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The Foster–Hart measure of riskiness for general gambles

Frank Riedel
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Tobias Hellmann
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Foster and Hart propose a measure of riskiness for discrete random variables.
Their defining equation has no solution for many common continuous distribu-
tions. We show how to extend consistently the definition of riskiness to continu-
ous random variables. For many continuous random variables, the risk measure
is equal to the worst-case risk measure, i.e., the maximal possible loss incurred by
that gamble. For many discrete gambles with a large number of values, the Foster–
Hart riskiness is close to the maximal loss. We give a simple characterization of
gambles whose riskiness is or is close to the maximal loss.
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Foster and Hart (2009) introduce a measure of riskiness for finite lotteries. If the
lottery is described by a random variable X , its riskiness is the unique positive solution
ρ > 0 of the equation

E log(1 +X/ρ) = 0� (1)

where ρ is a critical wealth level. An investor who rejects gambles if his current wealth is
below the riskiness avoids bankruptcy almost surely; agents accepting gambles at lower
wealth levels can lose their wealth against a malevolent nature with positive probability.

Until now, the Foster–Hart measure of riskiness has only been studied for gambles
with finitely many outcomes; even the finite examples were mostly confined to gambles
with few values. Many financial applications involve distributions with a large number
or a continuum of outcomes; it seems natural and important to generalize the concept
of critical wealth level to such cases. Distributions with densities being the limit of finite
gambles with many outcomes, we will learn something about finite lotteries as well.
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Figure 1. The function λ �→ E log(1 + λX) for the uniform distribution over [−100�200] has no
zero.

A straightforward generalization to general gambles via (1) is not possible. Even for
the simple case of a uniform distribution, the defining equation of Foster and Hart does
not always have a finite solution, as the following example demonstrates.

Example 1. Let X be uniformly distributed over [−100�200]. The random variable X

has the positive expectation 50 and losses occur with positive probability. It thus qual-
ifies as a gamble in the sense of Foster and Hart. Replacing ρ by λ = 1/ρ, we study the
equation

φ(λ) :=E log(1 + λX)= 0� (2)

The function φ is well defined for positive values λ ≤ 1/L, where L= 100 is the gamble’s
maximal loss. We plot the function φ(λ) in Figure 1. No solution for λ > 0 to (2) exists.
For a formal proof, note that φ is continuous and concave on [0�1/L], with positive
slope in 0 as EX > 0 (see the argument in Foster and Hart (2009)). Thus, there exists a
root for the defining equation if and only if φ(1/L) < 0. For the maximal possible value
λ∗(X) = 1/L = 1

100 , we have

E log(1 + λ∗(X)X) =
∫ 200

−100

1
300 log(1 + x/100)dx

=
[

1
3((1 + x/100) log(1 + x/100)− (1 + x/100))

]200

−100

= log 3 − 1 � 0�0986 > 0�

We conclude that φ(λ) > 0 for all λ ∈ (0�λ∗(X)]. ♦
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n Grid size Riskiness

2 300 200
3 150 145�74
5 75 119�46

11 30 104�997
21 15 101�197
31 10 100�3651
41 7�5 100�1195
61 5 100�0137

101 3 100�0002

Table 1.

As a reaction to the example above, one might point out that the value λ = 0 solves
the defining equation. The value λ = 0 corresponds to a riskiness of infinity; while re-
jecting the favorable gamble at all wealth levels certainly avoids bankruptcy, such a rule
would seem economically implausible.

Let us study next how the riskiness of discrete distributions that approximate the
uniform one looks. We call a random variable X : (��F) → R defined on a proba-
bility space (��F�P) a gamble if its expectation is positive (EX > 0), losses occur
with positive probability (P[X < 0] > 0), and its maximal loss is bounded (L(X) :=
ess sup(−X) <∞).1 We call a gamble finite if its support is finite.

