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This paper studies a stability notion and matching processes in the job market
with incomplete information on the workers’ side. Each worker is associated with
a type, and each firm cares about the type of her employee under a match. More-
over, firms’ information structure is described by partitions over possible worker
type profiles. With this firm-specific information, we propose a stability notion
which, in addition to requiring individual rationality and no blocking pairs, cap-
tures the idea that the absence of rematching conveys no further information.
When an allocation is not stable under the status quo information structure, a
new pair of an allocation and an information structure will be derived. We show
that starting from an arbitrary allocation and an arbitrary information structure,
the process of allowing randomly chosen blocking pairs to rematch, accompanied
by information updating, will converge with probability one to an allocation that
is stable under the updated information structure. Our results are robust with
respect to various alternative learning patterns.
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1. Introduction

Matching is one of the important functions of markets (Roth (2008)). In particular, sta-
ble matchings have been connected to both equity and efficiency in resource allocation,
two of the most important objectives in economics.1 In this paper, we study stability
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and matching processes in a one-to-one job-market setting. We depart from the pre-
vailing assumption of two-sided matching theory that information is complete, i.e., that
the characteristics of all market participants are common knowledge. In particular, we
study incomplete information on the workers’ side.2 We first describe what firms know
and how firms update their possibilistic belief about workers’ types, and propose an
incomplete-information stability notion that allows for arbitrarily heterogeneous infor-
mation. We then show that with probability one, a random matching process converges
to an allocation that is stable with respect to the updated information structure.

Stability under complete information requires individual rationality (i.e., each agent
has a nonnegative payoff) and no blocking pairs (i.e., no worker and firm would both
prefer being matched with each other at some wage to staying with their current part-
ners). When a firm has incomplete information, however, she may not know her poten-
tial employees’ types, which reflect their productivity. As a result, the firm would not
know whether she would prefer hiring another worker or keeping her current employee.
In this situation, the notions of blocking and stability in the complete-information en-
vironment become inadequate.

Following Liu et al. (2014) (LMPS for short), we assume that a firm will evaluate her
potential employees according to their worst possible types, and that firms can observe
the prevailing allocation (i.e., the prevailing matching and wage profile) as well as the
types of their own employees. In LMPS, the heterogeneity of firms’ information stems
only from their observation of their own employees’ types. Unlike LMPS, however, we
allow firms to have arbitrarily heterogeneous information about workers’ types, and de-
scribe the firms’ information structure by a profile of partitions over possible type pro-
files of the workers. Given an information structure, we propose a stability notion that
extends the notion, proposed in LMPS, of stable matching with incomplete information.
(For a formal comparison, see the literature review and Section 3.4.)

In our setting, a state of the market consists of an allocation and an information
structure. A state is stable if (i) the allocation is individually rational, (ii) the allocation
admits no blocking pair with respect to the information structure, and (iii) individual
rationality and the absence of blocking convey no further information to the firms. The
last requirement, in particular, embodies a notion of “informational stability,” which is
specific to the incomplete-information setting.

Equipped with the notion of stability, we study a matching process that mimics the
behavior of market participants searching for desirable jobs or employees. Indeed, if a
worker and a firm find that they would benefit more from being matched with each other
than from maintaining the status quo, they will act to realize the improvement. The new
matching may again admit a blocking pair, and thus another rematching opportunity,
that results in another new matching, and so on. One important question is whether
such a process finally stops at a stable matching.3

2We use the job-market setting (with transferable utility) to facilitate the comparison between our stabil-
ity notion and that of Liu et al. (2014). Nevertheless, our convergence result (Theorems 2–3) can be estab-
lished without difficulty in models with nontransferable utility, such as the model studied in Bikhchandani
(2017).

3Knuth (1976) provides an example of a blocking path that admits a cycle; in other words, any matching
on the path is not stable. This has motivated the study of the convergence of blocking paths. The literature
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When information is incomplete, each observation of rematching or lack of re-
matching along the matching process carries additional information to the firms. Infor-
mation updating refines the firms’ partitions. Consequently, firms may become more
optimistic about the worst type of a potential employee, which results in a new prospect
of rematching. A matching process is thus associated with an information-updating
process in which firms draw inferences along with each observation.

In this information-updating process, firms’ partitions are refined for three possi-
ble reasons: a rematching is not observed, a rematching of other agents is observed,
and a firm directly observes her new employee’s type. Firms may update their informa-
tion differently, depending on which one of the three possibilities occurs. In this sense,
studying matching processes necessitates modeling stability with heterogeneous infor-
mation, which we do from the beginning.

For an arbitrary initial market state, this learning and rematching process consists of
a sequence of states. We call it a learning-blocking path. Our main result shows that, by
suitably selecting the blocking pairs to be rematched, we can construct a finite learning-
blocking path which reaches a stable state. This construction implies that when each
blocking pair is randomly selected with positive probability to be rematched, the result-
ing learning-blocking path converges to a stable state with probability one. Our result
is also robust with respect to alternative learning patterns.4 The general convergence
extends the result of Roth and Vande Vate (1990) to markets with transferable utility and
one-sided incomplete information. (For a formal comparison, see Section 4.3, which
also highlights how our argument differs from that of Roth and Vande Vate (1990).)

