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Decentralized bargaining in matching markets:
Efficient stationary equilibria and the core
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This paper studies market clearing in matching markets. The model is non-
cooperative, fully decentralized, and in Markov strategies. Workers and firms bar-
gain with each other to determine who will be matched with whom and at what
terms of trade. Once a worker–firm pair reaches agreement, they exit the mar-
ket. Alternative possible matches affect agents’ bargaining positions. We ask un-
der which conditions such markets clear efficiently and find that inefficiencies—
mismatch and delay—feature frequently. Mismatch occurs whenever an agent’s
bargaining position is at risk of deteriorating. Delay occurs whenever agents ex-
pect their bargaining position to improve. Delay can be extensive and structured
with vertically differentiated markets endogenously clearing from the top down.
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1. Introduction

We study thin matching markets, particularly labor markets, featuring decentralized ne-
gotiations that involve heterogeneous agents from both sides of the market. We capture
one dimension of heterogeneity through constraints that restrict who can match with
whom. Firms might be able to employ only workers they have interviewed, some posi-
tions might only be filled through referrals, and some people may simply be unqualified
for some positions. On top of this, we allow for variability in how well suited different
workers are to fill different vacancies. We take these matching constraints and hetero-
geneities as given, and ask when decentralized negotiations can clear markets efficiently.

We assume players exit the market once they reach an agreement. Exit shapes the
set of alternative matches available to players remaining in the market. We contend
that in many decentralized labor markets, agreements are reached sequentially, and the
market context in which the remaining workers and firms bargain evolves accordingly.
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For instance, when negotiating with a firm, a worker might use the possibility of taking
a position with another firm to achieve a higher wage. But this bargaining stance may
be undermined if that position is filled by a different worker. When the changing market
context affects the terms that are agreed upon in equilibrium, we find that markets fail
to clear efficiently. People delay when they expect the market to evolve in their favor,
and match inefficiently when they expect the market to evolve against their interests.

In our model there are multiple buyers, multiple sellers, matching is one-to-one, and
each buyer–seller pair generates some pair-specific surplus if matched. Time is infinite,
and in each period a single agent is selected at random to make a proposal. The pro-
poser chooses an unmatched player and offers a split of the surplus that the pair would
generate if matched. If the offer is accepted, the pair exits the market. If it is rejected, the
pair remains in the market. While the nonstationarities created by matched pairs exiting
the market complicate matters, the endogenous evolution of the market is central to our
results. We find it is this that creates scope for bargaining frictions, and we investigate
the role of market evolution in driving inefficiencies, due to both mismatch (inefficient
matching) and delay.

We study the Markov perfect equilibria (MPE) in which strategies depend only on
the set of players who remain in the market. Restricting attention to such stationary
equilibria is common in the bargaining literature,1 can be motivated on the grounds of
complexity,2 and has received some experimental support.3

Our primary focus is on the existence of an efficient MPE (that is, an equilibrium
in which buyers and sellers are matched to maximize total surplus) when players are
patient (or, equivalently, interactions are frequent). We consider equilibria that are effi-
cient for sufficiently patient players as well as limiting equilibria that become efficient
only as the discount factor converges to 1. Interpreting the probability that a player is
selected to make an offer as the bargaining power of that player, suppose the surplus
generated by an efficiently matched pair is split in proportion to the partners’ relative
bargaining powers. We refer to these payoffs as agents’ Rubinstein payoffs, as they would
obtain in the limit if all efficient pairs bargained bilaterally.4 Our first main result estab-
lishes that an efficient MPE exists for sufficiently patient players if and only if Rubinstein
payoffs are in the core of the market (that is, if no pair of players can deviate and benefit
by matching to each other when all players receive their Rubinstein payoffs). Moreover,

1See, for example, Rubinstein and Wolinsky (1985, 1990), Gale (1987), Polanski and Winter (2010), and
Abreu and Manea (2012b).

2Maskin and Tirole (2001) argue for considering MPEs on the basis of complexity. Furthermore, the
conclusions of Bhaskar et al. (2013), which are reached in a more general setting and can be applied to
our model, imply that only MPEs are purifiable. Finally, Sabourian (2004) provides additional motivation
specific to bargaining in markets.

3Agranov and Elliott (2017) investigate bargaining in a laboratory experiment in an environment closely
related to the one we study. The MPEs organize the data well and substantially better than standard alterna-
tive theories, in particular, efficient perfect equilibria. They find empirical support for several predictions
we make in this paper.

4We refer to these payoffs as Rubinstein payoffs as they are the unique limiting equilibrium outcome
in bilateral bargaining settings with random proposers. This is a standard generalization of the bilateral
bargaining setting with alternating offers analyzed in Rubinstein (1982).
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if this condition holds, all players receive their Rubinstein payoffs in the limit as they be-
come arbitrarily patient. If it is a mutual best response for players to ignore the market
context and bargain bilaterally with each other when discount factors are sufficiently
high, there exists an MPE in which players do so. As a result, players match efficiently.
If not, there is no efficient MPE when players are sufficiently patient. Thus, whenever
the market context matters and players’ bargaining positions evolve as others exit the
market, an efficient MPE does not exist.

To gain some intuition for why there is no efficient MPE when Rubinstein payoffs
are outside the core, note that if all players were to bargain just bilaterally with their
core matches, they would receive their Rubinstein payoffs, and there would then be at
least one player i who would prefer to deviate and reach agreement with some other
player j. If so, to preserve efficiency, this alternative match would have to serve as a
binding outside option, bounding i’s payoff while not being exercised. However, if i

and j never agreed, then i’s efficient partner would benefit by waiting for j to exit the
market and by agreeing with i only when his bargaining position decays. Thus, in such
instances, there is no equilibrium in which all players agree with their efficient partners
with certainty.

This intuition also identifies a limitation of the aforementioned efficiency result. If j
never exits before i in equilibrium, then i’s efficient partner cannot weaken i’s bargaining
position by delaying. So when there is no danger of binding alternative matching oppor-
tunities being lost, we might expect there to be an MPE that is inefficient away from the
limit, but that exhibits vanishingly small inefficiencies in the limit as players become ar-
bitrarily patient. Indeed, in a two-player setting, Sutton (1986) establishes that as agents
become perfectly patient, outside options can bound payoffs from below while being
exercised with a probability converging to zero. Investigating this possibility, we look for
MPEs that exhibit vanishing inefficiencies in the limit. We begin by studying MPEs that
exhibit no delay or mismatch in the limit. In such equilibria, agents may provide bind-
ing alternative matching opportunities and never exit the market because in equilib-
rium they are unmatched. In this case, a modified version of our main result continues
to hold in the limit, and MPEs exhibit no delay or mismatch in the limit only if suitably
modified Rubinstein payoffs belong to the core. Permitting delay in the limit, there is
another way in which binding alternative matching opportunities might affect payoffs
without resulting in mismatch in the limit. This requires players to endogenously exit
in sequence. In particular, all players except one efficient pair may choose to delay with
probability 1 in the limit while waiting for this pair to reach agreement and exit the mar-
ket. If so, the agreeing pair of players would have alternative matching opportunities
that are never lost before their exit. Consequently, their bargaining positions would not
evolve, and alternative matches can bound the payoffs of this pair of players while be-
ing exercised with a vanishingly small probability in the limit. It might be reasonable
to postulate that no such equilibrium would ever exist, as it requires delay in the limit
from pairs of players who expect to be matched with probability 1 in the limit. Perhaps
surprisingly, endogenous delay of this form, resulting in sequential exit from the mar-
ket, can occur in equilibrium. With four players and equal bargaining powers, we find
necessary and sufficient conditions for such an MPE to exist. The market must be highly
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vertically differentiated and clear from the top. This is consistent with anecdotal evi-
dence from high-skill labor markets. In sports and in the movie industry, markets are
sometimes reported to be held up until a star is matched.

Delay is possible in our model despite information being perfect because the order
of play is random. As time progresses and matched pairs exit the market, the strength of
players’ bargaining positions evolves stochastically. Equilibrium delay stems from favor-
able beliefs about the market evolution (for instance, beliefs about tempting alternative
matches for their bargaining partners exiting the market). In limiting equilibria with se-
quential exit, such favorable beliefs are driven by vanishingly small probabilities of an
inefficient match occurring, which increase the expected payoffs of all delaying players.

Related literature

We study decentralized bargaining in thin markets. The prototypical market we intend
to speak to is a labor market for highly skilled individuals. Such markets are inherently
thin, and characterized by heterogeneities and by decentralized negotiations. Our ap-
proach is closest to the literature analyzing non-cooperative bargaining in thin markets.
This literature takes the coalitional bargaining approach, but restricts the coalitions that
can generate surplus and reach agreement to pairs of players. As there are large litera-
tures considering coalitional approaches to non-cooperative bargaining and bargaining
in large markets, we do not attempt a complete review of these. Instead, we just highlight
some of the most closely related work.

Because of the additional generality, coalitional bargaining models are typically a
better fit for political negotiations and committee decision making. The closest papers
to ours in this literature, Moldovanu and Winter (1995) and Okada (2011), also link coop-
erative and non-cooperative approaches. Moldovanu and Winter consider a bargaining
model without discounting and with deterministic proposer orders. They find condi-
tions on the proposer order for a core outcome to be reached in a stationary equilib-
rium.5 The indeterminacy of equilibrium bargaining outcomes caused by the lack of
discounting is critical for their analysis. Our conclusions rule out this indeterminacy
by studying the limit of a model in which delay costs vanish, but can nevertheless relate
players’ bargaining power (or, equivalently, proposal probabilities) to the existence of an
efficient MPE. Like us, Okada finds conditions under which no efficient MPE exists and
he relates these conditions to the core. However, in the assignment economies we con-
sider, the conditions he identifies are generically violated when there are two or more
players on each side of the market, implying that an efficient equilibrium never exists.6

In contrast, an efficient MPE exists for a positive measure subset of the parameter space
in our decentralized bargaining model. Moreover, even when such conditions fail, we
show that there can be equilibria with vanishing inefficiencies as delay costs become
small.

5Their main conclusion establishes that a core outcome is reached when there is a stationary equilibrium
that holds for any proposer order. In our model, except in trivial cases, an efficient equilibrium never exists
for all proposer probabilities.

6See Appendix C of the Supplemental Material for a more detailed comparison.
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A vast literature has considered decentralized bargaining in large markets, mean-
ing either that the number of players is infinite or that agreeing players are replaced
by exact replicas.7 Seminal work includes Rubinstein and Wolinsky (1985), Gale (1987),
and Binmore and Herrero (1988). The literature has focused on deriving conditions for
equilibrium outcomes to approximate competitive equilibria (or, equivalently, core out-
comes) when the frictions get small. Lauermann (2013) provides a tight characterization
of when these two outcomes can be expected to coincide. Most papers in this litera-
ture study steady state outcomes,8 but Moreno and Wooders (2002) is an exception. As
in some equilibria of our model, they find delay can occur in the limit, but unlike our
model, equilibrium outcomes in their setting are always competitive as players become
infinitely patient.

The most closely related work to ours models non-cooperative bargaining without
replacement in thin markets. This literature includes Rubinstein and Wolinsky (1990),
Corominas-Bosch (2004), Gale and Sabourian (2006), Polanski (2007), Polanski and Win-
ter (2010), Abreu and Manea (2012a, 2012b), and Polanski and Vega-Redondo (2013).
These papers embed different degrees of coordination into their bargaining protocols.
Corominas-Bosch (2004) investigates the existence of competitive equilibria in markets
with homogeneous surpluses (a link in the bipartite network indicates that the two play-
ers would generate a unit of surplus if matched) and alternating non-exclusive offers.
This setup differs from the one considered here, and requires a high degree of coordina-
tion both at the offer stage (as players on one side propose simultaneously to everyone
on the other side of the market) and at the acceptance stage (since more than one assign-
ment may be possible). Polanski (2007) also considers a setting with homogeneous sur-
pluses and strong coordination (as a maximum matching is used to select which players
bargain bilaterally each period), and links subgame perfect equilibrium outcomes to the
Dulmage–Mendelsohn decomposition of the bipartite network.

The closest papers to ours are Gale and Sabourian (2006) and Abreu and Manea
(2012a, 2012b). The former differs from us insofar as all players are simultaneously
matched into pairs before an agent in each pair is selected to be the proposer with
equal probability. Gale and Sabourian include heterogeneous surpluses, but assume
that different sellers have identical objects to sell, so that a given buyer generates the
same surplus with all sellers. They provide an example in which all MPE payoffs are
non-competitive and, therefore, the market outcome is inefficient.

Abreu and Manea (2012a, 2012b) consider environments with homogeneous sur-
pluses in which players cannot necessarily be partitioned into buyers and sellers (im-
plying that a core match might not exist or be unique). One of the extensions of Abreu
and Manea (2012a) analyzes a protocol close to the one we consider, but does not restrict
attention to Markovian equilibria. Their conclusions prove the existence of nonstation-
ary equilibria that converge to efficiency as the time elapsed between offers vanishes.
Abreu and Manea (2012b), like us, focuses on limiting MPEs, but in the context of a

7See Manea (2017) for how the replica assumption relates to steady state outcomes in large markets.
8Some examples, with a particular focus on network bargaining, include Atakan (2008), Manea (2011),

and Polanski and Lazarova (2015).
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bargaining protocol in which players are randomly paired to bargain.9 As in Gale and
Sabourian (2006), an important contribution of their paper is to provide examples in
which all MPEs are inefficient. While both Gale and Sabourian (2006) and Abreu and
Manea (2012b) identify interesting and important features of market inefficiencies, nei-
ther paper provides general conditions to determine whether or not an efficient limiting
MPE exists. Yet, such conditions are important so as to assess the extent of bargaining
frictions in markets. To pursue this goal, we select a protocol that favors the existence of
efficient equilibria and we introduce a slightly stronger notion of efficiency (which we
explain in Section 5).

In protocols that select links to determine the proposer, when an inefficient link is
selected, players must either disagree or match inefficiently. Allowing players to choose
to whom they make an offer prevents delay and mismatch from being necessary features
of equilibrium play. Furthermore, it simplifies the characterization of efficient MPEs. In
our conclusions, we make this point explicitly by discussing an example contained in
Abreu and Manea (2012b). Given the possibility of inefficiency, we select a bargaining
protocol that is predisposed to admit an efficient MPE. To clarify the role of bargaining
frictions, we further restrict attention to environments in which the surplus maximizing
match exists and is unique. This alleviates coordination problems that might arise,10

and is the generic case whenever the market can be partitioned into two sides. Our re-
sults clarify that disagreement is possible even between players who are matched in the
unique efficient match, and that the multiplicity of equilibria is driven by the underly-
ing coordination game and not by the multiplicity of core matches. As is customary in
the literature, we allow bargaining frictions, represented by the time elapsed between
offers, to get small. Despite making these modeling choices, we find inefficiencies to be
a common feature in these markets and we find conditions for them to occur.

