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Three steps ahead

Yuval Heller
Department of Economics, University of Oxford

We study a variant of the repeated prisoner’s dilemma with uncertain horizon, in
which each player chooses his foresight ability; that is, the timing in which he is
informed about the realized length of the interaction. In addition, each player has
an independent probability to observe the opponent’s foresight ability. We show
that if this probability is not too close to 0 or 1, then the game admits an evolu-
tionarily stable strategy, in which agents who look one step ahead and agents who
look three steps ahead coexist. Moreover, this is the unique evolutionarily stable
strategy in which players play efficiently at early stages of the interaction. We in-
terpret our results as a novel evolutionary foundation for limited foresight and as
a new mechanism to induce cooperation in the repeated prisoner’s dilemma.
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1. Introduction

Experimental evidence suggests that people have limited foresight. For example, players
usually defect only at the last couple of stages when playing a finitely repeated prisoner’s
dilemma game (see, e.g., Selten and Stoecker 1986), and they ignore future opportunities
that are more than a few steps ahead when interacting in sequential bargaining (Neelin
et al. 1988). A second stylized fact is the heterogeneity of the population: some people
systematically look fewer steps ahead than others (see, e.g., Johnson et al. 2002).1

These observations raise two related evolutionary puzzles. In many games, the abil-
ity to look ahead by one more step than your opponent can give a substantial advantage.
As the cognitive cost of an additional step is moderate in relatively simple games (see,
e.g., Camerer 2003, Section 5.3.5), it is puzzling why there has not been an “arms race” in
which people learn to look many steps ahead throughout the evolutionary process (the
so-called red queen effect; Robson 2003). The second puzzle is how “naive” people in a
heterogeneous population, who systematically look fewer steps ahead, survive.

In this paper, we present a reduced form static analysis of a dynamic evolutionary
process of cultural learning in a large population of agents who play the repeated pris-
oner’s dilemma. Each agent is endowed by a type that determines his foresight ability
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Table 1. Payoff at the symmetric stage game prisoner’s dilemma (A> 1).

and his behavior in the game. Most of the time, agents follow the foresight ability and
strategy that they have inherited. Every so often, a few agents experiment with a dif-
ferent type. The frequency of types evolves according to a payoff-monotonic selection
dynamic: more successful types become more frequent. Our main results characterize
a stable heterogeneous population in which some agents look one step ahead and the re-
maining agents look three steps ahead, and show that this is the unique stable population
in which players cooperate at early stages of the interaction.

Our static analysis focuses on a symmetric two-player game, in which the set of ac-
tions of each player is the set of feasible types in the population. A mixed equilibrium in
this auxiliary game describes a distribution of types in the population. It is well known
(see, e.g., Nachbar 1990) that a distribution of types is dynamically stable only if its cor-
responding mixed strategy is a symmetric Nash equilibrium.

The auxiliary game includes an initial round in which players choose their fore-
sight ability and T rounds of repeated prisoner’s dilemma, where T is geometrically dis-
tributed with a continuation probability close to 1 (i.e., a high enough expected length).
At stage 0, each player chooses a foresight ability (abbreviated, ability) from the set
{L1�L2� � � � �Lk� � � �}. A player with ability Lk is privately informed at round T − k about
the realization of T. We interpret k as the horizon (i.e., number of remaining steps) in
which a player with ability Lk becomes aware of the strategic implications of the final
period. We discuss this interpretation in Section 8.1. In addition, choosing ability Lk

bears a cognitive cost of c(Lk), which is weakly increasing in k (nonmonotonic costs are
discussed in Section 8.2).

Each player obtains a private signal about his opponent’s ability (à la Dekel et al.
2007): the signal reveals the opponent’s ability with probability p and it is noninfor-
mative otherwise (independently of the signal that is observed by the opponent). Our
interpretation is that each player may observe his opponent’s behavior in the past or a
trait that is correlated with foresight ability, and he uses such observations to assess his
opponent’s ability.2

The payoffs and actions at stages 1 ≤ t ≤ T are described in Table 1: Mutual coop-
eration yields A> 1, mutual defection gives 1, and if a single player defects, he obtains
A+ 1 and his opponent gets 0.3 The total payoff of the game is the undiscounted sum of
payoffs.

2In Appendix A, we relax the assumption that p is exogenous and allow players to influence the proba-
bility of observing the opponent’s ability.

3We assume that defection yields the same additional payoff (relative to cooperation) regardless of the
opponent’s strategy to simplify the presentation of the result and their proofs. The results remain qualita-
tively similar also without this assumption. Besides this assumption, the table represents a general pris-
oner’s dilemma game (up to an affine normalization).
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We begin by characterizing a specific symmetric Nash equilibrium, σ∗, for every p

that is not too close to 0 and 1 (and the width of this interval is increasing in A). The
support of σ∗ includes two abilities (dubbed, incumbents): L1 and L3, where μ(L1) is
increasing in A and p. Strategy σ∗ induces a simple deterministic play: when the hori-
zon is still uncertain, players follow a “perfect” variant of “tit-for-tat” (dubbed pavlov):
defect if and only if players have played different actions in the previous round.4 Every-
one defects at the last round. A player with ability L3 defects also at the penultimate
round, and his behavior at the previous round (i.e., stage T − 2) depends on the signal
about the opponent’s ability: he follows pavlov if it is either L1 or unknown, and defects
otherwise.

Intuitively, the equilibrium relies on two observations: (1) if p is not too low, there
is a unique frequency, μ(L1), that induces a balance between the direct disadvantage of
having ability L1 (loosing one point by cooperating at horizon 2) and its indirect “com-
mitment” advantage (when an L3 opponent observes ability L1, it induces him to coop-
erate an additional round); (2) if p is not too high, then it is optimal to follow pavlov at
stage T − 3 also when a player has higher ability than L3.

Nash equilibria may be dynamically unstable. Maynard Smith and Price (1973) re-
fine it as follows: Nash equilibrium σ is an evolutionarily stable strategy (abbreviated
ESS) if it is a better reply against any other best-reply strategy σ ′ (u(σ ′�σ) = u(σ�σ) ⇒
u(σ�σ ′) > u(σ ′�σ ′)). The motivation is that an ESS, if adopted by a population of players,
cannot be invaded by any alternative strategy that is initially rare. Repeated games rarely
admit an ESS due to “equivalent” strategies that differ only in off-equilibrium paths. In
particular, the repeated prisoner’s dilemma does not admit any ESS (Lorberbaum 1994).

Selten (1983) adapts the notion of ESS to extensive-form games as follows. A pertur-
bation is a function that assigns a minimal probability to play each action at each infor-
mation set. Strategy σ is a limit ESS if it is the limit of ESS of a sequence of perturbed
games when the perturbations converge to 0.5 Observe that any ESS is a limit ESS and
that any limit ESS is a symmetric perfect equilibrium (Selten 1975, see Corollary 1). Our
first main result (Theorem 2) shows that σ∗ is a limit ESS.6

Similar to other repeated games, the interaction admits many stable strategies. In
Section 5, we present a folk-theorem result: for any k, m, and n, there exists a limit ESS
in which everyone has ability Lk, and as long as the horizon is uncertain, players repeat
cycles in which they cooperate m times and defect n times.

Thus, uniqueness is possible only when focusing on a subset of stable strategies. We
shall say that a strategy is early-nice if players cooperate when the horizon is sufficiently
large and no one has ever defected in the past. Empirical evidence suggests that fo-
cusing on early-nice strategies is plausible: Selten and Stoecker (1986) experimentally

4The name “pavlov” (Kraines and Kraines 1989, Nowak and Sigmund 1993) stems from the fact that it
embodies an almost reflex-like response to the payoff of the previous round: it repeats its former move if
it was rewarded by a high payoff (A or A + 1) and it switches if it was punished by receiving a low payoff
(0 or 1).

5A few examples for applications of limit ESS are Samuelson (1991), Kim (1993, 1994), Bolton (1997),
Leimar (1997).

6Moreover, we show that σ∗ is the limit of ESS of every sequence of perturbed games (strict limit ESS).



206 Yuval Heller Theoretical Economics 10 (2015)

Figure 1. Summary of main results.

demonstrate that most subjects satisfy early-niceness when playing the repeated pris-
oner’s dilemma in the lab,7 and the tournaments of Axelrod (1984) and Wu and Axelrod
(1995) suggest that “niceness” (not being the first to defect) might be a necessary re-
quirement for evolutionary success. In Section 6, we adapt the results of Fudenberg and
Maskin (1990) and show that all the non-early-nice strategies of the above folk-theorem
result become unstable when the continuation probability converges to 1 (while the
early-nice strategy σ∗ remains stable).

Our second main result (Theorem 5) shows that if A > 3, then any early-nice limit
ESS is equivalent to σ∗: it induces the same distribution of abilities and the same play
on the equilibrium path. In Section 7, we extend the uniqueness result to weaker solu-
tion concepts: a neutrally stable strategy and a perfect equilibrium. Figure 1 graphically
summarizes our main results for different values of A and p. Observe that no early-nice
stable strategies exist if p is close to either 0 or 1.

The intuition of Theorem 5 is as follows. Let Lk be the lowest incumbent ability.
Observe that everyone must defect during the last k rounds because the event of reach-
ing the kth to last round is common knowledge among the players. If Lk is the unique
incumbent ability, then “mutants” with ability Lk+1 outperform the incumbents by de-
fecting one stage earlier. If there are two consecutive abilities, then the lower ability is

7Selten and Stoecker (1986) experimentally study how people play a repeated prisoner’s dilemma with
10 rounds (see similar results in Andreoni and Miller 1993, Cooper et al. 1996, Bruttel et al. 2012). They
show that there is usually mutual cooperation in the first six rounds, players begin defecting only during
the last four rounds, and if any player defected, then almost always both players defect at all remaining
stages. Johnson et al.’s (2002) findings suggest that limited foresight is the main cause for this behavior.
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outperformed by the higher one. If there is a gap of more than two steps between the
lowest and the highest ability in the population and A is sufficiently large, then it turns
out that the strategy is unstable to small perturbations in the frequencies of the different
abilities in between. Thus the support must be {Lk�Lk+2} for some k. If Lk > L1, then
mutants with ability L1 can induce additional rounds of mutual cooperation and out-
perform the incumbents. Finally, stability fails if p is too close to 0 because the indirect
advantage of having a low ability is too small, and it fails if p is close to 1 because players
are “trapped” in an arms race toward earlier defections and higher abilities.

Our formal analysis deals only with the repeated prisoner’s dilemma. It is relatively
simple to extend the results to other games in which looking far ahead decreases effi-
ciency, such as centipede (Rosenthal 1981). Such interactions are important in primi-
tive hunter–gatherer societies (representing sequential gift exchange; see, e.g., Haviland
et al. 2007, p. 440) as well as in modern societies.

We conclude by briefly surveying the related literature. Our paper is related to the
literature that studies the stability of cooperation in the repeated prisoner’s dilemma
(e.g., the seminal work of Axelrod 1984, and the recent work of van Veelen and García
2010). Several aspects of our proofs rely on ideas from Kim (1994), Lorberbaum (1994),
and Lorberbaum et al. (2002), which have been extended to the current setup with fore-
sight abilities. Another related paper is the seminal work of Kreps et al. (1982), which
shows that if one of the players may be committed to tit-for-tat behavior (and the com-
mitment is unobservable by the opponent), then players mutually cooperate until the
last few rounds in any equilibrium. One can interpret ability L1 in our model as a simi-
lar commitment device. A key difference between the two models is that in Kreps et al.
(1982), a committed player achieves a strictly lower payoff relative to a noncommitted
player, while in our model, L1 players achieve the maximal payoff.

A closely related paper is Jehiel (2001), which assumes a fixed level of limited fore-
sight in the infinitely repeated prisoner’s dilemma and shows that in all equilibria, play-
ers cooperate at all stages except the first few rounds.8 The key difference between our
paper and Jehiel (2001) is that we obtain limited foresight as a result, rather than assum-
ing it. That is, in our model players can acquire long foresight abilities with low costs
(or without costs at all) and yet there is a stable state (unique under the additional as-
sumption of early-niceness) in which everyone chooses to look only a few steps ahead.
In addition, the current paper presents a novel notion of limited foresight, which may
be of independent interest (see Section 8.1).