The rest of this section reviews the literature. Section 2 introduces the model. Sec-
tion 3 defines stability with incomplete information. Section 4 defines the notion of
the learning-blocking path and presents our convergence results. Section 5 discusses
several related issues and Section 6 concludes.

The related literature

The seminal paper of Gale and Shapley (1962) pioneered the literature of two-sided
matching. Many classical developments are surveyed in Roth and Sotomayor (1990)
and more recently by, e.g., Roth (2008). In this literature, a prevalent assumption is that
information is complete.

Recently, LMPS introduced a notion of incomplete-information stability. Our no-
tion of stability is consistent with the notion proposed by LMPS when the only source of
firms’ heterogeneous information is due to the observation of their current employees’
types. More precisely, each stable state in our definition induces a stable outcome in
LMPS; conversely, every stable outcome in LMPS can be supported as a stable state with
respect to a specific partition profile. The latter partition profile can be seen as the one
that is constructed in the following way: each firm starts with the sole piece of informa-
tion of her employee’s type and iteratively refines her partition based upon the fact that

demonstrates that the answer is primarily a positive one, although the argument generally varies across
different setups.

4For example, agents may ignore or forget the information conveyed in some observations, or draw more
sophisticated inferences from the observations. See Section 5.1 for more discussion.
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the state is not blocked. (See Theorem 1 and Corollary 1 for details.) Since our notion of
stability is defined with respect to an arbitrary partition profile, we have the flexibility to
study the matching process in which the information structure must be endogenized.

Bikhchandani (2017) proposes a notion of stability that is similar to that of LMPS
but which applies to a Bayesian setting with nontransferable utilities. Unlike LMPS and
Bikhchandani (2017), Pomatto (2019) considers a noncooperative matching game and
uses forward-induction reasoning to derive the set of stable outcomes that is identified
in LMPS.5  Anderson and Smith (2010) also study an employment model in which work-
ers have unobserved abilities. However, agents in their paper are matched according to
publicly observable reputation (e.g., probability of having high ability), which involves
no information asymmetry as in our paper. Moreover, in their paper the agents max-
imize the discounted sum of wages in choosing matches, whereas the social planner
maximizes the average present value of output in choosing matchings. In contrast, the
matching process in our paper is driven by blocking pairs which are randomly drawn.

Whether a matching process converges to a stable allocation is known as the prob-
lem of finding paths to stability. Roth and Vande Vate (1990) provide the first result on
paths to stability in marriage markets with complete information.6 Among many follow-
up works, Klaus and Klijn (2007) establish the corresponding result in a matching-with-
couples setup, Kojima and Ünver (2008) in the context of many-to-many matching, and
Chen et al. (2010) in a job-market setting with transferable utilities.7 Most of the previ-
ous papers involve neither private information nor information updating, while both of
these play a crucial role in our paper. There are two notable exceptions. Bikhchandani
(2017) discusses the path to stability under a Bayesian notion of stability. In his paper,
the final matching outcome of a blocking path is Bayesian stable only “conditional on
the history,” i.e., agents may still block the final outcome with some of their erstwhile
partners. In contrast, we provide a Bayesian version of the path-to-stability problem
in Section 5.4 where the final outcome is fully Bayesian stable. Lazarova and Dimitrov
(2017) study paths to stability with incomplete information under a permissive/best-
case notion of blocking. As a result, their approach is not applicable when more conser-
vative blocking notions are adopted, such as the notions in LMPS, Bikhchandani (2017),
and Pomatto (2019).8

5Another stream of literature studies stable mechanisms (instead of stable matchings) which also involve
incomplete information. See, e.g., Roth (1989), Chakraborty et al. (2010), and Ehlers and Massó (2007, 2015).

Our stability notion is also related to the literature on the core, particularly the core in incomplete-
information problems. In our context, a coalition is simply a worker-firm pair. See Wilson (1978), Dutta
and Vohra (2005), and the comprehensive discussions in LMPS. See Yenmez (2013) for stability notions that
are in line with Dutta and Vohra (2005).

6See Ma (1996) for a variant, called random-order mechanisms, of the paths studied in Roth and Vande
Vate (1990).

7The main result of Chen et al. (2010), incorporated into Chen et al. (2016), is the convergence of blocking
paths to competitive equilibrium, which is stronger than stability. See also Fujishige and Yang (2017).

8A matching outcome in Lazarova and Dimitrov (2017) consists of a matching and a belief system that
specifies all agents’ probabilistic beliefs about the type of each agent on the opposite side of the market. In
their setting, a matching outcome is said to be blocked by a pair of agents, as long as there exist two types,
one for each agent, such that (i) both agents prefer their opponent’s type to their current partner’s type, and
(ii) both agents put positive probability on their opponent’s type. In other words, agents in their setting are
aggressive/optimistic in blocking, which reduces learning to trial-and-error.
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2. The model

We consider the following setup of matching with incomplete information that is based
on LMPS. The setup generalizes the complete-information matching models studied by
Shapley and Shubik (1971) and Crawford and Knoer (1981).

There is a finite set I of workers to be matched with a finite set J of firms. Denote
a generic worker by i and a generic firm by j. While each agent’s index i or j is publicly
observed, the agent’s productivity is determined by the agent’s type. Let W be the finite
set of worker types and F be the finite set of firm types. A type assignment for firms is
a mapping f : J → F , and similarly a type assignment for workers is another mapping
w : I → W . We denote by � a set of type assignments for workers, i.e., � ⊂W I .