Outline

The next two sections introduce the economy (Section 2) and the directed-search bar-
gaining protocol analyzed (Section 3). Section 4 defines solution concepts and presents
the baseline characterization. Section 5 introduces our efficiency criteria and relates
them to welfare. Several examples preview the main conclusions in Section 6. All the
main contributions on stationary equilibrium welfare are given in Section 7. The rela-
tionship to the search literature and the alternative bargaining protocols are discussed
in Section 8. All the proofs of propositions are provided in the Appendix, whereas
the proofs of remarks and several additional robustness checks can be found in the
Supplemental Appendixes, available in a supplementary file on the journal website,
http://econtheory.org/supp/2416/supplement.pdf.

2. The assignment economy

An assignment economy consists of a set of players N = {1� � � � � n} and an n by n matrix S

characterizing the surplus that can be generated by any two players in the economy. The

9Each period, a link is selected according to some probability distribution; then a player on that link is
selected with equal probability to propose.

10See Appendix B in the Supplemental Material for a more detailed comparison on this point.

http://econtheory.org/supp/2416/supplement.pdf
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ij entry of S, sij ≥ 0, denotes the surplus generated when players i and j are matched. The
surplus matrix S can be interpreted as a network. The network is assumed to be undi-
rected (so that sij = sji for any i� j ∈ N) and bipartite (so that, for some partition (P1�P2)

of the set of players N , sij = 0 whenever i� j ∈ Pk for k ∈ {1�2}). The two assumptions
imply that the surplus generated in a match is independent of the identity of the player
who initiates the match, and that surplus can be generated only by players of different
types. By assumption, workers generate surplus only with firms, men generate surplus
only with women, and buyers generate surplus only with sellers.

A match is a map μ : N → N such that μ(μ(i)) = i for any i ∈ N . If μ(i) = i, we
say that player i is unmatched. If μ(i) = j, then i and j generate surplus sij . Let M(N)

denote the set of possible matches for a given set of players N . An efficient match η for
an assignment economy S is a match that maximizes surplus:

∑
i∈N

siη(i) = max
μ∈M(N)

{∑
i∈N

siμ(i)

}
�

The core of the market consists of the set of match and payoff vector pairs (μ�u) that
satisfy

(C1) ui + uμ(i) = siμ(i) for any i ∈N

(C2) ui + uj ≥ sij for any i� j ∈N .

Shapley and Shubik (1971) establish that any core match is an efficient match, and
that a unique efficient match exists when no two positive links have the same value.11

As the condition for uniqueness is generic, our analysis restricts attention to economies
with a unique efficient match. Thus, throughout the analysis we refer to the unique
efficient match η as the core match.

Although condition (C2) only rules out the existence of profitable pairwise devia-
tions, Shapley and Shubik (1971) establish that this suffices to rule out the existence of
profitable coalitional deviations. The lowest and the highest payoffs that player i can
receive in a core outcome are denoted by ui and ui.

3. Matching and bargaining

The analysis considers a non-cooperative, infinite-horizon bargaining protocol in which
players choose whom to bargain with. All players discount the future by a common
factor δ ∈ (0�1). At the beginning of the game, all players are active, but they can become
inactive as the game unfolds. In every period, a single player i ∈N is selected at random
to be the proposer, with probability pi > 0. If proposer i is active, he can make an offer to
at most one other active player. We adopt as a convention that a player failing to make
an offer chooses to offer to himself. An offer from player i to a player j �= i consists of a
surplus split xji ∈ [0� sij], where xji denotes the amount of surplus generated by the new
match, sij , that he intends to leave to j. The player receiving the offer then has a binary

11Formally, the efficient match is unique if sij > 0 implies skl �= sij for all kl �= ij.
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choice, to accept (1) or reject (0) the offer. If j rejects the offer, both players remain active,
and the game moves to the next stage. Otherwise, players i and j become inactive, and
their final payoffs are determined by the discounted value of the shares that they have
agreed upon. In particular, the value at the beginning of the game to players i and j of
reaching an agreement xji at stage t is

uj = δt−1xji and ui = δt−1(sij − xji)�

In the next stage the proposer is selected according to the same probability distribu-
tion.12 If an inactive player is selected, the game moves to the subsequent period. The
game ends when the surplus generated by any pair of active players is zero. The struc-
ture of the game is common knowledge among players. Information is perfect. Thus, all
players observe any offer previously made and the corresponding acceptance decision.

Histories and strategies

Denote the set of histories at date t observed by any player after the new proposer has
been selected by Ht = N × [N2 × R+ × {0�1}]t−1. Such histories consist of the identity
of the current proposer, the identities of past proposers, to whom they offered, the offer
they made, and whether the offer was accepted or rejected. Denote the set of histories
of length t observed after an offer has been made by Rt = N × R+ × Ht . Let R =⋃t R

t

and H =⋃t H
t . Finally, let Hi denote the subset of histories in H in which player i is the

proposer, and let Ri denote the subset of histories in R in which player i is the responder.
We say that player i ∈ N is active at history h ∈ H if player i has never accepted an

offer and has never made an offer that was accepted. For any history h ∈H, let A(h)⊆ N

denote the set of active players after history h. Throughout, �(·) denotes the simplex of
a finite set. The strategy of an active player i ∈ A(h) when making an offer consists of a
pair of functions, ρi and χi, such that

ρi(h) ∈ �
(
A(h)

)
and χi(h) ∈R

|A(h)|
+ for h ∈Hi�

The first map ρi(h) describes the probability distribution over players who may receive
an offer from i at any given history, while the second map χi(h) identifies the amount
of surplus that i would offer to each potential partner. The strategy of an active player
i ∈ A(h) when receiving an offer instead consists of a single function, αi, such that

αi(h) ∈ [0�1] for h ∈Ri�

The map αi(h) describes the probability that an offer is accepted. Strategy profiles are
denoted by omitting the dependence on players, (ρ�χ�α)= {ρi�χi�αi}i∈N .

12Results are unaffected by updating proposal probabilities conditional on being active. However, we
opted to keep the expected time to propose of each player stationary across periods.
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4. MPE existence and characterization

The analysis restricts attention to stationary Markov perfect equilibria in which strate-
gies depend only on the set of active players in the game.

Definition 1. A subgame perfect equilibrium (ρ�χ�α) is a Markov perfect equilibrium
(MPE) if strategies coincide whenever active player sets coincide. That is, for any two
histories h�h′ ∈H such that A(h) = A(h′),

(i) ρ(h) = ρ(h′) and χ(h)= χ(h′)

(ii) α(i�x|h) = α(i�x|h′) for any offer (i�x) ∈N ×R+.

Strategies are stationary as the calendar date is not part of the Markov state. Since we
consider only stationary MPE, we often omit the word stationary and make the depen-
dence on the active player set explicit (thereby omitting the dependence on histories).
The notation (ρδ�χδ�αδ) is occasionally used to clarify that equilibrium strategies may
also depend on the discount factor δ, but we omit this dependence when it is redundant.

Some of the results consider MPE behavior in the limit as the discount factor con-
verges to 1. To simplify the discussion, we introduce a notion of limiting equilibrium.

Definition 2. A limiting Markov perfect equilibrium (LMPE) (ρ̄� χ̄� ᾱ) is the limit of a
selection {ρδ�χδ�αδ}1

δ=0 from the MPE correspondence as δ converges to 1.

Throughout the text, the expression equilibrium refers to an MPE and the expression
limiting equilibrium refers to an LMPE. To simplify notation, we invoke the following
two conventions for all i� j ∈A:

A−i = A\{i} and A−ij =A\{i� j}�

For any MPE (ρ�χ�α) and any set of players A ⊆ N , let πij(A) denote the agreement
probability between players i ∈A and j ∈A−i when i is selected to make an offer,

πij(A) = ρi(j|A)︸ ︷︷ ︸
Pr(i offers to j)

· αj

(
i�χi(j|A)|A)︸ ︷︷ ︸
Pr(j accepts)

�

and let πii(A) denote the probability that i does not reach agreement when selected to
make an offer,

πii(A) = 1 −
∑
j∈A−i

πij(A)�

Also, let Vi(A) denote the expected payoff—or, equivalently, value—of an active player
i at the beginning of a subgame in which the set of active players is A, and let vi(A)

denote the MPE value of an active player i when he is chosen to be the proposer.
We begin by proving equilibrium existence and by providing a preliminary char-

acterization of equilibrium bargaining values. For convenience, let pA = ∑
j∈Apj .

The characterization allows for mixed strategy equilibria. Fix an active player set A and
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consider any Markovian strategy profile (ρ�χ�α) and its associated values and agree-
ment probabilities (π�V ) ∈ [�(A)×R]|A|, where we omit the dependence on A for clar-
ity. As in numerous bargaining models, subgame perfection dictates that a proposer
never offers to another player more than that player’s present discounted value of stay-
ing in the game. As players can choose with whom to bargain, proposers necessarily
offer to those players who leave them with the highest surplus, arg maxj∈A−i

{sij − δVj},
whenever such surplus exceeds the value δVi of remaining unmatched. Formally, we
define the value of proposing at active player set A for a player i ∈A by

vi = max
{
δVi� max

j∈A−i

{sij − δVj}
}
�

It follows that for any active player set A ⊆ N , MPE values V (A) for any player i ∈ A

must be a fixed point of the system of value equations

Vi = pivi︸︷︷︸
i proposes

+
∑
j∈A−i

pj

[
(πji +πjj)δVi︸ ︷︷ ︸

j agrees with i or delays

+
∑

k∈A−ij

πjkδVi(A−jk)

︸ ︷︷ ︸
j agrees with k�=i�j

]
+ (1 −pA)δVi︸ ︷︷ ︸

no player proposes

for some profile of agreement probabilities π(A) that satisfy

πij =
{

0 if vi > sij − δVj and j �= i�

0 if vi > δVi and j = i�
(1)

Proposition 1. An MPE exists. Moreover, {π(A)�V (A)}A⊆N is a profile of MPE val-
ues and agreement probabilities if and only if it solves system (1) at any active player set
A⊆N .

Existence is proved by applying Kakutani’s fixed point theorem. The result extends
Proposition 1 and Lemma 1 in Abreu and Manea (2012b) to environments in which play-
ers are allowed to choose to whom to offer and in which the surplus generated in a match
depends on the identity of the players. While MPEs are not unique, MPE values are
uniquely determined by MPE agreement probabilities.

The result implies that no player i ∈ A can delay with an active player set A in equi-
librium if there exists a player j ∈A such that δVi+δVj < sij . Thus, in any MPE displaying
on-path delay, it must be that δVi + δVj ≥ sij at some on-path subgame. Moreover, as Vi
and Vj are a discounted weighted average of the possible future agreements i and j can
reach on path, if i and j delay, they must collectively expect higher payoffs from delaying
and letting the market evolve than from reaching agreement now.

5. Efficiency, welfare, and delay

Next we introduce the two efficiency criteria and the notion of delay that is analyzed in
the following sections. Let E denote the set of unmatched players in the core of the orig-
inal assignment economy, E = {i ∈ N|η(i) = i}, and let C(N) denote the set of possible
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active player sets that may arise as core matches are removed from the game,

C(N) =
{
A
∣∣∣A =

⋃
i∈M

{
i�η(i)

}∪E for some M ⊆N

}
�

We are interested in active player sets in C(N), as only such subgames can arise with
positive probability in equilibria in which players eventually match efficiently. The
properties of the core imply that the core partner of every player must coincide at all
active player sets A ∈ C(N).

Consider a social planner who is able to impose terms of trade and agreement proba-
bilities, but is otherwise constrained by the environment of the game. For a high enough
discount factor, this constrained social planner implements only efficient matches and
does so at the first available opportunity. An MPE with these features is said to be
strongly efficient. It requires that every player who is matched in the core of the as-
signment economy agrees on a division of surplus with his core partner at the very first
opportunity. One way in which surplus can be lost is through delay. However, when de-
lay costs are small (that is, when δ is close to 1), little surplus is dissipated by deferring
agreements. We therefore also consider a weaker efficiency criterion that requires only
that nobody ever matches with players other than their core partner. We refer to these
MPEs as weakly efficient. Our results then establish that all players must eventually agree
on a division of surplus with their core partners in any such MPE.13

Definition 3. Consider an MPE (ρ�χ�α).

• If for all A ∈ C(N), πiη(i)(A) = 1 for all i ∈A, the MPE is strongly efficient.

• If for all A ∈ C(N), πiη(i)(A)+πii(A) = 1 for all i ∈ A, the MPE is weakly efficient.

Neither efficiency criterion is satisfied when an inefficient match occurs with pos-
itive probability. As we assume δ < 1, this may rule out instances in which the agree-
ment probabilities on inefficient matches become negligible as δ→ 1. To address these,
we apply the two efficiency criteria to the limiting equilibria. For convenience, given
a profile MPE (ρδ�χδ�αδ) for all δ < 1, define the limiting agreement probabilities as
π̄ij(A) = limδ→1 π

δ
ij(A) for all i� j ∈ A and the limiting values as V̄i(A) = limδ→1 V

δ
i (A)

for all i ∈A (when these limits exist).

Definition 4. Consider an LMPE (ρ̄� χ̄� ᾱ).

• If for all A ∈ C(N), π̄iη(i)(A) = 1 for all i ∈A, the LMPE is strongly efficient.

• If for all A ∈ C(N), π̄iη(i)(A)+ π̄ii(A) = 1 for all i ∈A, the LMPE is weakly efficient.

13In terms of utilitarian welfare, for all δ sufficiently high, strongly efficient MPEs maximize the ex ante
sum of expected payoffs, whereas weakly efficient MPEs do not unless they are also strongly efficient. Even
in strongly efficient MPEs, however, the sum of values is necessarily below the total surplus, as it takes time
for the core match to form. Moreover, in a strongly efficient MPE, all active player sets in C(N) occur with
positive probability. But this is not the case for weakly efficient MPEs, as the market may clear sequentially.
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While we establish that both strongly and weakly efficient LMPEs generate the same
surplus in the limit, it is instructive to separate them for the purpose of classifying lim-
iting efficient equilibrium play. The strong and weak efficiency dichotomy parses ef-
ficiency loss through inefficient matching versus inefficient delay. When applying our
efficiency criteria to LMPEs, it is worthwhile noting that active player sets outside C(N)

may now occur with positive probability for all δ < 1.
As is customary, we refer to the sum of ex ante values,

∑
i∈N Vi(N) as utilitarian wel-

fare. The next proposition establishes that utilitarian welfare converges to total surplus,∑
i∈Nsiη(i) as δ→ 1 in any weakly efficient LMPE. This motivates our efficiency criterion

by showing that no welfare can be lost from delay in any such equilibrium.

