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Survival of dominated strategies under evolutionary dynamics
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We prove that any deterministic evolutionary dynamic satisfying four mild re-
quirements fails to eliminate strictly dominated strategies in some games. We
also show that existing elimination results for evolutionary dynamics are not ro-
bust to small changes in the specifications of the dynamics. Numerical analysis
reveals that dominated strategies can persist at nontrivial frequencies even when
the level of domination is not small.
Keywords. Evolutionary game theory, evolutionary game dynamics, nonconver-
gence, dominated strategies.
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1. Introduction

One fundamental issue in evolutionary game theory concerns the relationship between
its predictions and those provided by traditional, rationality-based solution concepts.
Indeed, much of the early interest in the theory among economists is due to its ability to
justify traditional equilibrium predictions as consequences of myopic decisions made
by simple agents.

Some of the best known results in this vein link the rest points of a deterministic
evolutionary dynamic with the Nash equilibria of the game being played. Under most
dynamics considered in the literature, the set of rest points includes all Nash equilibria
of the underlying game, and under many of these dynamics the sets of rest points and
Nash equilibria are identical.1

To improve on these results, one might look for dynamics that converge to Nash
equilibrium from most initial conditions regardless of the game at hand. Such a find-
ing would provide a strong defense of the Nash prediction, as agents who began play
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at some disequilibrium state could be expected to find their way to Nash equilibrium.
Unfortunately, results of this kind cannot be proved. Hofbauer and Swinkels (1996) and
Hart and Mas-Colell (2003) show that no reasonable evolutionary dynamic converges to
Nash equilibrium in all games: there are some games in which cycling or more com-
plicated limit behavior far from any Nash equilibrium is the only plausible long run
prediction.

These negative results lead us to consider a more modest question. Rather than seek
evolutionary support for equilibrium play, we instead turn our attention to a more basic
rationality requirement, namely, the avoidance of strategies that are strictly dominated
by a pure strategy.

Research on this question to date has led to a number of positive results. Two of the
canonical evolutionary dynamics are known to eliminate strictly dominated strategies,
at least from most initial conditions. Akin (1980) shows that starting from any interior
population state, the replicator dynamic (Taylor and Jonker 1978) eliminates strategies
that are strictly dominated by a pure strategy. Samuelson and Zhang (1992), building on
the work of Nachbar (1990), extend this result to a broad class of evolutionary dynam-
ics driven by imitation: namely, dynamics under which strategies’ percentage growth
rates are ordered by their payoffs.2 Elimination results are also available for dynam-
ics based on traditional choice criteria: the best response dynamic (Gilboa and Matsui
1991) eliminates strictly dominated strategies by construction, as under this dynamic,
revising agents always switch to optimal strategies. Since the elimination of strategies
strictly dominated by a pure strategy is the mildest requirement employed in standard
game-theoretic analyses, it may seem unsurprising that two basic evolutionary dynam-
ics obey this dictum.

In this paper, we argue that evolutionary support for the elimination of dominated
strategies is more tenuous than the results noted above suggest. In particular, we prove
that all evolutionary dynamics satisfying four mild conditions—continuity, positive cor-
relation, Nash stationarity, and innovation—must fail to eliminate strictly dominated
strategies in some games. Dynamics satisfying these conditions include not only well
known dynamics from the evolutionary literature, but also slight modifications of the
dynamics under which elimination is known to occur. In effect, this paper shows that
the dynamics known to eliminate strictly dominated strategies in all games are the only
ones one should expect to do so, and that even these elimination results are knife-edge
cases.

An important predecessor of this study is the work of Berger and Hofbauer (2006),
who present a game in which a strictly dominated strategy survives under the Brown–
von Neumann–Nash (BNN) dynamic (Brown and von Neumann 1950). We begin the
present study by showing how Berger and Hofbauer’s (2006) analysis can be extended to
a variety of other dynamics, including the Smith dynamic (Smith 1984) as well as gener-
alizations of both the BNN and Smith dynamics (Hofbauer 2000, Sandholm 2005, 2010a).
While this analysis is relatively simple, it is not general, as it depends on the functional

2Samuelson and Zhang (1992) and Hofbauer and Weibull (1996) also introduce classes of imitative dy-
namics under which strategies strictly dominated by a mixed strategy are eliminated.
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forms of the dynamics at issue. Since in practice it is difficult to know exactly how agents
update their choices over time, a more compelling elimination result would require only
minimal structure.

Our main theorem provides such a result. Rather than specifying functional forms
for the evolutionary dynamics under consideration, the theorem allows for any dynamic
satisfying four mild conditions. The first, continuity, asks that the dynamic change con-
tinuously as a function of the payoff vector and the population state. The second, pos-
itive correlation, is a weak montonicity condition: it demands that away from equilib-
rium, the correlation between strategies’ payoffs and growth rates always be positive.
The third condition, Nash stationarity, asks that states that are not Nash equilibria—that
is, states where payoff improvement opportunities are available—are not rest points of
the dynamic. The final condition, innovation, is a requirement that has force only at
non-Nash boundary states: if at such a state some unused strategy is a best response,
the growth rate of this strategy must be positive. The last two conditions rule out the
replicator dynamic and the other purely imitative dynamics noted above; at the same
time, they allow arbitrarily close approximations of these dynamics, under which agents
usually imitate successful opponents, but occasionally select new strategies directly.

To prove the main theorem, we construct a four-strategy game in which one strat-
egy is strictly dominated by another pure strategy. We show that under any dynamic
satisfying our four conditions, the strictly dominated strategy survives along solution
trajectories starting from most initial conditions.

Because evolutionary dynamics are defined by nonlinear differential equations, our
formal results rely on topological properties, and so provide limited quantitative infor-
mation about the conditions under which dominated strategies survive. We therefore
supplement our formal approach with numerical analysis. This analysis reveals that
dominated strategies with payoffs substantially lower than those of their dominating
strategies can be played at nontrivial frequencies in perpetuity.

Since elimination of dominated strategies is a basic requirement of traditional game
theory, the fact that such strategies can persist under evolutionary dynamics may seem
counterintuitive. A partial resolution of this puzzle lies in the fact that survival of domi-
nated strategies is intrinsically a disequilibrium phenomenon.

To understand this point, remember that evolutionary dynamics capture the aggre-
gate behavior of agents who follow simple myopic rules. These rules lead agents to
switch to strategies whose current payoffs are good, though not necessarily optimal.

When a solution trajectory of an evolutionary dynamic converges, the payoffs to
each strategy converge as well. Because payoffs become fixed, even simple rules are
enough to ensure that only optimal strategies are chosen. In formal terms, the limits of
convergent solution trajectories must be Nash equilibria; it follows a fortiori that when
these limits are reached, strictly dominated strategies are not chosen.

Of course, it is well understood that solutions of evolutionary dynamics need not
converge, but instead may enter limit cycles or more complicated limit sets.3 When

3For specific nonconvergence results, see Shapley (1964), Jordan (1993), Gaunersdorfer and Hofbauer
(1995), Hofbauer and Swinkels (1996), Hart and Mas-Colell (2003), and Sparrow et al. (2008); see Sandholm
(2009a) for a survey.
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solutions do not converge, payoffs remain in flux. In this situation, it is not obvious
whether choice rules favoring strategies whose current payoffs are relatively high neces-
sarily eliminate strategies that perform well at many states, but that are never optimal.
To the contrary, the analysis in this paper demonstrates that if play remains in disequi-
librium, even strategies that are strictly dominated by other pure strategies can persist
indefinitely.

One possible reaction to our results is to view them as an argument against the rel-
evance of evolutionary dynamics for modeling economic behavior. If an agent notices
that a strategy is strictly dominated, then he would do well to avoid playing it, whatever
his rule of thumb might suggest. We agree with the latter sentiment: we do not expect
agents, even simple ones, to play strategies they know to be dominated. At the same
time, we feel that the ability to recognize dominated strategies should not be taken for
granted. In complicated games with large numbers of participants, it may not always
be reasonable to expect agents to know the payoffs to all strategies at every population
state, or to be able to make all the comparisons needed to identify a dominated strategy.
It is precisely in such large, complex games that agents might be expected to make de-
cisions by applying rules of thumb. Our analysis suggests that if agents cannot directly
exclude dominated strategies from their repertoire of choices, then these strategies need
not fade from use through a lack of positive reinforcement.

To prove our main result, we must show that for each member of a large class of de-
terministic evolutionary dynamics, there is a game in which dominated strategies sur-
vive. To accomplish this most directly, we use the same construction for all dynamics
in the class. We begin by introducing a three-strategy game with nonlinear payoffs—the
hypnodisk game—under which solution trajectories of all dynamics in the class enter cy-
cles from almost all initial conditions. We then modify this game by adding a dominated
fourth strategy, and show that the proportion of the population playing this strategy
stays bounded away from zero along solutions starting from most initial conditions.

Since the game we construct to ensure cyclical behavior is rather unusual, one might
wonder whether our survival results are of practical relevance, rather than being a mere
artifact of a pathological construction. In fact, while introducing a special game is quite
convenient for proving the main result, we feel that our basic message—that in the ab-
sence of convergence, myopic heuristics need not root out dominated strategies in large
games—is of broader relevance. In Section 5.1, we explain why the proof of the main
theorem does not depend on the introduction of a complicated game in an essential
way. Analyses there and elsewhere in the paper suggest that in any game for which
some dynamic covered by the theorem fails to converge, there are augmented games
with dominated strategies that the dynamic allows to survive.