Geanakoplos and Gray (1991) study complex sequential decision problems and de-
scribe circumstances under which looking too far ahead in a decision tree leads to poor
choices. Stahl II (1993), Stennek (2000), and Mohlin (2012) present evolutionary models
of bounded strategic reasoning (level-k), which are related to our model when p is equal

8Recently, Mengel (2014) obtains a similar result for the finitely repeated prisoner’s dilemma while using
stochastic stability as the solution concept. Two other related papers are Samuelson (1987) and Neyman
(1999), which show that if the (exogenous) information structure slightly departs from common knowledge
about the final period, then there is an equilibrium in which players almost always cooperate in the finitely
repeated prisoner’s dilemma.
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to 0 or 1. This paper is novel in introducing partial observability in this setup and show-
ing that it yields qualitatively different results. Crawford (2003) studies zero-sum games
with “cheap talk” and shows that naive and sophisticated agents may coexist and obtain
the same payoff.

The paper is structured as follows. Section 2 presents the model. In Section 3, we
characterize the symmetric Nash equilibrium σ∗. Section 4 shows that strategy σ∗ is a
limit ESS. Section 5 presents a folk-theorem result. Section 6 shows that σ∗ is essentially
the unique early-nice limit ESS, and Section 7 extends it to weaker solution concepts. In
Section 8, we discuss the interpretation of limited foresight and sketch a few extensions
and variants. Finally, Appendix B includes the formal proofs.

2. Model

As mentioned in the Introduction, we are interested in characterizing dynamically sta-
ble states in a large population of agents, where each agent is endowed with a type that
determines his ability and his behavior. We do so by studying an auxiliary static sym-
metric two-player game in which the set of actions of each player is the set of feasible
types of the agents.

2.1 Abilities and signals

The interaction includes an initial round in which players choose their foresight ability
and T rounds of repeated prisoner’s dilemma. Random variable T − 2 is geometrically
distributed with parameter 1−δ, where 0 < δ< 1 describes the continuation probability
at each stage: δ= Pr(T > k|T = k) (for each k> 2).9 We focus on the case of δ close to 1.

At stage 0, each player i ∈ {1�2} chooses his ability from the set L = {L1�L2�L3� � � � �

Lk� � � �}.10 We shall say that Lk is larger (resp., weakly larger, smaller) than Lk′ if k > k′
(resp., k ≥ k′, k < k′). Let L≥k denote the set of abilities weakly larger than Lk. In-
tuitively, the ability of a player determines when he will become aware of the realized
length of the interaction and its strategic implications. Formally, a player with ability Lk

privately observes at round max(T − k�0) the realization of T. In Section 8.1, we discuss
the interpretation of the abilities and the uncertain length.

Players partially observe the ability of the opponent as follows (à la Dekel et al. 2007).
At the end of stage 0, each player privately observes his opponent’s ability with proba-
bility p and he obtains no information otherwise (independently of the signal that is ob-
served by his opponent).11 We shall say that a player is uninformed as long as he has not
yet received the signal about the realized length and is informed afterward. We shall use
the term stranger to describe an opponent whose foresight ability is not observed, and

9To simplify the presentation of the results, we assume that T − 2 rather than T has a geometric distribu-
tion. The results remain qualitatively the same without this assumption.

10Results are robust to having either a maximal ability or a minimal ability different than L1 (see Sec-
tion 8.2).

11In Section 8.2, we show that the results are robust to the timing in which a player may observe his
opponent’s ability, and we demonstrate how to extend the model to allow p to be determined endogenously
by the players.
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we shall use the term observing (nonobserving ) to describe a player who has observed
(not observed) his opponent’s ability.

Let c :L → R
+ be an arbitrary weakly increasing function, which describes the cog-

nitive cost of each foresight ability.12 That is, a player who chooses ability Lk obtains a
negative payoff of −c(Lk). Without loss of generality, we normalize: c(L1) = 0. At each
stage 1 ≤ t ≤ T, the players play the prisoner’s dilemma as described in Table 1 with two
pure actions: {C�D}.

2.2 Strategies and payoffs

Given i ∈ {1�2}, let −i denote the other player. An information set of length n > 0 of
player i ∈ {1�2} is a tuple I = (L� l� s� (ai� a−i)n), where L ∈ L is the player’s ability (as
chosen at stage 0), l ∈ {1� � � � �L} ∪ ∞ is the number of remaining periods (dubbed the
horizon), with l < ∞ (l = ∞) describing an informed (uninformed) agent, s ∈ {L ∪ φ}
is the signal about the opponent’s ability, with s = φ describing a noninformative signal
(i.e., facing a stranger), and (ai� a−i)n ∈ ({C�D}×{C�D})n describes the actions that were
publicly observed so far in the game. Let In denote the set of all information sets of
length n and let I = ⋃

n≥1 In be the set of all information sets.
A behavior strategy (abbreviated strategy) is a pair σ = (μ�β), where μ ∈ �(L) is a

distribution over the abilities and β :I → �({C�D}) is a function that assigns a mixed
action for each information set (dubbed playing rule). The abilities in supp(μ) shall be
called the incumbents. Let 	 (B) denote the set of all strategies (playing rules). With
slight abuse of notation, we can identify a pure distribution with a single ability in its
support. A pure playing rule, which induces a deterministic play at all information sets,
is described by the function b :I → {C�D}.

The total payoff of the game is the undiscounted sum of the stage payoffs (including
the cognitive cost at stage 0). This is formalized as follows. A history of play (abbreviated
history) of length n is a tuple ((L1�L2)� (a1� a2)n), where (L1�L2) describes the abilities
chosen at stage 0 and (a1� a2)n describes the n actions taken at stages 1� � � � � n. Let Hn

be the set of histories of length n. For each history hn ∈ Hn, let the payoff of player 1 be
defined as

u(hn) = u((L1�L2)� (a1� a2)n) =
∑
k≤n

u(a1
k�a

2
k)− c(L1)�

where u(a1� a2) is the prisoner’s dilemma stage payoff as given by Table 1.
For each game length T , history hT ∈ HT , and pair of strategies σ , σ ′, let

Prσ�σ ′(hT |T = T) be the probability of reaching history hT when player 1 plays strategy
σ and player 2 plays strategy σ ′, conditional on the random length of the game being
equal to T . The expected payoff of a player who plays strategy σ and faces an opponent
who plays strategy σ ′ is defined as

u(σ�σ ′)=
∑
T∈N

Pr(T = T) ·
∑

hT∈HT

Prσ�σ ′(hT |T = T) · u(hT )�

12We relax the assumption of weakly increasing cognitive costs in Section 8.2.
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Remark 1. Some readers may wonder why we study a cognitive bias (limited foresight)
but allow agents to use complex strategies with perfect memory. We consider this as-
pect of the model an advantage rather than a weakness. The model allows agents to use
complex strategies with long memories and long foresight abilities, and yet it implies a
unique early-nice stable outcome in which all players choose to have a small foresight
ability and to use simple strategies that depend only on the realized actions in the pre-
vious stage. We note that all our results remain the same if one adds a restriction to the
model either to how many rounds of play the agents can remember or to the complexity
of strategies that the agents may use.

3. Characterization of a Nash equilibrium

We study the long-run stable outcomes of payoff-monotonic dynamics in which more
successful types become more frequent. We interpret these dynamics to be the result of
a process of cultural learning.13 A state of the population is Lyapunov stable if no small
change in the population composition can lead it away. Nachbar (1990) shows that any
Lyapunov stable state is a symmetric Nash equilibrium of the auxiliary game. Motivated
by this observation, we characterize in this section a specific Nash equilibrium, σ∗. We
emphasize that this equilibrium behavior can be achieved by agents who passively fol-
low their types, rather than actively maximize their payoffs.14

A strategy is a symmetric Nash equilibrium if it is a best-reply to itself.

Definition 1. Strategy σ ∈ 	 is a symmetric Nash equilibrium if u(σ�σ) ≥ u(σ ′�σ)
∀σ ′ ∈ 	.

Strategy σ∗ assigns positive probabilities to two abilities, L1 and L3, and it induces
a deterministic simple playing rule. Players follow pavlov (defect if and only if players
played differently in the previous round) when they are uninformed about the number
of remaining rounds. Players with ability L1 defect at the last stage. Finally, an L3 player
who is facing an L1 opponent or does not know the opponent’s ability starts defecting
with two rounds to go; otherwise he starts defecting with three rounds to go.

Definition 2. For every p> 0, A> 1, and c(L3) < 1, let σ∗ = (μ∗� b∗) be15

μ∗(L1) = 1 − 1 − c(L3)

p · (A− 1)
� μ∗(L3) = 1 − c(L3)

p · (A− 1)

∀k /∈ {1�3} μ∗(Lk)= 0

13The dynamics also fit a biological evolutionary process in which the type is determined by the gene.
14The results also hold in the presence of sophisticated agents who explicitly maximize their payoffs.

Thus, the model can also fit a nonevolutionary strategic setup in which players explicitly choose how much
effort to spend on detecting early signs that the interaction is going to end soon (foresight ability), and then
they play the repeated prisoner’s dilemma (with partial observability of the opponent’s effort).

15Definition 2 describes the behavior of players at all information sets, including the behavior off the
equilibrium path (e.g., after observing that there are five more rounds to go), which is important for the
equilibrium refinements presented in the next section. Observe that L1 players only observe either l = ∞
or l = 1, and thus they stop playing pavlov only in the last round.
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b∗(L� l� s� (ai� a−i)t) =
{
C (l ≥ 4 or (l = 3 and s ∈ {L1�φ})) and (t = 0 or ait = a−i

t )

D otherwise.

Our first result shows that (μ∗� b∗) is a Nash equilibrium if p is not too close to 0
or 1, the cognitive cost of L3 is not too high, and the continuation probability δ is close
enough to 1.

Theorem 1. There exists δ̄ < 1 such that for all δ ∈ (δ̄�1), if A · (1 − c(L3))/(A − 1)2 <

p< (A− 1)/A and c(L3) < 1/A, then σ∗ is a symmetric Nash equilibrium.

Theorem 1 is implied by Theorem 2 (which is proved in Appendix B, along with the
other results in the paper). The sketch of the proof is as follows. If we suppose that only
abilities L1 and L3 are chosen, and that the players follow b∗, then the result is a hawk–
dove game between these abilities: an L3 player fares better against an L1 opponent
by defecting at horizon 2, while an L1 player fares better against an L3 opponent due
to its indirect “commitment” advantage; that is, when the opponent observes ability L1
(which happens with probability p), it induces him to cooperate for an additional round.
Thus, each ability becomes less successful (relative to the other ability) if its frequency
becomes larger. As a result, a unique frequency of L1 players balances the payoffs of
the two abilities, and this frequency is increasing in p. If p is not too small, then the
frequency of L1 players is sufficiently large, such that it is optimal for an L3 player who
does not know the opponent’s ability to start defecting only in the penultimate round.
If p is not too large, then an L>3 player who observes an L3 opponent will still wait to
defect until there are three rounds to go, in the hope that the opponent has not observed
his ability. Finally, an L2 player is outperformed because he does not have the commit-
ment advantage of the L1 players, and, in addition, unlike the L3 players, he is unable to
defect three rounds before the end.

Remark 2. Theorem 1 holds also if pavlov is replaced with a different reciprocal behav-
ior that induces cooperative behavior on the equilibrium path, such as tit-for-tat (defect
if and only if the opponent defected in the previous round) or perfect grim trigger (defect
if and only if any player defected before). We present the results with pavlov because it
satisfies three appealing properties: (1) it satisfies the refinement of evolutionary stabil-
ity introduced in the next section; contrary to this, tit-for-tat implies nonoptimal play off
the equilibrium path—following a defection of the opponent, it is strictly better to coop-
erate rather than defect; (2) it is a very simple strategy that depends only on the actions
of the last round; and (3) it implies efficiency (mutual cooperation most of the time)
also when there are small error probabilities (see, Nowak and Sigmund 1993), which
allows its stability to remain robust when δ → 1 (see the invasion barrier analysis in
Section 6). Contrary to this, the perfect grim trigger induces inefficient play in “noisy”
environments.

4. Evolutionary stability

A Nash equilibrium may be dynamically unstable. Maynard Smith and Price (1973) re-
fined Nash equilibrium and presented the notion of evolutionary stability. A symmetric
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Nash equilibrium σ is evolutionarily (neutrally) stable if it achieves a strictly (weakly)
better payoff against any other best-reply strategy σ ′. The formal definition follows.