Proposition 2. Any weakly efficient LMPE maximizes surplus:

∑
i∈N

V̄i(N)=
∑
i∈N

siη(i)�

The result is intuitive and relies on delay costs vanishing at a sufficiently fast rate as
δ → 1. Its proof also establishes why, in any MPE, all players cannot simultaneously de-
lay with positive probability at some active player set. Since weakly efficient LMPEs max-
imize utilitarian welfare, Proposition 2 implies that these equilibria are always asymp-
totically efficient as defined in Abreu and Manea (2012a, 2012b). In principle though,
asymptotically efficient LMPEs may exist in which players match inefficiently at active
player sets that belong to C(N), but that do not materialize on the equilibrium path.14

Weakly efficient LMPEs refine asymptotically efficient LMPEs by requiring the equilib-
rium to be efficient in the limit at any active player set in C(N), and not just at those
active player sets that are reached with positive probability on path.15 In doing so, they
rule out asymptotically efficient equilibria that are sustained by the threat of inefficient
matching at some core subgame, instead requiring a consistent selection of efficient
equilibria throughout all subgames that can be reached following efficient matching.
Relative to earlier studies, the stronger welfare criterion allows a novel approach that
entails first disciplining limiting agreement probabilities in all core subgames and then
exploiting the recursive structure of stationary equilibria to derive stronger implications
on efficient equilibrium payoffs and on their existence.

Our notion of equilibrium delay requires the existence of a player with a posi-
tive value who chooses to forgo the option to make an acceptable offer with positive
probability.

14If the short side of the market has at most two players, mini |Pi| = 2, then all LMPEs must be weakly
efficient in any core subgame A �= N . Thus, all asymptotically efficient equilibria must be weakly efficient
LMPEs. Moreover, any asymptotically efficient equilibrium, in which all players in A\E agree with positive
probability in every subgame A ∈ C(N), must be a weakly efficient LMPE.

15Formally, asymptotically efficient MPEs require the conditions defining weakly efficient LMPEs to hold
only for active player sets A ∈ C(N) that materialize with positive probability on the equilibrium path,
rather than requiring the same conditions but for all A ∈ C(N).
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Definition 5. An MPE (ρ�χ�α) displays delay if, for some A ⊆ N and some player
i ∈A,

Vi(A) > 0 and πii(A) > 0�

The definition applies only to players with a positive value, as it is immediate that
players with zero continuation value might well prefer to disagree. In Section 6, we
present two examples in which a player with a positive continuation value chooses to
delay on the equilibrium path.

6. Examples

Before proceeding to the main analysis, we consider a few examples to illustrate the
model, the solution concepts, and the efficiency definitions, and to preview some of the
main conclusions. The first example establishes that equilibrium mismatch can occur.
The second shows how mismatch inefficiencies can occur for δ < 1, but disappear in the
limit, implying that there is a strongly efficient limiting equilibrium. The third example
features on-path equilibrium delay, and the fourth example shows a weakly efficient
limiting equilibrium in which players delay and endogenously exit the market in a fixed
sequence. These examples can be skipped.

Example 1. Consider an assignment economy populated by four players who propose
with equal probabilities. Surpluses in the market are as depicted in panel I of Figure 1.

The unique efficient assignment matches player a to b and player c to d whenever
y < 200, while it matches player a to d only when y > 200. Multiple core assignments
exist at y = 200. Proposition 1 can be used to derive MPE payoffs and strategies in this
game for any discount factor. To make the discussion more transparent, suppose that
the discount factor is close to unity. When y ≤ 100, players make offers only to their
core partners. This is equivalent to the scenario where each player bargains bilaterally
with his efficient partner, and all players achieve an LMPE payoff of 50. In this case, no
player is ever tempted to offer to anyone beside his core match. These equilibrium offer
strategies for active players A= {a�b� c�d} are shown in panel II of Figure 1.

For values of y ∈ (100�200), bilateral bargaining cannot be a solution. Indeed, if ev-
eryone offered only to their efficient match, players a and d would both have a profitable
deviation to offer to each other. When y ∈ (100�1000/7), players a and d randomize
in equilibrium between offering to their respective core matches and bargaining with
each other (panel III of Figure 1). By offering to each other with positive probability, a
and d reduce the continuation values of their efficient partners. In equilibrium they do
this until they are indifferent between offering to each other and to their efficient part-
ners. As y increases, this requires the strong players, a and d, to offer to each other with
higher probability, and at y = 1000/7, they reach the corner solution in which indiffer-
ence requires them to offer to each other with probability 1. As y grows further such
that y ∈ [1000/7�200), players a and d continue to offer only to each other, and still ac-
cept offers made by their respective core matches (panel IV of Figure 1). Mismatch now
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Figure 1. Panel I displays the assignment economy. MPE agreement probabilities πij(N) are
shown in panel II for y ∈ [0�100], in panel III for y ∈ (100�1000/7], in panel IV for y ∈ (1000/7�200],
and in panel V for y ∈ (200�∞). An arrow between two players represents a positive agreement
probability, while a self-arrow represents a positive disagreement probability.

Figure 2. Depiction of the limiting payoffs, the limiting MPE surplus, and the limiting efficient
surplus as a function of sad = y for Example 1. The payoff of players a and d is denoted by Va,
whereas Vb denotes the payoff of b and c.

occurs with probability 1/2. Despite this inefficiency, the unique equilibrium is in pure
strategies.16

The final case is that where y > 200 and in which the efficient assignment matches
player a to d. If so, players a and d continue offering to each other with probability 1.
However, b and c stop making offers to players a and d, as any acceptable offer would
have to exceed the entire surplus in the relevant relationship (panel V of Figure 1). This
change affects limiting payoffs discontinuously. When y < 200, player b always makes an
acceptable offer to a, leaving c to bargain bilaterally with d with probability 1/4. Thus,
c gets a limiting payoff of 50 with probability 1/4. For y > 200, however, b stops mak-
ing acceptable offers to a, and c receives a payoff of 0 with certainty. Note that this

16For y ∈ (100�1000/7), in the limit as δ → 1, players a and d make offers to their respective core partners

with probability q = (2
√

2y2 − 600y + 50,000 − y)/(200 − y) ∈ (0�1). The unique LMPE payoff of players a

and d amounts to Va = (y + 50 + 50q)/(3 + q), while that of players b and c equals Vb = Va − y + 100. For
y ∈ [1000/7�200), the LMPE payoff of a and d further increases to Va = (y + 50)/3, whereas that of b and c

decreases to Vb = (400 − y)/12.
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Figure 3. Panel I displays the assignment economy, while panel II displays MPE agreement.
The limiting equilibrium shown is strongly efficient as limδ→1 q

δ = 0.

discontinuity occurs precisely at the value of y for which the core match is not unique
(Figure 2). ♦

Example 2. The next example shows that alternative matches that cannot be lost can
act like outside options and bound payoffs while being exercised with probability 0 as
players become arbitrarily patient.

Consider the three-player market depicted in panel I of Figure 3. The unique core
match of the market matches players e and f , leaving c unmatched. Assume again that
players propose with equal probability and that discount factors are sufficiently close
to 1. If so, players e and f offer to each other with probability 1 in the unique MPE,
whereas player c offers to player f with probability qδ ∈ (0�1), where limδ→1 q

δ = 0. Al-
though qδ → 0 in the limit, the mere presence of player c significantly affects bargaining
outcomes. Players e and f would share the 10 units of surplus evenly were they to bar-
gain in solitude. However, because c never exits the market, he acts like an outside op-
tion for f . Indeed, player f extracts the same limiting surplus that he would get were he
to bargain in solitude with player e while having access to an outside option with value 8.
The limiting payoffs converge to 8 for player f , to 2 for player e, and to 0 for player c. Even
though player c does not make an acceptable offer in the limit, the equilibrium does not
display delay by our definition, because the payoff of player c equals exactly 0 for all δ
sufficiently close to 1. While the equilibrium described is not strongly or weakly efficient
for δ < 1 due to the positive probability of a mismatch, that probability converges to zero
in the limit, and so the limiting equilibrium is strongly efficient.17 ♦

Example 3. In Example 1, we saw that mismatch can arise when players feared loosing
valuable alternative matches. The next example shows that on-path delay can occur
when players expect the market to evolve in their favor.

Consider the six-player assignment economy depicted in panel I of Figure 4, in
which agents are selected to propose with equal probability. We show that an equilib-
rium exists in which f delays making offers with probability 1 when selected to propose
if all other players are still active in the market. Panel II of Figure 4 shows the equilib-
rium offer strategies in this MPE. To solve this game, we use backward induction. Under

17For δ close to 1, in the unique MPE of this example, we have that Vc(N) = 0, Ve(N) = (26δ − 24)/δ,
Vf (N) = 8/δ, and q = (27δ2 − 63δ+ 36)/(13δ2 − 12).
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Figure 4. Panel I displays the assignment economy, while panel II displays MPE agreement.
Player f delays with probability 1.

the proposed equilibrium, if the protocol selects agent e as the first proposer, agent e
makes an offer to agent f that is accepted. If so, the remaining subgame coincides pre-
cisely with the game discussed in Example 1, so we know the MPE payoffs for all the
remaining players in the subgame. If agent c is selected as the first proposer and agrees
with d, then in the following subgame, agents e and f bargain bilaterally, as do agents
a and b. If agents a or d are selected as the first proposers instead, then agent b must
remain unmatched, while agents c, e, and f are left in precisely the subgame we consid-
ered in Example 2. Finally, if agent b is the first proposer, he agrees with a, and players
c, d, e, and f are left in a subgame. While we have not solved this subgame yet, in the
unique MPE, all players offer to their efficient partner as in Example 1. Limit payoffs for
c, d, e, and f are then given by 50, 50, 5, and 5. With these subgames in mind, it is easy
to write down the value equations for the six agents and solve them. For instance, the
value equation for agent c simply amounts to

Vc(N)= p
[

2δVc(E2)︸ ︷︷ ︸
a or d propose

+ δVc(c�d)︸ ︷︷ ︸
b proposes

+ (100 − δVd(N)
)︸ ︷︷ ︸

c proposes

+ δVc(E1)︸ ︷︷ ︸
e proposes

+ δVc(N)︸ ︷︷ ︸
f delays

]
�

where Vc(Ei) denotes the value of player c in Examples i ∈ {1�2}. Solving the value func-
tions establishes that no player has a profitable deviation from the proposed strategies,
and that player f must delay for all sufficiently high values of δ. Taking limits as δ → 1,
the payoffs of the six players converge to V (N) = (55/3�230/3�230/3�55/3�13/2�7/2).
Agents a through d achieve the same limiting values as in Example 1. The additional op-
tion available to c (of matching with f ) does not improve c’s terms of trade, as it is never
binding. Nevertheless, the option of matching with c incentivizes f to delay. There is a
positive probability that a and d reach agreement first, and in this case, f ’s bargaining
position with e improves. While such threats are factored into the limiting payoff of e,
and f ends up indifferent between delaying and making an offer to e when selected to
propose first, f must delay with certainty to extract the maximum possible equilibrium
value out of his potential future outside option.18 ♦

18Delay in this example is driven only by the endogenous evolution of bargaining positions. Players can
choose whom to bargain with (which implies that no player has to delay to be matched to his equilibrium
partner), and the efficient match is unique (which shuts down possible coordination problems among play-
ers). In Appendix B of the Supplemental Material, we show that when multiple efficient matches exist, delay
can arise just because players fail to coordinate on one of the efficient matches.
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Figure 5. Panel I displays the assignment economy, while panel II displays MPE agreement.
The LMPE features sequential exit. As limδ→1 q

δ = 0, in the limit, c and d wait for a and b to reach
an agreement before reaching an agreement themselves.

Example 4. In Example 1, alternative matches that were lost with positive probability
did not act like outside options. In Example 2 instead, alternative matches that never
exited the market did act like outside options with limiting patience. The final example
shows that there is another way in which matches can act as outside options without dis-
torting trade. There can be sequential exit, in that all but one pair of players delays with
probability 1 in the limit. For those players everyone else waits for, alternative matches
never exit the market before them and can act like outside options.

Consider the market depicted in panel I of Figure 5. This market is vertically differen-
tiated. Both b and d generate a higher surplus with a than c, while both a and c generate
more surplus with b than d. Vertical differentiation is so strong that the match between
a and b generates ten times more surplus than the match between c and d. The efficient
match is assortative, and matches a to b and c to d. There is no strongly or weakly effi-
cient MPE for δ < 1, and no strongly efficient LMPE in this example. There is, however,
a weakly efficient LMPE. For high enough δ < 1, there exists an MPE in which player c
delays with probability 1, player d agrees with a with probability qδ > 0 and delays with
probability 1 − qδ, while a and b always agree with each other. Moreover, limδ→1 q

δ = 0,
so in the limit, c and d both delay with probability 1 and wait for a and b to reach agree-
ment before bargaining with each other. The market thus clears from the top. The limit
payoffs of c and d are 5, a receives 80, and b gets 20. ♦

7. MPE efficiency and frictions

We now present the main conclusions on equilibrium welfare. The analysis begins by
characterizing payoffs for all efficient MPEs, and by deriving necessary and sufficient
conditions for the existence of such MPEs for δ close to 1. These conditions relate the
primitives of the bargaining model to the core of the assignment economy. The second
part of the section derives similar conclusions for limiting equilibria and identifies con-
ditions under which alternative matches can serve as outside options that affect bar-
gaining outcomes without distorting trade. Broadly speaking, the analysis establishes
that inefficiency is a necessary feature of all MPEs in which players’ bargaining positions
evolve as others reach agreement. An efficient MPE exists only when each pair of effi-
ciently matched players can bargain in isolation, thereby ignoring the market context,



228 Elliott and Nava Theoretical Economics 14 (2019)

without having a profitable deviation (outside options provided by alternative match-
ing opportunities cannot bind). The results for limiting efficient MPEs provide the same
message, but are more subtle. Agents cannot have binding temporary outside options
provided by matching opportunities to players who may exit the market before them,
but can have binding permanent outside options provided by matching opportunities to
players who never exit the market before them.