A match between a worker of type w ∈ W and a firm of type f ∈ F gives rise to the
worker premuneration value νwf ∈ R and the firm premuneration value φwf ∈ R.9 The
sum of νwf and φwf is called the surplus of the match. Denote these values by νw(i)�f(∅)

for unmatched worker i and φw(∅)�f(j) for unmatched firm j, both of which are set to be
zero. The functions ν : W × F → R and φ : W × F → R are common knowledge among
the agents. Given a match between worker i (of type w(i)) and firm j (of type f(j)) under
some wage p ∈ R, the worker’s payoff and the firm’s payoff are, respectively, νw(i)�f(j) +
p and φw(i)�f(j) −p.10

A matching is a function μ : I → J ∪ {∅}, one-to-one on μ−1(J), that assigns worker
i to firm μ(i). In case μ(i) = ∅, this means that worker i is unemployed; similarly,
μ−1(j) = ∅ means that firm j does not hire anyone. A payment scheme p associated
with a matching μ is a vector that specifies a payment pi�μ(i) ∈ R for each worker i ∈ I

and a payment pμ−1(j)�j ∈ R for each firm j ∈ J. To avoid nuisance cases, we associate
zero payments with unmatched agents, by setting p∅j = pi∅ = 0. Finally, an allocation
(μ�p) consists of a matching μ and an associated payment scheme p. We assume that
the entire allocation is publicly observable.

As in LMPS, we assume that the type assignment for firms (i.e., f) is common knowl-
edge.11 There is, however, incomplete information about the worker’s types. In partic-
ular, the only facts that are common knowledge are these: (i) that the workers’ type as-
signment belongs to �, (ii) that each worker knows his own type, and (iii) that each firm
knows her current employee’s type. Beyond the public information, each firm may also
have her own private information about the workers’ type assignment. Specifically, for
every firm j, we describe her information by a partition �j over �. For any type assign-
ment w, write �j(w) as the element of partition �j that contains w. When the true type
assignment is w, firm j regards each type assignment w′ in �j(w) as possible. Denote
the profile of partitions by �, i.e., � := (�1� � � � ��|J|), which is assumed to be common
knowledge.

9See Mailath et al. (2013, 2017) for discussions on premuneration values.
10If we adopt the practice that salaries must be rounded to the nearest dollar or penny, the analysis in

this section and the next will go through without any extra difficulty. This more practical restriction will be
imposed in Section 4, where we study a matching process.

11It is certainly important to also study matching markets with two-sided incomplete information, which
involves the subtle formulation of the agents’ higher-order reasoning. See Chen and Hu (2017) for details.
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Say partition profile �′ is (weakly) finer than partition profile � if, for each firm j, we
have �′

j(w)⊂ �j(w) for every type assignment w ∈�. Let �μ denote the partition profile

that is generated by a matching μ, i.e., for every j and every w, w′ ∈ �
μ
j (w) if and only

if w′(μ−1(j)) = w(μ−1(j)). Indeed, since each firm can observe the type of her current
employee, the partition profile �μ captures the basic information of firms. We say a
partition profile � is consistent with a matching μ if � is weakly finer than �μ. A state of
the matching market, (μ�p�w��), specifies an allocation (μ�p), a type assignment w,
and a partition profile � which is consistent with μ.

3. Stability with incomplete information

3.1 Individual rationality

A state is said to be individually rational if each agent receives at least the payoff from
remaining unmatched, which is assumed to be zero.

Definition 1. A state (μ�p�w��) is said to be individually rational if

νw(i)�f(μ(i)) + pi�μ(i) ≥ 0 for all i ∈ I and

φw(μ−1(j))�f(j) − pμ−1(j)�j ≥ 0 for all j ∈ J�

3.2 Blocking

The notion of incomplete-information “blocking” naturally extends its complete-
information counterpart. In particular, a matching is blocked if some worker-firm pair
(i� j), where i and j are not matched with each other, can mutually benefit from being
matched with each other. In order to accommodate the firms’ arbitrary private infor-
mation, we propose the following definition of “blocking” which extends LMPS’s notion
of blocking. We assume, as in LMPS, that firms care about the worst-case payoff when
evaluating a potential worker.

Definition 2. A state (μ�p�w��) is said to be blocked if there exists a worker-firm pair
(i� j) and a payment p ∈ R such that worker i would switch to firm j at wage p, and
that firm j would switch to worker i for any possible type assignments under which the
worker would switch at the wage, i.e.,

νw(i)�f(j) +p > νw(i)�f(μ(i)) + pi�μ(i) and (1)

φw′(i)�f(j) −p > φw′(μ−1(j))�f(j) − pμ−1(j)�j (2)

for all w′ ∈�j(w) that satisfy

νw′(i)�f(j) +p> νw′(i)�f(μ(i)) + pi�μ(i)� (3)

We call the pair (i� j) a blocking pair, and the tuple (i� j;p) a blocking combination,
for the state (μ�p�w��) when conditions (1)–(3) are satisfied. For a firm j to participate
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in a potential blocking pair at state (μ�p�w��), she must guarantee an improvement
for every relevant type assignment. More precisely, when a firm j considers forming a
blocking pair with worker i at some wage p, a type assignment w′ is relevant for firm j

when w′ ∈�j(w) and (3) holds. Any type assignment that violates (3) is irrelevant due to
the worker’s objection.