Section 2 introduces population games and evolutionary dynamics. Section 3 estab-
lishes the survival results for excess payoff dynamics and pairwise comparison dynam-
ics, which are families that contain the BNN and Smith dynamics, respectively. Section 4
states and proves the main result. Section 5 presents our numerical analyses and illus-
trates the sensitivity of existing elimination results to slight modifications of the dynam-
ics in question. Section 6 concludes. Auxiliary results and proofs omitted from the text
are provided in the Appendices.
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2. The model

2.1 Population games

We consider games played by a single unit mass population of agents.4 All agents choose
from the finite set of strategies S = {1� � � � � n}. The set of population states is therefore
the simplex X = {x ∈ Rn+ :

∑
i∈S xi = 1}, where xi is the proportion of agents who choose

strategy i ∈ S. The standard basis vector ei ∈ Rn represents the state at which all agents
choose strategy i.

If we take the set of strategies as fixed, we can identify a game with a Lipschitz contin-
uous payoff function F :X → Rn, which assigns each population state x ∈X a vector of
payoffs F(x) ∈ Rn. The component Fi :X → R represents the payoffs to strategy i alone.
We also let F̄(x)= ∑

i∈S xiFi(x) denote the population’s average payoff and let BF(x) =
arg maxy∈X y ′F(x) denote the set of (mixed) best responses at population state x.

The simplest examples of population games are generated by random matching in
symmetric normal form games. An n-strategy symmetric normal form game is defined
by a payoff matrix A ∈ Rn×n. Here Aij denotes the payoff a player obtains when he
chooses strategy i and his opponent chooses strategy j; this payoff does not depend
on whether the player in question is called player 1 or player 2. When agents are ran-
domly matched to play this game, the (expected) payoff to strategy i at population state
x is Fi(x)= ∑

j∈S Aijxj ; hence, the population game associated withA is the linear game
F(x)=Ax.

While random matching generates population games with linear payoffs, many pop-
ulation games that arise in applications have payoffs that are nonlinear in the popula-
tion state; see Section 5.1. Games with nonlinear payoff functions play a leading role in
the analysis to come.

2.2 Evolutionary dynamics

An evolutionary dynamic assigns each population game F an ordinary differential equa-
tion ẋ= V F(x) on the simplexX . One simple and general way to define an evolutionary
dynamic is via a growth rate function g : Rn ×X → Rn; here gi(π�x) represents the (ab-
solute) growth rate of strategy i as a function of the current payoff vector π ∈ Rn and the
current population state x ∈ X . Our notation suppresses the dependence of g on the
number of strategies n.

To ensure that the simplex is forward invariant under the induced differential equa-
tions, the function g must satisfy

gi(π�x)≥ 0 whenever xi = 0� and
∑
i∈S
gi(π�x)= 0�

In words, strategies that are currently unused cannot become less common, and the
sum of all strategies’ growth rates must equal zero. A growth rate function g satisfying
these conditions defines an evolutionary dynamic as

ẋi = V Fi (x)= gi(F(x)�x)�
4Versions of our results can also be proved in multipopulation models.
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Revision protocol Evolutionary dynamic Name Origin

ρij = xj[Fj − Fi]+ ẋi = xi(Fi(x)− F̄(x)) Replicator Taylor and Jonker (1978)

ρij = BFj (x) ẋ ∈ BF(x)− x Best response Gilboa and Matsui (1991)

ρij = [Fj − F̄]+ ẋi = [Fi(x)− F̄(x)]+ BNN Brown and von Neumann (1950)
− xi∑j∈S[Fj(x)− F̄(x)]+

ρij = [Fj − Fi]+ ẋi = ∑
j∈S xj[Fi(x)− Fj(x)]+ Smith Smith (1984)

− xi∑j∈S [Fj(x)− Fi(x)]+

Table 1. Four evolutionary dynamics and their revision protocols.

One can also build evolutionary dynamics from a more structured model that not
only provides explicit microfoundations for the dynamics, but also is inclusive enough
to encompass all dynamics considered in the literature.5 In this model, the growth rate
function g is replaced by a revision protocol ρ : Rn ×X → Rn×n+ , which describes the pro-
cess through which individual agents make decisions. As time passes, agents are chosen
at random from the population and granted opportunities to switch strategies. When
an i player receives such an opportunity, he switches to strategy j with probability pro-
portional to the conditional switch rate ρij(π�x). Aggregate behavior in the game F is
then described by the differential equation

ẋi = V Fi (x)=
∑
j∈S
xjρji(F(x)�x)− xi

∑
j∈S
ρij(F(x)�x)� (1)

which is known as the mean dynamic generated by ρ and F . The first term in (1) captures
the inflow of agents into strategy i from other strategies, while the second term captures
the outflow of agents from strategy i to other strategies.

Table 1 presents four basic examples of evolutionary dynamics, along with revision
protocols that generate them. Further discussion of these dynamics can be found in
Sections 3.1, 5.3, and 5.4 below.

3. Survival under the BNN, Smith, and related dynamics

Using a somewhat informal analysis, Berger and Hofbauer (2006) argue that strictly
dominated strategies can survive under the BNN dynamic (Brown and von Neumann
1950). To prepare for our main result, we formalize and extend Berger and Hofbauer’s
(2006) arguments to prove a survival result for two families of evolutionary dynamics;
these families include the BNN dynamic and the Smith dynamic (Smith 1984) as their
simplest members.

3.1 Excess payoff dynamics and pairwise comparison dynamics

The two families of dynamics we consider are based on revision protocols of the forms

ρij =φ(Fj − F̄) (2)

5For explicit accounts of microfoundations, see Benaïm and Weibull (2003) and Sandholm (2003).
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and

ρij =φ(Fj − Fi)� (3)

where, in each case, φ : R → R+ is a Lipschitz continuous function satisfying

sgn(φ(u))= sgn([u]+) and
d

du+φ(u)
∣∣∣∣
u=0

> 0� (4)

The families of evolutionary dynamics obtained by substituting expressions (2) and (3)
into the mean dynamic (1) are called excess payoff dynamics (Weibull 1996, Hofbauer
2000, Sandholm 2005) and pairwise comparison dynamics (Sandholm 2010a), respec-
tively. The BNN and Smith dynamics are the prototypical members of these two families:
examining Table 1, we see that these two dynamics are those obtained from protocols (2)
and (3) when φ is the semilinear function φ(u)= [u]+.

Protocols of forms (2) and (3) describe distinct revision processes. Under (2), an
agent who receives a revision opportunity has a positive probability of switching to any
strategy whose payoff exceeds the population’s average payoff; the agent’s current pay-
off has no bearing on his switching rates. Under (3), an agent who receives a revision
opportunity has a positive probability of switching to any strategy whose payoff exceeds
that of his current strategy. While the latter protocols lead to mean dynamics with more
complicated functional forms (compare the BNN and Smith dynamics in Table 1), they
also seem more realistic than those of form (2): protocols satisfying (3) make an agent’s
decisions depend on his current payoffs, and do not require him to know the average
payoff obtained in the population as a whole.

3.2 Theorem and proof

Theorem 1 shows that excess payoff dynamics and pairwise comparison dynamics allow
dominated strategies to survive in some games.6

Theorem 1. Suppose that V is an evolutionary dynamic based on a revision protocol ρ of
form (2) or (3), where the function φ satisfies condition (4). Then there is a game Fd such
that under V Fd , along solutions from most initial conditions, there is a strictly dominated
strategy played by a fraction of the population that is bounded away from 0 and that
exceeds 1

6 infinitely often as time approaches infinity.

While the computations needed to prove Theorem 1 differ according to the dynamic
under consideration, the three main steps are always the same. First, we show that for
each of the relevant dynamics, play converges to a limit cycle in the bad rock–paper–
scissors game (Figure 1). Second, we introduce a new strategy, twin, which duplicates
the strategy scissors, and show that in the resulting four-strategy game, solutions to the
dynamic from almost all initial conditions converge to a cycling attractor; this attractor
sits on the plane where scissors and twin are played by equal numbers of agents, and has

6In the statements of Theorems 1 and 2, “most initial conditions” means all initial conditions outside an
open set of measure ε, where ε > 0 is specified before the choice of the game Fd .
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Figure 1. The Smith dynamic in bad RPS. Colors represent speeds of motion: red is faster; blue
is slower.

Figure 2. The Smith dynamic in “bad RPS with a twin.”

regions where both scissors and twin are played by more than 1
6 of the population (Fig-

ure 2). Third, we uniformly reduce the payoff of the new strategy by d, creating a “feeble

twin,” and use a continuity argument to show that the attractor persists (Figure 3). Since

the feeble twin is a strictly dominated strategy, this last step completes the proof of the

theorem.

We now present the proof in more detail, relegating some parts of the argument to

the Appendixes.
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Figure 3. The Smith dynamic in “bad RPS with a feeble twin.”

Proof of Theorem 1. Fix a dynamic V (i.e., a map from population games F to differ-
ential equations ẋ = V F(x)) generated by a revision protocol ρ that satisfies the condi-
tions of the theorem. We construct a game Fd in which a dominated strategy survives
under V Fd .

To begin, we introduce the bad rock–paper–scissors (RPS) game

G(x)=Ax=
⎛
⎝ 0 −b a

a 0 −b
−b a 0

⎞
⎠

⎛
⎝x1

x2

x3

⎞
⎠ � where b > a > 0�

(Since b > a, the cost of losing a match exceeds the benefit of winning a match.) For any
choices of b > a > 0, the unique Nash equilibrium of G is y∗ = ( 1

3 �
1
3 �

1
3). Although our

proof does not require this fact, it can be shown as a corollary of Lemma 1 below that y∗
is unstable under the dynamic V G.