Efficient equilibria and payoffs

To state results, it is useful to introduce three relevant payoff profiles. The first of these
identifies the LMPE values that players would achieve while bargaining bilaterally with
their core match. For any player i ∈N , let σi denote the Rubinstein payoff of player i,

σi = pi

pi +pη(i)
siη(i)�

The second profile identifies the highest payoff that players could achieve while offering
to players who are unmatched in the core of the assignment economy. For any player
i ∈ N , let ωi denote the outside payoff of player i,

ωi = max
j∈E∪i

sij�

In the bargaining game, players who are unmatched in the core act as permanent out-
side options in efficient equilibria, as they never exit the market. The third and final
profile identifies the LMPE payoffs that players would achieve while bargaining bilater-
ally with their core match when facing permanent outside options equal to ω (Shaked
and Sutton 1984, Sutton 1986, and Binmore and Herrero 1988). For any player i ∈ N , let
σ̄i denote the shifted Rubinstein payoff given by

σ̄i =

⎧⎪⎪⎨
⎪⎪⎩
ωi if ωi ≥ σi�

siη(i) −ωη(i) if ωη(i) ≥ ση(i)�

σi otherwise�

Outside options cannot bind for both players in a core match. If they did, an alternative
match that generates a weakly higher surplus would be feasible (as outside options are
unmatched in the core). But, that would contradict the optimality of the core match or
its uniqueness.

Although we identify necessary and sufficient conditions for the existence of an ef-
ficient MPE, it is helpful to highlight two potentially separate sources of distortions,
namely inefficient matching and delay in reaching agreements. Both distortions are
driven by the endogenous evolution of bargaining power that results from the random
order of play. But, whereas mismatch is necessarily a hard friction since it permanently
destroys surplus, delay can be a soft friction, in that its effects on welfare can become
negligible when discount factors are sufficiently close to 1. Proposition 3 establishes that
delay cannot be the sole source of frictions in the model, as the possibility of mismatch
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is necessary for delay to occur. Pinning down weakly efficient equilibria thus amounts to
identifying strongly efficient equilibria. The proposition also characterizes equilibrium
payoffs in any efficient MPE.

Proposition 3. Any weakly efficient MPE is strongly efficient. Moreover, in any subgame
A ∈ C(N) of any weakly efficient MPE, payoffs amount to

Vi(A) =
(

pi

(1 − δ)+ δ(pi +pη(i))

)
siη(i) for all i ∈A�

The proof shows that players never delay in any weakly efficient equilibrium, as de-
lay necessarily weakens their bargaining position relative to their core match. Payoffs are
then derived by simple manipulations and the observation that behavior in subgames
that are off the equilibrium path cannot affect the terms of trade in any equilibrium-
path subgame, since players could reach such subgames only by exiting the game. As
strongly efficient MPEs coincide with weakly efficient MPEs, we henceforth simply refer
to them as efficient equilibria. Efficient MPE payoffs are stationary and independent of
the set of active players along the equilibrium path, and converge to Rubinstein payoffs.
When the cost of delaying is nonnegligible, bargaining is efficient only when alternative
matches have no effect on outcomes and players achieve the same payoff they would
get by bargaining with their efficient match in solitude.

To understand matching incentives in the model, consider the case in which de-
lay costs are large. If so, players have a strong motive to negotiate only with their pre-
ferred bargaining partners since the cost of rejecting offers is extremely high. In this
setting, equilibrium matching could be efficient only if matching with one’s core part-
ner would generate at least as much surplus as matching with any other player. Indeed,
the existence of an efficient MPE requires players’ preferred bargaining partners to co-
incide with their core partners when delay costs are large. The next remark formalizes
these observations. If for some ε > 0, an efficient MPE exists for any δ ∈ (0�1) such that
|x − δ| ≤ ε, we say that an efficient MPE exists for all values of δ close to x. A preferred
match19 μ at an active player set A⊆N is a map μ : A→ A that satisfies

siμ(i) = max
j∈A

sij for all i ∈A�

Remark 1. For all δ close to 0, the following statements hold:

(a) All MPEs maximize utilitarian welfare if the preferred match is unique at all A⊆N .

(b) An efficient MPE exists if the core match is the unique preferred match at N .

(c) An efficient MPE exists only if the core match is a preferred match at N .

For δ sufficiently high, an MPE maximizes utilitarian welfare if and only if it satisfies
our efficiency criterion.20 However, for low δ, this is no longer the case. When delay

19A preferred match may not be a match, as μ(μ(i)) �= i.
20When δ is close to 1, an MPE maximizes utilitarian welfare if and only if it is strongly efficient, but by

Proposition 3, the set of weakly and strongly efficient MPE coincide.
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costs are sufficiently high, maximizing welfare may require matching players contin-
gent on the realization of the sequence of proposers. In particular, for sufficiently low δ,
utilitarian welfare is maximized when players agree with their preferred match, as delay
costs dominate any allocative efficiency consideration.

To provide a comparison with the high δ case and different bargaining protocols,
Remark 1(b) provides conditions under which the core match is reached. In our di-
rected bargaining protocol, this occurs when players’ preferred match coincides with
their core match; in other words, when players prefer to bargain bilaterally with their
core match without negotiating with any other partner. In contrast, classical random
matching models, such as Gale and Sabourian (2006) and Abreu and Manea (2012b),
never implement the core match with probability 1 since, in these models, players would
agree with anyone they meet when δ is sufficiently low.

It is easy to find examples of inefficient equilibria that do not maximize welfare for
intermediate costs of delay. However, inefficiencies may be driven by the large costs
associated with disagreement. Indeed, one could interpret discounting as the source of
matching frictions. However, the next results consider only the case in which delay costs
are sufficiently small. Nevertheless, inefficiencies do not vanish.

Proposition 4. An efficient MPE exists for all δ close to 1:

(a) If Rubinstein payoffs are in the interior of the core,

σi + σj > sij for all i� j ∈ N such that j �= η(i)� (2)

(b) Only if Rubinstein payoffs are in the core,

σi + σj ≥ sij for all i� j ∈N�

Proposition 4 shows that whenever Rubinstein payoffs do not belong to the core,
players must agree with partners other than their core match with positive probabil-
ity. When players consider agreeing with their respective core matches, the other ac-
tive players act as fictitious outside options. But for these outside options to affect bar-
gaining outcomes, these options must sometimes be exercised.21 Such behavior, how-
ever, necessarily leads to mismatch, surplus dissipation, and the possibility of delay.
Only when Rubinstein payoffs live in the core of the assignment economy does an ef-
ficient MPE exist.22 The sufficient condition for the existence of an efficient MPE is in-
tuitive, but does not guarantee that every Markovian equilibrium is efficient. Indeed,

21Consider again Example 1, and in particular panel III of Figure 1, so that y ∈ (100�143]. Suppose an
efficient equilibrium is played and so, by Proposition 3, q = 1. A strategy available to b is to reject all offers
from a and to delay when selected to propose until c and d exit the market. Doing so results in a bargaining
bilaterally with b in the subsequent subgame, and in the limit, b obtains a payoff of 50. Thus, for a to receive
a limiting payoff greater than 50, a must exercise his temporary outside option and inefficiently match to d

with positive probability in equilibrium.
22Our result does not speak to the nongeneric case in which Rubinstein payoffs are on the boundary

of the core. In such cases, a discount factor equal to 1 may be required to guarantee the existence of an
efficient MPE. In Appendix B of the Supplemental Material, we show why no conclusive result is possible in
such settings.
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Appendix A of the Supplemental Material presents an example in which condition (2)
holds, but in which multiple MPEs exist for all δ close to 1. Coordination problems in
offer strategies are the source of the multiplicity.23

Proposition 4 establishes that bargaining inefficiencies are pervasive when negoti-
ations are decentralized and take place in a market context (for instance, if workers’
possible alternative vacancies affect the wages they are able to negotiate). In particular,
the result implies that bargaining is inefficient whenever the market context matters. In
other words, markets are able to clear efficiently only when all players can optimally bar-
gain bilaterally with their efficient partners, thereby ignoring all alternatives. Moreover,
these inefficiencies persist even when the discount factor is high and the exogenous fric-
tions imposed by time preferences and sequential play become small. In Section 8, we
explore the consequences of Proposition 4 in classical labor market settings, and show
that vertical differentiation and increasing differences are not sufficient for the existence
of an efficient equilibrium.

To further explore the key conditions in Proposition 4, we apply the definition of
Rubinstein payoffs. The existence of an efficient MPE then requires that, for all i and j,(

pi

pi +pη(i)

)
siη(i) +

(
pj

pj +pη(j)

)
sjη(j) ≥ sij�

An interesting special case is when a social norm determines the bargaining power
of firms relative to workers in labor markets. For instance, all agents on one side of the
market may propose with the same probability p1, while all agents on the other side do
so with probability p2. If so, the condition simplifies to

(
p1

p1 +p2

)
siη(i) +

(
p2

p1 +p2

)
sjη(j) ≥ sij

for all i ∈ P1 and j ∈ P2. Hence, there is an efficient MPE only if, for each worker–firm pair
in the economy, a weighted average of the surplus in the worker’s efficient match and in
the firm’s efficient match weakly exceeds the surplus that pair could generate together.
Weights capture the bargaining power of workers relative to firms, and both surpluses
are weighted equally when p1 = p2. In many cases, like Example 1, there do not exist
any values of p1 and p2 that satisfy the above condition, implying that there is no social
norm of this form that can eliminate inefficiencies.

The conclusions on efficiency have several implications, which are summarized in
the next remark. These imply that (a) any core payoff can be implemented as an LMPE
by appropriately selecting the vector of proposal probabilities, (b) for any pair {i�η(i)},
proportional changes in proposal probabilities cannot affect limiting bargaining out-
comes, (c) efficiency is easier to achieve in economies that have a large core, and (d) any
MPE without on-path delay must lead to agreement on the core match with positive

23It would be compelling to conclude by arguing that if an MPE exists for arbitrarily high and low values
of δ that implements the core match, then it also exists for any intermediate value. However, the incentive
constraints that characterize such MPEs are quadratic in δ, and this conclusion does not hold in general.
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probability. For convenience, say that surpluses S support more core payoffs than S′ in
the strong set order if any core payoff profile in S′ is also a core payoff profile in S.24

Remark 2. The following statements are consequences of Proposition 4.

(a) As δ → 1, any interior core payoff is an MPE payoff for some probabilities p ∈
�(N).

(b) If an efficient MPE exists for all δ close to 1 for probabilities p′, then it also exists
for all δ close to 1 for probabilities p such that pi/pη(i) = p′

i/p
′
η(i) for all i ∈N .

(c) If an efficient MPE exists for all δ close to 1 for surpluses S′, then it also exists for
all δ close to 1 for surpluses S that support more core payoffs than S′.

(d) The core match obtains with strictly positive probability in any MPE without on-
path delay.

The first part of the result implies that the closure of the set of MPE payoffs that
obtain for some proposal probabilities contains the core of the assignment economy.
Thus, the core can be spanned by varying proposal probabilities. As the assumptions
imposed on the assignment economy imply that the interior of the core is nonempty,
for any such surplus matrix it is possible to find proposer probabilities that guarantee
the existence of an efficient MPE. By interpreting players’ proposal probabilities as their
bargaining power, the second part shows that when delay costs are small, a player’s bar-
gaining power matters only relative to that of his efficient match in any efficient MPE.
The third part implies that economies with larger cores are more likely to result in effi-
cient bargaining outcomes. The final part obtains because in any MPE without on-path
delay, it is impossible to find a subset of players who prefer to exchange their respec-
tive core matches. Hence, some players must optimally agree with their efficient match.
However, as we saw in Examples 3 and 4, on-path delay can occur in equilibrium and
the no-delay condition is nontrivial.25

Limiting efficiency

Efficient LMPE may differ considerably from efficient MPE. Proposition 4 considers only
δ < 1 and, therefore, categorizes as inefficient any equilibrium in which mismatch oc-
curs with a vanishingly small probability as δ converges to 1. Moreover, Examples 2 and
4 establish that mismatch can occur in equilibrium with vanishingly small probability.
This section studies this possibility and analyzes under which conditions inefficiencies
can be small in this sense.

The first result of this section extends Proposition 3, showing that strongly efficient
LMPEs converge to shifted Rubinstein payoffs. Whenever these payoffs differ from Ru-
binstein payoffs and delay is costless, unmatched players in E can act as permanent

24For instance, S supports more core payoffs than S′ if, for all i ∈ N , sij = s′ij whenever j = η(i) and sij ≤ s′ij
whenever j �= η(i).

25We stress again that Example 2 does not fit our definition of equilibrium delay, since in the unique
LMPE, the only player who delays has a continuation value equal to zero.
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outside options without distorting the limiting equilibrium match. In Example 2, for
instance, player c had an effect on player f ’s terms of trade in the limit without ever
matching to f . The result also extends the negative efficiency conclusions of Proposi-
tion 4 to markets in which delay costs vanish. In the limit, equilibria cannot be efficient
if shifted Rubinstein payoffs are outside the core of the assignment economy.

Proposition 5. In any strongly efficient LMPE, the payoff of any player i ∈ A in any
equilibrium-path subgame A ∈ C(N) converges to

lim
δ→1

Vi(A) = σ̄i�

Moreover, a strongly efficient LMPE exists only if shifted Rubinstein payoffs are in the core,

σ̄i + σ̄j ≥ sij for all i� j ∈ N�

Core unmatched players can affect the limiting terms of trade without ever agree-
ing, because they belong to every equilibrium-path subgame. Core matched players
instead cannot play such a role in a strongly efficient LMPE as, in the limit, they exit the
game at the first available opportunity by agreeing with their core match. In addition
to demonstrating the robustness of the conclusions previously reached, Proposition 5
uncovers a crucial difference between temporary alternative matches that can be lost as
the market evolves and permanent alternative matches that cannot be lost as the market
evolves. We term the former temporary outside options and the latter permanent outside
options. Furthermore, the result clarifies why bargaining frictions arise endogenously
as a strategic response to possible changes in the market composition. It is the concern
about an alternative match exiting the market, thereby weakening the bargaining posi-
tion of a player, that induces this player to agree with an inefficient partner even when
δ converges to 1. As we have seen in Example 3, similar considerations regarding the
evolution of the market can also lead to delay on the equilibrium path.