The following fact says that a blocking opportunity is more likely to exist if firms have
more precise information about the workers’ types.

Fact 1. Suppose that �′ is a finer partition profile than �. If state (μ�p�w��) is blocked,
then state (μ�p�w��′) is also blocked.

Proof. If (μ�p�w��) is blocked, then (1) and (2) hold for all w′ ∈ �j(w) that satisfy (3).
Since �′

j(w) ⊂ �j(w), it follows that (1) and (2) hold for all w′ ∈�′
j(w) that satisfy (3).

3.3 Stability

When information is complete, stable matching embodies the intuition that when “the
agents have a very good idea of one anothers’ preferences and have easy access to each
other. . . , we might expect that stable matching will be especially likely to occur” (Roth
(1989, p. 22)).12 In this case, a stable state is simply a state that is individually rational
and not blocked.

In contrast, with incomplete information, we argue that individual rationality and
the absence of blocking pair are no longer sufficient to describe a “stable state.” To be
precise, the partition �j represents firm j’s imprecise idea about the workers’ informa-
tion. As a result, the absence of blocking pair may still provide further information to
firms. Once the firms’ information partitions become finer, the worst case improves,
and hence new blocking pairs may emerge. This is illustrated in Example 1 below.

Example 1. Consider a job market in which we have two workers and two firms. In
particular, I = {α�β} and J = {a�b}. The firms’ types are given by fa = 4 and fb = 3.
A type assignment for workers in this market is a two-dimensional vector, where the first
component is the type for α and the second is the type for β. There are three possible
type assignments, i.e., � = {w34�w32�w12}, where w34 = (3�4), w32 = (3�2), and w12 =
(1�2). The premuneration value functions are given by φwf = wf and νwf = wf + 4 ·
I{w=f }, where I{·} is the indicator function. For the sake of simplicity, we do not allow for
payments throughout this example.13

Obviously, firms prefer a worker of a higher type. A worker may prefer a firm of a
lower type but only if the lower type is the same as his own type. Suppose firm a hires
worker α and firm b hires worker β. In other words, a matching μ is given by μ(α) = a

and μ(β) = b. It is straightforward to verify that if information is complete, then (i) under
w34, (β�a) is the unique blocking pair; (ii) under w32, (α�b) is the unique blocking pair;
and (iii) under w12, (β�a) is the unique blocking pair.

12Information is complete if every agent knows the true type assignment, whatever it is. In our notation,
this is to say that �j(w′) = {w′} for all w′ ∈� and all j ∈ J.

13A similar yet slightly more complicated example can be constructed when payments are allowed.



36 Chen and Hu Theoretical Economics 15 (2020)

Suppose that w34 is the true type assignment. Assume that firms only know their
own employee’s type in μ, i.e., �= �μ where

�a ={{
w34�w32}�{w12}} and

�b ={{
w34}�{w32�w12}}�

Then the state (μ�0�w34��) is not blocked. We proceed to argue that it should not be
stable. First, firms learn from the absence of blocking that the true type assignment
must be either w34 or w32 by (iii). Next, with the following updated partition profile,

�′
a = {{

w34�w32}�{w12}} and

�′
b = {{

w34}�{w32}�{w12}}�
the state (μ�0�w34��′) is again not blocked. Then firm a learns from the absence of
blocking that the true type assignment must be w34 by (ii). Finally, under the updated
partition profile, firms have complete information, i.e.,

�′′
a = {{

w34}�{w32}�{w12}} and

�′′
b = {{

w34}�{w32}�{w12}}�
Hence, (β�a) will form a blocking pair by (i). Therefore, individual rationality and no
blocking pair are insufficient to capture “stability.”

The “stability” notion which we are about to propose not only requires individual
rationality and no blocking pair but also necessitates that satisfying these two require-
ments provides no further information to agents. This latter requirement embodies a
notion of information stability that is specific to the incomplete-information environ-
ment.

To formulate information stability, we define a set of type assignments as follows:

Nμ�p�� := {
w ∈ � : (μ�p�w��) is individually rational and not blocked

}
�

Intuitively, by the public information (μ�p��) and the absence of blocking, firms know
that the true type assignment lies in Nμ�p��. Let K� denote the meet (i.e., finest common
coarsening) of the partition profile �. Then, given a state (μ�p�w��), the set K�(w) is
the cell of the common knowledge partition that contains the true type assignment w.
An implication of Example 1 is that upon observing the absence of blocking, each firm j

should refine their partitions within K�(w) instead of only �j(w).14 Moreover, we would
also like to make the notion of information stability a local property that depends only
on partition within K�(w); hence, we do not refine the partition outside K�(w). For

14In Example 1, given the initial state that is not blocked, firms first update their partitions from � to
�′, in which neither of the two firm’s partition cell at the true type assignment w34 is refined. Then as
the new state with partition profile �′ is still not blocked, firms will further update the partition to �′′, in
which firm a’s partition cell at the true type assignment w34 is refined. This leads to a blocking of the state
(μ�0�w34��′′).
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notational convenience, we denote by Nμ�p�� the binary partition that is induced by
Nμ�p��, i.e., Nμ�p�� := {Nμ�p���� \Nμ�p��}.