Next, following Berger and Hofbauer (2006), we introduce a four-strategy game F ,
which we obtain from bad RPS by introducing an “identical twin” of scissors.

F(x)= Ãx=

⎛
⎜⎜⎜⎝

0 −b a a

a 0 −b −b
−b a 0 0

−b a 0 0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝
x1

x2

x3

x4

⎞
⎟⎟⎟⎠ � (5)

The set of Nash equilibria of F is the line segment NE = {x∗ ∈X :x∗ = ( 1
3 �

1
3 �α�

1
3 − α)}.

We now present two lemmas that describe the behavior of the dynamic V F for
game F . The first lemma concerns the local stability of the set of Nash equilibria NE.

Lemma 1. The set NE is a repellor under the dynamic V F : there is a neighborhood U of
NE such that all trajectories starting in U − NE leave U and never return.
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The proof of this lemma, which is based on construction of appropriate Lyapunov
functions, is presented in Appendix B.

Since V is an excess payoff dynamic or a pairwise comparison dynamic, the rest
points of V F are precisely the Nash equilibria of F (see Sandholm 2005, 2010a). There-
fore, Lemma 1 implies that solutions of V F from initial conditions outside NE do not
converge to rest points. Our next lemma constrains the limit behavior of these solutions.

Since the revision protocol ρ treats strategies symmetrically, and since scissors and
twin always earn the same payoffs (F3(x)≡ F4(x)), it follows that

ρj3(F(x)�x)= ρj4(F(x)�x) and ρ3j(F(x)�x)= ρ4j(F(x)�x) for all x ∈X�

These equalities yield a simple expression for the rate of change of the difference in uti-
lizations of strategies 3 (scissors) and 4 (twin):

ẋ3 − ẋ4 =
(∑
j∈S
xjρj3 − x3

∑
j∈S
ρ3j

)
−

(∑
j∈S
xjρj4 − x4

∑
j∈S
ρ4j

)
(6)

= −(x3 − x4)
∑
j∈S
ρ3j(F(x)�x)�

Since conditional switch rates ρij are nonnegative by definition, (6) implies that the
plane P = {x ∈X :x3 = x4} on which the identical twins receive equal weight is invariant
under V F , and that distance from P is nonincreasing under V F . In fact, we can establish
the following lemma.

Lemma 2. Solutions of the dynamic V F starting outside the set NE converge to the
plane P .

Proving Lemma 2 is straightforward when ρ is of the excess payoff form (2), since in
this case, it can be shown that ẋ3 < ẋ4 whenever x3 > x4 and x /∈ NE, and that ẋ3 − ẋ4 > 0
whenever x3 < x4 and x /∈ NE. But when ρ is of the pairwise comparison form (3), one
needs to establish that solutions to V F cannot become stuck in regions where ẋ3 = ẋ4.
The proof of Lemma 2 is provided in Appendix B.

Lemmas 1 and 2 imply that all solutions of V F other than those starting in NE
converge to an attractor A , a set that is compact (see Appendix A), is disjoint from
the set NE, is contained in the invariant plane P , and encircles the Nash equilibrium
x∗ = ( 1

3 �
1
3 �

1
6 �

1
6) (see Figure 2). It follows that there are portions of A where more than 1

6
of the population plays twin.

Finally, we modify the game F by making twin “feeble”: in other words, by uniformly
reducing its payoff by d:

Fd(x)= Ãdx=

⎛
⎜⎜⎜⎝

0 −b a a

a 0 −b −b
−b a 0 0

−b− d a− d −d −d

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝
x1

x2

x3

x4

⎞
⎟⎟⎟⎠ �
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If d > 0, strategy 4 is strictly dominated by strategy 3.
Increasing d from 0 continuously changes the game from F to Fd , and so contin-

uously changes the dynamic from V F to V Fd (where continuity is with respect to the
supremum norm topology). It thus follows from results on continuation of attractors
(Theorem 3 in Appendix A) that for small domination levels d, the attractor A of V F con-
tinues to an attractor Ad that is contained in a neighborhood of A , and that the basin of
attraction of Ad contains all points outside of a thin tube around the set NE.

On the attractor A , the speed of rotation under V F around the segment NE is
bounded away from 0. Therefore, by continuity, the attractor Ad of V Fd must encircle
NE, and so must contain states at which x4, the weight on the strictly dominated strat-
egy twin, is more than 1

6 . By the same logic, solutions of V Fd that converge to Ad have
ω-limit sets with these same properties. In conclusion, we have shown that most solu-
tions of V Fd converge to the attractor Ad , a set on which x4 is bounded away from 0, and
that these solutions satisfy x4 >

1
6 infinitely often in the long run. This completes the

proof of Theorem 1. �

It is worth noting that the number 1
6 , the bound that the weight on the dominated

strategy continually exceeds, is not as large as possible. By replacingA, a cyclically sym-
metric version of bad rock–paper–scissors, with an asymmetric version of this game, we
can move the unstable Nash equilibrium from y∗ = ( 1

3 �
1
3 �

1
3) to a state where the fraction

of the population choosing scissors is as close to 1 as desired (see Gaunersdorfer and
Hofbauer 1995). Then repeating the rest of the proof above, we find that the bound of 1

6
in the statement of Theorem 1 can be replaced by any number less than 1

2 .
The analysis above makes explicit use of the functional forms of excess payoff and

pairwise comparison dynamics. This occurs first in the proof of Lemma 1, which states
that the set of Nash equilibria of “bad RPS with a twin” is a repellor. The Lyapunov
functions used to prove this lemma depend on the functional forms of the dynamics;
indeed, there are evolutionary dynamics for which the equilibrium of bad RPS is at-
tracting instead of repelling. Functional forms are also important in proving Lemma 2,
which states that almost all solutions to dynamics from the two classes lead to the plane
on which the identical twins receive equal weights. For arbitrary dynamics, particularly
ones that do not respect the symmetry of the game, convergence to this plane is not
guaranteed. To establish our main result, in which nothing is presumed about func-
tional forms, both of these steps from the proof above need to be replaced by more gen-
eral arguments.

4. The main theorem

4.1 Statement of the theorem

While the proof of Theorem 1 takes advantage of the functional forms of excess payoff
and pairwise comparison dynamics, the survival of dominated strategies is a more gen-
eral phenomenon. We now introduce a set of mild conditions that are enough to yield
this result.
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(C) Continuity: The function g is Lipschitz continuous.

(PC) Positive correlation: If V F(x) �= 0, then V F(x)′F(x) > 0.

(NS) Nash stationarity: If V F(x)= 0, then x ∈ NE(F).

(IN) Innovation: If x /∈ NE(F), xi = 0, and ei ∈ BF(x), then V Fi (x) > 0.

Continuity (C) requires that small changes in aggregate behavior or payoffs do not
lead to large changes in the law of motion V F(x)= g(F(x)�x). Since discontinuous revi-
sion protocols can be executed only by agents with extremely accurate information, this
condition seems natural in most contexts where evolutionary models are appropriate.
Of course, this condition excludes the best response dynamic from our analysis, but it
does not exclude continuous approximations thereof; see Section 5.4.

Positive correlation (PC) is a mild payoff monotonicity condition. It requires that
whenever the population is not at rest, there is a positive correlation between strategies’
growth rates and payoffs.7 From a geometric point of view, condition (PC) requires that
the directions of motion V F(x) and the payoff vectors F(x) always form acute angles
with one another. This interpretation is helpful for understanding the constructions to
come.

Nash stationarity (NS) requires that the dynamic V F be at rest only at Nash equilibria
of F . This condition captures the idea that agents eventually recognize payoff improve-
ment opportunities, preventing the population from settling down at a state where such
opportunities are present.8

In a similar spirit, innovation (IN) requires that when a non-Nash population state
includes an unused optimal strategy, this strategy’s growth rate must be strictly positive.
In other words, if an unplayed strategy is sufficiently rewarding, some members of the
population will discover it and select it.

A few further comments about conditions (PC), (NS), and (IN) may be helpful in
interpreting our results. First, condition (PC) is among the weakest monotonicity condi-
tions proposed in the evolutionary literature.9 Thus, our arguments that appeal to this
condition are robust, in that they apply to any dynamic that respects the payoffs from
the underlying game to some weak extent.

Second, since condition (PC) requires a positive correlation between growth rates
and payoffs at all population states, it rules out evolutionary dynamics under which the
boundary of the state space is repelling due to “mutations” or other forms of noise. Con-
sequently, condition (PC) excludes the possibility that a dominated strategy survives for
trivial reasons of this sort.

7Requiring growth rates to respect payoffs appears to work against the survival of dominated strategies.
At the same time, some structure must be imposed on the dynamics so as to make headway with our analy-
sis, and we hesitate to consider a dynamic that does not satisfy a condition in the spirit of (PC) as a general
model of evolution in games. Even so, we discuss the prospects for omitting this condition in Section 5.5.

8The converse of this condition, that all Nash equilibria are rest points, follows easily from condition
(PC); see Sandholm (2001).

9Conditions similar to (PC) are proposed, for example, in Friedman (1991), Swinkels (1993), and
Sandholm (2001).
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Third, conditions (NS) and (IN) all rule out dynamics based exclusively on imitation.
At the same time, all of these conditions are satisfied by dynamics under which agents
usually imitate, but occasionally evaluate, strategies in a more direct fashion. We present
this idea in some detail in Section 5.3.

The main result of this paper is Theorem 2.

