has

E(i) = {x ∈ ∂i | x1 = x2}�
A domain D will be called an E domain if the egalitarian solution is the only solution
satisfying WP, Sym, and Mon on D. This egalitarian theorem is a variant of Theorem 1 in
Kalai (1977) and can be found in Thomson and Lensberg (1989, Theorem 2.5) and Peters
(1992, Theorem 4.31).

Condition CE. For all i ∈ D, there exists a sequence j1� � � � � jn such that j1 = i, jn is
symmetric and for all t = 1� � � � � n− 1, E(jt) =E(jt+1) and either jt ⊆ jt+1 or jt+1 ⊆ jt .

Again the sequence j1� � � � � jn will be called a special chain beginning at i.

Proposition 5. A domain D is an E domain if and only if it satisfies Condition CE .

Proof. If: Let ϕ be any solution on D satisfying the axioms of the egalitarian theorem.
Let i ∈ D. By Condition CE there is a special chain j1� � � � � jn beginning at i. By Sym,
E(jn) is chosen from jn and one rolls back along the special chain by applying Mon. This
implies ϕ(i) =E(i).

Only if: Let D+ be the subset of D containing the problems i with a special chain. We
must show that D+ =D if the egalitarian theorem holds on D. Suppose that there exists
a problem k ∈ D \D+. Let

Z = {x ∈ R2+ | ∃i ∈D+�x =E(i)}�
7http://econtheory.org/supp/588/supplement.pdf.

http://econtheory.org/supp/588/supplement.pdf
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Construct a monotone path P from zero for which the intersection with the 45◦ line
coincides with Z on R2++. More precisely, P is the graph of an increasing function f such
that f (0) = 0 and

{x ∈ P | x1 = x2} = Z ∪ {0}�
Let ϕ be defined by, for all i ∈ D, {ϕ(i)} = P ∩∂i. By construction ϕ satisfies WP and Mon.
It satisfies Sym because all symmetric problems are in D+ and ϕ coincides with E on
D+. But ϕ 
=E unless D =D+, which proves the “only if” part of the proposition. �

The next theorem displays a more favorable threshold for δ thanks to the presence,
in the egalitarian theorem, of fewer axioms that involve a reference to past decisions.

Theorem 3. The judge converges to E almost surely on all E domains if and only if δ≤ 1
2 .

The “if” part is a corollary of Theorem 4. The converse is an immediate adaptation
of the second part of the proof of Theorem 1.

5. Generalization

The similarity between the results of the previous sections suggests an underlying com-
mon structure. In this section, we provide a general result that covers more theorems
and other frameworks than the bargaining model. Consider an abstract setting in which
a problem is a subset i of a general set O of options and a solution ϕ, defined on a do-
main D, has to pick an element of this set: ϕ(i) ∈ i.

The axioms of a characterization theorem have two general forms and are labelled 1k
for k = 1� � � � �K1 and 2k for k = 1� � � � �K2, respectively. The first type of axiom, “unary”
axioms, requires the solution to be chosen from a specific subset of i whenever i is of
a particular sort. Let Dk

1 be a subset of the domain D and let Gk
1 be a correspondence

from D to 2O such that for all i ∈D, Gk
1 (i) ⊆ i.

Axiom 1k. For all i ∈D, if i ∈ Dk
1 , then ϕ(i) ∈Gk

1 (i).

The second type of axiom, “binary” axioms, requires the points chosen by the solu-
tion for two sets i, j to stand in a particular relation whenever these two sets are them-
selves related in a specific way. Let Dk

2 be a subset of D2 that contains the pair (i� i) for
all i ∈ D and let Gk

2 be a correspondence from D2 to 2O×O such that for all (i� j) ∈ D2,
Gk

2 (i� j) ⊆ i × j. Moreover, we impose that for all i ∈ D, Gk
2 (i� i) contains no (x� y) such

that x 
= y.

Axiom 2k. For all (i� j) ∈D2, if (i� j) ∈Dk
2 , then (ϕ(i)�ϕ(j)) ∈Gk

2 (i� j).

Let us illustrate these general formulations with the axioms introduced in Section 2.
Weak Pareto and Symmetry are of the first kind. For Weak Pareto, Dk

1 =D and Gk
1 (i) = ∂i.