When shifted Rubinstein payoffs are in the interior of the core, they coincide with
Rubinstein payoffs by construction. If so, by Proposition 4, an efficient equilibrium ex-
ists for any sufficiently high value of δ and, thus, a strongly efficient LMPE exists in this
case. Strongly efficient LMPE may also exist even when shifted Rubinstein payoffs are
on the boundary of the core, as was the case in Example 2. If so, distortions vanish only
when the discount factor approaches 1.

Next, we consider weakly efficient LMPE and their properties. The main result estab-
lishes that, whereas only core unmatched players can act as permanent outside options
in strongly efficient LMPE, all players can potentially act as permanent outside options
in some weakly efficient LMPE. However, for this to be the case, the market must clear
sequentially, one core match at a time. If so, even players who are ultimately matched
can act as permanent outside options by matching only after some other players have
matched. To formalize the discussion, it is convenient to introduce a notion of sequen-
tial agreement.
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Definition 6. A weakly efficient LMPE is a sequential LMPE if for some A ∈ C(N) such
that |A\E| ≥ 4 and for some i ∈A\E,

lim
δ→1

πjj(A)= 1 for any j ∈A−iη(i)� (3)

Sequential LMPEs display sequential agreement in that all players in the market, ex-
cept for one pair, delay reaching an agreement until that pair has exited the market. Se-
quential equilibria require extensive delay to occur despite delay being costly. In partic-
ular, pairs who eventually are matched with probability 1 have to prefer to delay instead
of reaching agreement with each other, even though doing so reduces the value of any
agreement they can reach. None of the earlier literature, including the examples in Gale
and Sabourian (2006) and Abreu and Manea (2012b), features sequential agreement.

The next result establishes that any weakly efficient LMPE whose limiting payoffs do
not converge to shifted Rubinstein payoffs must be sequential. Two LMPE are said to
be payoff equivalent if the ex ante limiting values coincide in the two equilibria for all
players.

Proposition 6. Any weakly efficient LMPE that is not payoff equivalent to a strongly
efficient LMPE is sequential. Moreover, sequential LMPE exist in some markets.

An important and immediate implication of Proposition 6 is that when shifted Ru-
binstein payoffs are outside of the core, either there is no efficient LMPE or all efficient
LMPE are sequential.26

 Proposition 6 therefore helps to pin down the contexts in which
weakly efficient LMPE exist. When exit is sequential, all players remain in the market
until a given core match exits, thereby acting effectively as permanent outside options
for this match. Proposition 6 further reinforces our central message that inefficiencies
are ubiquitous. Indeed, even in a weakly efficient LMPE, outside options cannot af-
fect bargained outcomes without being exercised with strictly positive probability, given
that they are temporary and can be lost on the equilibrium path. Nevertheless, people
who are efficiently matched can provide outside options that are effectively permanent
through sequential exit. Although Proposition 6 does not characterize weakly efficient
LMPE payoffs, insights in its proof suggest that it should be possible to derive a (not very
tractable) payoff set that necessarily contains all weakly efficient LMPE payoffs.27 If so,

26By Proposition 5, if a LMPE is payoff equivalent to a strongly efficient LMPE, it must generate shifted
Rubinstein payoffs. But if these payoffs are outside of the core, at least one player has a strict incentive to
offer to an inefficient partner.

27To do so, consider any subset of players M ∈ P1\E (where m = |M|), and consider any order over these
players, M = {o(1)� � � � � o(m)} (where o(i) identifies the ith ranked player in M). Define the Rubinstein
chain payoffs associated with this order o and this subset M as a payoff profile u ∈ R2m (for players in M

and their respective core partners) such that

uo(1) = σ̄o(1)� uη(o(i)) = so(i)η(o(i)) − uo(i) for i ≥ 1�

uo(i) = so(i)η(o(i−1)) − uη(o(i−1)) for i > 1�

For any partition of P1\E and for any associated order for each element of the partition, define the col-
lection of Rubinstein chain payoffs as a payoff vector in Rn such that (i) in every element of the partition,
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by the same logic of Proposition 4, no weakly efficient LMPE would exist whenever such
a set does not intersect the core.

It is intriguing that sequential exit can occur in equilibrium. The observation con-
forms with empirical regularities in some matching markets that can clear from the top
down. However, delay is a knife-edge phenomenon in most bargaining models without
asymmetric information. It might be thought that the existence of a sequential LMPE
requires very specific parameter restrictions on the bargaining problem. To address this
issue systematically, we conclude by characterizing the set of sequential LMPEs in the
context of a four-player market with equal proposer probabilities. Let N = {a�b� c�d}
and pi = p for i ∈N . To avoid redundancies when stating results, we adopt the following
labeling convention:

• The matches ab and cd denote the core matches, that is, sab + scd > sad + sbc .

• The match ab denotes the most valuable core match, that is, sab ≥ scd .

• The match ad denotes the most valuable non-core match, that is, sad ≥ sbc .

We also omit the dependence on N when it is obvious. The final result on efficient LM-
PEs characterizes payoffs in a sequential LMPE, and delivers necessary and sufficient
conditions for the existence of such an LMPE.

Remark 3. Given our convention, if a sequential LMPE exists, then for all δ close to 1,

πab = πba = πcc = πda +πdd = 1� πda > 0� and lim
δ→1

πdd = 1�

Moreover, in any such LMPE,

lim
δ→1

Va = sad − σd� lim
δ→1

Vc = σc�

lim
δ→1

Vb = sab − sad + σd� lim
δ→1

Vd = σd�

Finally, a sequential LMPE exists if and only if

sab > sad >
sab + scd

2
> sbc > scd and

sbc − scd
2(sab − sad)

≥ sbc + scd
sab + scd

� (4)

The remark pins down agreement probabilities at a high frequency of interaction in
any sequential LMPE. In such equilibria, players a and d always reach agreement before
c and d. As c and d end up bargaining bilaterally with each other, they have limit payoffs
equal to their Rubinstein payoffs. Thus, when players a and d are bargaining, it is as if
a had a permanent outside option of value sad − σd . Since sad − σd > σa, this outside
options binds and a gets a limit payoff of sad − σd , leaving b with the residual surplus

payoffs correspond to the chosen Rubinstein chain payoffs, and (ii) players in E get nothing. Take the union
over all partitions of P1\E and take the union over all possible orders for each element of the chosen par-
tition. Define such a payoff set by �. Our conjecture is that in any weakly efficient LMPE, payoffs must
belong to �.
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Figure 6. Plot of the lower bound for ζ for different combinations of scd and sbc . As ζ < 1,
regions of the parameter space where the lower bound is greater than 1 are regions in which no
sequential LMPE exists.

sab − (sad − σd).28 This equilibrium conforms to previous intuitions: alternatives within
the market can affect the terms of trade only if they remain in the market indefinitely.

The conditions in (4) have natural interpretations. Given our labeling conventions,
the requirement sab > sad > sbc > scd implies that the market must be vertically differ-
entiated. Moreover, the first match to reach agreement is the most valuable core match.
We therefore rationalize top-down sequential exit as a limiting efficient market outcome
in a complete information decentralized bargaining game. Delay in bargaining is hard
to get, but real world experience suggests that matching markets can occasionally be
held up while clearing from the top. Our model delivers such behavior as an equilib-
rium phenomenon in thin markets without any asymmetric information. The second
condition in (4) requires sad > (sab + scd)/2, or, equivalently, sad > σa + σd . This condi-
tion implies that shifted Rubinstein payoffs are outside of the core. As a consequence,
by Proposition 5, there is no strongly efficient LMPE, and by Proposition 6, any weakly
efficient LMPE must be sequential.

The final condition in (4) is the hardest to interpret. Although payoffs must be su-
permodular by the first part of (4), they cannot be log supermodular by the second part
of (4). Log supermodularity in this context requires that sabscd ≥ sadsbc , and the final
condition in (4) rules this out.29 In combination with the other conditions, it requires

28In effect, b also has a permanent outside option worth sbc − σc . However, this outside option does not
bind. Payoffs are thus pinned down by chains of outside options in any sequential LMPE. These chains are
evocative of those discussed in Elliott (2015).

29The second part of condition (4) can be rewritten as

2(sadsbc − sabscd) ≥ scd(sab + scd − sbc − sad)+ sab(sbc − scd) > 0�
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the market to be highly vertically differentiated such that the proportion of surplus gen-
erated by the worst match relative to the best match, scd/sab, is small. To see this, it is
instructive to consider the potential extent of mismatch inefficiencies in the assignment
economy (which also captures how supermodular surpluses are). For convenience, nor-
malize sab = 1 and define the fraction of potential surplus that is obtained by mismatch-
ing as ζ = (sad + sbc)/(1 + scd) ∈ (0�1). The final and key restriction to the parameter
space given in Remark 3 can then be restated in terms of this parameter as requiring

ζ ≥ 2(1 + sbc)(sbc + scd)− (1 + scd)(sbc − scd)

2(sbc + scd)(1 + scd)
�

We plot this lower bound on the relative efficiency of the wrong matches in Figure 6.
The plot shows that when scd is relatively large, there is no sequential LMPE. More pre-
cisely, there is a sequential LMPE only if scd < 1 − 2sbc . Since by Remark 3, sbc > scd , a
sequential LMPE exists only if scd/sab < 1/3. Hence, the less productive core match must
be at least three times less productive than the most productive core match. This up-
per bound on the relative value of scd becomes much tighter when the potential loss ζ

associated with mismatch is at least 5%. Indeed, for ζ ≤ 0�95, a similar calculation estab-
lishes that scd/sab < 0�133. Therefore, scd can be at most 13�3% as productive as sab.30 We
conclude that sequential LMPEs exist only in sufficiently vertically differentiated mar-
kets and only in extremely differentiated markets if mismatch generates a considerable
amount of inefficiency.

8. Discussion

Assortative matching

The labor market search literature has extensively studied a particular form of hetero-
geneity—vertically differentiated markets with assortative matching—as in, for in-
stance, Shimer and Smith (2000), Eeckhout (2006), Smith (2006), and Eeckhout and
Kircher (2010). To appreciate the content of our efficiency implications, we consider
this special case of our model.

It is convenient to introduce some new notation. For this section, we refer to the two
sides of the market as workers and firms. Let W = {1� � � � �w} and F = {1� � � � � f } denote
the sets of workers and firms, respectively, and let the surplus generated by worker i and
firm j be given by a function S : W × F → R+ satisfying the conditions

(A1) S(i� j) > S(i′� j) if and only if i < i′

(A2) S(i� j) > S(i� j′) if and only if j < j′

(A3) S(i� j)− S(i� j′) > S(i′� j)− S(i′� j′) if and only if i < i′ and j < j′.

Condition (A1) requires workers to be vertically differentiated, (A2) requires firms to
be vertically differentiated, and (A3) requires increasing differences in the surpluses that

30Example 4 in Section 6 provides some specific parameter values for which sequential exit occurs. In
this example, scd/sab = 0�1 and ζ = 0�955.
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worker–firm pairs can generate. Surplus is generated only in matches between workers
and firms. In contrast to our previous notation, there can now be a worker type i and
a firm type i. Thus typically S(i� i) �= 0 and S(i� j) �= S(j� i) unless the surplus generated
by the ith ranked worker matching to the jth ranked firm is the same as the surplus
generated by jth ranked worker matching to the ith ranked firm. Let the set of functions
satisfying these conditions be denoted by S̄ . It is well known that in such markets, the
unique core match is the assortative match in which worker k is matched to firm k if
k≤ min{w�f }, while all the remaining agents are unmatched.

We use our efficiency results to find conditions under which decentralized bargain-
ing would result in an efficient and thus assortative match. For convenience, let the
vector p denote the proposal probabilities of firms, where entry pk is the proposal prob-
ability of firm k. Analogously, let q denote the proposal probabilities of workers, where
entry qk is the proposal probability of worker k. Thus, a vertically differentiated market
is defined by the tuple {W�F�S�p�q}.

Remark 4. If w = f , pk = qk = p for all k ≤ max{w�f }, and S(i� j) = S(j� i) for all i� j ≤
min{w�f }, then for all δ close to 1, there is an efficient MPE. However, if at most two
of these three conditions hold, there exists a vertically differentiated market for which
there is no weakly efficient LMPE.

Remark 4 shows that, although there are natural conditions under which there is a
strongly efficient MPE (the strongest efficiency criterion of the four we consider), these
conditions are fairly restrictive and require the market to be highly symmetric. There
must be the same number of workers as firms, the kth ranked worker and firm must have
the same proposal probabilities, and the surplus generated by the ith ranked worker
matching to the jth ranked firm must be the same as the surplus generated by the jth
ranked worker matching to the ith ranked firm. When any one of these conditions is
not satisfied, there are surpluses S ∈ S̄ for which there is no weakly efficient LMPE (the
weakest efficiency criterion of the four we consider).

Random matching

The directed search matching protocol considered in our analysis was chosen to min-
imize frictions. To appreciate the pure delay frictions that arise when players cannot
choose whom to bargain with, consider the eight-player line network shown in Figure 7.
We provide a brief discussion of such inefficiencies as a means of comparison to our
model. A comprehensive analysis of the example appears in Section 4 of Abreu and
Manea (2012b).

Suppose that matching opportunities are as shown in Figure 7 and that each link is
selected with equal probability. An efficient LMPE requires players to disagree with a
probability that converges to 1 whenever links bc, de, or fg are selected. For this to be
the case, the combined continuation values from disagreement of the two players on the
link must exceed 1 in the limit or converge to 1 from above. With the random matching
protocol, efficient LMPEs exist in the line networks with four or six players. But this is not
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Figure 7. The eight-player line network.

the case in the line network with eight players. In a four-player line network, the two end
players are weak since they get no surplus when the middle players agree. For all δ suf-
ficiently high, there is an MPE in which the two middle players agree with a vanishingly
small probability, and doing so reduces the continuation values of the end players to
the point where the middle players are indifferent between delaying and agreeing with
each other. With eight players, this no longer works. In such networks, players d and e

disagree when initially matched. Despite this, their bargaining positions improve rela-
tive to the four-player line network as they retain the option to agree with each other in
subgames in which their core partners exit. Consequently, players b and c strictly prefer
to agree if they are initially matched for sufficiently high values of δ. Abreu and Manea
(2012b) establish in fact that, in the unique LMPE, players b and c must inefficiently
agree with probability 1 when matched, even when delay costs vanish. If, instead, play-
ers were selected to propose with equal probability and were able to choose with whom
to agree, a strongly efficient MPE would always exist as shown in Proposition 7 in the
Supplemental Material.