We now formally define an operator Ĥμ�p(·) to represent the information refine-
ment:

[
Ĥμ�p(�)

]
j

(
w′) :=

{
�j

(
w′) ∩Nμ�p��

(
w′)� if w′ ∈K�(w);

�j

(
w′)� otherwise.

(4)

If Ĥμ�p(�) = �, then the fact of individual rationality and no blocking pair provides no
further information to firms (in addition to their common knowledge K�(w)).15

A state is said to be stable if it is individually rational and not blocked, and if no fur-
ther information can be inferred from the fact of individual rationality and no blocking.

Definition 3. A state (μ�p�w��) is said to be stable if it satisfies the following three
requirements:

(i) (μ�p�w��) is individually rational.

(ii) (μ�p�w��) is not blocked.

(iii) Ĥμ�p(�) =�.

When information is complete, i.e., if �j(w) = {w} for every j ∈ J and every w ∈ �,
then � is a fixed point of Ĥμ�p(·) regardless of (μ�p). Hence, Definition 3 reduces to the
standard definition of stable matching.16 In this case, a stable state exists (see Theorem
2 of Crawford and Knoer (1981)).

Up until now, we analyze a static setting and ask whether or not a state (μ�p�w��)

is stable under an exogenously given information structure �.17 In Section 4, we will
study matching processes, which are dynamic, that consist of blocking and information
updating in each step. Then the information structure � will serve as both an input and
an output variable.

3.4 Equivalence of two stability notions

In this subsection, we compare Definition 3 with the notion of stability defined in LMPS.
The stability notion of LMPS is ex ante in that it is defined independently of the true type
assignment and firms’ heterogeneous belief. One can imagine an outside analyst who
knows the model except for w and �, and who wants to identify possible stable out-
comes for the market. As usual, stable outcomes are individually rational and immune

15We thank an anonymous referee for suggesting the condition Ĥμ�p(�) = �, which is equivalent to re-
quiring that K�(w) ⊂ Nμ�p��.

16Suppose that (μ�p�w) is a complete-information stable outcome. Given an arbitrary �, the state
(μ�p�w��) is not necessarily stable in our sense. This is different from LMPS, where a complete-
information stable outcome is always incomplete-information stable. However, the only reason for
(μ�p�w��) being unstable is that it is not informational stable, i.e., it is individually rational and not
blocked whatever the partition profile � is.

17The “seemingly dynamic” Example 1 and the information updating in (4) are only used to motivate
and to facilitate the introduction of information stability, which itself is a static fixed-point condition.
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to blocking pairs. Formally, a matching outcome (μ�p�w) specifies an allocation and
a type assignment. The individual rationality of a matching outcome is defined as in
Definition 1, i.e., each agent has a nonnegative payoff. The blocking notion of LMPS is
designed to exclude only outcomes that the analyst can be certain are “blocked.”

Definition 4 (LMPS). Let 
 be a nonempty subset of individually rational matching
outcomes. A matching outcome (μ�p�w) ∈ 
 is 
-blocked if there exists a worker-firm
pair (i� j) and a payment p ∈R that satisfy

νw(i)�f(j) +p> νw(i)�f(μ(i)) + pi�μ(i) and (5)

φw′(i)�f(j) −p>φw′(μ−1(j))�f(j) − pμ−1(j)�j (6)

for all w′ ∈� satisfying

(
μ�p�w′) ∈ 
 (7)

w′(μ−1(j)
) = w

(
μ−1(j)

)
(8)

νw′(i)�f(j) +p> νw′(i)�f(μ(i)) + pi�μ(i)� (9)

A matching outcome (μ�p�w) ∈ 
 is 
-stable if it is not 
-blocked.

Condition (5) says that worker i prefers firm j at wage p to his current match. Condi-
tions (7)–(9) mean that firm j considers only “reasonable” type assignments, which are
consistent with (i) the outcome set 
, (ii) her “observation” w(μ−1(j)), and (iii) worker
i’s willingness to block the outcome (μ�p�w) with j at p. Condition (6) says that under
any “reasonable” type assignments, firm j prefers worker i at p to her current match.
Intuitively, the blocking conditions in Definition 4 say that if w were the true type as-
signment, then (μ�p�w) would be blocked based on the information of 
, i.e., only out-
comes in 
 are possible.

The set of outcomes that are immune to the blocking described in Definition 4 is
given by the iteration below. Let 
0 be the set of all individually rational outcomes. For
k≥ 1, define


k := {
(μ�p�w) ∈ 
k−1 : (μ�p�w) is 
k−1-stable

}
�

The set of incomplete-information stable outcomes in LMPS is given by 
∞ := ⋂∞
k=1 


k.
The following theorem establishes the equivalence between our stability notion and

that of LMPS. On the one hand, as long as (μ�p�w) ∈ 
∞, we can find at least one par-
tition profile � such that (μ�p�w��) is a stable state. That is, each stable outcome in
LMPS can be supported as a part of some stable market state. On the other hand, as
long as we can find one partition profile � to support (μ�p�w), the outcome (μ�p�w)

must be stable in the sense of LMPS. See Appendix A for the proof.