Definition 3 (Maynard Smith and Price 1973, as reformulated for behavior strategies
in Selten 1983). Strategy σ ∈ 	 is an evolutionarily (neutrally) stable strategy (abbrevi-
ated, respectively, ESS, NSS) if (i) it is a symmetric Nash equilibrium and (ii) ∀σ ′ �= σ , if
u(σ ′�σ) = u(σ�σ), then u(σ�σ ′) > u(σ ′�σ ′) (u(σ�σ ′)≥ u(σ ′�σ ′)).

The motivation for Definition 3 is that an ESS, if adopted by a population of players
in a given environment, cannot be invaded by any alternative strategy that is initially
rare.

Repeated games rarely admit an ESS due to the existence of “equivalent” strategies
that differ only off the equilibrium path. In particular, our model admits no ESS.16

Selten (1983) slightly weakens this notion by requiring evolutionary stability in a con-
verging sequence of perturbed games in which players rarely “tremble” and play
“wrong” actions (but not necessarily in the unperturbed game). The formal definition
follows.

Definition 4 (Selten 1983, 1988). A (full support) perturbation ζ is a function that as-
signs a nonnegative (positive) number for

1. each ability at stage 0 such that
∑

Lk∈L ζ(Lk) < 1

2. each action (C or D) after each information set I ∈ I , such that ζ(C)(I) +
ζ(D)(I) < 1.

Let � (ζ) denote the (full support) perturbed game that results from perturbing the
game described in Section 2 by (full support) perturbation ζ. In game � (ζ), each player
is limited to choose strategy σ = (μ�β) that satisfies μ(Lk) ≥ ζ(Lk) for each Lk ∈ L and
ζ(I)(C) ≤ β(I)(C) ≤ 1 − ζ(I)(D) for each I ∈ I . Let 	(ζ) (resp., �ζ(L), B(ζ)) be the set of
all strategies (resp., distributions, playing rules) that satisfy these two properties (resp.,
the first property, the second property). Let M(ζ) denote the maximal tremble of ζ:
M(ζ) = max(supLk∈L ζ(Lk)� supI∈I�a∈{C�D} ζ(I)(a)).

Definition 5 (Selten 1983). Strategy σ ∈ 	 is a limit ESS if there exists a sequence of
perturbations (ζn)n∈N satisfying limn→∞ M(ζn) = 0, and for each n ∈ N, there exists an
ESS σn of the perturbed game �(ζn), such that limn→∞ σn = σ is satisfied.

Observe that any ESS is a limit ESS, and that any limit ESS is a symmetric perfect
equilibrium (Selten 1975).17

16See Lorberbaum (1994) for a proof that the repeated prisoner’s dilemma with uncertain horizon does
not admit any evolutionarily stable strategy. Similarly, one can adapt the proof and show that it does not
admit an evolutionarily stable set (Thomas 1985) or an equilibrium evolutionarily stable set (Swinkels 1992).

17See Corollary 1, which slightly strengthens the result for the general extensive-form games of van
Damme (1987, Corollary 9.8.6) that any limit ESS is a sequential equilibrium (Kreps and Wilson 1982).
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To strengthen our stability result, we present a stronger notion than Definition 5 by
requiring a strict limit ESS to be the limit of ESS of every sequence of strict perturbed
games (rather than a specific sequence). The motivation (similar to Okada’s 1981 notion
of strict perfection) is that a strong notion of stability should be robust to the specific
structure of the perturbations. This is formally stated as follows.

Definition 6. Strategy σ ∈ 	 is a strict limit ESS (strict limit NSS) if, for every sequence
of full support perturbations (ζn)n∈N satisfying limn→∞ M(ζn) = 0 and for every n ∈ N,
there exists an ESS (NSS) of �(ζn), such that limn→∞ σn = σ is satisfied.

Our first main result strengthens Theorem 1 and shows that σ∗ is a strict limit ESS.

Theorem 2. There exists δ̄ < 1 such that for all δ ∈ (δ̄�1), if A · (1 − c(L3))/(A − 1)2 <

p< (A− 1)/A and c(L3) < 1/A,18 then σ∗ is a strict limit NSS, and if c(L4) > c(L3), then
σ∗ is a strict limit ESS.

The sketch of the proof is as follows. Let ζ be any sufficiently small full support per-
turbation, and let σ∗

ζ = (μ∗
ζ� b

∗
ζ) be the closest strategy to σ∗ in the perturbed game G(ζ)

that satisfies u((L1� b
∗
ζ)�σ

∗
ζ ) = u((L3� b

∗
ζ)�σ

∗
ζ ). Lorberbaum et al. (2002) proved that the

perturbed pavlov is a strict best-reply to itself when playing a slightly perturbed stan-
dard repeated prisoner’s dilemma (in which players remain uninformed throughout the
game). Together with the arguments from the sketch of proof of Theorem 1, this im-
plies that playing rule b∗

ζ is a strict best-reply to σ∗
ζ (for all abilities), ability L2 achieves

a strictly lower payoff than L3, and any ability L>3 can achieve, at most, the same pay-
offs as L3. The properties of the hawk–dove “metagame” between abilities L1 and L3

(discussed in Section 3) imply that any strategy with a different frequency of L1’s and
L3’s yields a strictly lower payoff. This shows that σ∗

ζ is an NSS of �(ζ) and an ESS if
c(L4) > c(L3).

Remark 3. We conclude this section with a few comments about the stability of σ∗:

1. Stability without cognitive costs. Minor adaptions to the proof imply a slightly
stronger result when c(L4) = c(L3). Let Las_3 = {Lk | k ≥ 3� c(Lk) = c(L3)} be the
abilities with the same costs as L3. Then

	∗ = {(μ�β∗) | μ(L1)= μ∗(L1) and ∀k /∈Las_3 ∪ {L1}μ(Lk)= 0}

is a “strict limit evolutionarily stable set”: it is the limit of evolutionarily stable sets
(Thomas 1985) of any sequence of converging full support perturbed games.

2. Uniform limit ESS. In Heller (2014), I show that the notion of “limit ESS” is too
weak: it does not imply neutral stability and it may be dynamically unstable in
the sense that almost any small perturbation takes the population away. These
two issues are caused by the implicit assumption of the notion of limit ESS that

18This assumption can be slightly weakened as c(L3) < min(1�1/A+ (1 − 1/A) · c(L2)).
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mutants are rarer than “trembling” incumbents. I solve these two issues by defining
a slightly stronger notion, uniform limit ESS, which requires mutants to be strictly
outperformed also but without this implicit assumption. Minor adaptations to the
proof imply that σ∗ is a uniform limit ESS.

3. Dynamic stability of σ∗. All of our results remain qualitatively the same if one re-
stricts players to choose a foresight ability of at most LM (M ≥ 3) and a playing rule
that depends only on the last N ≥ 3 rounds. With such restrictions, each player has
a finite set of strategies, and existing results imply that σ∗ is dynamically stable:19

(a) The results of Thomas (1985) imply that σ∗ is Lyapunov stable in the unper-
turbed game under the replicator dynamics.

(b) The results of Cressman (1997) and Sandholm (2010) imply that σ∗ is asymp-
totically stable (i.e., populations starting close enough to σ∗ eventually con-
verge to it) under a large variety of payoff-monotonic dynamics and in any full
support game �(ζ) with a sufficiently small M(ζ).20

5. All abilities can be stable

Strategy σ∗ is efficient in the sense that players always cooperate on the equilibrium
path except for the last few rounds. The following theorem shows that the game also ad-
mits an inefficient stable strategy in which all players have ability L1 and always defect.

Theorem 3. Let σdef = (L1� bdef) with bdef ≡ D (always defect). Then σdef is a strict limit
NSS. Moreover, if c(L2) > c(L1), then σdef is a strict limit ESS.

The proof adapts Lorberbaum et al.’s (2002) result that defection is a strict best-reply
to itself in the slightly perturbed repeated prisoner’s dilemma.

The following theorem formally shows a folk theorem result: for any ability Lk and
for any finite sequence of actions, there exists a strict limit ESS in which all players have
ability Lk and they keep playing cycles of the sequence as long as they are uninformed.

Theorem 4. Let Lk ∈ L, M ∈ N, and S ∈ ({C�D})M �= (D� � � � �D). Assume that 0 < p.
Then there exists δ̄ < 1 (which depends on A, p, Lk, and S) such that for all δ ∈ (δ̄�1), there
exists a strict limit ESS σS�k = (Lk�βS�k) in which, on the equilibrium path, uninformed
players repeat playing cycles of the sequence S.

19Note that the dynamic stability in the unperturbed game is relatively weak. Strategy σ∗ is vulnerable to
a sequence of two consecutive invasions: a neutral mutant who always cooperates, which creates a selective
advantage for a second mutant who start defecting earlier in the game (as shown by van Veelen and García
2010, any strategy in the unperturbed repeated prisoner’s dilemma has a similar vulnerability). However,
as soon as any small perturbation (with full support) is introduced, then σ∗ satisfies the strong notion of
asymptotic stability and it is no longer vulnerable to a sequence of invasions.

20The results of Cressman (1997) and Sandholm (2010) require an additional mild requirement of reg-
ularity, namely, strictness with respect to strategies outside its support. Minor adaptations to the proof of
Theorem 2 show that strategy σ∗ is a regular ESS in �(ζ).
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Kim (1994) studies the standard repeated prisoner’s dilemma and shows that any
finite sequence of actions can be implemented as a strict limit ESS for δ sufficiently close
to 1 by using perfect-grim-trigger punishments off-equilibrium path. Our proof extends
Kim’s result to the setup with abilities as follows. On the equilibrium path, players with
ability Lk repeat playing cycles of the sequence S as long as they are uninformed, and
they defect at the last k stages. If an Lk player observes an Lk′ �= Lk opponent, he plays
a cycle of an asymmetric sequence of action profiles W ′, which yields the Lk (Lk′ ) player
a higher (lower) payoff relative to sequence S. If any player deviates from this pattern,
both players always defect.

6. Early-niceness and uniqueness

6.1 Early-niceness

A strategy is early-nice if players who follow its playing rule cooperate when the horizon
is large enough and no one has ever defected before. This is formalized as follows.

Definition 7. Strategy σ = (μ�β) ∈ 	 is early-nice if there exists Mσ ∈ N such that
β(L� l� s� (ai� a−i)n)(C) = 1 if (i) l >Mσ , and (ii) (ai� a−i)n = (C�C)n (dubbed cooperative
information set).

Early-niceness implies efficient play (mutual cooperation) at early stages of the in-
teraction on the equilibrium path. Theorem 4 shows that this implication is not enough
to restrict the set of stable abilities: any ability Lk can be the unique incumbent in a
limit ESS that induces early inefficient play only against nonincumbent abilities. Early-
niceness also requires efficient play in cases in which one of the players (or both) has
trembled and chosen an ability outside the support of μ. That is, it rules out the “dis-
crimination” against mutants (playing a different cycle when observing a mutant abil-
ity), which is necessary for the stability of the various strategies of Theorem 4. Note
that early-niceness does not restrict the play of a mutant player who follows a different
playing rule.

In the Introduction, we presented an empirical motivation for early-niceness. We
now present a theoretical justification when the continuation probability δ is close to 1.
The argument adapts to the current setup the results of Fudenberg and Maskin (1990) for
undiscounted infinite repeated games (see also related ideas in Robson 1990 and Bendor
and Swistak 1997). We say that strategy σ has a (uniform) invasion barrier of 0 < ε̄ < 1
if for every mutant strategy σ ′, the incumbents strictly outperform the mutants in any
post-entry population in which the frequency of the mutants is at most ε̄ (i.e., for each
0 < ε < ε̄ and each σ ′, the inequality u(σ� (1 − ε) · σ + ε · σ ′) > u(σ ′� (1 − ε) · σ + ε · σ ′)
holds). Note that (a) for finite games, a strategy is an ESS if and only if it has a posi-
tive invasion barrier (Weibull 1995, Proposition 2.5); (b) for games with infinite strategy
spaces, the stronger notion of having a positive invasion barrier is required for implying
dynamic stability (Oechssler and Riedel 2001); and (c) having a smaller invasion barrier
implies a less robust stability. In what follows, we show that the invasion barriers of all
the non-early-nice limit ESSs of the previous section converge to 0 as δ converges to 1.
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This is in contrast to the early-nice strategy σ∗ that has an invasion barrier bounded
away from zero for all values of δ̄ < δ < 1.