Now we approximate the uniform distribution over [−100�200] by finite gambles.
We consider discrete and uniformly distributed gambles on the grid −100�−100 +
300/(n− 1)� � � � �−100 + 300k/(n− 1)� � � � �200. The riskiness is the root of

fn(λ)= 1
n

n−1∑
k=0

log
(

1 + λ

(
−100 + 300k

n− 1

))
�

For the simplest case, n = 2, one can easily verify that

1
2(log(1 − 100λ)+ log(1 + 200λ))= 0

yields a riskiness ρ = 1/λ = 200.
In Table 1, the riskiness numbers for different grid sizes are shown. We observe that

the riskiness decreases and converges to the maximal loss as the grid becomes finer and
finer. As the single weights on specific losses vanish, the investor might accept the gam-
bles at ever lower wealth levels. In the limit, he is able to gamble as long as his wealth
suffices to cover the maximal loss without taking any risk of bankruptcy. Note that the
riskiness is very close to the maximal loss 100 even for quite large grid sizes (n = 21, e.g.).

Let us now go beyond specific examples and clarify for which gambles the Foster–
Hart index is equal or close to the maximal loss. We will characterize such distributions
by a simple condition.

1We define as usual ess sup(−X) := inf{x ∈ R | P(−X > x) = 0}.
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There are two classes of gambles. For one class, the defining equation of Foster and
Hart has a finite solution, and one can use this number as its riskiness. For the other
class, including the uniform one described above, the defining equation has no solution.
For all finite gambles that approximate these distributions in a suitable way, the Foster–
Hart riskiness converges to the maximal loss.

Theorem 1. Let X be a gamble with maximal loss L > 0. Let Xn be a sequence of finite
gambles with Xn ↑ X a.s., where each Xn has the same maximal loss L. Denote by ρn :=
ρ(Xn) > L their Foster–Hart riskiness. Then the following statements hold true:

(i) The sequence (ρn) is decreasing. We write ρ∞ = limρn ≥L for its limit.

(ii) If E log(1 + X/L) < 0, then ρ∞ > L and ρ∞ is the unique positive solution of the
Foster–Hart equation (1).

(iii) If E log(1 + X/L) ≥ 0, then the Foster–Hart equation has no solution and
ρ∞ =L(X).

The proof is postponed to the end of the text. For gambles where the defining equa-
tion does not have a solution, our theorem suggests the use of the maximal loss as their
riskiness.

The previous theorem also gives a simple test to see whether the Foster–Hart riski-
ness is equal to (or close to) the maximal loss of a distribution. Indeed, the sign of the
expectation E log(1 + X/L) determines whether the riskiness is equal or close to the
maximal loss.

The maximal loss is indeed obtained for a large number of gambles. For exam-
ple, for the uniform distribution on [−100�200] and for a uniform distribution on, say,
[−100�1012], the riskiness is the same, namely 100 (and similarly for finite gambles with
such a support on a dense grid; compare Example 3 below for more details). The Foster–
Hart riskiness index then boils down to the so-called worst-case risk measure.

This property appears to be undesirable. Why would uniform gambles on [−100�200]
and the much more favorable uniform gambles on [−100�1012] have the same riskiness?
Let us look at the operational interpretation of the riskiness that Foster and Hart had in
mind. The aim is to find a critical wealth level that ensures solvency with probability 1 if
it is used as a decision rule for acceptance and rejection of gambles. For solvency, losses
clearly play a much more important role than potential gains, and our analysis shows
that frequently the maximal loss only determines whether one should accept or reject a
gamble.

In Hellmann and Riedel (2014), we extend the Foster–Hart result on solvency to our
gambles. One does avoid bankruptcy with probability 1 if one uses our extended riski-
ness as a decision rule. In particular, if one faces a sequence of independent uniformly
distributed gambles with sufficiently high maximal gains, one stays solvent with prob-
ability 1 if one accepts every gamble whose maximal loss is below one’s wealth. As the
operational interpretation of Foster and Hart (2009) carries over, this provides another
justification for using the maximal loss as an extension of the Foster–Hart riskiness.
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(a) Generalized Foster–Hart riskiness ρ (b) λ= 1/ρ

Figure 2. Variables ρ and λ for log-normally distributed gambles over (−1�∞) with σ = 2.

A riskiness equal to the maximal loss is quite a contrast to the simple Bernoulli ex-
ample discussed by Foster and Hart where you need a wealth of at least $600 to accept a
gamble with outcomes of +$120 and −$100 occurring with equal probability.