Preventing players from choosing bargaining partners amplifies frictions, since play-
ers have to either hold out for their desired partner when presented with an alternative
matching opportunity or agree with inefficient partners. We opted for a setting in which
players were allowed to choose bargaining partners to diminish the holdup frictions as-
sociated to waiting for the preferred match. Yet, we still found frictions to be a common
feature of decentralized negotiations because of nonstationarities in the evolution of
bargaining power.

Limitations and evidence

We study the Markov perfect equilibria of a simple bargaining game with many buy-
ers and many sellers, seeking necessary and sufficient conditions for the existence of
efficient Markov perfect equilibria. Necessary conditions, however, do not rule out the
existence of efficient non-Markovian equilibria,31 while sufficient conditions do not rule
out the existence of inefficient Markov perfect equilibria.32

Our protocol is fairly standard and chosen to give the best chance to efficient out-
comes while remaining decentralized. To this end, we allow the proposer to choose to

31An efficient subgame perfect equilibrium may always exist, as proven by Abreu and Manea (2012a) for
networks with homogeneous surpluses.

32We show in Appendix A of the Supplemental Material that inefficient MPEs can coexist with efficient
MPEs.
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whom to offer, study the generic case in which the efficient match is unique, and look at
equilibria in which delay costs are small. A key feature of our model is that players’ bar-
gaining positions (and, more precisely, their limit payoffs) can change stochastically. We
find that these non-stationarities in the evolution of bargaining power are closely linked
to inefficiencies, which can include both mismatch and delay. In all weakly efficient LM-
PEs, players’ limit payoffs are stationary on the equilibrium path and do not depend on
the order in which people are selected to propose. This can occur for several reasons.
First, no alternative match might provide a binding alternative (Proposition 3). Second,
binding alternative matches might only be provided by those who are unmatched when
the market clears efficiently (Proposition 4). Finally, there might be sequential exit and
the market endogenously remains stationary while all players wait for a given pair to exit
the market before reaching agreements themselves (Proposition 5).

While we view our protocol as natural, many alternative bargaining protocols are
equally reasonable. For instance, random matching protocols may describe players
bumping into each other at random, while the protocol we study might be a better fit
for thin, highly heterogeneous markets, in which everyone knows everyone else, and in
which search is more likely to be directed. It is not clear whether similar results would
hold in the alternative model with random matching. On the one hand, in the limit,
incentives look very similar to our model, but on the other hand, away from the limit,
random matching forces players to forgo matching inefficiently but immediately so as
to match to their efficient partner later on. There are many other alternative protocols.
One would be to include the right to make a counteroffer back to the proposer. Another
one would designate a player declining an offer to be the new proposer. Yet another al-
ternative would fix a predetermined and commonly known proposer order. We would
not expect results close to ours to hold in these environments, since from a strategic
point of view, these environments seem to be fundamentally different.

In practice, interactions in markets are unlikely to be as constrained as any of these
bargaining protocols. Furthermore, players are likely to have much more freedom to
endogenously determine, among other things, who moves when. Indeed, we show that
there always exist offer probabilities that generate efficient outcomes. If these are en-
dogenously determined, then efficiency might be improved or even restored. Never-
theless, while norms might evolve to affect offer probabilities and increase efficiency,
they would need to be tailored to the intricacies of a given market to eliminate ineffi-
ciencies (see the discussion following Proposition 4). Fully endogenizing the timing of
offers would come at the cost of tractability. The value of simple theory comes from its
ability to provide useful insights in richer settings. Whether our theory, including the
equilibrium selection, obtains this goal is ultimately an empirical question.

While identifying mismatch empirically is hard because counterfactual productivi-
ties are not directly observed, Agranov and Elliott (2017) run a laboratory experiment to
circumvent this issue. They begin by studying an experimental protocol that mirrors our
bargaining protocol. They find extensive inefficiencies, and show that the Markov per-
fect equilibrium outcomes correctly predict which markets exhibit mismatch and which
exhibit more mismatch than others. However, inefficient matches occur considerably
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more often than predicted.33 They then run a second laboratory experiment, but with-
out an experimental protocol. Participants are permitted, at any time, to make offers to
anyone else, accept offers they have received, and withdraw offers they have made. They
find that inefficiencies remain in the market.34 In this experiment, there is not sufficient
evidence to reject that inefficiencies are different from the MPE predictions at the 5%
level. While this should not be interpreted as evidence that players play the MPEs of our
bargaining game in an entirely different bargaining environment, it does suggest that
in more realistic bargaining situations, the inefficiencies we document remain and that
the MPEs provide useful intuitions.35

Appendix: Proofs

Proof of Proposition 1. We first establish the characterization of MPE values and
then proceed to establish existence. Fix a discount factor δ ∈ (0�1). Consider an MPE
strategy profile (ρ�χ�α) and its corresponding MPE payoffs V (A) ∈ R

|A| for any active
player set A ⊆ N . Fix any subset A ⊆ N . By subgame perfection, we know that the ac-
ceptance decision by a player j ∈ A faced with an offer x must be such that he accepts
an offer if x > δVj(A), and rejects it if x < δVj(A). Clearly, this implies that it cannot be
optimal to offer x > δVj(A) to player j, as the proposer could profitably deviate to an
offer in (δVj(A)�x). Thus, in any MPE, every player would offer at most δVj(A) to player
j, and the only offers player j may accept with positive probability are offers of δVj(A).
Therefore, a proposer i ∈A would make offers with positive probability only to a player j
that maximizes his residual payoff sij −δVj(A). Recall that πij(A) is the joint probability
that player i offers δVj(A) to player j and that the offer is accepted, and that πii(A) is the
joint probability that i does not agree when proposing. We frequently abuse notation by
dropping the dependence of πij on A where it should not cause confusion. The payoff
of any player k ∈ A−ij at the beginning of the following period is given by Vk(A−ij) if an
agreement was reached and by Vk(A) otherwise. Therefore, at a history in which the
set of active players is A and in which i is the proposer, the expected payoff of a player
k ∈A−i must be given by

∑
j∈A−ik

πijδVk(A−ij)+
(

1 −
∑

j∈A−ik

πij

)
δVk(A)�

When i is chosen to propose, if δ[Vi(A)+Vj(A)]< sij for some j ∈A−i, then i offers with
certainty to players j who maximize sij − δVj(A), and agreement obtains with certainty.
The latter observation obtains from the following argument. If πii > 0, then the expected

33Across the three networks they consider, the MPEs predict inefficient matches to occur with probabil-
ities 0%, 28%, and 50%, respectively. In the experimental data, there is mismatch with probabilities 0%,
49%, and 70%, respectively, across the networks.

34They are positive at the 5% level.
35We have argued that inefficiencies in our model are driven by the changing composition of the market.

This suggests that allowing people to rematch might reduce or eliminate inefficiencies. Arganov and Elliott
(2017) also test this conjecture and find some support for it.
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payoff conditional on offering δVj(A) to players j who maximize sij − δVj(A) amounts
to ∑

j∈A−i

πij

(
sij − δVj(A)

)+(1 −
∑
j∈A−i

πij

)
δVi(A)

and must be strictly smaller than sij − δVj(A). The payoff conditional on i offering
δVj(A) + ε to j for ε > 0 is sij − δVj(A) − ε, as j accepts with probability 1 any of-
fer exceeding δVj(A). Hence, it cannot be optimal to offer more than δVj(A). It also
cannot be optimal to offer less than δVj(A) since all such offers are rejected and since
δVi(A) < sij −δVj(A). Thus, if πii > 0 and δ[Vi(A)+Vj(A)] < sij , a profitable deviation al-
ways exists. Therefore, δ[Vi(A)+ Vj(A)] < sij for some j ∈ A−i implies πii = 0. Similarly,
δ[Vi(A)+Vj(A)] > sij for any j ∈A−i implies πii = 1. If maxj∈A−i

{sij −δ[Vi(A)+Vj(A)]} =
0, then πii ∈ [0�1]. Thus, any agreement probability πi ∈ �(A) for player i compatible
with equilibrium values V ∈R

|A| must belong to

�(V |A� i) =

⎧⎪⎨
⎪⎩πi ∈ �(A)

∣∣∣∣∣
πii = 0 if δVi < max

j∈A−i

{sij − δVj}
πik = 0 if sik − δVk < max

{
δVi� max

j∈A−i

{sij − δVj}
}
⎫⎪⎬
⎪⎭ �

At any history in which A is the set of active players and i ∈ A is the proposer, define
a function ū(V �π|A� i) : R|A| × �(A) → R

|A| that identifies, for every player in A, the
expected payoff compatible with our partial equilibrium analysis when the agreement
probabilities are πi ∈�(V |A� i) and continuation values are V ∈R

|A|:

ū(V �πi|A� i)=

⎧⎪⎪⎨
⎪⎪⎩
(1 −πii) max

j∈A−i

{sij − δVj} +πiiδVi if k= i�∑
j∈A−ik

πijδVk(A−ij)+ (πik +πii)δVk if k �= i�

Next consider the correspondence u(V |A� i) : R|A| ⇒ R
|A| that identifies the set of ex-

pected payoffs compatible with our analysis for continuation values V ∈R
|A|:

u(V |A� i)= {W ∈ R
|A| |W = ū(V �πi|A� i) for πi ∈ �(V |A� i)

}
�

Finally, consider the correspondence U(V |A) :R|A| ⇒R
|A| that identifies the set of pos-

sible expected payoffs at any history in which A is the set of active players:

U(V |A)=
∑
i∈A

piu(V |A� i)+
(

1 −
∑
i∈A

pi

)
δV � (5)

Our arguments establish that V is an MPE payoff only if it is a fixed point of the corre-
spondence in (5), V ∈ U(V |A).

Next we establish that the converse must hold too. In particular, we argue that if
V (A) ∈ U(V (A)|A) for any subset A ⊆ N , then V (A) is an MPE payoff profile for any
subgame in which A is the set of active players. At any subgame in which A is the
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set of active players, consider a strategy in which any player i ∈ A chooses ρi(A) = πi,
χi(j�A) = δVj(A), and

αi(j�x�A) =
{

1 if x ≥ δVi(A)�

0 if x < δVi(A)�

For any finite set of players N , the proposed strategy clearly must be an MPE in any sub-
game in which no more than one player is active, as any such subgame is eventless. By
induction, suppose that the proposed strategy is an MPE for any subset of active players
of size k ≤ n− 1, so as to show that it is an MPE for any subgame in which the set of ac-
tive players has size k + 1. Consider a subgame in which the set of active players A has
cardinality k + 1. Fix an MPE payoff profile V (A′) for all subgames in which the cardi-
nality of the set of active players A′ does not exceed k. Furthermore, given such values,
suppose that we can find a payoff profile V (A) such that V (A) ∈U(V (A)|A) (we estab-
lish below that such a fixed point exists). If so, no player receiving an offer can profitably
deviate from strategy α, since no change in the acceptance rule can strictly increase
the payoff. Similarly, given the acceptance rule, the proposer’s strategy (ρ�χ) is optimal
given that offers are made only to those players who leave the highest residual surplus to
the proposer (provided that such surplus exceeds the value of being unmatched). Thus,
V (A) is an MPE payoff in any subgame with a set of active players A. Consequently, if
V (A) ∈U(V (A)|A) for any subset A⊆ N , then V (A) is an MPE payoff profile.

To establish existence, proceed by induction. Existence follows in subgames in
which no more than one player is active, as such subgames are eventless. Assume by
induction that an MPE exists for any subset of active players of size k ≤ n − 1, so as to
show that it exists for any subgame in which the set of active players A has size k+ 1. If
so, consider MPE strategies for all subgames of size k and derive MPE payoffs for all such
subgames. Given such values, construct the correspondence U(·|A) as in (5). Observe
that the correspondence �(·|A� i) is upper hemicontinuous with nonempty convex im-
ages. Thus, u(·|A� i) is upper hemicontinuous with nonempty convex images, and so
the correspondence U(·|A) is upper hemicontinuous with nonempty convex images, as
it is a convex combination of the correspondences u(·|A� i) for i ∈A. By Kakutani’s fixed
point theorem, U(·|A) has a fixed point. Moreover, such a fixed point is an MPE payoff
of this subgame, and can be used to construct consistent MPE strategies and, conse-
quently, agreement probabilities πi ∈ �(A) for all proposers i ∈ A in every subgame A,
as argued above.

Proof of Proposition 2. For convenience, define the limiting agreement probability
for a given player j ∈ A\E as βj(A) = limδ→1 pjπjη(j)(A), and let βB(A) =∑k∈Bβk(A)

for any B ⊆ A. Recall that V̄j(A) = limδ→1 Vj(A). We begin by showing that for any
active player set A ∈ C(N) such that A\E �= ∅, there exists a player i ∈ A\E such that
βi(A) > 0. This is the case since weak efficiency and βi(A) = 0 for all player i ∈ A\E
imply π̄ii(A) = 1 for all players i ∈ A\E. But, if so, for δ close to 1, any player i would
weakly prefer delaying to offering to η(i) or, equivalently,

δVi(A)+ δVη(i)(A) ≥ siη(i)� (6)
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This would lead to a contradiction though as the sum of payoffs exceeds total surplus∑
i∈A

Vi(A) ≥
∑

i∈A\E
Vi(A) ≥ (1/δ)

∑
i∈A∩P1

siη(i) >
∑

i∈A∩P1

siη(i)�

where the first and third inequalities are trivial while the second holds by adding the
inequalities in (6) and observing that siη(i) = 0 if i ∈ E. Thus, in any nontrivial active
player set A ∈ C(N) of any weakly efficient LMPE, there exists a player i ∈A\E such that
βi(A) > 0.