Fix an arbitrary full support perturbed game �(ζ) with a sufficiently small M(ζ).
We first deal with the invasion barrier of σdef = (L1�defect) of Theorem 3. Let σ ′ =
(L1�pavlov). Observe that σ ′ yields one less point against σ , but it obtains an expected
gain of (A− 1)/(1 − δ) against σ ′ (compared with the payoffs of strategy σ against these
opponents). Thus, the mutant strategy σ ′ outperforms the incumbent strategy σ in any
post-entry population in which the mutants’ share is at least (1−δ)/(A−1). This implies
that the invasion barrier of σdef converges to zero as δ→ 1.

Next, consider one of the limit ESSs σS�k = (Lk�βS�k) of Theorem 4. Let σ ′
S�k be

a strategy that coincides with σS�k as long as the players do not use the perfect-grim-
trigger punishments. If the players reach a history in which they have to use a “punish-
ment” (defect at all the remaining stages according to σS�k), then strategy σ ′

S�k induces
them to play pavlov. By the same argument as in the case of σdef above, the mutant
strategy σ ′

S�k outperforms the incumbent strategy σS�k in any post-entry population in
which the mutants’ share is at least (1 − δ)/(A− 1). We conjecture that the above argu-
ment can be extended to show that the invasion barrier of any non-early-nice strategy
of finite complexity converges to zero as δ → 1.21

6.2 Uniqueness result

Two strategies are realization equivalent if they induce the same distribution over out-
come paths; they can only differ in their off-equilibrium behavior. This is formally de-
fined as follows.

Definition 8. Strategies σ�σ ′ ∈ 	 are realization equivalent if for each possible game
length T and for each history hT ∈HT , Prσ�σ(hT |T = T) = Prσ ′�σ ′(hT |T = T).

Our second main result shows that any early-nice limit ESS is realization equivalent
to σ∗ (assuming A> 3) and that there is no early-nice limit ESS for values of p that are
close to either 0 or 1.

Theorem 5. There exists δ̄ < 1 such that for all δ ∈ (δ̄�1), if A > 3 ∀k ∈ N c(Lk+1) −
c(Lk) < 1, c(L4) < 1/A, and p < 1, then strategy σ = (μ�β) is a an early-nice limit ESS
only if σ ≈ σ∗. Moreover, if p<A · (1 − c(L3))/(A− 1)2 or (A− 1)/A<p, then no early-
nice limit ESS exists.

21The next step in the analogous result of Fudenberg and Maskin (1990) is to observe that if σ is a strategy
with finite complexity, then there exists a history h∗ that yields the lowest expected sum of payoffs in the
remaining stages. Let σ ′

h∗ be a strategy that differs from σ only by playing after history h∗ a different action
from the one induced by σ , and mutually cooperating at all remaining stages if the opponent had done
the same. A similar argument as above shows that the invasion barrier of σ against σ ′

h∗ converges to zero
as δ → 1. In our setup, unlike in Fudenberg and Maskin (1990), players have private information, and this
raises technical difficulties in the identification of history h∗ and the characterization of σ ′

h∗ . Due to these
technical difficulties, we leave the proof of the conjecture for future research.
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The sketch of the proof is as follows. Let Lk be the lowest incumbent ability in
supp(μ) and assume that all incumbents cooperate with probability 1 at horizons larger
than Mσ . The inequality c(Lk+1) − c(Lk) < 1 implies that μ(Lk) < 1 (otherwise Lk+1
incumbents could outperform the incumbents). Observe that on the equilibrium path,
everyone defects at the last k rounds (because, when the horizon is equal to k, this event
becomes common knowledge among the players) and, as a result, all incumbents L≥k+1
defect at horizon k + 1. Next, we note that early-niceness implies that if any player de-
fects on the equilibrium path, then both players defect in all the remaining stages (as it
becomes common knowledge that the horizon is at most Mσ ).

We finish the proof by dealing with three separate cases:

1. We have p< (A−1)/A and all incumbents cooperate on the equilibrium path when
facing a stranger at a horizon larger than k+ 1. The assumption that p< (A− 1)/A
implies that all incumbents cooperate on the equilibrium path when the horizon
is larger than k + 2 (because the opponent is likely to be unobserving and to co-
operate until horizon k + 1). This implies that σ must be equivalent to a shifted
variant of σ∗, in which abilities Lk and Lk+2 coexist and p cannot be too low. Fi-
nally, if Lk ≥L2, then perfection and early-niceness imply that mutants with ability
L1 outperform the Lk incumbents by inducing additional rounds of cooperation
when their ability is observed.

2. We have p< (A− 1)/A and some incumbents defect on the equilibrium path when
facing a stranger with a horizon larger than k+1. First we show that all incumbents
L≥k+2 must defect with probability 1 at horizon k+ 2 (otherwise the strategy is not
stable to a perturbation that slightly increases the probability of defection at hori-
zon k+ 2). Next we show that if A> 3, then μ(Lk+1) > 0 (otherwise σ is not stable
to a perturbation that slightly increases μ(Lk)). Finally, we compare the payoffs of
Lk and Lk+1: ability Lk+1 yields an additional utility point against {Lk�Lk+1} and
an additional fixed loss against higher abilities. This implies that abilities Lk and
Lk+1 obtain the same payoff if and only if μ(L≥k+2) is equal to a specific value,
but then strategy σ is not stable to a perturbation that changes the frequency of
abilities {Lk�Lk+1} while keeping μ(L≥k+2) fixed.

3. We have p > (A − 1)/A. Let k > Mσ and let m be the largest horizon in which
a player with ability Lk, who observes an opponent with the same ability, de-
fects with a positive probability. Neutral stability implies that the defection will
be with probability 1 (otherwise the strategy is not stable to a perturbation that
slightly increases the frequency of players that defect at horizon m). The inequality
p> (A− 1)/A implies that m = k (otherwise it would be strictly better to defect at
horizon m+ 1), and this contradicts the early-niceness.

We conclude with a few remarks on Theorem 5:

1. Replacing pavlov with perfect grim trigger (defect if and only if any player defected
before) at long horizons yields a strict limit ESS that is equivalent to σ∗ (but not
identical, as they differ in the off-equilibrium behavior).
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2. In principle, one could adapt the mechanisms that lead to early-niceness in ei-
ther Fudenberg and Maskin (1990), Binmore and Samuelson (1992) or Kreps et al.
(1982), incorporate them in our model, and obtain early-niceness as part of the
uniqueness result (rather than as an assumption). We choose not to do this be-
cause it involves technical difficulties that would make the model substantially less
tractable and less transparent.

3. Theorem 5 holds for any p < 1. If p = 1, then the game may admit a limit ESS
with large abilities in its support. Specifically, for each k with sufficiently small
c(Lk), one can show that if a limit ESS exists, it must assign a positive frequency for
abilities L≥k (see a related analysis in Mohlin 2012).

4. If one omits the condition c(L4) < 1/A, then the uniqueness result still essentially
holds, except that a limit ESS may also be equivalent to σ∗

2 —a shifted variant of σ∗
that includes abilities L2 and L4 (see Definition 2).

5. If the condition ∀k ∈ N c(Lk+1)− c(Lk) < 1 does not hold, then for sufficiently low
p, there are additional “single-ability” limit ESS. Specifically, if c(Lk+1)− c(Lk) > 1
and p < 1/((A − 1) · (k − 2)), then a strategy that includes only ability Lk is also a
limit ESS.

7. Uniqueness with weaker solution concepts

Theorem 5 shows that σ∗ is essentially the unique early-nice limit ESS. In this section,
we study which aspects of the uniqueness hold for weaker solution concepts.

A strategy is a perfect NSS (symmetric perfect equilibrium) if it is the limit of NSS
(symmetric Nash equilibria) of a converging sequence of full support perturbed games.

Definition 9. The strategy σ ∈ 	 is a perfect NSS (symmetric perfect equilibrium) if
there exists a sequence of full support perturbations (ζn)n∈N satisfying limn→∞ M(ζn) =
0 and for each n ∈N, there exists an NSS (symmetric Nash equilibrium) σn of �(ζn), such
that limn→∞ σn = σ .

Observe that any limit ESS is a perfect NSS (by Lemma 1); and any perfect NSS is a
symmetric perfect equilibrium.

The following two formal definitions are useful to present the results of this section.
Strategy σ∗

k is a k-shifted variant of σ∗, in which ability Lk replaces L1 and ability Lk+2
replaces L2.

Definition 10. For each k, let strategy σ∗
k = (μ∗

k�b
∗
k) be

μ∗
k(Lk) = 1 − 1 − (c(Lk+2)− c(Lk))

p · (A− 1)
� μ∗(Lk+2) = 1 −μ∗

k(Lk)

∀k /∈ {k�k+ 2} μ∗(Lk) = 0

b∗
k(L� l� s� (a

i� a−i)t) =
⎧⎨
⎩
C [l ≥ k+ 3 or (l = k+ 2 and s ∈ {Lk�φ})] and

(t = 0 or ait = a−i
t )

D otherwise.
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The set 	∗
k ⊆ 	 includes all the strategies that differ from σ∗

k only by “redistributing”
frequency μ∗

k(Lk+2) among other abilities Lk that have the same cost and play the same
as Lk+2 (given playing rule b∗).

Definition 11. For each k, let

	∗
k = {

(μ�b∗) | μ(Lk) = μ∗
k(Lk) ∀k �= kμ(Lk) > 0 only if

(Lk ≥Lk+2 and c(Lk) = c(Lk+2))
}
�

The following theorem shows which aspects of the uniqueness results hold with the
weaker solution concepts. Part (1) shows that in any symmetric perfect equilibrium, the
minimal incumbent ability is L1 and the maximal ability is either L3 or L4.22 Part (2)
shows that any early-nice NSS is similar to a k-shifted variant of σ∗.23 Part (3) shows
that the uniqueness result essentially holds for early-nice perfect NSS.

Theorem 6. There exists δ̄ < 1 such that for all δ ∈ (δ̄�1), if ∀k ∈ N, c(Lk+1)− c(Lk) < 1,
A> 3, and c(L4) < 1/A, the following statements hold:

1. If 1/(A − 1)2 < p and σ = (μ�β) is a an early-nice symmetric perfect equilibrium,
then 0 < μ(L1) < 1. Moreover, if (A + 1)/((A − 1) · (A − 2)) < p < (A − 1)/A and
c(L5) > c(L4), then μ(L≥5) = 0.

2. If p �= 0�5, p < (A − 1)/A, and σ is a an early-nice NSS, then it is equivalent to a
strategy in

⋃
k 	

∗
k. Moreover, if p<A · (1 − c(L3))/(A− 1)2, then no early-nice NSS

exist.

3. If p /∈ { 1
2 �1} and σ is an early-nice perfect NSS, then σ ≈ σ ′ for some σ ′ ∈ 	∗

1. More-
over, if p<A · (1 − c(L3))/(A− 1)2 or (A− 1)/A<p, then no early-nice perfect NSS
exist.

8. Discussion

8.1 Limited foresight and uncertain length

In this section, we deal with three related questions: (1) Why do we model the interaction
as having uncertain length? (2) Could similar results be obtained in a model with a fixed
length? (3) Why do we interpret abilities in our model as representing limited foresight?

As argued by Osborne and Rubinstein (1994, Chapter 8.2):

22The same result holds for the weaker notion of sequential equilibrium (Kreps and Wilson 1982) and
for a “0-perfect” equilibrium, in which the perturbations must assign minimal positive probabilities only at
stage 0.

23The result is stated for p /∈ 0�5 and p < (A − 1)/A. See footnote 29 for an additional strategy that may
be an early-nice perfect NSS when p = 0�5. When p > (A − 1)/A we can show that for each M , if c(LM) is
sufficiently small, then any early-nice NSS includes ability LM in its support, and if M0 is sufficiently large
and c(LM0) is sufficiently small, then no early-nice NSS exists.
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A model should attempt to capture the features of reality that the players perceive. . . . In
a situation that is objectively finite, a key criterion that determines whether we should use
a model with a finite or an infinite horizon is whether the last period enters explicitly into
the players’ strategic considerations.

Following this argument, we present a “hybrid” model in which the horizon is infinite
and uncertain until close to the end, and in which the final period reaches the agent’s
foresight ability.

Next we show that similar results can be obtained if the game has a fixed length.
Consider a repeated prisoner’s dilemma with a fixed length L. Agents with limited fore-
sight in this setup must be unable to “count” how many rounds remain in the game. This
can be formalized by restricting agents to strategies that depend only on the actions ob-
served at the last m rounds or to strategies that can be implemented by automata with a
limited number of states. With such a restriction, one can adapt our main results (The-
orems 2–5) to this setup.