Our theorem also shows that, for certain gambles, the Foster–Hart index does not
care about the way gains are distributed. Whether you have specific gains with a certain
density or point masses on some numbers does not matter. Further examples illustrate
this point.

Example 2. The log-normal distribution is used in many financial applications, for in-
stance, in the widely used Black–Scholes options pricing model. Therefore, it seems to
be important to be able to apply the measure of riskiness for this distribution.

A random variable X is said to be log-normally distributed if its density ϕ is (see
Johnson et al. 1995)

ϕ(x;μ�σ�L) = 1

(x+L)
√

2πσ
exp

(
− 1

2
(log(x+L)−μ)2

σ2

)
� x > −L�

where μ and σ are, respectively, the expected value and the standard deviation of the
normally distributed random variable XN = log(X +L), and L is the maximal loss of X .

For the special case of log-normal distributed gambles with L = 1, we can obtain an
interesting result. ♦

Proposition 1. For the log-normal distributed random variable X = exp(XN)− 1 with
EX > 0, there exists a solution for the defining (1) if and only if EXN < 0.

Proof. We can easily check that

E log
(

1 + exp(XN)− 1
1

)
=E log(exp(XN)) =EXN

and, therefore, E log(1 +X/L(X)) < 0 if and only if EXN < 0. �
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(a) Generalized Foster–Hart riskiness ρ (b) λ = 1/ρ

Figure 3. Variables ρ and λ for uniform distributed gambles over [−100�M].

Now, if we also fix σ = 2, we can numerically compute the riskiness as a function
of μ. The result is drawn in Figure 2. As Proposition 1 already says, we observe that the
critical value for which there exists no zero for the defining equation is μ∗ = 0.

Example 3. Let us consider the motivating example again. We fix L = 100 and check
for which value M∗ of the maximal gain the defining equation (1) has a solution for
the uniformly distributed gamble over [−100�M∗], i.e., we need to find M∗ such that
E log(1 +X/L) = 0. Therefore,

E log
(

1 + X

100

)
=

∫ M∗

−100

1
100 +M∗ log

(
1 + x

100

)
dx

=
[

100
100 +M∗

((
1 + x

100

)
log

(
1 + x

100

)
−

(
1 + x

100

))]M∗

−100

= 100
100 +M∗

((
1 + M∗

100

)
log

(
1 + M∗

100

)
−

(
1 + M∗

100

))
�

Setting this equal to zero yields

log
(

1 + M∗

100

)
= 1�

which implies

M∗ =L(e− 1) � 171�8�

Hence, for all values M < M∗, there exists a solution to the defining equation and we
take this solution as the riskiness. For all M ≥ M∗ there does not exist a finite solution
and, therefore, we take the maximal loss L= 100 as the riskiness.

In Figure 3, the graph of the riskiness ρ as well as the solution λ of (2) is plotted
against the maximal gain M of the gambles. To get a positive expectation, we consider
only values of M with M > 100.
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The graph of the riskiness is a continuous function; the riskiness tends to the max-
imal loss L = 100 as we approach the critical value M∗ and converges to infinity as the
expectation of the gamble goes to 0 (i.e., M ↓ 100). ♦

Example 4. Consider mixed gambles that have a discrete part as well as a continuous
part. For instance, we take a gamble X that is uniformly distributed over the interval
[−100�0] and that places a probability of 50% on the event {X =M}, where M > 50 to en-
sure a positive expectation. For M >M∗ := 100(e−1) � 171�8, no solution to the defining
equation exists as a calculation similar to the previous example shows:

E log
(

1 + X

100

)
= 1

2 log
(

1 + M

100

)
+ 1

2

∫ 0

−100

1
100 log

(
1 + x

100

)
dx

= 1
2

(
log

(
1 + M

100

)
+

(
1 + 0

100

)
log

(
1 + 0

100

)
−

(
1 + 0

100

))

= 1
2

(
log

(
1 + M

100

)
− 1

)
�

For M >M∗, this expression is positive.
We observe that the critical value for this mixed distribution is the same as for the

uniform distribution over [−100�171�8] (see Example 3). This seems to be surprising at
first sight, as we replaced a uniform distribution over an interval by a positive mass on
the maximal gain. But notice that the Foster–Hart measure of riskiness is more sensitive
on the loss side than on the gain side. The decrease of the probability of the event {X < 0}
from 1

2 to �0�37 outweighs the higher gains of the mixed gamble and the critical value is
exactly the same.