Theorem 2. Suppose the evolutionary dynamic V satisfies (C), (PC), (NS), and (IN). Then
there is a game Fd such that under V Fd , along solutions from most initial conditions,
there is a strictly dominated strategy played by a fraction of the population bounded away
from 0.

Before proceeding, we point out that the conclusion of Theorem 2 is weaker than
that of Theorem 1 in one notable respect: while Theorem 1 ensures that at least 1

6 of the
population plays the dominated strategy infinitely often, Theorem 2 only ensures that
the strategy is always used by a proportion of the population bounded away from 0. The
reason for this weaker conclusion is the absence of any assumption that the dynamic V F

treats different strategies symmetrically. Adding such a symmetry assumption allows us
to recover the stronger conclusion. See Section 4.2.4 for further discussion.10

4.2 Proof of the theorem

As we noted earlier, the proof of Theorem 1 takes advantage of the functional forms of
the dynamics at issue. Since Theorem 2 provides no such structure, its proof requires
some new ideas.

Our first task is to construct a replacement for the bad RPS game. More precisely,
we seek a three-strategy game in which dynamics satisfying condition (PC) fail to con-
verge to Nash equilibrium from almost all initial conditions. Our construction relies on
the theory of potential games, developed in the normal form context by Monderer and
Shapley (1996) and Hofbauer and Sigmund (1998), and in the population game context
by Sandholm (2001, 2009b).

4.2.1 Potential games A population game F is a potential game if there exists a contin-
uously differentiable function f : Rn+ → R satisfying

∇f (x)= F(x) for all x ∈X�
Put differently, each strategy’s payoff function must equal the appropriate partial deriva-
tive of the potential function:

∂f

∂xi
(x)= Fi(x) for all i ∈ S and x ∈X�

10The proof of Theorem 2 establishes that the dynamic V Fd for the game Fd admits an attractor on which
the proportion of agents using a dominated strategy is bounded away from zero, and whose basin contains
all initial conditions in X outside a set of small but positive measure. It therefore follows from Theorem 3
that the dominated strategy continues to survive if the dynamic is subject to small perturbations represent-
ing “evolutionary drift,” as studied by Binmore and Samuelson (1999).
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Games that satisfy this condition include common interest games and congestion
games, among many others. A basic fact about potential games is that reasonable evo-
lutionary dynamics increase potential: if the dynamic V F satisfies condition (PC), then
along each solution trajectory {xt}, we have that

d

dt
f (xt)= ∇f (xt)′ẋt = F(xt)′V F(xt)≥ 0

with equality only at Nash equilibria. This observation, along with standard results from
dynamical systems, implies that each solution trajectory of V F converges to a connected
set of Nash equilibria; see Sandholm (2001).

As an example, suppose that agents are randomly matched to play the pure coordi-
nation game

C =
⎛
⎝1 0 0

0 1 0

0 0 1

⎞
⎠ �

The resulting population game, FC(x) = Cx = x, is a potential game; its potential
function, fC(x) = 1

2x
′Cx = 1

2((x1)
2 + (x2)

2 + (x3)
2), is the convex function pictured in

Figure 4(i). Solutions to any evolutionary dynamic that satisfies condition (PC) ascend
this function. Indeed, solutions from almost all initial conditions converge to a vertex
ofX—that is, to a strict equilibrium of FC .

The ability to draw the game FC itself will prove useful in the analysis to come. No-
tice that FC is a map from the simplex X ⊂ R3 to R3, and so can be viewed as a vector
field. Rather than draw FC as a vector field in R3, we draw a projected version of FC on
the hyperplane in R3 that contains the simplex.11 The vectors drawn in Figure 4(ii) rep-
resent the directions of maximal increase of the function fC , and so point outward from
the center of the simplex. Dynamics that satisfy condition (PC) always travel at acute
angles to the vectors in Figure 4(ii), and so tend toward the vertices of X , and solutions
from almost all initial conditions converge to a vertex ofX .

As a second example, suppose that agents are randomly matched to play the an-
ticoordination game −C. In Figure 5(i) and (ii), we draw the resulting population
game F−C(x) = −Cx = −x and its concave potential function f−C(x) = − 1

2x
′Cx =

− 1
2((x1)

2 + (x2)
2 + (x3)

2). Both pictures reveal that under any evolutionary dynamic sat-
isfying condition (PC), all solution trajectories converge to the unique Nash equilibrium
x∗ = ( 1

3 �
1
3 �

1
3).

4.2.2 The hypnodisk game We now use the coordination game FC and the anticoor-
dination game F−C to construct our replacement for bad RPS. While FC and F−C are
potential games with linear payoffs, our new game has neither of these properties.

The construction is easiest to describe in geometric terms. Begin with the coordina-
tion game FC(x) = Cx pictured in Figure 4(ii). Then draw two circles centered at state

11More precisely, we draw the vector field�FC , where�= I− 1
3 11′ ∈ R3×3 is the orthogonal projection of

R3 onto TX = {z ∈ R3 :
∑
i∈S zi = 0}, the tangent space of the simplexX . The projection� forces the compo-

nents of�FC(x) to sum to zero while preserving their differences, so that�FC(x) preserves all information
about incentives contained in payoff vector FC(x).
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(i) The potential function (ii) The projected payoff vector field

Figure 4. A coordination game.

(i) The potential function (ii) The projected payoff vector field

Figure 5. An anticoordination game.

x∗ = ( 1
3 �

1
3 �

1
3) with radii 0 < r < R < 1√

6
, as shown in Figure 6(i); the second inequality

ensures that both circles are contained in the simplex. Finally, twist the portion of the

vector field lying outside of the inner circle in a clockwise direction, excluding larger

and larger circles as the twisting proceeds, so that the outer circle is reached when the

total twist is 180◦. The resulting vector field is pictured in Figure 6(ii). It is described
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(i) Projected payoff vector field for the coordination game

(ii) Projected payoff vector field for the hypnodisk game

Figure 6. Construction of the hypnodisk game.

analytically by

H(x)= cos(θ(x))

⎛
⎜⎝
x1 − 1

3

x2 − 1
3

x3 − 1
3

⎞
⎟⎠ +

√
3

3 sin(θ(x))

⎛
⎝x2 − x3

x3 − x1

x1 − x2

⎞
⎠ + 1

3

⎛
⎝1

1

1

⎞
⎠ �

where θ(x) equals 0 when |x− x∗| ≤ r, equals π when |x− x∗| ≥R, and varies linearly in

between. We call the gameH the hypnodisk game.

What does this construction accomplish? Inside the inner circle,H is identical to the

coordination game FC . Thus, solutions to dynamics satisfying (PC) that start at states

in the inner circle besides x∗ must leave the inner circle. At states outside the outer
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circle, the drawing of H is identical to the drawing of the anticoordination game F−C .12

Therefore, solutions to dynamics satisfying (PC) that begin outside the outer circle must
enter the outer circle. Finally, at each state x in the annulus bounded by the two circles,
H(x) is not a componentwise constant vector. Therefore, states in the annulus are not
Nash equilibria, and so are not rest points of dynamics that satisfy (PC). We assemble
these observations in the following lemma.

Lemma 3. Suppose that V is an evolutionary dynamic that satisfies conditions (C) and
(PC), and letH be the hypnodisk game. Then every solution to V H other than the station-
ary solution at x∗ enters the annulus with radii r and R and never leaves.

In fact, since there are no rest points in the annulus, the Poincaré–Bendixson theo-
rem implies that every nonstationary solution to V H converges to a limit cycle.

4.2.3 The twin Now, let F be the four-strategy game obtained fromH by adding a twin:
Fi(x1�x2�x3�x4)=Hi(x1�x2�x3 + x4) for i ∈ {1�2�3} and F4(x)= F3(x). The set of Nash
equilibria of F is the line segment

NE =
{
x∗ ∈X :x∗

1 = x∗
2 = x∗

3 + x∗
4 = 1

3

}
�

Let

I =
{
x ∈X :

(
x1 − 1

3

)2 +
(
x2 − 1

3

)2 +
(
x3 + x4 − 1

3

)2 ≤ r2
}

and

O =
{
x ∈X :

(
x1 − 1

3

)2 +
(
x2 − 1

3

)2 +
(
x3 + x4 − 1

3

)2 ≤R2
}

be concentric cylindrical regions in X surrounding NE, as pictured in Figure 7. By con-
struction, we have

F(x)= C̃x=

⎛
⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 1 1

0 0 1 1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝
x1

x2

x3

x4

⎞
⎟⎟⎟⎠

at all x ∈ I. Therefore, solutions to dynamics satisfying (PC) starting in I − NE ascend

the potential function f C̃(x)= 1
2((x1)

2 + (x2)
2 + (x3 + x4)

2) until they leave the set I. At
states outside the setO, we have that F(x)= −C̃x, so solutions starting inX −O ascend

f−C̃(x)= −f C̃(x) until they enter O. The next lemma summarizes these points.

Lemma 4. Suppose that V is an evolutionary dynamic that satisfies conditions (C) and
(PC), and let F be the “hypnodisk with a twin” game. Then every solution to V F other
than the stationary solutions at states in NE enter regionD=O− I and never leave.

12At states x outside the outer circle, H(x) = −x + 2
3 1 �= −x = F−C(x). But since �H(x) = −x + 1

3 1 =
�F−C(x) at these states, the pictures of H and F−C , and hence the incentives in the two games, are the
same.
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Figure 7. Regions O, I, andD=O− I.