To prove the result, we proceed by induction on the size of the active player set within
C(N). We show that, in any weakly efficient LMPE, V̄i(A) + V̄η(i)(A) = siη(i) for any i ∈
A\E and any A = C(N). The latter then immediately implies surplus maximization by
feasibility. If E �=∅, begin by considering the active player set E ∈ C(N). If so, any weakly
efficient LMPE trivially maximizes surplus, as all links are worth zero. Next consider any
active player set A=E∪{i�η(i)} for some i ∈N\E. As the LMPE is weakly efficient, there
exists a player j ∈ A\E such that βj(A) > 0. But, if so, by taking limits of system (1), we
obtain

V̄j(A) = βj(A)
(
siη(i) − V̄η(j)(A)

)+ (1 −βj(A)
)
V̄j(A)�

The latter implies that V̄i(A) + V̄η(i)(A) = siη(i). Finally, by induction, assume that any
weakly efficient LMPE satisfies V̄i(A) + V̄η(i)(A) = siη(i) for any i ∈ A\E and any A ∈
C(N) with cardinality |A| ≤ |E| + 2k. Consider any set A ∈ C(N) with cardinality |A| =
|E| + 2(k + 1). For any player i ∈ A\E, defining Ā(i) = A−iη(i)\E and taking limits of
system (1) establishes that(

βA\E(A)−βη(i)(A)
)
V̄i(A) = βi(A)

(
siη(i) − V̄η(i)(A)

)+ ∑
k∈Ā(i)

βk(A)V̄i(A−kη(k))� (7)

By the induction hypothesis, we know that for all k ∈ Ā(i),

V̄i(A−kη(k))+ V̄η(i)(A−kη(k)) = siη(i)�

Exploiting this observation while adding (7) for player i to that for player η(i) implies
that

βA\E(A)
(
V̄i(A)+ V̄η(i)(A)

)= ∑
k∈A\E

βk(A)siη(i)

or, equivalently, V̄i(A) + V̄η(i)(A) = siη(i), since by weak efficiency there exists a player
j ∈ A\E such that βj(A) > 0. The latter concludes the proof and establishes that any
weakly efficient LMPE maximizes surplus.

Proof of Proposition 3. We begin by pinning down strongly efficient MPE payoffs.
Consider an MPE strategy in which any player i ∈ N offers to his core match η(i) with
probability 1 at any active player set A ∈ C(N). If players follow the prescribed strategy,
only core matches are ever consummated, and only subgames A ∈ C(N) occur on the
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equilibrium path. As the core match maximizes the total surplus in an assignment econ-
omy, the core match of a player does not change when other core pairs exit the market
(that is, it coincides at any subgame A ∈ C(N)). By Proposition 1, we know that any
proposer i ∈A necessarily offers an amount equal to δVη(i)(A) and that any player i ∈A

accepts any offer exceeding δVi(A). As players negotiate only with core partners on the
equilibrium path, at any A ∈ C(N) we guess that

Vi(A) = Vi(A−jη(j)) whenever i ∈A−jη(j)� (8)

Thus, at any A ∈ C(N), equilibrium payoffs for every player i ∈A satisfy

Vi(A) = pi

(
siη(i) − δVη(i)(A)

)+ (1 −pi)δVi(A)�

Solving the latter equation for player i with the equation for player η(i) implies that

Vi(A) = pi

1 − δ+ δpi

(
siη(i) − δ

pη(i)

1 − δ+ δpη(i)

(
siη(i) − δVi(A)

))
�

which, after some manipulations, yields

Vi(A) = pi

1 − δ+ δpi + δpη(i)
siη(i)�

which verifies (8), since value functions are unique for given proposal probabilities by
the proof of Proposition 1.

To establish the first part, to the contrary, postulate the existence of a weakly effi-
cient MPE that is not strongly efficient. If so, along any equilibrium path, players either
agree with their core partner or delay, which implies that any equilibrium-path subgame
is associated to an active players A set that belongs to C(N). Formally, such a require-
ment amounts to finding a fixed point of the MPE characterization in Proposition 1 that
satisfies πii(A) + πiη(i)(A) = 1 for any i ∈ A and any A ∈ C(N). If such an equilibrium
were to exist, an argument equivalent to the first part of the proof would imply that for
any i ∈A and any A ∈ C(N),

Vi(A)= piπiη(i)(A)

1 − δ+ δpiπiη(i)(A)+ δpη(i)πη(i)i(A)
siη(i)�

But this would give rise to the desired contradiction, as any player i would strictly pre-
fer immediate agreement with his core match to disagreement, since Vi(A) strictly in-
creases in πiη(i)(A).

Proof of Proposition 4. First, we establish part (a). Payoffs in any subgame A ∈
C(N) of an efficient MPE are pinned down by Proposition 3 for any δ ∈ (0�1). We show
that complying with efficient strategies yields an equilibrium for any sufficiently high
value of δ. Recall that any player j ∈ A accepts any offer that is worth at least δVj(A).
Suppose, to the contrary, that some player i ∈ A at some subgame A ∈ C(N) has a prof-
itable deviation that entails offering to j �= η(i) when all players comply with strongly



246 Elliott and Nava Theoretical Economics 14 (2019)

efficient strategies. For such an offer to be profitable for i, at any sufficiently high δ, it
must be that

sij − δVj(A) > siη(i) − δVη(i)(A)� (9)

However, by taking limits, as δ converges to 1, on both sides of this inequality, we obtain

sij − σj ≥ siη(i) − ση(i) = σi�

This obviously contradicts the assumption that Rubinstein payoffs are in the interior of
the core that requires σi + σj > sij for all i� j ∈ A such that j �= η(i). Thus, every player
i ∈ A at any subgame A ∈ C(N) cannot have a profitable deviation when making offers if
the discount factor is sufficiently high, which implies the existence of a strongly efficient
MPE for any δ close to 1.

Next, we establish part (b). To the contrary, assume that a strongly efficient MPE
exists for any δ close to 1, but that σi + σj < sij for some pair i� j ∈ N . Recall that player
i has a strictly profitable deviation from a strongly efficient equilibrium if condition (9)
holds. Since δVi → σi and δVj → σj , condition (9) must hold for sufficiently high values
of δ and player i must have a profitable deviation for any sufficiently high value of δ.

Proof of Proposition 5. To pin down LMPE values, for any player i ∈ N , define the
outside option partner for player i as

λ(i)=
⎧⎨
⎩

arg max
j∈E

sij if ωi > 0�

i if ωi = 0�

Therefore, ωi = siλ(i). An LMPE is strongly efficient if at any active player set A ∈ C(N),
all players i /∈ E agree with their core matches η(i) with a probability that converges
to 1 (that is, π̄iη(i)(A) = 1) and all players i ∈ E delay with a probability that converges
to 1 (that is, π̄ii(A) = 1). Recall that only subgames A ∈ C(N) occur on the equilibrium
path with positive probability in the limit in a strongly efficient LMPE. Moreover, outside
options λ(i) must coincide at every subgame A ∈ C(N), since the core match coincides
at any such active player set and since all core unmatched players are active at any such
active player set.

To establish that any strongly efficient strategy compatible with equilibrium nec-
essarily yields shifted Rubinstein payoffs as limiting payoffs, we proceed by induction
on the size of the active player set within C(N), and show that for any A ∈ C(N), any
strongly efficient LMPE satisfies

V̄j(A) = σ̄j for any j ∈A� (10)

First, consider the smallest active player set in C(N), namely, A = E, when such a set
is not empty. If so, sij = 0 for any i� j ∈ E. Obviously, Vj(E) = σ̄j = 0 for any j ∈ E. Next,
consider any active player set A=E∪{i�η(i)} for some i ∈N\E. Clearly, not both players
in {i�η(i)} can have binding outside options. If they did, then

siλ(i) + sη(i)λ(η(i)) ≥ siη(i)�
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and an alternative match that generates a weakly higher surplus would be feasible (since
both λ(i) and λ(η(i)) would be unmatched in the core), thereby contradicting the opti-
mality of the core match or its uniqueness. Without loss of generality, if a player has a
binding outside option, let that player be i, so that σ̄i = max{ωi�σi} and σ̄η(i) = siη(i)− σ̄i.
Observe that if a player j ∈ E plays a strategy converging to efficiency, then for suf-
ficiently high δ, he must weakly prefer delaying to offering to a player in {i�η(i)}, as
π̄jj(A) = 1. If so, then vj(A) = δVj(A) and the valuation of such a player necessarily
satisfies

V̄j(A) = (1 −pi −pη(i))V̄j(A) ⇒ V̄j(A) = 0

by the characterization in Proposition 1, the definition of strongly efficient LMPEs, and
the linearity of the limit operator. Therefore, condition (10) holds for any player j ∈ E.
Next consider player j ∈ {i�η(i)}. If complying with a strongly efficient strategy is a lim-
iting equilibrium, then for sufficiently high δ, it must be that vj(A) = sjη(j) − δVη(j)(A),
as π̄jη(j)(A) = 1. If so, then for any player k ∈E,

sjη(j) − δVη(j)(A) ≥ sjk − δVk(A) = sjk�

which in turn implies that

V̄j(A)= pj

(
sjη(j) − V̄η(j)(A)

)+ (1 −pj)V̄j(A) ⇒ V̄j(A)≥ sjk�

establishing that V̄j(A) ≥ ωj . If indeed V̄j(A) > ωj for any player j ∈ {i�η(i)}, then for
any player k ∈ E and any δ close to 1, we would have that δVk(A) + δVj(A) > sjk. If
so, no player k would ever agree with j. If so, the strategy would be strictly efficient for
sufficiently high δ, and the result would follow by Proposition 4 as

V̄j(A) = lim
δ→1

pj

1 − δ+ δpj + δpη(j)
sjη(j) = σj > ωj�

Otherwise, suppose that V̄j(A) = ωj . If so, taking limits on the characterization in Propo-
sition 1 implies that

V̄η(j)(A) = pη(j)

(
sjη(j) − V̄j(A)

)+ (1 −pη(j))V̄η(j)(A) = sjη(j) −ωj�

The previous observations together imply that V̄k(A)= σ̄k for any k ∈A, as V̄i(A) = σ̄i =
max{ωi�σi} and V̄η(i)(A) = siη(i) − σ̄i.

Next, by induction, assume that V̄j(A) = σ̄j for any j ∈ A and any active player set
A ∈ C(N) with cardinality |A| = |E|+2k. If so, we show V̄j(A) = σ̄j for any j ∈ A and any
set A ∈ C(N) with cardinality |A| = |E|+2(k+1). Consider such a set A. If a player j ∈E

complies with a strongly efficient strategy, then vj(A) = δVj(A) for δ close to 1, and the
valuation necessarily satisfies

V̄j(A) = (1 −pA\E)V̄j(A)+
∑

k∈A\E
pkV̄j(A−kη(k))

= (1 −pA\E)V̄j(A) ⇒ V̄j(A) = 0�
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where the first equality follows from the characterization in Proposition 1 and the defi-
nition of strongly efficient strategies, while the second equality follows from the induc-
tion hypothesis. If a player j ∈ A\E complies with a strongly efficient strategy, then
vj(A) = sjη(j) −δVη(j)(A) for δ close to 1. Thus, defining Ā(j) =A−jη(j)\E, the valuation
necessarily satisfies

V̄j(A) = (1 −pĀ(j) −pj)V̄j(A)+pj

(
sjη(j) − V̄η(j)(A)

)+ ∑
k∈Ā(j)

pkV̄j(A−kη(k))

= (1 −pĀ(j) −pj)V̄j(A)+pj

(
sjη(j) − V̄η(j)(A)

)+pĀ(j)σ̄j�

where equalities hold for the same reasons stated above. In this case, the limiting value
equations for players j and η(j) admit a unique solution at

V̄j(A) = σ̄j and V̄η(j)(A) = σ̄η(j)�

To prove the second part of the result, observe that strongly efficient LMPEs mandate
play according to the strategies characterized above and payoffs converging to shifted
Rubinstein payoffs,

V̄i(A) = σ̄i for any i ∈ A and any A ∈ C(N)�

Toward a contradiction, suppose that agents complied with these strategies, but that
σ̄i + σ̄j < sij for some pair i� j ∈ N . If so, the definition of shifted Rubinstein payoffs
would then immediately imply that j /∈ {η(i)�λ(i)}. Player i, however, would then have a
profitable deviation when selected to make the first offer in the game. Subgame perfec-
tion ensures that j would accept any offer greater than δVj(A). If the player complied
with the prescribed strategy by offering to his core partner, his limiting payoff would
amount to

lim
δ→1

vi(A) = σ̄i�

However, by deviating and offering to j exactly δVj(A), their payoff would increase to

lim
δ→1

[
sij − δVj(A)

]= sij − V̄j(A) = sij − σ̄j > σ̄i�

Thus, for any value of δ sufficiently close to 1, player i would have a strict incentive to
deviate and make an acceptable offer to j.

Proof of Proposition 6. In a weakly efficient LMPE, π̄iη(i)(A) + π̄ii(A) = 1 for any
player i ∈ A for every A ∈ C(N). Thus, all players i ∈ E delay with a probability con-
verging to 1 (that is, π̄ii(A) = 1). In the limit, if all players comply with such strategies,
only subgames A ∈ C(N) occur on the equilibrium path with positive probability. Re-
call that the proof of Proposition 2 established that at any active player set A ∈ C(N)

such that A\E �= ∅ of a weakly efficient LMPE, there exists a player i ∈ A\E such that
βi(A) > 0 (where βi(A) = piπ̄iη(i)(A)). To establish that any weakly efficient LMPE that
is not strongly efficient must be sequential, we again proceed by induction on the size of
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the active player set within C(N) and we show that there exists A ∈ C(N) such that only
one core match agrees; that is, for some i ∈ A\E such that (3) holds. First, consider the
smallest active player set in C(N), namely, A=E, when such a set is not empty. If so, any
weakly efficient LMPE is strongly efficient, as the two definitions coincide. Next consider
any active player set A = E ∪ {i�η(i)} for some i ∈ N\E. Clearly, there must be agree-
ment on the core match, that is, πiη(i)(A) = πη(i)i(A) = 1, as δVi(A)+ δVη(i)(A) < siη(i)
by feasibility. Thus, any weakly efficient LMPE is strongly efficient.