On the other hand, if we take a mixed distribution that has a point mass on its max-
imal loss L, the defining equation always has a solution. Indeed, due to the fact that the
event {X = −L} has a positive probability, we have limλ→1/L E log(1 + λX) = −∞ and
hence a solution to (1) exists. ♦

Example 5. Let us consider beta distributed gambles. The density of a random variable
X that is beta distributed over the compact interval [−L�M] is, for instance, given in
Johnson et al. (1995) as

ϕ(x;α�β�L�M)= 1
B(α�β)

(x+L)α−1(M − x)β−1

(M +L)α+β−1 � x ∈ [−L�M]�α�β > 0�

where B(α�β) denotes the beta function defined as

B(α�β)=
∫ 1

0
tα−1(1 − t)β−1 dt�

The mean of X is given by

EX = αM −βL

α+β
�
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(a) Generalized Foster–Hart riskiness ρ (b) λ = 1/ρ

Figure 4. Variables ρ and λ for beta distributed gambles over [−100�200] with α = 2.

We can parameterize our beta distributed gamble X by

X = cZ −L�

where Z is a beta distributed random variable over [0�1] and c = M + L. Using this
parameterization, we can now explicitly compute for which value of M (or c) no solution
to the defining equation exists. Let us fix L= 100, α = 2, and β = 2. We have

E log
(

1 + X

L

)
= E log

(
1 + cZ −L

L

)
=E log

(
cZ

L

)
= log(c)− log(L)+E log(Z)�

Thus, we are searching for c∗ that solves

log(c∗) = log(L)−E log(Z)�

Now,

E log(Z) =
∫ 1

0

log(x)
B(2�2)

x(1 − x)dx

= 1
B(2�2)

[
log(x)

(
1
2x

2 − 1
3x

3
)

−
(

1
4x

2 − 1
9x

3
)]1

0

= − 5
6 �

Hence,

c∗ = 100 exp
(

5
6

)
� 230�09�

which means

M∗ � 130�09�

Figure 4 shows the graph of the riskiness and of λ = 1/ρ against M . For M > M∗,
where no positive solution exists, the maximal loss L = 100 is used to determine the
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riskiness. The figure demonstrates that the maximal loss is a continuous extension of
the Foster–Hart riskiness. ♦

Proof of Theorem 1. The first statement follows directly by the monotonicity of the
Foster–Hart measure of riskiness; see Proposition 2 in Foster and Hart (2009). It is easier
to prove the converse of the latter two statements. We define 1/ρn = λn, and 1/ρ∞ = λ∞.
Without loss of generality, we take L= 1 (else replace X by X/L). Let us start by assum-
ing λ∞ < 1. In that case, the sequence

Zn = log(1 + λnXn)

is uniformly bounded. Indeed,

−∞ < log(1 − λ∞)≤Zn ≤ log(1 + |X|)≤ |X| ∈ L1�

As we have Zn → log(1 + λ∞X) a.s., we can then invoke Lebesgue’s dominated conver-
gence theorem to conclude

0 = limEZn = E limZn =E log(1 + λ∞X)�

In particular, (2) has a positive solution λ∞ < 1. As φ(λ) = E log(1 + λX) is strictly
concave and strictly positive on (0�λ∞), we conclude that we must have φ(1) =
E log(1 +X) < 0. This proves the second claim.

Now let us assume λ∞ = 1. In that case, we cannot use Lebesgue’s theorem. How-
ever, the sequence

Z′
n = − log(1 + λnXn)

is bounded from below by − log(1 + |X|)≥ −|X| ∈ L1. We can then apply Fatou’s lemma
to conclude

−E log(1 +X) = E limZ′
n ≤ lim inf−E log(1 + λnXn) = 0

or

E log(1 +X) ≥ 0�

This proves the first claim. �
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