4.2.4 The feeble twin To prove Theorem 1, we argued in Lemma 2 that under any of
the dynamics addressed by the theorem, nonstationary solution trajectories equalize
the utilization levels of identical twin strategies. If we presently focus on dynamics that
not only satisfy conditions (C), (PC), (NS), and (IN), but also treat different strategies
symmetrically, we can argue that in the hypnodisk with a twin game F , all nonstationary
solutions of V F converge not only to regionD, but also to the plane P = {x ∈X :x3 = x4}.
Continuing with the argument from Section 3 then allows us to conclude that in Fd , the
game obtained from F by turning strategy 4 into a feeble twin (that is, by reducing the
payoff to strategy 4 uniformly by d > 0), the fraction x4 playing the feeble twin exceeds
1
6 infinitely often.

Since we prefer a result that imposes as little structure as possible on permissible
evolutionary dynamics, Theorem 2 avoids the assumption that different strategies are
treated symmetrically. Since this means that agents may well be biased against choosing
the dominated strategy, we can no longer prove that the fraction playing it repeatedly
exceeds 1

6 . But we can still prove that the dominated strategy survives. To accomplish
this, it is enough to show that in game F , most solutions of the dynamic V F converge to a
set on which x4 is bounded away from 0. If we can do this, then repeating the continuity
argument that concluded the proof of Theorem 1 shows that in game Fd , the dominated
strategy 4 survives.

A complete proof that most solutions of V F converge to a set on which x4 is bounded
away from 0 is presented in Appendix C. We summarize the argument here. To begin, it
can be shown that all solutions to V F starting outside a small neighborhood of the seg-
ment of Nash equilibria NE converge to an attractor A , a compact set that is contained
in regionD and that is an invariant set of the dynamic V F .

Now suppose by way of contradiction that the attractor A intersectsZ = {x ∈X :x4 =
0}, the face of X on which twin is unused. The Lipschitz continuity of the dynamic V F

implies that backward solutions starting in Z cannot enter X − Z. Since A is forward
and backward invariant under V F , the fact that A intersects Z implies the existence of a
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Figure 8. The best response correspondence of the hypnodisk game.

closed orbit γ ⊂ A ∩Z that circumnavigates the disk I ∩Z. Examining the best response
correspondence of the hypnodisk game (Figure 8), we find that such an orbit γmust pass
through a region in which strategy 3 is a best response. But since the twin strategy 4 is
also a best response in this region, innovation (IN) tells us that solutions passing through
this region must reenter the interior of X , contradicting that the attractor A intersects
the face Z.

5. Discussion

5.1 Constructing games in which dominated strategies survive

If an evolutionary dynamic satisfies monotonicity condition (PC), all of its rest points
are Nash equilibria. It follows that dominated strategies can survive only on solution
trajectories that do not converge to rest points. To construct games in which dominated
strategies can survive, one first looks for games in which convergence rarely occurs.

The hypnodisk game, the starting point for the proof of the main theorem, is a pop-
ulation game with nonlinear payoff functions. Such games are uncommon in the early
literature on evolution in games, which focuses on random matching settings. But pop-
ulation games with nonlinear payoffs are more common now, in part because of their
appearance in applications. For example, the standard model of driver behavior in a
highway network is a congestion game with nonlinear payoff functions, as delays on
each network link are increasing, convex functions of the number of drivers using the
link.13 For this reason, we do not view the use of a game with nonlinear payoffs as a
shortcoming of our analysis. But despite this, it seems worth asking whether our results
could be proved within the linear, random matching framework.

13Congestion games with a continuum of agents are studied by Beckmann et al. (1956) and Sandholm
(2001). For finite player congestion games, see Rosenthal (1973) and Monderer and Shapley (1996).
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In Section 3, where we consider dynamics with prespecified functional forms, we
are able to prove survival results within the linear setting. More generally, if we fix an
evolutionary dynamic before seeking a population game, finding a linear game that ex-
hibits cycling seems a feasible task. Still, a virtue of our analysis in Section 4 is that it
avoids this case-by-case analysis: the hypnodisk game generates cycling under all of the
relevant dynamics simultaneously, enabling us to prove survival of dominated strategies
under all of these dynamics at once.

Could we do the same using linear payoffs? Consider the following game of Hofbauer
and Swinkels (1996) (see also Hofbauer and Sigmund 1998, Section 8.6):

Fε(x)=Aεx=

⎛
⎜⎜⎜⎝

0 0 −1 ε

ε 0 0 −1

−1 ε 0 0

0 −1 ε 0

⎞
⎟⎟⎟⎠x�

When ε = 0, the game F0 is a potential game with potential function f (x) = −(x1x3 +
x2x4). It has two components of Nash equilibria: one is a singleton containing the com-
pletely mixed equilibrium x∗ = ( 1

4 �
1
4 �

1
4 �

1
4); the other is the closed curve γ containing

edges e1e2, e2e3, e3e4, and e4e1. The former component is a saddle point of f , and so
is unstable under dynamics that satisfy (PC); the latter component is the maximizer set
of f , and so attracts most solutions of these dynamics.

If ε is positive but sufficiently small, Theorem 3 implies that most solutions of dy-
namics satisfying (PC) lead to an attractor near γ. But once ε is positive, the unique
Nash equilibrium of Fε is the mixed equilibrium x∗. Therefore, the attractor near γ is far
from any Nash equilibrium.

If we now introduce a feeble twin, we expect that this dominated strategy would
survive in the resulting five-strategy game. But in this case, evolutionary dynamics run
on a four-dimensional state space. Proving survival results when the dimension of the
state space exceeds three is very difficult, even if we fix the dynamic under consideration
in advance. This points to another advantage of the hypnodisk game: it allows us to work
with dynamics on a three-dimensional state space, where the analysis is still tractable.

5.2 How dominated can surviving strategies be?

Since the dynamics we consider are nonlinear, our proofs of survival of dominated
strategies are topological in nature, and so do not quantify the level of domination that
is consistent with a dominated strategy maintaining a significant presence in the popu-
lation. We can provide a sense of this magnitude by way of numerical analysis.

Our analysis considers the behavior of the BNN and Smith dynamics in the following
version of bad RPS with a feeble twin:

Fd(x)= Ãdx=

⎛
⎜⎜⎜⎝

0 −2 1 1

1 0 −2 −2

−2 1 0 0

−2 − d 1 − d −d −d

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝
x1

x2

x3

x4

⎞
⎟⎟⎟⎠ � (7)
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Figure 9(i) presents the maximum, time-average, and minimum weight on the domi-
nated strategy in the limit cycle of the BNN dynamic, where these weights are presented
as functions of the domination level d. The figure shows that until the dominated strat-
egy twin is eliminated, its presence declines at a roughly linear rate in d. Twin is played
recurrently by at least 10% of the population when d ≤ 0�14, by at least 5% of the popu-
lation when d ≤ 0�19, and by at least 1% of the population when d ≤ 0�22.

Figure 9(ii) shows that under the Smith dynamic, the decay in the use of the domi-
nated strategy is much more gradual. In this case, twin is recurrently played by at least
10% of the population when d ≤ 0�31, by at least 5% of the population when d ≤ 0�47, and
by at least 1% of the population when d ≤ 0�66. These values of d are surprisingly large
relative to the base payoff values of 0, −2, and 1; even strategies that are dominated by a
significant margin can be played in perpetuity under common evolutionary dynamics.

The reason for the difference between the two dynamics is easy to explain. As we
saw in Section 3, the BNN dynamic describes the behavior of agents who compare a
candidate strategy’s payoff with the average payoff in the population. For its part, the
Smith dynamic is based on comparisons between the candidate strategy’s payoff and an
agent’s current payoff. The latter specification makes it relatively easy for agents who
obtain a low payoff from paper or rock to switch to the dominated strategy twin.

5.3 Exact and hybrid imitative dynamics

An important class of dynamics that is excluded by our results is imitative dynamics,
a class that includes the replicator dynamic as its best-known example. In general, imi-
tative dynamics are derived from revision protocols of the form

ρij(π�x)= xjrij(π�x)�

The xj term reflects the fact that when an agent receives a revision opportunity, he se-
lects an opponent at random and then decides whether to imitate this opponent’s strat-
egy. Substituting ρ into (1), we see that imitative dynamics take the simple form

ẋi = xi
∑
j∈S
xj

(
rji(F(x)�x)− rij(F(x)�x)

)
(8)

≡ xipi(F(x)�x)�

In other words, each strategy’s absolute growth rate ẋi is proportional to its level of uti-
lization xi.

To see the consequences of this for dominated strategies, use (8) and the quotient
rule to obtain

d

dt

(
xi
xj

)
= xi
xj

(
pi(F(x)�x)−pj(F(x)�x)

)
� (9)

Now suppose that percentage growth rates are monotone, in the sense that

pi(π�x)≥ pj(π�x) if and only if πi ≥ πj�
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(i) BNN

(ii) Smith

Figure 9. The maximum, time-average, and minimum weight on the dominated strategy in
the limit cycles of the BNN and Smith dynamics. These weights are presented as functions of the
domination level d in game (7).
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(i) standard RPS with a twin (ii) standard RPS with a feeble twin

Figure 10. The replicator dynamic in two games.