For Symmetry, Dk
1 is the subset of symmetric problems and Gk

1 (i) is the intersection of i
with the 45◦ line.
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The other axioms are of the second kind. For Scale Invariance, Dk
2 is the subset of

pairs such that one set is a rescaling of the other, and Gk
2 (i� j) is the set of pairs in i × j

such that one point is the rescaling of the other in the same proportion as for the sets
i, j. For Nash Independence, Dk

2 is the subset of pairs (i� j) such that i ⊆ j, and Gk
2 (i� j) is

the set of pairs (x� y) ∈ i× j such that if y ∈ i, then x= y:

Gk
2 (i� j) = {(x� y) ∈ i× j | x = y or y /∈ i}�

For Monotonicity, Dk
2 is also the subset of pairs (i� j) such that i ⊆ j, and Gk

2 (i� j) is the
set of pairs (x� y) ∈ i× j such that x≤ y, and so on.

The binary axioms used in the previous sections all satisfy the restriction that for all
i ∈ D, Gk

2 (i� i) contains no (x� y) such that x 
= y. This restriction is not needed in static
axiomatics because by definition, ϕ(i) is only one element of i. But in the sequential
framework of the judge, it is possible for him to choose different elements of i at different
occurrences of i. It is then important that binary axioms give him incentives to choose
consistently.

One could imagine other types of axioms, involving a greater number of problems,
such as

ϕ(i) = ϕ(j) �⇒ ϕ(i ∪ j) = ϕ(i)�

This would require defining a system of penalties when the judge violates such an axiom
that involves two problems treated at two different periods in the past. This extension is
left for future research.

Let D be given, with a set of K1 unary axioms and K2 binary axioms. A special chain
for a solution ϕ beginning at i in D is a sequence of problems j1� � � � � jn ∈ D such that
j1 = i and

(i) for a subset K∗ ⊆ {1� � � � �K1}, jn ∈ ⋂
k∈K∗ Dk

1 and
⋂

k∈K∗ Gk
1 (jn)= {ϕ(jn)}

(ii) for all t = 1� � � � � n − 1, there is a subset K∗∗ ⊆ {1� � � � �K2} such that (jt� jt+1) ∈⋂
k∈K∗∗ Dk

2 and

{
x ∈ jt

∣∣ (x�ϕ(jt+1)) ∈
⋂

k∈K∗∗
Gk

2 (jt� jt+1)

}
= {ϕ(jt)}�

What these conditions say is simple: for any solution ϕ′ that satisfies all the axioms,
ϕ′(jn) = ϕ(jn) is imposed by the unary axioms, while for all pairs (jt� jt+1), ϕ′(jt) = ϕ(jt)

is imposed by the binary axioms if ϕ′(jt+1) = ϕ(jt+1). One then sees that by rolling back
the sequence from jn to j1, ϕ′(i) = ϕ(i) is imposed by the combination of all the axioms.

Note that in condition (ii) one could incorporate constraints on ϕ′(jt) imposed
by unary axioms in conjunction with binary axioms. One could also consider
additional constraints from binary axioms based on the symmetrical situation:
(jt+1� jt) ∈ ⋂

k∈K∗∗ Dk
2 and the set

{
x ∈ jt

∣∣ (ϕ(jt+1)�x) ∈
⋂

k∈K∗∗
Gk

2 (jt+1� jt)

}
= {ϕ(jt)}�
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Such possibilities were actually used in the special chains defined in the previous sec-
tions. We ignore them here because it does not alter the results obtained in this section,
but it does complicate the presentation.

By the “rolling back” argument, we have obtained the first part of the following result.

Proposition 6. A solution ϕ is the only one that satisfies all the K1 + K2 axioms on a
finite domain D if for all i ∈ D, there is a special chain for ϕ beginning at i. The converse
does not hold in general.

We do not need to prove the second part of this statement because from Propo-
sition 1 we already know that the converse is not true in general. Indeed, in general
there are many other ways to force a precise value of ϕ(i) than by a special chain be-
ginning at i, and it is somewhat surprising that we could obtain the converse for the
Kalai–Smorodinsky and the egalitarian solutions.

Let us assume that the minimal (undiscounted) penalty for the violation of any ax-
iom in the judge’s court is a and that for a binary axiom, the average penalty is b. The key
number in the following theorem is the ratio of penalties K2b/a, which is a lower bound
for the “interest rate” with which the judge discounts the past. The critical interest rate
never increases when a penalty that involves a unary axiom increases. Indeed, a greater
weight for these axioms reinforces the right choice when a set jn occurs and never en-
courages the judge to preserve past “mistakes.” The role of the binary axioms and their
penalties is more subtle. The critical interest rate increases with a penalty for a binary
axiom if it is greater than another penalty, because this raises b without altering a, but
r decreases if the penalty for a binary axiom is lower than all other penalties, because
K2b and a then increase by the same increment. This pattern can be explained as fol-
lows. When a binary axiom has heavy relative weight, this may give too much influence
to past mistakes. However, when its associated penalty is small relative to the others, it
is good to increase it so as to force the judge to take account of the good decisions that
have been made under the stronger pressure of the other axioms.