Finally, we discuss the interpretation of limited foresight in our model and compare
it with the alternative notion of Jehiel (2001). The comparison between the two notions
can be facilitated by considering a long two-player zero-sum game such as chess. In
this setup, agents with limited foresight (such as computer programs) base their play on
a bounded minimax algorithm that looks a limited number of steps ahead and uses a
heuristic evaluation function to assign values to the nonfinal positions k steps ahead.
When moving from chess-like games to non-zero-sum repeated games, the “position” is
the history of play (due to its influence on the future behavior of the opponent). Jehiel’s
(2001) notion assigns a history-independent random value to all nonfinal states. In con-
trast, our notion bases the evaluation of nonfinal states on the history of play by using
an “infinite-horizon benchmark”: assuming that there is probability δ to end the game
in any future round. In particular, consider an L1 agent who plays against an opponent
who follows pavlov. Jehiel’s notion implies the counterintuitive prediction that the L1

agent usually defects (and always defects if the randomness in the evaluation function
is sufficiently small), while our notion implies that he cooperates until the last stage.
As described in footnote 7, the experimental evidence from finitely repeated prisoner’s
dilemma games suggests that subjects behave in a way that is consistent with our notion
of limited foresight.

8.2 Extensions and variants

We conclude by presenting a few extensions and variants of our model.
In the basic model, we followed two common assumptions in the evolutionary lit-

erature (see, e.g., Dekel et al. 2007): an agent can observe his opponent’s ability with
a fixed exogenous probability and an agent cannot send a false signal about his abil-
ity. These assumptions may seem too restrictive. Completely relaxing them by allowing
each player to choose at stage 0 both an unobservable true ability and a “fake” ability
that is observed by the opponent (a cheap-talk model) induces a unique behavior in any
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Nash equilibrium: everyone defects at all stages.24 In Appendix A, we sketch a variant
of the model, which partially relaxes these assumptions: each player chooses at stage 0
a true ability, a fake ability, and an effort level, and the probability in which a player ob-
serves the true ability (rather than the fake ability) of the opponent is increasing with the
player’s effort and decreasing in the opponent’s effort. We show that a σ∗-like strategy
remains stable in this setup.

Our basic model deals only with the repeated prisoner’s dilemma, and assumes that
the cognitive cost function is increasing. It is relatively simple to extend the results to
an environment in which players may play other games as long as the probability of
playing games in which looking far ahead decreases efficiency (such as in the repeated
prisoner’s dilemma) is sufficiently high. The results can also be extended to deal with
non-monotonic cost functions, which may represent the advantages of having higher
abilities in other games. Specifically, if one assumes that the cognitive costs are not too
high, then the game admits a strict limit ESS similar to σ∗ except that L3 is replaced with
the ability that minimizes the cognitive cost in L≥3 (and the playing rule remains the
same as in σ∗).

Next we show that our results are robust to various changes in the set of abilities.
First, we consider the case in which the minimal ability in L is not L1, but any other ar-
bitrary ability L

k̃
(including ability L0, which is never informed about the realized length

of the interaction). It is straightforward to see that all of our results hold in this setup ex-
cept that σ∗ is replaced with its shifted variant σ∗

k̃
(Definition 10) in which ability L

k̃

(L
k̃+2) replaces ability L1 (L3). Next, we observe that our results hold also if the set of

abilities L is extended to include ability L∞, which is informed about the final period at
the end of round 0.

The next variant introduces a maximal ability by restricting the set of abilities to be
{L1� � � � �LM}. Assuming that M ≥ 3, Theorem 2 holds in this setup. Theorem 5 holds for
p’s that are not too close to either 0 or 1. Assuming that c(LM) is sufficiently low, one can
complete the characterization for all values of p: for low p’s, if a limit ESS exists, then
the only ability in its support is LM (because the indirect “commitment” advantage of
lower abilities is too small), and for high p’s (p > (A − 1)/A), if a limit ESS exists, then
its support includes ability LM (as a result of the “arm race” for earlier defections and
higher abilities).

Finally, we note that the main results (Theorems 2–5) hold for each of the following
changes to the observation of the opponent’s ability:

1. “Late observability”: Players observe the opponent’s ability later in the game (and
not at the end of stage 0). For example, the results hold if a player with ability
Lk obtains the signal about his opponent’s ability at horizon k (when he becomes

24To simplify the argument, assume that c(Lk) ≡ 0 (the argument can be extended to positive and suf-
ficiently small cognitive costs). Assume to the contrary that players cooperate with positive probability on
the equilibrium path. Let m be the smallest horizon in which they cooperate with positive probability. Then
the following strategy is a strictly better reply: choosing an arbitrary large enough true ability, signaling one
of the fake abilities of the incumbents, playing like the incumbents at horizons larger than m, and defecting
during the last m stages.
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aware of the timing of the final period) or at horizon min(k�k′ + 1) (i.e., a player
only observes if his opponent is going to be informed about the final period at the
next round).

2. Asymmetric observability (à la Mohlin 2012): The informative signal (obtained with
probability p) is the opponent’s exact ability only if it is strictly lower than the
agent’s ability; if the opponent’s ability is weakly higher, then the agent only ob-
serves this fact.

3. Perturbed signals: There is a weak correlation between signals of the two players.

Appendix A: False signals and endogenous observability

In this section, we sketch a variant of the model in which players can influence the prob-
ability of observing the opponent’s ability. A comprehensive analysis of this variant (with
a general underlying game) is left for future research.

At stage 0, each player i makes three choices: (1) true ability Li ∈ L, (2) fake ability
si ∈ L, and (3) effort level ei ∈ R

+, which costs ei utility points.25 The model also specifies
an observation function p :R+ × R

+ → [0�1]. When a player who invests effort e1 faces
an opponent who invests effort e2, he privately observes his opponent’s true ability with
probability p(e1� e2) and observes the fake ability otherwise. We assume that p(e1� e2)

is increasing and concave in the first parameter, decreasing and convex in the second
parameter, and submodular: ∂2p(e1� e2)/(∂e1 ∂e2) < 0 (i.e., the efforts of the two players
are strategic substitutes).

A strategy in this setup is a pair σ = (μ�β), where μ ∈ �(L×L×R
+) is a distribution

over the pure choices at stage 0 (true ability, fake ability, and effort level).
Theorem 2 is extended to this setup as follows.

Theorem 7. Assume that ∃e0 < 1/A− c(L3) such that ∀e≤ e0, A · (1− c(L3))/(A−1)2 <

p(e�e) < (A− 1)/A and

∂p(e1� e2)

∂e1

∣∣∣∣
(e1�e2)=(e0�e0)

−A · ∂p(e
1� e2)

∂e2

∣∣∣∣
(e1�e2)=(e0�e0)

< 1�

Additionally assume that c(L4) > c(L3) < 1/A and δ is sufficiently close to 1. Then there
exists 0 < e∗ < e0 such that σ∗(e∗)= (μ∗(e∗)�b∗) is a limit ESS, where b∗ is as Definition 2
and μ∗(e∗) is

supp(μ∗) = {(L1�L1�0)� (L3�L1� e
∗)}� μ∗((L3�L1� e

∗)) = 1 − c(L3)− e∗

p · (A− 1)
�

The stable strategy σ∗(e∗) has two types in its support: (1) agents with ability L1 who
do not expend any effort, and (2) agents with ability L3 who expend effort e∗ (which is

25Similar results also hold if each player chooses two different efforts: one for lying, and one for detecting
lies.
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determined by the observability function) and try to deceive their opponent into think-
ing that they have ability L1. Agents behave in the same way as in the basic model. In
what follows, we briefly explain the first assumption (the additional two assumptions
are identical to Theorem 2) and the intuition as to why it implies the stability of σ∗(e∗).
The first assumption requires the existence of an effort level e0 that satisfies three re-
quirements. (I) Effort level e0 is not too large. Observe that if e < 1/A − c(L3), then the
total cost of an agent with ability L3 who invests effort e is smaller than 1/A and is out-
weighed by its gain from defecting one stage earlier in a population that includes a large
enough fraction of agents with ability L1. (II) The probability p(e�e) is not too close to 0
or 1 (the same bounds as in Theorem 2) for any e ≤ e0. This implies that the induced
observation probability when two L3 agents meet each other (and each spends effort
level e∗ on the equilibrium path) is far enough from 0 and 1, which is required for sta-
bility from the same reasons as in the basic model. (III) The marginal contribution of
effort at e0 (which is the sum of the marginal contributions induced by increasing the
probability to observe the opponent’s ability and by decreasing the probability that the
opponent observes the agent’s own type) is smaller than its marginal cost (= 1). This
condition implies (by convexity and submodularity) that there exists a stable effort level
e∗ < e0.

We conjecture that one could also adapt Theorem 5 to this setup.

Appendix B: Proofs

B.1 Limit ESS and full support perturbations

The following lemma shows that if σn is an ESS of a perturbed game of the repeated
prisoner’s dilemma, then it is also an ESS of a nearby full support perturbed game.

Lemma 1. Let ζ be a perturbation. Let σ ∈ 	 be an ESS of the perturbed game �(ζ). Then
for every ε > 0, there exists a full support perturbation ζ ′ such that |ζ − ζ′| < ε, σ ′ ∈ 	 is
an ESS of the perturbed game �(ζ ′), and |σ ′ − σ | < ε.

Proof. The fact that σ is an ESS implies that it must assign a positive probability to
each information set (otherwise, an equivalent strategy σ ′ that differs only in infor-
mation sets that are reached with zero probability would get the same payoff as σ :
u(σ�σ) = u(σ ′�σ) and u(σ�σ ′) = u(σ ′�σ ′)). This implies that σ must assign a posi-
tive probability for each ability and for each action at each information set in which
the horizon is larger than 1. When the horizon is equal to 1, defection is a dominant
action. Let ε > 0 be sufficiently small. Define a full support perturbation ζ ′ as follows:
if ζ(I)(a) > 0, let ζ′(I)(a) = ζ(I)(a); if ζ(I)(a) = 0 and the horizon is larger than 1, let
ζ′(I)(a) = min(ε�σ(a)) (which is a positive number due to the previous argument); and
when the horizon is equal to 1, let ζ(I)(a) = ε. Let σ ′ be equal to σ except at horizon 1,
in which it defects with probability 1 − ε. The above arguments imply that σ ′ is an ESS
in �(ζ′). �

An immediate corollary of Lemma 1 is that every limit ESS is the limit ESS of a se-
quence of full support perturbed games.
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Corollary 1. Let σ ∈ 	 be a limit ESS. There exists a sequence of full support perturba-
tions (ζn)n∈N satisfying limn→∞ M(ζn) = 0, and for each n ∈ N, there exists an ESS σn of
the perturbed game �(ζn), such that limn→∞ σn = σ is satisfied.

Proof. The fact that σ is a limit ESS implies that there exists a sequence of perturba-
tions (ζn)n∈N satisfying limn→∞ M(ζn) = 0, and for each n ∈ N, there exists a strategy
σn ∈ 	(ζn), which is an ESS of �(ζn), and that limn→∞ σn = σ is satisfied. Lemma 1 im-
plies that there exists a sequence of full support perturbations (ζ ′

n)n∈N with the same
properties. �

Remark 4. The corollary immediately implies that every limit ESS is a perfect NSS (Def-
inition 9) and a symmetric perfect equilibrium (Selten 1975). The proof of Lemma 1 re-
lies on the property of the repeated prisoner’s dilemma that each player has a dominant
action at the last stage. Slightly weaker results are known for general extensive-form
games: any limit ESS is a symmetric sequential equilibrium (van Damme 1987, Corol-
lary 9.8.6).

B.2 Theorem 2: σ∗ is a strict limit NSS/ESS

Proof of Theorem 2. The proof includes several parts.

1. Abilities L1 and L3 are best-replies given playing rule b∗. We have u((L1� b
∗)�σ∗) =

u((L3� b
∗)�σ∗) ≥ u((Lk�b

∗)�σ∗) for each k /∈ {1�3} with strict inequality if
c(L4) > c(L3).