Next assume by induction that any weakly efficient LMPE is strongly efficient for any
active player set A ∈ C(N) with cardinality |A| = |E| + 2k. Consider any set A ∈ C(N)

with cardinality |A| = |E| + 2(k + 1). If a player j ∈ E complies with a weakly efficient
strategy, then vj(A) = δVj(A) for δ close to 1. If so, the valuation of j necessarily satisfies

V̄j(A) = (1 −βA\E(A)
)
V̄j(A)+

∑
k∈A\E

βk(A)V̄j(A−kη(k)})

= (1 −βA\E(A)
)
V̄j(A) ⇒ V̄j(A) = 0�

where the first equality follows by taking limits of value equations and the definition
of weakly efficient strategies, where the second equality follows by the induction hy-
pothesis, and where the implication trivially obtains as βA\E(A) > 0 given that at least
one core match agrees with positive probability in the limit. If a player j ∈ A\E com-
plies with a weakly efficient strategy, then for δ close to 1, it must be that vj(A) =
max{δVj(A)� sjη(j) − δVη(j)(A)} by weak efficiency. Taking limits of the value equations
for any j ∈ A\E while defining Ā(j) = A−jη(j)\E establishes that

V̄j(A) = (1 −βĀ(j) −βj)V̄j(A)+βj(A)
[
sjη(j) − V̄η(j)(A)

]
+
∑

k∈Ā(j)

βk(A)V̄j(A−kη(k))

= (1 −βĀ(j) −βj)V̄j(A)+βj(A)
[
sjη(j) − V̄η(j)(A)

]+βĀ(j)(A)σ̄j�

(11)

where the second equality follows by weak efficiency and induction.
If βi(A) = 0 for all players i ∈ Ā(j), then the equilibrium must be sequential by

definition.36 Otherwise, there exists a weakly efficient LMPE in which least two core
matches in A reach agreement with positive probability. If so, βi(A) > 0 and βj(A) > 0
for i �= η(j), and thus βĀ(j) > 0 for any j ∈ A\E. But then the limiting value equations
(11) for players j and η(j) admit a unique solution at

V̄j(A) = σ̄j and V̄η(j)(A) = σ̄η(j)�

The weakly efficient LMPE must be payoff equivalent to a strongly efficient LMPE at A,
thereby fulfilling the induction hypothesis. This establishes that any weakly efficient
LMPE that is not strongly efficient must be sequential.

The existence of a sequential LMPE follows by Example 4.

36If so, V̄i(A) = σ̄i for all i ∈ Ā(j) ∪ E, since Ā(j) �= ∅ and V̄i(A\{k�η(k)}) = σ̄j for all k ∈ A\E by the
induction hypothesis.



250 Elliott and Nava Theoretical Economics 14 (2019)

References

Abreu, Dilip and Mihai Manea (2012a), “Bargaining and efficiency in networks.” Journal
of Economic Theory, 147, 43–70. [215, 222, 239]

Abreu, Dilip and Mihai Manea (2012b), “Markov equilibria in a model of bargaining in
networks.” Games and Economic Behavior, 75, 1–16. [212, 215, 216, 220, 222, 230, 234,
238, 239]

Agranov, Marina and Matthew Elliott (2017), “Commitment and (in)efficiency: A bar-
gaining experiment.” Unpublished paper, https://doi.org/10.17863/CAM.15498. [212,
240, 241]

Atakan, Alp E. (2010), “Efficient dynamic matching with costly search.” Unpublished
paper, TÜSIAD-Koç University Economic Research Forum Working Paper Series 1030.
[215]

Bhaskar, Venkataraman, George J. Mailath, and Stephen Morris (2013), “A foundation for
Markov equilibria in sequential games with finite social memory.” Review of Economic
Studies, 80, 925–948. [212]

Binmore, Ken and Maria J. Herrero (1988), “Matching and bargaining in dynamic mar-
kets.” Review of Economic Studies, 55, 17–31. [215, 228]

Corominas-Bosch, Margarida (2004), “Bargaining in a network of buyers and sellers.”
Journal of Economic Theory, 115, 35–77. [215]

Eeckhout, Jan (2006), “Local supermodularity and unique assortative matching.” Society
for Economic Dynamics, Meeting Papers, 127. [237]

Eeckhout, Jan and Philipp Kircher (2010), “Sorting and decentralized price competi-
tion.” Econometrica, 78, 539–574. [237]

Elliott, Matthew (2015), “Inefficiencies in networked markets.” American Economic Jour-
nal: Microeconomics, 7.4, 43–82. [236]

Gale, Douglas (1987), “Limit theorems for markets with sequential bargaining.” Journal
of Economic Theory, 43, 20–54. [212, 215]

Gale, Douglas and Hamid Sabourian (2006), “Markov equilibria in dynamic matching
and bargaining games.” Games and Economic Behavior, 54, 336–352. [215, 216, 230, 234]

Lauermann, Stephan (2013), “Dynamic matching and bargaining games: A general ap-
proach.” American Economic Review, 103, 663–689. [215]

Manea, Mihai (2011), “Bargaining in stationary networks.” American Economic Review,
101, 2042–2080. [215]

Manea, Mihai (2017), “Steady states in matching and bargaining.” Journal of Economic
Theory, 167, 206–228. [215]

Maskin, Eric and Jean Tirole (2001), “Markov perfect equilibrium: I. Observable actions.”
Journal of Economic Theory, 100, 191–219. [212]

http://www.e-publications.org/srv/te/linkserver/setprefs?rfe_id=urn:sici%2F1933-6837%28201901%2914%3A1%3C211%3ADBIMME%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:1/AM12a&rfe_id=urn:sici%2F1933-6837%28201901%2914%3A1%3C211%3ADBIMME%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:2/AM12b&rfe_id=urn:sici%2F1933-6837%28201901%2914%3A1%3C211%3ADBIMME%3E2.0.CO%3B2-2
https://doi.org/10.17863/CAM.15498
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:5/BMM13&rfe_id=urn:sici%2F1933-6837%28201901%2914%3A1%3C211%3ADBIMME%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:6/BH88&rfe_id=urn:sici%2F1933-6837%28201901%2914%3A1%3C211%3ADBIMME%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:7/CB04&rfe_id=urn:sici%2F1933-6837%28201901%2914%3A1%3C211%3ADBIMME%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:9/EK12&rfe_id=urn:sici%2F1933-6837%28201901%2914%3A1%3C211%3ADBIMME%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:11/G87&rfe_id=urn:sici%2F1933-6837%28201901%2914%3A1%3C211%3ADBIMME%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:12/GS06&rfe_id=urn:sici%2F1933-6837%28201901%2914%3A1%3C211%3ADBIMME%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:13/L13&rfe_id=urn:sici%2F1933-6837%28201901%2914%3A1%3C211%3ADBIMME%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:14/M09&rfe_id=urn:sici%2F1933-6837%28201901%2914%3A1%3C211%3ADBIMME%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:15/Man17&rfe_id=urn:sici%2F1933-6837%28201901%2914%3A1%3C211%3ADBIMME%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:16/MT01&rfe_id=urn:sici%2F1933-6837%28201901%2914%3A1%3C211%3ADBIMME%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:1/AM12a&rfe_id=urn:sici%2F1933-6837%28201901%2914%3A1%3C211%3ADBIMME%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:2/AM12b&rfe_id=urn:sici%2F1933-6837%28201901%2914%3A1%3C211%3ADBIMME%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:5/BMM13&rfe_id=urn:sici%2F1933-6837%28201901%2914%3A1%3C211%3ADBIMME%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:5/BMM13&rfe_id=urn:sici%2F1933-6837%28201901%2914%3A1%3C211%3ADBIMME%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:6/BH88&rfe_id=urn:sici%2F1933-6837%28201901%2914%3A1%3C211%3ADBIMME%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:7/CB04&rfe_id=urn:sici%2F1933-6837%28201901%2914%3A1%3C211%3ADBIMME%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:9/EK12&rfe_id=urn:sici%2F1933-6837%28201901%2914%3A1%3C211%3ADBIMME%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:11/G87&rfe_id=urn:sici%2F1933-6837%28201901%2914%3A1%3C211%3ADBIMME%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:12/GS06&rfe_id=urn:sici%2F1933-6837%28201901%2914%3A1%3C211%3ADBIMME%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:13/L13&rfe_id=urn:sici%2F1933-6837%28201901%2914%3A1%3C211%3ADBIMME%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:14/M09&rfe_id=urn:sici%2F1933-6837%28201901%2914%3A1%3C211%3ADBIMME%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:15/Man17&rfe_id=urn:sici%2F1933-6837%28201901%2914%3A1%3C211%3ADBIMME%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:16/MT01&rfe_id=urn:sici%2F1933-6837%28201901%2914%3A1%3C211%3ADBIMME%3E2.0.CO%3B2-2


Theoretical Economics 14 (2019) Decentralized bargaining in matching markets 251

Moldovanu, Benny and Eyal Winter (1995), “Order independent equilibria.” Games and
Economic Behaviour, 9, 21–34. [214]

Moreno, Diego and John Wooders (2002), “Prices, delay and the dynamics of trade.” Jour-
nal of Economic Theory, 104, 304–339. [215]

Okada, Akira (2011), “Coalitional bargaining games with random proposers: Theory and
application.” Games and Economic Behavior, 73, 227–235. [214]

Polanski, Arnold (2007), “Bilateral bargaining in networks.” Journal of Economic Theory,
134, 557–565. [215]

Polanski, Arnold and Emiliya Lazarova (2015), “Dynamic multilateral markets.” Interna-
tional Journal of Game Theory, 44, 815–833. [215]

Polanski, Arnold and Fernando Vega-Redondo (2013), “Markets, bargaining and net-
works with heterogeneous agents.” Unpublished paper, University of East Anglia Ap-
plied and Financial Economics Working Paper Series 038. [215]

Polanski, Arnold and Eyal Winter (2010), “Endogenous two-sided markets with repeated
transactions.” BE Journal of Theoretical Economics, 10, 1935-1704. [212, 215]

Rubinstein, Ariel (1982), “Perfect equilibrium in a bargaining model.” Econometrica, 50,
97–109. [212]

Rubinstein, Ariel and Asher Wolinsky (1985), “Equilibrium in a market with sequential
bargaining.” Econometrica, 53, 1133–1150. [212, 215]

Rubinstein, Ariel and Asher Wolinsky (1990), “Decentralized trading, strategic behaviour
and the Walrasian outcome.” Review of Economic Studies, 57, 63–78. [212, 215]

Sabourian, Hamid (2004), “Bargaining and markets: Complexity and the competitive
outcome.” Journal of Economic Theory, 116, 189–228. [212]

Shaked, Avner and John Sutton (1984), “Involuntary unemployment as a perfect equilib-
rium in a bargaining model.” Econometrica, 52, 1351–1364. [228]

Shapley, Lloyd S. and Martin Shubik (1971), “The assignment game I: The core.” Inter-
national Journal of Game Theory, 1, 111–130. [217]

Shimer, Robert and Lones Smith (2000), “Assortative matching and search.” Economet-
rica, 68, 343–369. [237]

Smith, Lones (2006), “The marriage model with search frictions.” Journal of Political
Economy, 114, 1124–1144. [237]

Sutton, John (1986), “Non-cooperative bargaining theory: An introduction.” Review of
Economic Studies, 53, 709–724. [213, 228]

Co-editor George J. Mailath handled this manuscript.

Manuscript received 26 January, 2016; final version accepted 8 February, 2018; available on-
line 11 April, 2018.

http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:17/MW95&rfe_id=urn:sici%2F1933-6837%28201901%2914%3A1%3C211%3ADBIMME%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:18/MW02&rfe_id=urn:sici%2F1933-6837%28201901%2914%3A1%3C211%3ADBIMME%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:19/O11&rfe_id=urn:sici%2F1933-6837%28201901%2914%3A1%3C211%3ADBIMME%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:20/P07&rfe_id=urn:sici%2F1933-6837%28201901%2914%3A1%3C211%3ADBIMME%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:21/PL2015&rfe_id=urn:sici%2F1933-6837%28201901%2914%3A1%3C211%3ADBIMME%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:23/PW10&rfe_id=urn:sici%2F1933-6837%28201901%2914%3A1%3C211%3ADBIMME%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:24/R82&rfe_id=urn:sici%2F1933-6837%28201901%2914%3A1%3C211%3ADBIMME%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:25/RW85&rfe_id=urn:sici%2F1933-6837%28201901%2914%3A1%3C211%3ADBIMME%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:26/RW90&rfe_id=urn:sici%2F1933-6837%28201901%2914%3A1%3C211%3ADBIMME%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:27/S04&rfe_id=urn:sici%2F1933-6837%28201901%2914%3A1%3C211%3ADBIMME%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:28/SS84&rfe_id=urn:sici%2F1933-6837%28201901%2914%3A1%3C211%3ADBIMME%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:29/SS72&rfe_id=urn:sici%2F1933-6837%28201901%2914%3A1%3C211%3ADBIMME%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:30/SS00&rfe_id=urn:sici%2F1933-6837%28201901%2914%3A1%3C211%3ADBIMME%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:31/S06&rfe_id=urn:sici%2F1933-6837%28201901%2914%3A1%3C211%3ADBIMME%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:32/S86&rfe_id=urn:sici%2F1933-6837%28201901%2914%3A1%3C211%3ADBIMME%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:17/MW95&rfe_id=urn:sici%2F1933-6837%28201901%2914%3A1%3C211%3ADBIMME%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:18/MW02&rfe_id=urn:sici%2F1933-6837%28201901%2914%3A1%3C211%3ADBIMME%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:19/O11&rfe_id=urn:sici%2F1933-6837%28201901%2914%3A1%3C211%3ADBIMME%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:20/P07&rfe_id=urn:sici%2F1933-6837%28201901%2914%3A1%3C211%3ADBIMME%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:21/PL2015&rfe_id=urn:sici%2F1933-6837%28201901%2914%3A1%3C211%3ADBIMME%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:23/PW10&rfe_id=urn:sici%2F1933-6837%28201901%2914%3A1%3C211%3ADBIMME%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:24/R82&rfe_id=urn:sici%2F1933-6837%28201901%2914%3A1%3C211%3ADBIMME%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:25/RW85&rfe_id=urn:sici%2F1933-6837%28201901%2914%3A1%3C211%3ADBIMME%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:26/RW90&rfe_id=urn:sici%2F1933-6837%28201901%2914%3A1%3C211%3ADBIMME%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:27/S04&rfe_id=urn:sici%2F1933-6837%28201901%2914%3A1%3C211%3ADBIMME%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:28/SS84&rfe_id=urn:sici%2F1933-6837%28201901%2914%3A1%3C211%3ADBIMME%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:29/SS72&rfe_id=urn:sici%2F1933-6837%28201901%2914%3A1%3C211%3ADBIMME%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:30/SS00&rfe_id=urn:sici%2F1933-6837%28201901%2914%3A1%3C211%3ADBIMME%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:31/S06&rfe_id=urn:sici%2F1933-6837%28201901%2914%3A1%3C211%3ADBIMME%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:32/S86&rfe_id=urn:sici%2F1933-6837%28201901%2914%3A1%3C211%3ADBIMME%3E2.0.CO%3B2-2

	Introduction
	Related literature
	Outline

	The assignment economy
	Matching and bargaining
	Histories and strategies

	MPE existence and characterization
	Efﬁciency, welfare, and delay
	Examples
	MPE efﬁciency and frictions
	Efﬁcient equilibria and payoffs
	Limiting efﬁciency

	Discussion
	Assortative matching
	Random matching
	Limitations and evidence

	Appendix: Proofs
	References