Theorem 4. Assume that for every i ∈D there is a special chain for ϕ beginning at i. The
judge converges almost surely to the solution ϕ if

r ≥ K2b

a
� (1)

Proof. The structure of the proof is similar to the proof of Theorem 1. The quantity
K2b2 is the greatest penalty that the judge may incur for a violation of binary axioms.
The second inequality in (1) is equivalent to

K2b
δ

1 − δ
≤ a�

Step 1. Enumerate the problems in D as 1�2� � � � �M . For each problem i, define the
special chain beginning at i as i� j2(i)� � � � � jn(i)(i). Consider the sequence of problems

jn(1)(1)� jn(1)−1(1)� � � � �1� jn(2)(2)� � � � �2� jn(3)(3)� � � � �3� � � � � jn(M)(M)� � � � �M�
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With probability 1, this sequence occurs at a finite date T .
If ϕ(jn(1)(1)) is not chosen, the penalty is at least a, since a unary axiom is violated.

If, however, ϕ(jn(1)(1)) is chosen, this entails at most K2 violations of binary axioms with
respect to all previous choices. So the worst penalty that can be incurred is K2b

∑T−1
t=1 δt .

As δ > 0,

K2b

T−1∑
t=1

δt < K2b

∞∑
t=1

δt =K2b
δ

1 − δ
�

Since by (1),

K2b
δ

1 − δ
≤ a�

the judge will choose ϕ(jn(1)(1)). For the same reason, the judge will choose ϕ(jn(t)(t))

for t = 2� � � � �M .
Step 2. Consider another element jn(1)−k(1), k = 1� � � � � n(1) − 1, in the sequence.

If the judge does not choose ϕ(jn(1)−k(1)), he violates at least one binary axiom with
respect to the previous date, so the penalty is at least aδ. If he does choose ϕ(jn(1)−k(1)),
he is penalized at most

K2b

T∑
t=k+1

δt < K2b

∞∑
t=k+1

δt =K2b
δk+1

1 − δ
�

As

K2b
δk+1

1 − δ
≤ aδ�

the judge chooses ϕ(jn(1)−k(1)). Therefore, ϕ is chosen throughout the sequence.
Step 3. Let the element that occurs after this sequence be i. If the judge does not

choose ϕ(i), he violates all binary axioms with respect to the previous occurrence of i
in the sequence. The penalty is, therefore, K2bδ

t for some 1 ≤ t ≤ Q = ∑M
j=2 n(j) + 1.

Alternatively, if he chooses ϕ(i), he at most violates K2 binary axioms with respect to all
problems preceding the sequence (from the beginning of the history until Q+ 1 periods
before) and is, therefore, penalized by not more than

K2b

∞∑
t=Q+1

δt = K2b
δQ+1

1 − δ
�

So he will choose ϕ(i) as long as

K2b
δQ+1

1 − δ
≤K2bδ

Q�

which is satisfied because

δ

1 − δ
≤ a

K2b
≤ 1�
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Step 4. Assume that the judge has chosen the ϕ point for S periods after the end of the
sequence. Let the element that occurs at S + 1 be i. If the judge does not choose ϕ(i), he
violates K2 binary axioms with respect to the previous occurrence of i in the sequence
and the penalty is, therefore, K2bδ

t for some S + 1 ≤ t ≤ S + Q. If he chooses ϕ(i), he
at most violates K2 binary axioms with respect to all problems preceding the sequence
(from the beginning of the history until S+Q+1 periods before) and is penalized by less
than

K2b

∞∑
t=S+Q+1

δt =K2b
δS+Q+1

1 − δ
�

So he will choose ϕ(i) as long as

K2b
δS+Q+1

1 − δ
≤ K2bδ

S+Q�

This is equivalent to the condition obtained in Step 3. �

It seems difficult to obtain a converse to Theorem 4 because the counterexamples
constructed in the previous sections rely on the specifics of the models and solutions
under consideration.