Then if strategy i strictly dominates strategy j, the right hand side of (9) is positive at all
x ∈ int(X). We can therefore conclude that the dominated strategy j vanishes along ev-
ery interior solution trajectory of (8). This is Samuelson and Zhang’s (1992) elimination
result.14

Equation (9) can be used to explain why elimination results for imitative dynamics
are fragile. Suppose now that strategies i and j always earn the same payoffs. In this
case, the right hand side of (9) is identically zero on int(X), implying that the ratio xi/xj
is constant along every interior solution trajectory. For instance, in Figure 10(i), a phase
diagram of the replicator dynamic in standard RPS with a twin, we see that the planes
on which the ratio xS/xT is constant are invariant sets. If we make the twin feeble by
lowering its payoff uniformly by d, we obtain the dynamics pictured in Figure 10(ii):
now the ratio xS/xT increases monotonically, and the dominated strategy is eliminated.

The existence of a continuum of invariant hyperplanes in games with identical twins
is crucial to this argument. At the same time, dynamics with a continuum of invariant
hyperplanes are structurally unstable. If we fix the game but slightly alter the agents’
revision protocol, these invariant sets can collapse, overturning the elimination result.

As an example, suppose that instead of always following an imitative protocol,
agents occasionally use a protocol that allows switches to unused strategies. This sit-
uation is illustrated in Figure 11(i), which contains the phase diagram for a bad RPS with
a twin game under a convex combination of the replicator and Smith dynamics.15 While

14Sandholm et al. (2008) establish close links between the replicator dynamic and the projection dy-
namic of Nagurney and Zhang (1997). They show that on the interior of the simplex, these two dynamics
share a property called inflow–outflow symmetry, which ensures that dominated strategies lose ground to
the strategies that dominate them. But the projection dynamic is discontinuous at the boundary of the
simplex, and its behavior on the boundary can allow dominated strategies to survive.

15In particular, we consider the bad RPS game with payoffs 0, − 11
10 , and 1, and the combined dy-

namic that puts weight 9
10 on the replicator dynamic and weight 1

10 on the Smith dynamic. This dy-
namic is generated by the corresponding convex combination of the underlying revision protocols: ρij =
9
10xj[Fj − Fi]+ + 1

10 [Fj − Fi]+.
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(i) bad RPS with a twin (ii) bad RPS with a feeble twin

Figure 11. The 9
10 replicator + 1

10 Smith dynamic in two games.

Figure 11(i) displays a continuum of invariant hyperplanes, Figure 11(i) shows almost
all solution trajectories converging to a limit cycle on the plane where xS = xT . If we
then make the twin feeble, the limit cycle moves slightly to the left, and the dominated
strategy survives (Figure 11(ii)).

5.4 Exact and perturbed best response dynamics

Of the basic evolutionary dynamics presented in Table 1, it remains to consider the best
response dynamic of Gilboa and Matsui (1991). The best response dynamic is defined by

ẋ ∈ BF(x)− x� where BF(x)= arg max
y∈X

y ′F(x)

is the set of mixed best responses to population state x. This dynamic describes the be-
havior of agents who occasionally receive opportunities to switch strategies, and switch
to a best response whenever such an opportunity arises. It is obvious that the best re-
sponse dynamic eliminates any strictly dominated strategy: since such strategies are
never best responses, the weight on them vanishes at an exponential rate.

The best response dynamic is defined by a discontinuous differential inclusion. If we
approximate the best response dynamic by a continuous differential equation—for in-
stance, by a dynamic defined in terms of perturbed best responses—the resulting limit
behavior can change dramatically, allowing dominated strategies to endure in signifi-
cant proportions.16

16As an aside, we note that the limit behavior of the best response dynamic itself can change discontin-
uously as we change the payoffs of the underlying game. For instance, in game (7), a positive dominance
level d leads the best response dynamic to have a triangular limit cycle on the face of the simplex where
the dominated strategy twin is unused (cf. Gaunersdorfer and Hofbauer 1995), while a negative value of d
transfers this limit cycle to the face where the now-dominated strategy scissors is unused. But when d is
zero, so that scissors and twin are identical, the union of the three planes that connect the corresponding
sides of the triangles is an attractor, and any point on this surface can be reached from any other. For more
on attractors of differential inclusions, see Benaïm et al. (2005).
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Figure 12. The maximum weight on the dominated strategy in limit cycles of the logit(η) dy-
namic, η= 0�01�0�05�0�10, and 0�20, in game (7). Weights are presented as functions of the dom-
ination level d.

To illustrate this, we consider the logit dynamic of Fudenberg and Levine (1998):

ẋ=LF(x)− x� where LFi (x)= exp(η−1Fi(x))∑
k∈S exp(η−1Fk(x))

�

The logit dynamic describes the aggregate behavior of agents who update strategies by

applying the logit ruleLF . When the noise level η> 0 is small, the logit rule places nearly

all probability on optimal strategies, but this rule always places positive probability on

all available strategies. It follows immediately that the boundary of the simplex is re-

pelling under the logit dynamic, implying that there is a trivial sense in which all strate-

gies must survive in positive proportions. But when the noise level η is small, the min-

imal level of use of each strategy ensured directly by repulsion from the boundary is

miniscule.17 It is therefore still meaningful to ask whether strictly dominated strategies

can survive under the logit dynamic in economically significant proportions.

Figure 12 presents the results of a numerical analysis of the logit dynamic in the bad

RPS with a feeble twin game from (7). The four curves represent the maximum weight

on the dominated strategy twin in the stable limit cycle of the logit(η) dynamic for noise

17See, for instance, Example 6.2.2 of Sandholm (2010b).
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levels η= 0�01, 0�05, 0�10, and 0�20.18 In each case, the weight on twin is presented as a
function of the domination level d in game (7).

When both the noise levelη and the domination level d are very close to 0, the weight
on the dominated strategy twin recurrently approaches values of nearly 2

7 .19 For small
fixed values of η, the maximum weight on the dominated strategy falls rapidly as the
domination d level increases.

Higher values of η introduce more randomness into agents’ choices, creating a force
that pushes the population state toward the center of the simplex. This inward force
reduces the maximal weight on the dominated strategy at low values of d, but allows
the dominated strategy to maintain a significant presence at considerably higher values
of d.

5.5 On the necessity of the sufficient conditions for survival

Our main result shows that dynamics satisfying conditions (C), (PC), (NS), and (IN) fail
to eliminate strictly dominated strategies in some games. While we believe that these
conditions are uncontroversial, it is still natural to ask whether they are obligatory to
reach the conclusions we establish here.

Our continuity condition (C) seems unavoidable. This condition excludes best re-
sponse dynamics, which satisfy the three remaining conditions and eliminate strictly
dominated strategies in all games. Still, continuity is a natural restriction to impose on
dynamics that aim to describe the behavior of myopic, imperfectly informed agents.
The results in this paper can be viewed as a demonstration of one counterintuitive con-
sequence of this realistic requirement.

Our analysis in Section 4 uses innovation (IN) to establish that in the hypnodisk
game with an exact twin, the mass placed on the twin strategy at states in the attrac-
tor A is bounded away from zero. It seems to us that in the presence of the other three
conditions, a fourth condition significantly weaker than or of a different nature than
condition (IN) might suffice to establish survival results.

Positive correlation (PC) and Nash stationarity (NS) link the directions of motion un-
der an evolutionary dynamic and the identity of its stationary states to the payoffs in the
game at hand. As such, they help us specify what we mean by an evolutionary dynamic.
It is nevertheless worth asking whether conditions (NS) and (PC) are necessary to prove
survival results. Suppose first that one follows the “uniform” approach from Section 4,
seeking a single game that generates nonconvergence and survival in the class of dy-
namics under consideration. Clearly, achieving this aim requires one to constrain the
class of dynamics by means of some general restrictions on the allowable directions of

18To interpret the analysis, note that a noise level of η corresponds to the introduction of indepen-
dent and identically distributed extreme-value distributed payoff disturbances with standard deviation
πη/

√
6 ≈ 1�28η; see Anderson et al. (1992) or Hofbauer and Sandholm (2002).

19To see why, note that under the best response dynamic for bad RPS, the maximum weight on scissors in

the limit cycle is 4
7 (see Gaunersdorfer and Hofbauer 1995). If we move from the best response dynamic to

a low-noise logit dynamic and introduce a slightly dominated strategy twin, a total weight of approximately
4
7 is split nearly evenly between scissors and twin.
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motion from each population state. We employ condition (PC) because it is the weakest
condition that connects payoffs to the direction of motion that appears in the literature,
and we employ condition (NS) because it restricts the set of stationary states in an eco-
nomically sensible way. One could use other conditions instead to ensure the existence
of a badly behaved game; by combining these conditions with (C) and (IN), one could
again obtain survival results.

Alternatively, one could consider a “non-uniform” approach, constructing a possi-
bly distinct game that generates nonconvergence and survival for each dynamic under
consideration. Given the attendant freedom to tailor the game to the dynamic at hand,
it seems possible that continuity (C) and Nash stationarity (NS) on their own might be
enough to establish a survival result. Proving such a result would require one to define a
method of assigning each evolutionary dynamic (i.e., each map from games to differen-
tial equations) a badly behaved game with a pair of twin strategies, and then to show that
in each case, the resulting differential equation admits an interior attractor with a large
basin of attraction. Whether this approach can be brought to fruition is a challenging
question for future research.

6. Conclusion

Traditional game-theoretic analyses rule out strictly dominated strategies, as playing
such strategies is inconsistent with decision-theoretic rationality. This paper argues
that in settings where evolutionary game models are appropriate, the justification for
eliminating dominated strategies is far less secure. When evolutionary dynamics con-
verge, their limits are equilibria of the underlying game, and so exclude strictly domi-
nated strategies. But guarantees of convergence are available only for a few classes of
games. When dynamics fail to converge, the payoffs of the available strategies remain
in flux. If agents are not exact optimizers, but instead choose among strategies whose
current payoffs are reasonably high, dominated strategies may be played by significant
numbers of agents in perpetuity.