(a) Reduced game given b∗. Playing rule b∗ induces a reduced normal form game
in which each player chooses ability at stage 0 and then players follow b∗ at the
remaining rounds. Note that the choice of ability only influences the payoffs at
stages 0 (cognitive cost), T − 1 (horizon 2), and T − 2 (horizon 3), as all abilities
play the same at all other stages (they all play pavlov until stage T − 3 and de-
fect at stage T). Henceforth, we focus only on the payoffs of these three stages.
In Table 2 we present the symmetric payoff matrix of this reduced game. The
payoffs of Table 2 are calculated as follows: Two players with ability L1 who
face each other cooperate at horizons 2 and 3, and obtain 2 · A utility points.
A player with ability Lk (k ≥ 2), who faces L1, defects at horizon 2 and obtains
2 · A + 1 points (and induces a cognitive cost), while the L1 opponent obtains
only A points. When two L2’s face each other, they both cooperate at hori-
zon 3 and both defect at horizon 2, and they obtain A+ 1 points. When an L3

player faces an L2, the outcome depends on whether or not L3 is observing.
With probability p, the L3 player is observing and he obtains A + 2 points (by
defecting at both horizons) and the L2 opponent obtains 1 point; with prob-
ability 1 − p, L3 is not observing and both players obtain A + 1 points (both
cooperate at horizon 3 and defect at horizon 2). Finally, when two L3’s face
each other, the outcome depends on both observations. If both players are ob-
serving (probability p2), they defect at both horizons and obtain 2 points. If
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L1 Lk(k≥3) L2

L1 2 ·A A A

Lk(k≥3) 2 ·A+ 1 − c(Lk) A+ 1 −p ·A+p− c(Lk) A+ 1 +p− c(Lk)

L2 2 ·A+ 1 − c(L2) A+ 1 −p ·A− c(L2) A+ 1 − c(L2)

Table 2. Reduced game (players choose abilities and must follow playing rule b∗).

both are unobserving (probability (1 − p)2), they defect only at horizon 2 and
obtain A + 1 points. If exactly one of them is observing, the observing player
defects at horizon 3, and he obtains A + 2 points and his opponent obtains 1
point. Aggregating these possible outcomes yields the following expected pay-
off at horizons 2 and 3:

p2 · 2 + (1 −p)2 · (A+ 1)+p · (1 −p) · (A+ 2)+ (1 −p) ·p · 1 = A+ 1 −p ·A+p�

(b) Abilities L>3 are weakly dominated by ability L3 and strictly dominated if
c(L4) > c(L3). The players obtain the same stage payoffs but they bear higher
cognitive costs.

(c) Ability L2 obtains a strictly lower payoff than ability L1. We have to show
that the payoff of ability L2 ((2 · A + 1) · μ∗(L1) + (A + 1 − p · A) · μ∗(L3) −
c(L2)) is strictly smaller than the payoff of ability L3 ((2 · A + 1) · μ∗(L1) +
(A+ 1 −p ·A+p) ·μ∗(L3)− c(L3)). This holds if and only if

(A+ 1 −p ·A) ·μ∗(L3)− c(L2)
?
< (A+ 1 −p ·A+p) ·μ∗(L3)− c(L3)

⇔ c(L3)− c(L2)
?
<p ·μ∗(L3) = 1 − c(L3)

A− 1

⇔ c(L3)
?
<

c(L2) · (A− 1)+ 1
A

= 1
A

+
(

1 − 1
A

)
· c(L2)�

and the latter inequality is implied by c(L3) < 1/A.

(d) Frequency μ∗ balances the payoffs between abilities L1 and L3. Observe that
if A + 1 − p · A + p − c(Lk) < A, then the reduced game between these two
abilities is of the hawk–dove variety: each ability is a strict best-reply to the
other ability. This inequality holds if and only if

A+ 1 −p ·A+p− c(L3) <A ⇔ 1 − c(L3)

A− 1
<p�

The latter inequality holds due to the assumption that A · (1 − c(L3))/

(A − 1)2 < p. It is well known that a hawk–dove game admits a unique mixed
equilibrium. We now show that μ∗ is the unique equilibrium. The payoff of
L1 is 2 · A · μ∗(L1) + A · μ∗(L3), and the payoff of L3 is (2 · A + 1) · μ∗(L1) +
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(A+ 1 −p ·A+p) ·μ∗(L3)− c(L3). These payoffs are equal if

2 ·A ·μ∗(L1)+A ·μ∗(L3)

?= (2 ·A+ 1) ·μ∗(L1)+ (A+ 1 −p ·A+p) ·μ∗(L3)− c(L3)

⇔ (p ·A−p− 1) ·μ∗(L3)+ c(L3)
?= μ∗(L1) = 1 −μ∗(L3)

⇔ p · (A− 1) ·μ∗(L3)+ c(L3)
?= 1

⇔ μ∗(L3)= 1 − c(L3)

p · (A− 1)
�

2. Stability against other distributions. If (μ�b∗) �= σ∗ is a best-reply to σ∗, then

u(σ∗� (μ�b∗)) ≥ u((μ�b∗)� (μ�b∗)) with a strict equality if c(L4) > c(L3). Part 1 im-

plies that (μ�b∗) is a best-reply to σ∗ if and only if supp(μ) ⊆ {L1�L3}. The result

is an immediate corollary of the well known result (see, e.g., Weibull 1995, Sec-

tion 2.1.2) that the unique equilibrium in a hawk–dove game is an ESS. The intu-

ition for this result is the observation that if the frequency of ability L1 becomes

larger (smaller), they become relatively less (more) successful than ability L3.

3. The perturbed game �(ζ). Let ζ be any full support perturbation with sufficiently

small maximal tremble M(ζ). Let σ∗
ζ = (μ∗

ζ�β
∗
ζ) be defined as

β∗
ζ(I)(C) =

{
ζ(I)(C) if b∗(I) =D

1 − ζ(I)(D) if b∗(I) = C

μ∗
ζ(Lk) =

⎧⎨
⎩
μ∗(L1)+η if k = 1
ζ(Lk) if k �= 1�3
1 − ∑

k�=3 μ
∗
ζ(Lk) if k = 3,

where η is chosen such that u((L1�β
∗
ζ)�σ

∗
ζ ) = u((L3�β

∗
ζ)�σ

∗
ζ ). Make the following

observations:

(a) For sufficiently small M(ζ), such η exists and its magnitude is O(M(ζ)) (due

to continuity and the properties of the reduced game described above). This

implies that |σ∗
ζ − σ∗| ≤ O(M(ζ)).

(b) Playing rule β∗
ζ is the closest playing rule to b∗ in 	(ζ).

(c) The perturbed reduced game between abilities, in which the fixed playing rule

is β∗
ζ , is still a game of hawk–dove variety (again, by continuity). Thus the re-

sults of parts 1 and 2 still hold in this setup.

(d) All information sets are reached with positive probability in �(ζ).

4. For every μ ∈ �ζ(L) and β ∈ B(ζ), u((μ�β∗
ζ)�σ

∗
ζ ) > u((μ�β)�σ∗

ζ ) (i.e., β∗
ζ is a strictly

optimal playing rule against strategy σ∗
ζ in �(ζ) for all abilities).
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(a) Playing rule β∗
ζ is strictly optimal for uninformed agents. Recall that as long

as players are uninformed, playing rule b∗ is equal to pavlov, and that β∗
ζ is

the closest strategy to b∗ in B(ζ). Lorberbaum et al. (2002) study the standard
repeated prisoner’s dilemma, in which players remain uninformed through-
out the game. They analyze a perturbation that assigns minimal probability
ε > 0 for each action at each information set. They show that the ε-perturbed
pavlov (the strategy that defects with probability 1 − ε if the players played dif-
ferent actions at the previous round, and that cooperates with probability 1 − ε

otherwise) is a symmetric strict equilibrium (and hence, also an ESS) in the ε-
perturbed game. Minor adaptations to their proof (omitted for brevity) extend
the result (for δ sufficiently close to 1) for any full support perturbation and for
the current setup in which players are informed in the last few rounds.

(b) The playing rule β∗
ζ is strictly optimal for horizons 1 and 2. Defection is a dom-

inant action for horizon 1. The fact that σ∗
ζ induces a very high probability of

defection at horizon 1 (regardless of the history) implies that defecting at hori-
zon 2 is a strict best-reply.

(c) Horizon 3 against L3. Defection at horizon 3 yields one more point immedi-
ately (relative to cooperation), while it does not affect future payoffs (because,
with high probability, the opponent defects during the last two rounds regard-
less of the history).

(d) Horizon 3 against L1 and strangers. If players played different actions in the
previous round, then defection yields both a higher payoff in the current stage
and a higher expected payoff in the future (as the opponent is likely to defect in
the current stage, and only mutual defection may lead to mutual cooperation
in the next round). This argument works also in larger horizons, and in steps
(e) and (f) below, we focus on showing that β∗

ζ is optimal only after a previous
round in which both players played the same.

If the players played the same action in the previous round and the oppo-
nent is L1, then cooperation yields (with high probability)26 a payoff vector of
A�A+1�1: A at horizon 3, A+1 at horizon 2 (as the L1 opponent cooperates),
and 1 at horizon 1. Defection at horizon 3 yields a vector payoff of at most
A + 1�1�1 (as the L1 opponent defects at horizon 2). Thus cooperation yields
A− 1 more utility points.

We are left with showing that β∗
ζ yields a strictly better payoff against

strangers. If the stranger has ability L3, then defection yields one more util-
ity point than cooperation at horizon 3, and payoffs during the last two rounds
remain the same. Thus, defection yields a higher expected payoff against a

26Henceforth in the analysis we present strict inequalities by using the payoffs that are induced by the
unperturbed strategy σ∗, which approximates the payoffs that are induced by σ∗

ζ . For sufficiently small
M(ζ), the inequalities hold also for the slightly perturbed σ∗

ζ . For brevity, we also omit the phrase “with
high probability” in the remaining text.
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stranger if and only if the frequency of L3 opponents is sufficiently low:

μ∗(L3) · 1 < (1 −μ∗(L3)) · (A− 1) ⇔ μ∗(L3) <
A− 1
A

⇔ 1 − c(L3)

p · (A− 1)
<

A− 1
A

⇔ A · (1 − c(L3))

(A− 1)2 <p�

(e) Horizon 4 against L3. Cooperation at horizon 4 (assuming both players played
the same at the previous stage) yields a payoff vector of A�1�1�1 (A�A+1�1�1)
during the last four rounds when facing an observing (unobserving) opponent.
Defection at horizon 4 yields a payoff of A+1�1�1�1 in both cases. Thus, coop-
eration is a strict best reply if and only if 1 ·p< (1−p) ·(A−1) ⇔ p< (A−1)/A.

(f ) Horizon 4 against strangers and L1, and horizons larger than 4 against all op-
ponents. Cooperation is a strict best-reply (assuming both players played the
same at the previous stage) because it yields one less utility point in the current
stage (relative to defection) and A− 1 more points in the next round.

5. Combining the above arguments implies that σ∗
ζ is an NSS in �(ζ) and an ESS if

c(L4) > c(L3). This implies that σ∗ is a strict limit NSS, and a strict limit ESS if
c(L4) > c(L3). �

B.3 Theorem 5: Uniqueness result

Proof of Theorem 5. We begin with a some notation. Let σ = (μ�β) be an early-nice
limit ESS. Let Mσ ∈ N be a large enough integer such that with probability 1, everyone
cooperates at any horizon larger than Mσ . We shall say that a player faces an incumbent
(at a given information set) if he has observed the opponent to have an incumbent abil-
ity or if he faces a stranger (as with probability 1, strangers have incumbent abilities).
Let Lk ∈ supp(μ) be the lowest incumbent ability. Recall that an information set I ∈ I
is cooperative if both players have cooperated at all previous stages. We shall say “abil-
ity Lk does X” as an abbreviation for “playing rule β induces a player with ability Lk to
do X .” The proof includes the following parts:

1. Preliminary observations about strategy σ .

(a) On the equilibrium path, everyone defects in the last k rounds. Intuitively, this
is because it is common knowledge among the players whether or not the hori-
zon is at most k. The formal argument is as follows: Assume to the contrary that
players cooperate with positive probability in the last k rounds on the equilib-
rium path. Let m≤ k be the smallest horizon in which a player cooperates with
positive probability on the equilibrium path. Consider a strategy σ ′ that coin-
cides with σ , except that players defect at horizon m with probability 1. Ob-
serve that u(σ ′�σ) > u(σ�σ), as both strategies induce the same play and yield
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the same payoff against σ at all rounds except at horizon m, in which strategy
σ ′ defects with probability 1 and yields a higher payoff.

(b) With probability 1, players with ability L≥k+1 defect at horizon k+ 1 when fac-
ing an incumbent. This is because defection at horizon k + 1 yields one more
utility point without affecting the opponent’s future play (due to the previous
step). Similarly, this implies that players with ability L≥k+2 defect with proba-
bility 1 at horizon k+ 2 when facing an observed incumbent ability L≥k+1.