Remark 3. In the previous sections, we assumed a = b = 1, in which case the premise in
Theorem 4 becomes r ≥ K2 or, equivalently, δ≤ 1/(1 +K2). This explains why the upper
bound for δ with the egalitarian solution ( 1

2 for K2 = 1) differs from the bound for the
Nash and Kalai–Smorodinsky solutions ( 1

3 for K2 = 2).

Remark 4. We noticed in Section 2 that the assumption that the violation of a binary
axiom never counts for more than δ, which is less than the penalty for a unary axiom,
appears restrictive. It is difficult to escape this pattern, though. The more general system
of penalties considered in this section allows for a relative penalty for binary axioms, b/a,
that is as large as one wishes. However, the inequality r ≥K2b/a implies that one always
has K2bδ < a, because

δ≤ 1

1 + K2b
a

<
a

K2b
�

The inequality K2bδ < a means that all the binary axioms together always have a lower
discounted penalty than any unary axiom. It is intuitive that this must hold if one wants
the judge always to make the right choice in every set jn of a special chain.

6. Foresight

It is against the philosophy of our approach to endow the judge with foresight, according
to which he would compute the effect of his present decision on penalties he is likely to
incur in the future, because our approach is one of bounded rationality and learning, not
full rationality. In addition, foresight is not an important aspect of the doctrine of real-
world judicial precedent, because the judges typically focus on consistency with past
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judgments rather than on the constraints their current decisions will impose on future
related cases, so our approach is not far-fetched.

Even with foresight, however, the problem does not become trivial if the judge has to
live with an arbitrary set of precedents that he inherits upon taking office and that will
determine penalties he incurs in the future. It is then possible that historical errors will
continue to influence his decisions and prevent convergence to the “correct” solution.

In this section, we present an example to show that this can indeed occur when the
judge has foresight. We adopt the framework of Section 3 (focusing on the Nash solution
in the axiomatic bargaining model) and assume that the judge knows the probability law
that governs the occurrence of successive problems. He discounts the future penalties
with a factor β. Suppose he starts his job at time 0, after an arbitrary sequence of de-
cisions have been made for periods −T� � � � �−1. He faces a problem i0 and devises a
conditional strategy

x0�x1(i1)�x2(i1� i2)� � � � � xt(i1� � � � � it)� � � � �

When a particular history of problems i1� i2� � � � is realized, he must pay the total dis-
counted penalty

∑
t≥0 β

tpt , where pt is the penalty paid in t for violations of unary ax-
ioms in t and violations of binary axioms in t with respect to past decisions (with the
discount factor δ). Knowing the probability of occurrence of all possible histories, he
can then compute the expected value of

∑
t≥0 β

tpt for a given conditional strategy and
select the conditional strategy that minimizes this quantity. When history unfolds, he
has to follow only the conditional strategy. Note that the conditional strategy and the
computation of the expected value of

∑
t≥0 β

tpt can incorporate the fact that the ob-
served sequence of problems up to t may alter the probability of occurrence of future
problems for t + 1� t + 2� � � � .

What has been done in the previous sections corresponds to the special case in
which β = 0. The judge then only has to choose xt so as to minimize pt , and it suffices
that he does so sequentially for the actual sequence of problems, ignoring the counter-
factual problems.

Consider for a moment that history does start at period 0, i.e., there is no arbitrary
sequence of precedents. If the domain satisfies the chain condition (i.e., a special chain
begins at every member) and the random process is regular, then the only way to avoid
penalties in the future is to follow the solution characterized by the axioms. Whenever
β> 0, the judge always follows the solution.

We now show that, in contrast, when an arbitrary sequence of precedents encum-
bers the judge’s decisions, a positive β may not suffice to converge to the solution. Con-
sider the example of Theorem 1. Suppose that the past history consists of T times x (it
does not matter whether i or j was the set). Let j occur at period 0.

Suppose the judge knows that the history that will occur beginning at t = 0 is an infi-
nite sequence of j’s. In a moment, we will calculate the condition under which it would
minimize his total discounted penalty to continue playing x forever and hence never
converge to the Nash solution. Now if this condition holds, it must be the case that not
knowing what the sequence will be except that j has occurred at t = 0, his best strategy
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is to play x forever, because the largest total penalty he can ever incur is when the se-
quence beginning at t = 0 is an infinite sequence of j’s. (He would never pay a penalty
when i occurs in a history under this strategy, but he pays a penalty whenever j occurs.)
Additionally, under this special history, if it is rational for him to stick to playing x, then
it must be the optimal conditional strategy as well.