Theorem 1. (μ�p�w) ∈ 
∞ if and only if there exists a partition profile � such that
(μ�p�w��) is stable.
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Fix an outcome (μ�p�w). Define�μ�p�0 := �μ and�μ�p�k := Ĥμ�p(�
μ�p�k−1) for every

k ≥ 1. Let �μ�p�∞ be the limit of the increasingly finer partitions �μ�p�k. Then �μ�p�∞ is
the specific partition profile reflecting that firms just know (i) their own worker’s type,
and (ii) no blocking pair. The following corollary says that an outcome (μ�p�w) is stable
in the sense of LMPS if and only if the outcome, together with �μ�p�∞, constitute a stable
state. See Appendix A for the proof.

Corollary 1. (μ�p�w) ∈ 
∞ if and only if (μ�p�w��μ�p�∞) is stable.

4. Matching processes with incomplete information

In this section, we study matching processes and whether a matching process must lead
to a stable state. Specifically, we consider a job market in which any worker and any firm
can freely choose to be matched to each other, and any agent can freely opt to be un-
matched. Suppose also that the agents are myopic, i.e., once an agent or a worker-firm
pair finds an opportunity to improve their status quo, they will do so by either switching
to be unmatched or finding a new partner. These individual and/or pairwise rematch-
ings lead to a sequence of market states, which is referred to as a matching process. Note
that at each rematching, a state/information structure is both input (i.e., the status quo)
and output (i.e., the new state obtained from rematching).

We show that with probability one an arbitrary, random matching process (i.e., a
matching process in which each blocking combination is randomly selected with pos-
itive probability to be rematched) converges to an incomplete-information stable state
after finitely many rematchings. Throughout this section, we will fix a realized type as-
signment w∗, which will be omitted for notational simplicity, i.e., we will write (μ�p��)

for the state (μ�p�w∗��).

4.1 Learning-blocking paths

With incomplete information, a matching process is necessarily associated with a learn-
ing process. In the current setup, a learning process corresponds to a sequence of parti-
tional information structures. Each information partition is updated from the previous
one according to a new observation. More precisely, given a state (μ�p��), firms may
observe one of the following two situations:

(i) there is no rematching; or

(ii) there is a rematching that satisfies a blocking combination (i� j;p).

In case (i), it is known among the firms that (μ�p��) is not blocked, an event that
can be distinguished from the event of the state being blocked. Then firms update their
information by aggregating two pieces of information � and Nμ�p��. This aggregated
information is represented by the join of the two partitions,18 i.e.,

Hμ�p(�) := �∨Nμ�p��� (10)

18The join of two partitions is the coarsest common refinement of them. See Aumann (1976). We denote
the join operator by ∨. The join of a partition profile � and another partition Nμ�p�� is a new partition
profile such that [�∨Nμ�p��]j = �j ∨Nμ�p�� for all j ∈ J.
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That is, at each (hypothetically) true type assignment w, firm j knows that the true type
assignment lies in the set [Hμ�p(�)]j(w) = �j(w) ∩ Nμ�p��(w). In the absence of re-
matching, we only require that the firms be “level-1 sophisticated” in updating their
belief once. In other words, we only build in a naive behavioral rule in describing firms’
inferences from the lack of rematching.

In case (ii), a rematching of the blocking combination (i� j;p) is observed. In this
case, we may consider two different situations, depending on whether or not a firm is
firm j. First, firm j will observe worker i’s type after they are matched. Second, all the
other firms may update their information about worker i’s type to exclude type assign-
ments under which worker i would not have found it profitable to block the status quo
with firm j at wage p. In fact, our result does not depend on the precise specification
of how firms other than j update their belief. To allow for flexible belief updating, we
assume in condition (iv) below only that the firms update their information partition
profile from � to another profile �′ that is (weakly) finer than �∨�μ′

.
We denote by (μ�p��) ↑(i�j;p) the state that is derived from state (μ�p��) by sat-

isfying a blocking combination (i� j;p) for (μ�p��). Formally, we define the state
(μ′�p′��′)= (μ�p��) ↑(i�j;p) such that:

(i) worker i and firm j are rematched at salary p, i.e., μ′(i) = j and p′
i�j = p;

(ii) the previous partners of i and j, if any, become unmatched, i.e., μ′(μ−1(j)) =∅ if
μ−1(j) = ∅, and (μ′)−1(μ(i)) =∅ if μ(i) =∅;

(iii) other parts of the allocation remain the same as (μ�p), i.e.,

μ′(i′) = μ
(
i′
)

and p′
i′�μ′(i′) = pi′�μ(i′) for any i′ ∈ I \ {

i�μ−1(j)
};

(iv) each firm updates her information according to her observation of the rematch-
ing, i.e., �′ is finer than �∨�μ′

.19

In defining (μ�p��) ↑(i�j;p), we allow either agent i or agent j to be ∅, in which case
p = 0. In particular, i = ∅ means that firm j dismisses her employee μ−1(j), whereas
j =∅ means that worker i resigns from his firm μ(i). Thus, the operation ↑(i�j;p) and the
term “rematching” apply to both pairs and individuals. For notational convenience, we
also set (μ�p��) ↑(∅�∅;0):= (μ�p��).