(c) Early-niceness implies that uninformed players cooperate with probability 1
at cooperative information sets (because the unknown horizon has a positive
probability to be larger than Mσ ). This is also true if the player has a nonin-
cumbent ability.

(d) If any incumbent ability defects with positive probability when facing an incum-
bent at a cooperative information set and if the defection is realized in the game,
then both players defect at all the remaining periods. The claim is implied by
the observation that after such a defection, it becomes common knowledge
that the maximal horizon is Mσ . The proof is analogous to step (a) and it is
omitted for brevity.

(e) We have μ(Lk) < 1. The assumption that c(Lk+1) − c(Lk) < 1 implies that if
μ(Lk) = 1, then any strategy σ ′ that assigns mass 1 to Lk+1, cooperates when
being uninformed, and defects at the last k + 1 stages is a strictly better reply
against σ .

2. Case I. Assume that p < (A − 1)/A and all incumbents cooperate when the op-
ponent is a stranger, the information set is cooperative, and the horizon is strictly
larger than k+ 1. Then the following scenarios occur:

(a) All incumbents cooperate when the opponent is an incumbent, the information
set is cooperative, and the horizon is strictly larger than k+ 2. The previous part
implies that defection at horizon k+2 (>k+2) yields at least A−1 (2 · (A−1))
less points than cooperation against an unobserving opponent (probability
1 −p). If the opponent is observing (probability p), the maximal gain from de-
fection is one point (two points), which is obtained if the opponent were plan-
ning to defect at horizon k+ 2 (at the next round also after mutual cooperation
at the current stage). Defection yields a strictly lower payoff if

(1 −p) · (A− 1) > p · 1 ⇔ (A− 1) >A ·p ⇔ A− 1
A

>p�

(b) The previous step implies that all incumbents obtain the same payoff at all
horizons except k + 1 and k + 2, and that the reduced game between the
abilities at these horizons is analogous to Table 2 (where Lk replaces L1).
As a result, μ(L>k+1) > 0 (otherwise, u((Lk�β)�σ) < u((Lk+1�β)�σ) because
c(Lk+1)−c(Lk) < 1) and ∀k> k+2, μ(L>k+2) > 0 only if c(Lk) = c(Lk+2) (oth-
erwise u((Lk�β)�σ) < u((Lk+2�β)�σ) and σ cannot be an equilibrium).
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(c) We have μ(Lk+1) = 0. Assume to the contrary that μ(Lk+1) > 0. The
fact that σ is an equilibrium implies that u((Lk�β)�σ) = u((Lk+1�β)�σ) =
u((Lk+2�β)�σ). Analogous calculations to part 1(c) and (d) of Theorem 2’s
proof imply that Lk and Lk+1 obtain the same payoff only if

c(Lk+1)− c(Lk)+μ(L≥k+2) ·p ·A= 1

⇔ μ(L≥k+2) = 1 − (c(Lk+1)− c(Lk))

p ·A �

Let μ′ be defined as μ′(Lk) = 0, μ′(Lk+1) = μ(Lk) + μ(Lk+1) and let μ′(Lk) =
μ(Lk) for each k ≥ k + 2. The fact that supp(μ′) ⊆ supp(μ) implies that
u((μ′�β)�σ) = u(σ�σ) and the equality μ(L≥k+2) = μ′(L≥k+2) implies
u(σ� (μ′�β)) = u((μ′�β)� (μ′�β)) (because μ and μ′ only differ in the frequency
of Lk and Lk+1, and these two abilities yield the same payoff).27

(d) If c(Lk+2) = c(Lk+3), then σ is not a limit ESS. By the previous steps,
u((Lk+2�β)�σ) = u((Lk+3�β)�σ) (because these two strategies play the same
on the equilibrium path), and this implies that strategy σ ′ = (μ′�β), which dif-
fers from σ = (μ�β) by an internal shift in the frequencies of abilities Lk+2
and higher abilities with the same cognitive costs, satisfy u(σ ′�σ) = u(σ�σ)

and u(σ ′�σ ′) = u(σ�σ ′). An analogous property would hold in any sufficiently
close perturbed game, and thus σ cannot be a limit ESS.

(e) If p< (1 − (c(Lk+2)− c(Lk)))/(A− 1) or c(Lk+2)− c(Lk) ≥ 1, then σ is not an
equilibrium. Otherwise,

μ(Lk) = 1 − 1 − (c(Lk+2)− c(Lk))

p · (A− 1)
� (B.1)

The argument is analogous to part 1(d) of the proof of Theorem 2.

(f) We have Lk = L1 (which implies by the previous steps that σ ≈ σ∗). Assume to
the contrary that Lk >L1:

(i) If there is an incumbent ability that defects with positive probability against
an observed L1 opponent, then both players defect at all the renaming
rounds. Intuitively, this is because after such a defection is realized, it be-
comes common knowledge that the horizon is at most k. The formal ar-
gument is as follows.28 Assume to the contrary that there is an incumbent
ability who defects with positive probability when facing an observed L1
opponent at a cooperative information set. Let l ≤ k be the highest hori-
zon in which an incumbent defects against an observed L1. Assume to the
contrary that either player cooperates with positive probability at any later

27One can show that slightly perturbing μ′ to satisfy μ′(Lk+2) = μ(Lk+2) + ε would imply that
u(σ� (μ′�β)) < u((μ′�β)� (μ′�β)); that is, σ is not an NSS.

28Note that the argument is slightly more complex than part 1(a), as it deals with an information set off
the equilibrium path.
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stage. Let m ≤ l be the farthest round since the first defection, in which
at least one of the players cooperates with positive probability. Consider
strategy σ ′ that coincides with σ at all information sets except that it de-
fects (with probability 1) m rounds after the initial defection. Observe that
strategy σ ′ yields a strictly higher payoff conditional on playing against
L1 opponents. Consider any full support perturbed game �(ζ) with suffi-
ciently small M(ζ). By continuity, any strategy σ ′

ζ ∈ 	(ζ) sufficiently close
to σ ′ yields a strictly better payoff against any strategy σζ ∈ 	(ζ) suffi-
ciently close to σ (relative to the payoff that σζ yields against itself). This
contradicts the assumption that σ is a perfect equilibrium.

(ii) An incumbent ability that faces an observed L1 opponent at a cooperative
information set cooperates if the horizon is larger than 2 and defects if the
horizon is at most 2. Defection at any horizon larger than 2 yields a strictly
lower payoff due to the previous step. Cooperating at horizon 2 yields a
strictly lower payoff, because it immediately yields one less point, without
changing the future play of the opponent (who always defects at the last
stage, as it is a dominant action).

(iii) If Lk > L2, then u((L1�β)�σ) > u((Lk�β)�σ). By the previous parts,
(L1�β) achieves at most one less utility point (relative to (Lk�β)) when
facing an unobserving Lk opponent, and it achieves at least A − 1
(A − 2) more points against an observing L>k (Lk) opponent. Thus,
u((L1�β)�σ) > u((Lk�β)�σ) if

(1 −p) ·μ(Lk)
?
<p · (A− 1 −μ(Lk))+ c(Lk)

⇔ μ(Lk)
?
<p · (A− 1)+ c(Lk)�

Substituting μ(Lk) and defining 0 ≤ x≡ c(Lk+2)− c(Lk) < 1 yields

p · (A− 1)− 1 + x

p · (A− 1)
?
<p · (A− 1)+ c(Lk)

⇔ x
?
<p · (A− 1) · (p · (A− 1)+ c(Lk)− 1)+ 1�

Substituting p · (A− 1) ≥ 1 − x yields

x
?
< (1 − x) · (1 − x+ c(Lk)− 1)+ 1

⇔ x
?
< (1 − x) · (c(Lk)− x)+ 1

⇐ x
?
< (1 − x) · (−x)+ 1 ⇔ 1 − 2x+ x2 > 0

⇔ (1 − x)2 > 0 ⇐ 0 ≤ x < 1�

(iv) If Lk = L2 and c(L4) < 1/A, then u((L1�β)�σ) > u((L2�β)�σ). By the
previous parts, (L1� b1) achieves at most one less utility point (relative to
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(L2�β)) when facing an L2 opponent, the same payoff when facing an un-
observing L>2 opponent, and at least A − 1 more points against an ob-
serving L>2 opponent. Thus, u((L1�β)�σ) > u((L2�β)�σ) if

μ(L2)
?
<p · (A− 1) · (1 −μ(L2))+ c(L2)

⇔ μ(L2)
?
<

p · (A− 1)+ c(L2)

p · (A− 1)+ 1
�

Substituting μ(L2) from (B.1), implies

p · (A− 1)− 1 + (c(L4)− c(L2))

p · (A− 1)
?
<

p · (A− 1)+ c(L2)

p · (A− 1)+ 1

⇔ −1 + (p · (A− 1)+ 1) · (c(L4)− c(L2))
?
<p · (A− 1) · c(L2)

⇔ c(L4)− c(L2)
?
<

1 +p · (A− 1) · c(L2)

1 +p · (A− 1)
�

and the last inequality is immediately implied by c(L4) < 1/A.

3. Case II. Assume that p< (A−1)/A and there are incumbents who defect with posi-
tive probability when the opponent is a stranger, the information set is cooperative,
and the horizon is strictly larger than k+ 1. Then the following scenarios occur:

(a) We have μ(Lk) ≤ 1/A. Due to part 1(e), defection at horizon k + 2 (> k + 2)
yields A− 1 (at least 2 · (A− 1)) less utility points relative to cooperating until
horizon k+1 if the opponent has ability Lk, and one (at most two) more points
against any other opponent. Such a defection can yield a weakly better payoff
only if

μ(Lk) · (A− 1)≤ (1 −μ(Lk)) ⇔ μ(Lk) ≤ 1
A
�

(b) All incumbent abilities L≥k+2 defect with probability 1 when facing a stranger
at a cooperative information set with horizon k + 2. Assume to the contrary
that there is an incumbent ability L

k̃
(k̃ ≥ k + 2) that cooperates with posi-

tive probability against strangers at a cooperative information set with horizon
k + 2. Define strategy σ ′ to coincide with σ , except that σ ′ defects with prob-
ability 1 when ability L

k̃
faces a stranger at a cooperative information set with

horizon k + 2. The assumption of Case II and part 1(e) imply that u(σ ′�σ) ≥
u(σ�σ) and that u(σ ′�σ ′) > u(σ�σ ′), and we get a contradiction to neutral sta-
bility.

(c) We have μ(Lk+1) > 0. Assume to the contrary that μ(Lk+1) = 0.

(i) Assume that p < (A − 2)/(A − 1). We compare the payoff of ability Lk

and the mean payoff of any incumbent ability L≥k+2 when facing an Lk

opponent: Lk obtains one less utility point when the opponent’s ability is
observed and obtains at least A−2 more utility points when the opponent
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is a stranger. This implies that u((Lk�β)� (Lk�β)) > u(σ� (Lk�β)) (which
contradicts neutral stability) if

p< (A− 2) · (1 −p) ⇔ p<
A− 2
A− 1

�

(ii) Due to analogous arguments to parts (a) and (b), μ(Lk) ≤ 1/A implies
that all incumbent abilities L≥k+3 defect with probability 1 when facing
a stranger (or an incumbent ability in L≥k+2) at a cooperative information
set with horizon k+ 3.

(iii) Assume that p ≥ (A − 2)/(A − 1). To simplify notation, let α =
μ(L≥k+3)/μ(L≥k+2) and μ = μ(Lk). We compare the payoff of ability
Lk and the average payoff of abilities L≥k+2. Ability Lk yields at least
A − 2 + α · (A − 1) more points when facing an unobserved Lk oppo-
nent (probability (1 − p) · μ), one less point when facing an observed Lk

opponent (probability p ·μ), at least A− 2 +α · (A− 1) more points when
facing an observing L≥k+2 opponent (probability p · (1 −μ)), at most one
less point when facing an unobserved and unobserving L≥k+2 opponent
((1 −p)2 · (1 −μ)), and at most 1 + α less points when facing an observed
and unobserving L≥k+2 opponent (probability (1 − p) · p · (1 − μ)). This
implies that u((Lk�β)�σ) > u(σ�σ) (which contradicts σ being a Nash
equilibrium) if

(A− 2 + α · (A− 1))(p · (1 −μ)+ (1 −p) ·μ)
?
>p ·μ+ (1 −p) · (1 −μ) · (1 +p · α)�

Substituting A> 3 yields

⇐ (1 + 2 · α) · (p · (1 −μ)+ (1 −p) ·μ)
?
>p ·μ+ (1 −p) · (1 −μ) · (1 +p · α)

⇔ (2 ·p− 1) · (1 − 2 ·μ)
+ α

(
2 · (p · (1 −μ)+ (1 −p) ·μ)− (1 −p) · (1 −μ) ·p) ?