Let us prove that if the judge thinks that only j will occur from t = 0 on, at period 0
he adopts the strategy to retain x forever. If he retains x, he pays an expected penalty of
1/(1 −β). If he switches to N(j) he pays

2
T∑
t=1

δt +β2
T+1∑
t=2

δt + · · · = 2δ
1 − δT

1 − δ

1
1 −βδ

�

The latter is greater than the former if

T >
ln

(
1 − 1

2
1−βδ
1−β

1−δ
δ

)
lnδ

�

This formula requires

1
2

1 −βδ

1 −β

1 − δ

δ
< 1�

which is true if

β<
1 − 1−δ

δ
1
2

1 − (1 − δ) 1
2

and δ >
1
3
�

The condition on δ is the same as in the counterexample of Theorem 1, which is interest-
ing because it shows that the presence of foresight does not radically alter the constraints
on δ.

To illustrate, one obtains a lack of convergence with, e.g., δ= 0�8, β= 0�95, and T = 5.

7. Conclusion

An interesting fact is that, in all the results of this paper, we get convergence to the solu-
tion precisely when discounting the future is large. This is somewhat counterintuitive:
one might think that convergence to the solution occurs only for intermediate values of
the discount rate, because even if the past decisions must be easily forgotten when they
are bad, they must also retain some force when they are good. As it turns out, for the
latter concern it is enough if the past is not completely ignored (δ > 0). This can be un-
derstood by the fact that when convergence takes place, the good decisions are typically
more recent than the bad decisions. Forgetting the latter is then at least as important as
remembering the former and is obtained with a low δ.

However, the analysis of general systems of penalties in Section 5 shows that it is
indeed bad for convergence if some binary axiom induce too low a penalty relative to
the other axioms. This indeed creates the risk that the recent good decisions are binding
only through this “feeble” axiom and their influence on the current decision may be
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overwhelmed by the previous bad decisions that may bind through other axioms. It is in
this mechanism that the intuition that the past must retain some power is vindicated.

The approach proposed in this paper may suggest a ranking of characterization the-
orems. Suppose we have a set T of axiomatic theorems of the type we discuss here and
for each theorem τ ∈ T, we prove that in the benchmark case, almost sure convergence
to the appropriate solution occurs if and only if δ ∈ (0� δτ]. This provides a way to rank
the axiomatic theorems in terms of plausibility: the greater is δτ , the more plausible is
the theorem, in the sense that the dynamic version of the theorem (as developed here)
holds for a larger set of discount factors. Thus, we say that the egalitarian theorem is
more plausible than Nash’s or Kalai and Smorodinsky’s theorem.

To be precise, we are saying that if we observe societies that abide by an egalitarian
constitution and societies that abide by a Nash constitution, and discount factors vary
across societies randomly, then it is more likely that we will observe allocations that look
like the egalitarian solution in the egalitarian societies than allocations that look like the
Nash solution in Nash societies, because (0� 1

3 ] ⊂ (0� 1
2 ].

An issue that we did not explore in this paper is the speed of convergence. Almost
sure convergence is obtained in our results with the help of a particular sequence of
problems, all special chains for all members of the domain in a row, which is a rather
unlikely event. For a domain with n problems, each having a special chain of average
length m, this requires a particular arrangement of nm problems, with n! acceptable
permutations of this arrangement. The expected number of periods needed for one of
these arrangements to occur is large. For n = 10, m= 2, and assuming a random process
with independent and identically distributed draws and equiprobable problems, the ex-
pected number of periods is around 7�6 × 1026.8 Convergence can nevertheless occur in
other cases, for instance, if all special chains occur in a sequence, but without a repeti-
tion of problems (i.e., if a special chain has appeared, its elements do not appear again
in the arrangement; if two or more sets share the end of their special chains but not the
beginning, one chain is followed by the remaining part of the other chain). The length
of the special sequence of problems is then reduced from nm to n. In the above example
with n = 10, m = 2, and assuming that there are four special chains, the expected time of
convergence is reduced to 1�7 × 1017, still a large number but significantly less so. The
adaptation of our proofs of almost sure convergence to this shorter sequence is straight-
forward. This, however, provides only a very rough upper bound of the expected time
of convergence. We leave this issue for future research. A related issue, also left for fu-
ture research, is the computation of the probability of convergence, which may be high
without being equal to 1 when δ is greater than the threshold identified here.
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