Appendix A: Continuation of attractors

Let X be a compact metric space and let φ be a semiflow on X ; thus, φ : [0�∞)×X →
X is a continuous map satisfying φ0(x) = x and φt(φs(x)) = φt+s(x) for all s� t ≥ 0
and x ∈X . A set A ⊂ X is an attractor of φ if there is a neighborhood U of A such
that ω(U) = A (see Conley 1978). Here the ω-limit set of U is defined as ω(U) =⋂
t>0 cl(φ[t�∞)(U)), where for T ⊂ R, we let φT (U) = ⋃

t∈T φt(U). An attractor is com-
pact and invariant (φt(A) =A for all t). Observe that an attractor can strictly contain
another attractor.

The basin of the attractor is defined as B(A) = {x :ω(x) ⊆A}. For each open set U
withA⊂U ⊂ cl(U)⊂ B(A), we haveω(cl(U))=A; see Section II.5.1.A of Conley (1978).
Furthermore, if φt(cl(U)) ⊂ U holds for some t > 0 and for some open set U (which is
then called a trapping region), then ω(U) is an attractor; see Section II.5.1.C of Conley
(1978).
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For a flow {φt}t∈R, the complement of the basin B(A) of the attractor A is called
the dual repellor of A. For all x ∈ B(A) − A, φt(x) approaches this dual repellor as t
approaches minus infinity.

Consider now a one-parameter family of differential equations ẋ = Vε(x) in Rn

(with unique solutions x(t) = �tε(x(0))) such that (ε�x) �→ Vε(x) is continuous. Then
(ε� t�x) �→ �tε(x) is continuous as well. Suppose that X ⊂ Rn is compact and forward
invariant under the semiflows �ε. For ε= 0, we omit the subscript in �t .

The following continuation theorem for attractors is part of the folklore of dynamical
systems; compare, e.g., Proposition 8.1 of Smale (1967).

Theorem 3. Let A be an attractor for � with basin B(A). Then for each small enough
ε > 0, there exists an attractor Aε of �ε with basin B(Aε), such that the map ε �→Aε is
upper hemicontinuous and the map ε �→ B(Aε) is lower hemicontinuous.

Upper hemicontinuity cannot be replaced by continuity in this result. Consider the
family of differential equations ẋ = (ε + x2)(1 − x) on the real line. The semiflow �

corresponding to ε = 0 admits A = [0�1] as an attractor, but when ε > 0, the unique
attractor of �ε is Aε = {1}. This example shows that perturbations can cause attractors
to implode; the theorem shows that perturbations cannot cause attractors to explode.

Theorem 3 is a direct consequence of the following lemma, which is sufficient to
prove the results in Sections 3 and 4.

Lemma 5. Let A be an attractor for � with basin B(A), and let U1 and U2 be open sets
satisfying A ⊂ U1 ⊆ U2 ⊆ cl(U2) ⊆ B(A). Then for each small enough ε > 0, there exists
an attractorAε of �ε with basin B(Aε), such thatAε ⊂U1 and U2 ⊂ B(Aε).

In this lemma, one can always set U1 = {x : dist(x�A) < δ} and U2 = {x ∈ B(A) :
dist(x�X −B(A)) > δ} for some small enough δ > 0.

Proof of Lemma 5. SinceA is an attractor andω(cl(U2))=A, there is a T > 0 such that
�t(cl(U2))⊂U1 for t ≥ T . By the continuous dependence of the flow on the parameter ε
and the compactness of �T(cl(U2)), we have that �Tε (cl(U2)) ⊂ U1 ⊆ U2 for all small
enough ε. Thus, U2 is a trapping region for the semiflow �ε, and Aε ≡ ω(U2) is an
attractor for �ε. Moreover, Aε ⊂ U1 (since Aε = �Tε (Aε) ⊆ �Tε (cl(U2)) ⊂ U1) and U2 ⊂
B(Aε). �

Appendix B: Proofs omitted from Section 3

B.1 The proof of Lemma 1

Lemma 1 states that the set of Nash equilibria NE = {x∗ ∈X :x∗ = ( 1
3 �

1
3 �α�

1
3 − α)} in the

bad RPST game F(x)= Ãx is a repellor under the dynamics defined in Theorem 1. These
dynamics are generated by revision protocols of the forms

ρij =φ(Fj − F̄) (10)
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and

ρij =φ(Fj − Fi)� (11)

where φ : R → R+ is a Lipschitz continuous function satisfying

sgn(φ(u))= sgn([u]+) and
d

du+φ(u)
∣∣∣∣
u=0

> 0� (12)

Equation (12) implies that for any d̄ > 0, there are positive constants k1 and k2 such
that

k1d ≤φ(d)≤ k2d for all d ∈ [0� d̄]� (13)

Choosing d̄ = 2 maxi�x |Fi(x)| ensures that bound (13) holds for all values of d relevant to
our analysis. If we define

ψ(d)=
∫ d

0
φ(u)du� (14)

then integrating (13) shows that

ψ(d)≤ k2

2
d2 for all d ∈ [0� d̄]� (15)

We now split the analysis into two parts, according to whether the dynamic is based
on a protocol of form (10) or (11).

Lemma 6. Let F(x) = Ãx be the bad RPS with a twin game from (5), and let V be the
excess payoff dynamic generated by protocol (10), with φ satisfying condition (12). Then
the set NE is a repellor under V F .

Proof. Define the excess payoff to strategy i by F̂i(x)= Fi(x)− F̄(x). Then using (1), we
can express the dynamic V F as

ẋi =φ(F̂i(x))− xi
∑
j∈S
φ(F̂j(x))� (16)

The rest points of (16) are the Nash equilibria of F ; moreover, if we let

�(x)=
∑
j∈S
φ(F̂j(x))�

then �(x) ≥ 0, with equality if and only if x is a Nash equilibrium of F (see Sandholm
2005).

Consider the Lyapunov function

U(x)=
∑
i∈S
ψ(F̂i(x))�

where ψ is defined in (14). Hofbauer (2000) and Hofbauer and Sandholm (2009) show
that U(x) ≥ 0, with equality holding if and only if x is a Nash equilibrium of F . The
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proof of this theorem shows that the time derivative ofU under the dynamic (16) can be
expressed as

U̇(x)= ẋ′Ãẋ−�(x)F(x)′ẋ� (17)

To prove our lemma, we need to show that U̇(x) > 0 whenever x /∈ NE and dist(x�NE) is
sufficiently small.

Let TX = {z ∈ R4 :z′1 = 0}, the tangent space of the simplex X , so that ẋ ∈ TX , and
suppose that z ∈ TX . Then letting (ζ1� ζ2� ζ3)= (z1� z2� z3 + z4), we have that

z′Ãz = (a− b)(z1z2 + z2(z3 + z4)+ (z3 + z4)z1)

= (a− b)(ζ1ζ2 + ζ2ζ3 + ζ3ζ1)

= b− a
2

(( 3∑
i=1

ζi

)2

− 2
∑

1≤i<j≤3

ζiζj

)
(18)

= b− a
2

3∑
i=1

ζ2
i

= b− a
2

((z1)
2 + (z2)

2 + (z3 + z4)
2)�

Now if x /∈ NE, we can write (16) as

ẋ=�(x)(σ(x)− x)� (19)

where σ(x) ∈ X is given by σi(x) = φ(F̂i(x))/�(x). Since x /∈ NE, some strategy i has
a below average payoff (Fi(x) < F̄(x)), implying that σi(x) = 0 and hence that σ(x) ∈
bd(X). In fact, since strategies 3 and 4 always earn the same payoff, we have that
σ3(x)= 0 if and only if σ4(x)= 0.

If we now write y = (x1�x2�x3 + x4) and τ(x) = (σ1(x)�σ2(x)�σ3(x) + σ4(x)),
then (19) becomes

ẏ =�(x)(τ(x)− y)�
The arguments in the previous paragraph show that τ(x) is on the boundary of the
simplex in R3. Therefore, if we fix a small ε > 0 and assume that dist(x�NE) < ε, then
|y − ( 1

3 �
1
3 �

1
3)| < ε, giving us a uniform bound on the distance between τ(x) and y, and

hence a uniform lower bound on |ẏ|:
|ẏ| ≥ c�(x)

for some c > 0. By squaring and rewriting in terms of ẋ, we obtain

ẋ2
1 + ẋ2

2 + (ẋ3 + ẋ4)
2 ≥ c2�(x)2� (20)

Thus, combining (18) and (20) shows that if dist(x�NE) < ε, then

ẋ′Ãẋ≥ 1
2(b− a)c2�(x)2� (21)
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To bound the second term of (17), use (13) to show that

�(x)F(x)′ẋ = �(x)(F̂(x)− F̄(x)1)′ẋ
= �(x)F̂(x)′ẋ (since 1′ẋ= 0)

= �(x)
∑
i∈S
F̂i(x)

(
φ(F̂i(x))− xi�(x)

)

= �(x)
∑
i∈S
F̂i(x)φ(F̂i(x)) (since F̂(x)′x= 0)

(22)
≥ �(x)k1

∑
i∈S
F̂i(x)

2

≥ �(x)
k1

n

(∑
i∈S
F̂i(x)

)2

≥ �(x)
k1

nk2
2

(∑
i∈S
φ(F̂i(x))

)2

= k1

nk2
2

�(x)3�

Combining inequalities (21) and (22) with (17), we find that for x close enough to
NE,

U̇(x)≥ 1
2(b− a)c2�(x)2 − k1

nk2
2

�(x)3�

Since �(x) ≥ 0, with equality only when x ∈ NE, we conclude that U̇(x) > 0 whenever
x /∈ NE is close enough to NE, and therefore that NE is a repellor under (16). �

Lemma 7. Let F(x)= Ãx be the bad RPS with a twin game from (5), and let V be the pair-
wise comparison dynamic generated by protocol (11), with φ satisfying condition (12).
Then the set NE is a repellor under V F .