> 0

⇔ (2 ·p− 1) · (1 − 2 ·μ)+ α(p · (1 −μ) · (1 +p)+ 2 · (1 −p) ·μ) ?
> 0�

Substituting p > (A − 2)/(A − 1) > 1
2 and μ < 1/A < 1

3 implies the
inequality.

(d) We have

μ(L≥k+2) = 1 − c(Lk+1)

1 + (A− 1) ·p�

We compare the payoffs of ability Lk and ability Lk+1. Ability Lk obtains one
less point when facing an Lk or Lk+1 opponent, the same payoff when fac-
ing an unobserving L≥k+2 opponent, and A − 1 more points when facing an
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observing L≥k+2 opponent. This implies that u((Lk�β)�σ) = u((Lk+1�β)�σ)

(which is implied by σ being an equilibrium) if and only if

(A− 1) ·p ·μ(L≥k+2) = 1 −μ(L≥k+2)− (c(Lk+1)− c(Lk))

⇔ μ(L≥k+2) = 1 − (c(Lk+1)− c(Lk))

1 + (A− 1) ·p �

(e) Strategy σ is not a limit ESS. Let μ′′ be defined as μ′′(Lk) = 0, μ′′(Lk+1) =
μ(Lk) + μ(Lk+1), and μ′′(Lk) = μ(Lk) for each k > k + 1. The inclusion
supp(μ′′) ⊆ supp(μ) implies that u((μ′′�β)�σ) = u(σ�σ) and the previous
part implies that u(σ� (μ′′�β)) = u((μ′′�β)� (μ′′�β)) (because μ(L≥k+2) =
μ′′(L≥k+2)). An analogous property is satisfied in any sufficiently close per-
turbed game, and thus σ cannot be a limit ESS.29

4. Case III. Assume that p ≥ (A− 1)/A. Let k̃ >Mσ . Let m ≤ Mσ be the highest hori-
zon in which L

k̃
ability defects with a positive probability when facing an observed

L
k̃

opponent at a cooperative information set (m cannot be higher than Mσ due
to the assumption of early-niceness). An analogous argument to part 3(b), implies
that ability L

k̃
defects with probability 1 at horizon m when facing an observed L

k̃

opponent. Finally, an analogous argument to part 4(e) of the proof of Theorem 2
shows that p ≥ (A − 1)/A implies a contradiction to the assumption that σ is a
limit ESS because defection yields a higher payoff than cooperation when facing
an observed L

k̃
opponent at a cooperative information set with horizon m + 1.30

�

B.4 Other results

Proof of part 1 of Theorem 6 (Early-nice symmetric perfect equilibrium).

1. We begin by showing that 0 < μ(L1) < 1. The preliminary observations and Case I
of Theorem 5’s proof also hold with minor adaptations for a symmetric perfect
equilibrium. We are left with Case II, in which there are incumbents who de-
fect with positive probability when facing a stranger at a cooperative information
set when the horizon is larger than k + 1 (where Lk is the smallest incumbent).
Part 3(a) holds also in this setup and shows that μ(Lk) ≤ 1/A. Assume to the con-
trary that Lk �= L1. We compare the payoff of abilities L1 and Lk against σ . Ability
L1 obtains at most one less point when facing an Lk opponent (probability μ(Lk)),
the same payoff when facing an unobserving L>k opponent, and at least A − 1

29One can show that perturbing μ′′ to satisfy either μ′′(Lk+2) = μ(Lk+2) + ε or μ′′(Lk+2) = μ(Lk+2) − ε

would imply that u(σ� (μ′′�β)) < u((μ′′�β)� (μ′′�β)) for any p �= 0�5. That is, σ is not an NSS for any p �= 0�5.
30If p= (A− 1)/A, then defection and cooperation yield the same payoff, and one has to rely also on an

analogous argument to part 3(b) to imply the contradiction.
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more points when facing an observing L>k opponent (probability p · (1 −μ(Lk))).
Thus, u((L1�β)�σ) > u((Lk�β)�σ) = u(σ�σ) (and this contradicts σ being an equi-
librium) if

μ(Lk) < p · (1 −μ(Lk)) · (A− 1)

⇔ p>
μ(Lk)

(1 −μ(Lk)) · (A− 1)
>

1
A

(A−1)
A · (A− 1)

= 1
(A− 1)2 �

2. We now show that μ(L≥5) = 0.

(a) Assume first that μ(L≤2) ≤ 1/A. We compare the payoff of (L1�β) and av-
erage payoff of (L≥3�β) against σ . Ability L1 achieves at least A − 2 more
points when facing an observing L≥3 opponent (probability p ·(1−μ(L≤2))), at
most two less points when facing an L≤2 opponent (probability μ(L≤2)), and at
most 1 +p less points when facing an unobserving L≥3 opponent (probability
(1−p) ·(1−μ(L≤2))). Thus u((L1�β)�σ) > u((L≥3�β)�σ) (and this contradicts
σ being an equilibrium) if

p · (1 −μ(L≤2)) · (A− 2)
?
> 2 ·μ(L≤2)+ (1 +p) · (1 −p) · (1 −μ(L≤2))

⇐ p · (1 −μ(L≤2)) · (A− 2)
?
> 1 +μ(L≤2)

⇔ p
?
>

1 +μ(L≤2)

(1 −μ(L≤2)) · (A− 2)

⇐ p
?
>

A+1
A

(A−1)
A · (A− 2)

= A+ 1
(A− 1) · (A− 2)

�

(b) Assume that μ(L≤2) > 1/A. By an analogous argument to part 4(e) of The-
orem 2’s proof, it implies that it is strictly better to cooperate at any horizon
larger than 3 when facing a stranger at a cooperative information set. The
assumption that p < (A − 1)/A implies by an analogous argument to part
4(e) of Theorem 2’s proof that it is strictly better to cooperate at any hori-
zon larger than 4 when facing an incumbent at a cooperative information set.
Thus, on the equilibrium path, all incumbents cooperate at all horizons larger
than 4. This implies that if c(L5) > c(L4), then all incumbents have ability of at
most L4. �

The proofs of parts 2 and 3 of Theorem 6 are very similar to the analogous parts of
the proof of Theorem 5 (omitted for brevity).

Proof of Theorem 3 ((L1� bdefect) is a strict limit ESS). Lorberbaum et al. (2002) study
a perturbed variant of the standard repeated prisoner’s dilemma in which there is a fixed
minimal probability ε > 0 for each action at each information set. They show that the ε-
perturbed defect (the strategy that defects with probability 1−ε at all information sets) is
a symmetric strict equilibrium (and, hence, also an ESS) in the ε-perturbed game. Minor
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adaptations to their proof (omitted for brevity) allow us to extend the result (for δ suffi-
ciently close to 1) for any full support perturbation and for the current setup, in which
players may become informed earlier about the realized length of the game. �

Proof of Theorem 4 (Each Lk can be the unique incumbent in a strict limit ESS). The
proof includes the following parts:

1. Notation and preliminary definitions:

(a) Given a finite action profile Wt = (W 1�W 2) ∈ ({C�D}� {C�D})t , let ū(W ) be the
average stage payoff of player 1 who repeats playing cycles of W 1 and faces
an opponent who repeats playing W 2. Let Sj denote the jth action in the se-
quence S. To simplify notation, assume without loss of generality that S1 = C.

(b) Let M ′ ∈ N and let Ẇ � Ẅ �
���
W ∈ ({C�D}� {C�D})M ′

be sequences of action pro-
files that satisfy the following properties: The sequence Ẅ is the “reflection” of
Ẇ , in which the roles of players 1 and 2 are exchanged, ∀1 ≤ j ≤ M , i ∈ {1�2}
Ẇ i

j = Ẅ −i
j ; the sequence Ẇ begins with defection, Ẇ1 = D; the sequence

���
W

is a symmetric action profile that begins with mutual defection (
���
W 1 = (D�D));

and the average stage payoffs are ordered as ū(Ẇ ) > ū((S�S)), ū(
���
W ) >

ū(Ẅ ) > 1.

(c) Let Wt ∈ ({C�D}� {C�D})t be a symmetric action profile of length t, in which
both players repeat playing cycles of S: ∀1 ≤ j ≤ t, Wt�j = (Sj modM�Sj modM).
Similarly, let Ẇt (resp., Ẅt ,

���
W t ) be an action profile of length t, in which both

players repeat playing cycles of Ẇ (resp., Ẅ ,
���
W ): ∀1 ≤ j ≤ t, Ẇt�j = (Ẇj modM ′)

(resp., Ẅt�j = (Ẅj modM ′),
���
W t�j= (

���
W j modM ′)).

2. Definition of the deterministic playing rule bW �k: At stage 1, bW �k(Lk′� l� s�∅) = C if
and only if (s ∈ {Lk�φ} and (∃k < l′ < l s.t. W i

t+1+l−l′ = C)). That is, at stage 1, each
player cooperates only if he observes his opponent to have the incumbent ability
(or a stranger) and, in addition, the horizon is long enough such that his opponent
is likely to cooperate in the future at least once. To simplify the notation below, we
slightly abuse it and write s = Lk instead of s = φ when the opponent is a stranger
(and has probability 1 to have the incumbent ability Lk). At the remaining stages
(t ≥ 1), bW �k(Lk′� l� s = Lk′′� (ai� a−i)t) = C if and only if any one of the following
conditions holds:

(
(ai� a−i)t =Wt and W i

t+1 = C and

(∃l1� l2 s.t. ((k < l1 < l2 < l) or (k′′ < l1 < l)) and

W −i
t+1+l−l1

=W −i
t+1+l−l2

= C)
)

or
(
(ai� a−i)t = Ẇt and Ẇ i

t+1 = C and Lk′′ �=Lk and

(∃l1� l2 s.t. ((k < l1 < l2 < l) or (k′′ < l1 < l)) and

Ẅ −i
t+1+l−l1

= Ẅ −i
t+1+l−l2

= C)
)

or
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(
(ai� a−i)t = Ẅt and Ẅ i

t+1 = C and Lk′ �= Lk and

(∃k′′ < l1 < l s.t. Ẅ −i
t+1+l−l1

= C)
)

or

(
(ai� a−i)t = ���

W t and
���
W

i
t+1 = C and Lk′�Lk′′ �= Lk and

(∃k′′ < l1 < l s.t.
���
W

−i
t+1+l−l1

= C)
)
�

That is, the first action profile determines which sequence the players should fol-
low: W if it was (C�C), Ẇ if it was (D�C), Ẅ if it was (C�D), and

���
W if it was (D�D).

The players follow this cycle until either of the following events occurs:

(a) It becomes common knowledge that either player has deviated in the past; in
this case, both players defect at all remaining stages.

(b) A player knows that his opponent is not going to cooperate in the future (be-
cause the horizon is too short); in this case, he defects.

3. Fix an arbitrary full support perturbed game �(ζ) with sufficiently small maxi-
mal tremble M(ζ). Let σW�k�ζ = (μW �k�ζ�βW �k�ζ) ∈ 	(ζ) be the closest strategy to
(Lk�bW �k) in 	(ζ), and let σ = (μ�β) �= σW�k�ζ ∈ 	(ζ) be any other strategy. We now
show that u(σ�σW �k�ζ) < u(σW �k�ζ�σW �k�ζ) (i.e., σW�k�ζ is a symmetric strict equilib-
rium in 	(ζ)), which implies that (Lk�bW �k) is a strict limit ESS. The argument is
a simple adaptation of Kim’s (1994) folk theorem result and is briefly sketched as
follows:

(a) We have u((μ�β)�σW �k�ζ) ≤ u((μ�βW �k�ζ)�σW �k�ζ). This is because any devi-
ation from playing rule βW�k, which is observed by the opponent, leads the
players to defect at all remaining stages, and for δ sufficiently close to 1, the
future loss outweighs the gain.

(b) We have u((μ�βW �k�ζ)�σW �k�ζ) < u(σW �k�ζ�σW �k�ζ) if μ �= μW�k. This is because
playing rule βW�k�ζ induces a strictly higher payoff to Lk and any distribution
μ �= μW�k assigns a smaller frequency to Lk and higher frequencies to all other
abilities. �
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