Definition 5. A learning-blocking path is a sequence of states {(μl�pl��l)}Ll=0 such
that for any l ≥ 0, the following hold:

(i) if (μl�pl��l) is not blocked, then (μl+1�pl+1) = (μl�pl) and �l+1 = Hμl�pl (�l);

19For instance, we may set �′
j = �j ∨�

μ′
j . For firm j′ = j, define

B := {
w ∈� : (μ�p�w��) is blocked by (i� j;p)}�

That is, B consists of all type assignments of the workers that are consistent with the observation that
(μ�p��) is blocked by (i� j;p). Then we may set �′

j′ as the join of �j′ and {B�� \B}.
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(ii) moreover, if (μl�pl��l) is blocked, then (μl+1�pl+1��l+1) = (μl�pl��l) ↑(i�j;p),
where (i� j;p) is a blocking combination for (μl�pl��l).

We say that a learning-blocking path is finite if its length L is finite. A learning-
blocking path {(μl�pl��l)}Ll=0 is said to converge within finitely many steps if there exists
a finite T < L such that (μl�pl��l) = (μT �pT ��T ) for every l ≥ T . Indeed, a complete-
information blocking path is a special case of a learning-blocking path. In this case, the
partition profile is already the finest (i.e., �j(w) = {w}), which implies that no extra infor-
mation can be obtained from any observation. Thus, a learning-blocking path is simply
a blocking path in the literature, i.e., a sequence of allocations where each allocation
is derived from its preceding allocation by satisfying one of the preceding allocation’s
blocking combinations (see, e.g., Roth and Vande Vate (1990) and Chen et al. (2010)).

We close this subsection by recording the following simple lemma which highlights
a difference between our notion of learning-blocking path and that of Roth and Vande
Vate (1990). The lemma also demonstrates how far agents can go when they are only
“level-1 sophisticated”: applying Hμ�p(·) step by step leads to either a fixed point or a
blocking opportunity. In this sense, our analysis shares a similar spirit as the literature
on learning in game theory.20

Lemma 1. Suppose that a state (μ�p��) admits no blocking pair. Then there exists a finite
learning-blocking path to either (i) a stable state or (ii) a state which admits a blocking
pair and has a partition profile that is strictly finer than �.

Proof. Let �0 := � and �k := Hμ�p(�
k−1) for every k ≥ 1. Observe that �k is increas-

ingly (weakly) finer in k. Since � is finite, there is some finite k∗ such that �k = �k∗

for every k ≥ k∗. If (μ�p��k∗
) admits no blocking pair, it must be a stable state

since Hμ�p(�
k∗
) = �k∗

implies Ĥμ�p(�
k∗
) = �k∗

. Since none of the intermediate state
(μ�p��k), 0 ≤ k< k∗, is blocked due to Fact 1, we know that {(μ�p��k)}k∗

k=0 is a learning-
blocking path.

If (μ�p��k∗
) admits a blocking pair, then we let k∗∗ be the smallest k ≤ k∗ such that

(μ�p��k) admits a blocking pair. Obviously, {(μ�p��k)}k∗∗
k=0 is a learning-blocking path.

4.2 Convergence of learning-blocking paths

When a rematching happens on a learning-blocking path, the rematched worker and
firm both become better off while their previous partners become unmatched. It is then
easier for these unmatched agents to find blocking opportunities. New blocking op-
portunities may, in turn, drag down the payoffs of the agents who previously became
better off. As a result, there may be cycles along a learning-blocking path, i.e., a learning-
blocking path may not converge. This is illustrated in the example provided by Knuth
(1976) in an ordinal-preference setting, and one can also construct an example with cy-
cles in our transferable-utility setting.

20See, e.g., Fudenberg and Levine (1998) for a comprehensive survey.
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However, learning-blocking paths are not completely chaotic. Given an initial state,
we first show a deterministic convergence result. That is, given an arbitrary initial state,
we can suitably choose the blocking combination to be satisfied (when there are many
blocking combinations) such that the resulting learning-blocking path must converge
to a stable state within finitely many steps (see Theorem 2 below). Then we show a ran-
dom convergence result. That is, given an arbitrary initial state, the learning-blocking
path that is resulted from randomly satisfying blocking combinations (when there are
many blocking combinations) must almost surely converge to a stable state within
finitely many steps (see Theorem 3 below). The deterministic convergence has to do
with whether there exists one learning-blocking path that leads to a stable state, while
the random convergence has to do with the probability of reaching a stable state when
blocking combinations are randomly satisfied.

To obtain our results, we need to impose the following assumption that reflects the
fact that payments in practice are measured in monetary units, and hence integers.21

Assumption 1. Payments permitted in the job market are integers.22

Given an arbitrary initial state, we show that by carefully choosing blocking pairs at
each state, we can construct one finite learning-blocking path that ends with a stable
state. The following Theorems 2 and 3 extend the result in (Roth and Vande Vate (1990),
henceforth, RV) to accommodate incomplete information. The proof of Theorem 2 is in
Section 4.4.

Theorem 2. Suppose that Assumption 1 holds. Then starting from an arbitrary initial
state, there exists a finite learning-blocking path that leads to a stable state.

Now, following RV, we consider a random process which starts with an arbitrary
state. The process proceeds to generate a random learning-blocking path, i.e., whenever
an intermediate state is blocked by many combinations, the process randomly satisfies
one of them. In particular, the blocking combination to be satisfied is drawn from a dis-
tribution which has full support on the set of blocking combinations, i.e., each blocking
combination is satisfied with strictly positive probability. Moreover, the distribution de-
pends only on the state but not on the history. This random process mimics the practical
situations in the labor market: agents meet and negotiate randomly until they expect no
more improvement. The theorem below follows from Theorem 2.