Proof. Using (1), we express the dynamic V F as

ẋi =
∑
j∈S
xjφ(Fi(x)− Fj(x))− xi

∑
j∈S
φ(Fj(x)− Fi(x))� (23)

Sandholm (2010a) shows that the rest points of (23) are the Nash equilibria of F .
Our analysis relies on the Lyapunov function

�(x)=
∑
i∈S

∑
j∈S
xiψ(Fj(x)− Fi(x))�

where ψ is defined in (14). Hofbauer and Sandholm (2009) (also see Smith 1984) show
that �(x) ≥ 0, with equality holding if and only if x is a Nash equilibrium of F . The
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proof of that theorem shows that the time derivative of� under the dynamic (23) can be
expressed as

�̇(x) = ẋ′Ãẋ+
∑
i∈S

∑
j∈S

(
xjφ(Fi(x)− Fj(x))

∑
k∈S

(
ψ(Fk(x)− Fi(x))−ψ(Fk(x)− Fj(x))

))
(24)

≡ T1(x)+ T2(x)�

Equation (18) tells us that T1(x) ≥ 0, with equality when x ∈ NE (i.e., when ẋ = 0).
Hofbauer and Sandholm (2009) show that T2(x)≤ 0, with equality only when x ∈ NE. To
prove the lemma, we must show that T1(x)+T2(x) > 0 whenever x /∈ NE and dist(x�NE)
is sufficiently small.

To begin, observe that since F is linear, we have that

[Fj(x)− Fi(x)]+ ≤ c1 dist(x�NE) (25)

for some c1 > 0. Equations (13), (15), and (25) immediately yield a cubic bound on T2:

|T2(x)| ≤ c2 dist(x�NE)3 (26)

for some c2 > 0.
To obtain a lower bound on T1(x), first note that the linearity of F implies that

max
i∈S

Fi(x)− min
j∈S

Fj(x)≥ c3 dist(x�NE) (27)

for some c3 > 0. If F1(x)≥ F2(x)≥ F3(x)= F4(x), then (13) and (27) imply that

ẋ1 =
4∑
j=2

xjφ(F1(x)− Fj(x))≥ (x3 + x4)φ(F1(x)− F3(x))≥ (x3 + x4)c3k1 dist(x�NE)�

Similarly, if F1(x)≤ F2(x)≤ F3(x)= F4(x), then

|ẋ1| = x1

4∑
j=2

φ(Fj(x)− F1(x))≥ x1φ(F3(x)− F1(x))≥ x1c3k1 dist(x�NE)�

Obtaining bounds on |ẋ1| and on |ẋ2| for the remaining four cases in like fashion, we
find that for some c4 > 0 and some ε > 0, for any x with dist(x�NE) ≤ ε (and hence
|x1 − 1

3 | ≤ ε, |x2 − 1
3 | ≤ ε, and |(x3 + x4)− 1

3 | ≤ ε), we have that

ẋ2
1 + ẋ2

2 + (ẋ3 + ẋ4)
2 ≥ max(ẋ2

1� ẋ
2
2)≥ c4 dist(x�NE)2� (28)

Thus, (18) and (28) together imply that for such x,

T1(x)= ẋ′Ãẋ≥ 1
2(b− a)c4 dist(x�NE)2� (29)

Combining (24), (26), and (29), we find that

�̇(x)≥ 1
2(b− a)c4 dist(x�NE)2 − c2 dist(x�NE)3
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whenever dist(x�NE) ≤ ε. We therefore conclude that �̇(x) > 0 whenever x is suffi-
ciently close to but not in NE, and so that NE is a repellor under (23). �

B.2 The proof of Lemma 2

Let {xt}t≥0 be the solution to V F from initial condition ξ ∈X− NE, and suppose without
loss of generality that ξ3 ≥ ξ4. Then (6) implies that (x3 − x4)t is positive and is nonin-
creasing in t, while Lemma 1 reveals that there is a neighborhood U of NE and a time
T ≥ 0 such that {xt} ∈X −U for all t ≥ T .

We split the remaining analysis into two cases. Suppose first that the revision proto-
col ρ is of form (10), so that V is an excess payoff dynamic. In this case, (6) becomes

ẋ3 − ẋ4 = −(x3 − x4)
∑
j∈S
φ(Fj(x)− F̄(x))≡ −(x3 − x4)�(x)�

Sandholm (2005) shows that�(x)≥ 0, with equality if and only if x is a Nash equilibrium
of F . Since U is an open neighborhood of NE, it follows that m= minx∈X−U �(x) > 0.
Thus (d/dt)(x3 − x4)t ≤ −m(x3 − x4)t for all t ≥ T , from which we conclude that
limt→∞(x3 − x4)t = 0.

Now suppose that ρ is of form (11), so that V is a pairwise comparison dynamic. In
this case, (6) becomes

ẋ3 − ẋ4 = −(x3 − x4)
∑
j∈S
φ(Fj(x)− F3(x))� (30)

Since (x3 − x4)t is positive and is nonincreasing in t, it converges to some nonneg-
ative limit l. Thus, ω(ξ), the ω-limit set of trajectory {xt}, is contained in the plane
Pl = {x ∈ X :x3 − x4 = l}. Also, ω(ξ) is compact and invariant by definition (see, e.g.,
Robinson 1995), and ω(ξ) is disjoint from NE by Lemma 1.

Now assume that l is positive. Then (30), combined with the fact that ω(ξ) is in-
variant and a subset of Pl, implies that

∑
j∈S φ(Fj(x) − F3(x)) = 0 for all x ∈ ω(ξ). It

then follows from condition (12) (namely, from the fact that sgn(φ(u))= sgn([u]+)) that
strategy 3 is optimal throughout ω(ξ); the identical twin strategy 4 must be so as well.
But it is easy to check that under any pairwise comparison dynamic V F for the bad RPS
with a twin game F , optimal strategies have positive growth rates at any non-Nash state.
Sinceω(ξ) is disjoint from NE, we conclude that V F3 (x)+ V F4 (x) > 0 whenever x ∈ω(ξ).

At the same time, since ω(ξ) is compact, χ = arg maxx∈ω(ξ)x3 + x4 exists, and since
ω(ξ) is also invariant, it must be that V F3 (χ) + V F4 (χ) ≤ 0. This is a contradiction. We
therefore conclude that l= 0, and so that {xt} converges to the plane P0 = P . �

Appendix C: Proofs details omitted from Section 4.2.4

Our analysis relies on the notion of attractor–repellor pairs introduced by Conley (1978);
see Robinson (1995) for a textbook treatment. Define the flow from the setU ⊆X under
the dynamic V F by

φt(U)= {ξ ∈X : there is a solution {xs} to ẋ= V F(x)with x0 ∈U and xt = ξ}�
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In words,φt(U) contains the time t positions of solutions to V F whose initial conditions
are in U .

Recall that solutions to V F starting in I − NE ascend the function f C̃ until leaving
the set I. It follows that the set NE is a repellor under V F : all backward-time solutions to
V F that begin near NE converge to NE. More precisely, there is a neighborhood U of NE
such that ⋂

t<0

φt(cl(U))= NE�

The dual attractor A of the repellor NE is the forward-time limit of the flow of V F starting
from the complement of cl(U):

A =
⋂
t>0

φt(X − cl(U))�

Lemma 4 tells us that A ⊂D. Three other key properties of the attractor A are noted
next.

Lemma 8. The attractor A is nonempty, compact, and forward and backward invariant
under V F .

These properties of attractors are well known; for proofs, see Conley (1978) or
Robinson (1995).

We now show that A is contained in the interior of the simplex. To do so, we let
Z = {x ∈X :x4 = 0} be the face of X on which the twin strategy is unused. We prove the
following lemma.

Lemma 9. The attractor A and the face Z are disjoint.

Proof. Recall that V F(x) = g(F(x)�x), where the growth rate function g is Lipschitz
continuous (by condition (C)) and satisfies gi(π�x) ≥ 0 whenever xi = 0. It follows that
solutions to V F that start inX −Z cannot approach Z more than exponentially quickly,
and in particular cannot reach Z in finite time. Equivalently, backward solutions to V F

starting from states in Z cannot enter int(X).
Now suppose by way of contradiction that there exists a state ξ in A ∩ Z. Then by

Lemma 8 and the previous paragraph, the entire backward orbit from ξ is also con-
tained in A ∩ Z, and hence in D ∩ Z. Since the latter set contains no rest points (by
condition (PC)), the Poincaré–Bendixson theorem implies that the backward orbit from
ξ converges to a closed orbit γ inD∩Z that circumnavigates I ∩Z.

By construction, the annulus D ∩ Z can be split into three regions: one in which
strategy 1 is the best response, one in which strategy 2 is the best response, and one
in which strategy 3 (and hence strategy 4) is a best response. Each of these regions is
bounded by a simple closed curve that intersects the inner and outer boundaries of the
annulus. Therefore, the closed orbit γ, on which strategy 4 is unused, passes through
the region in which strategy 4 is optimal. This contradicts innovation (IN). �
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