21Under Assumption 1, we can analogously define the notion of stable states, and the existence of stable
states is still guaranteed (see Theorem 1 of Crawford and Knoer (1981)). In the rest of this section, we refer
to notions of blocking and stability as those defined under Assumption 1.

22As we mentioned in Footnote 10, salaries must be rounded to the nearest dollar or penny. This is
a technical assumption to ensure finite bargaining choices when a worker-firm pair negotiates, as well
as (more importantly) a realistic situation in decentralized market practice which our matching process
mimics. See Crawford and Knoer (1981), Kelso and Crawford (1982), and Chen et al. (2016) for similar
integral assumptions when finite matching processes are studied. In marriage models in which our results
hold and no payment is involved, this assumption is of course not necessary any more.

Moreover, one can easily construct an example in which (i) two firms compete for one worker, (ii) the
salary increment converges to zero, and (iii) the limit salary still permits a blocking. Therefore, without
Assumption 1, a finite path cannot be guaranteed even in the complete-information environment.
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Theorem 3. Suppose that Assumption 1 holds. Then starting from an arbitrary initial
state, the random learning-blocking path converges with probability one to a stable state.

We briefly explain why Theorem 2 implies Theorem 3. Indeed, thanks to Assump-
tion 1, we may restrict attention to finitely many states.23 Since each blocking com-
bination will be selected according to a distribution that depends on the state but not
the history, we may regard the random learning-blocking path as a finite-state Markov
chain. Obviously, any stable state is absorbing, i.e., it is impossible to leave it. Then the
existence of stable states implies that the Markov chain has at least one absorbing state.
Moreover, by Theorem 2, from every state it is possible to go to an absorbing state (not
necessarily in one step). Therefore, the Markov chain is absorbing, and our Theorem 3
follows immediately from Theorem 11.3 of Grinstead and Snell (1997).

4.3 A comparison of Theorem 2 and RV’s theorem

Theorem 2 is parallel to RV’s theorem. RV constructs a sequence of subsets of agents,

{A(l)}ll=1, and correspondingly, a sequence of matchings {μl}l+1
l=1 such that at each step

l ≥ 1, there is no blocking pair for μl+1 that is contained in A(l). Thus, a blocking pair for
matching μl+1, if any, must involve at least one agent outside A(l). In the subsequent
step l + 1, the set A(l + 1) is obtained by taking the union of A(l) and at least one of
those outside agents. As a result, the set A(l) expands in the sense of set inclusion as the
number of steps grows. Since there are only finitely many agents, the l can be chosen to
be large enough such that the set A(l) includes everyone in the market. By construction
of the sequences, there is no blocking pair for μl+1 that is contained in A(l), i.e., μl+1 is
stable.

At each step of their construction, Roth and Vande Vate start by matching an outside
agent α with her favorite partner in A(l) among those who are willing to form a blocking
pair with her. Then the agent who was abandoned by the favorite partner chosen by
α, if any, will be denoted as α′. RV then match agent α′ with her favorite partner in
A(l) among those who are willing to form a blocking pair with her. Again, there may
be an agent α′′ who was abandoned by the favorite partner chosen by α′, and for whom
we repeat the argument, and so on. This chain will exhaust all blocking opportunities
within A(l + 1) and will produce the desired matching μl+2.

When a firm’s information is incomplete, it is no longer clear who is her favorite
worker. More precisely, without knowing the workers’ types, firms do not know which
worker to favor among those who are willing to form a blocking pair with them. As a
result, a firm may even be unwilling to form a blocking pair with its de facto favorite
worker due to worry about his worst possible type. Moreover, with incomplete informa-
tion, observing either a rematching or the absence of blocking pairs leads to information
updating. Hence, even if we manage to construct μl+1 and an A(l) which contains no
blocking pair for μl+1, this no-blocking property need not be preserved upon satisfying

23More precisely, since there are finitely many type assignments, there is a bounded set of integers P

such that a state is blocked by (i� j;p) only if it is blocked by (i� j;p) with p ∈ P . Clearly, the set of states
with wages either in P or as in the initial state is finite.
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a new blocking pair (to form μl+2). This is because the new blocking pair, or its absence,
carries a new piece of information which may refine the firms’ partitions, improve the
worst case in their mind, and thereby open up new blocking prospects.

Due to these two issues, we cannot adapt RV’s proof to the situation with incomplete
information, although their argument still plays a role here. In proving Theorem 2, as is
done in RV, we construct a sequence of subsets of agents that contain no blocking pairs.
We show that at any initial state there is a path that leads to either (a) a larger subset
of agents that contains no blocking pairs (which is what RV shows) or (b) some firm’s
partition being strictly refined with the new observations along the path (Lemma 2).
Since there are only finitely many type assignments, (b) cannot recur infinitely often.
Hence, the resulting path leads to a stable state by the repetition of (a). We provide a
formal sketch and proof in the next subsection.

4.4 Proof of Theorem 2

To provide a constructive proof of Theorem 2, we consider two cases: the initial state
admits a blocking pair or otherwise. If the initial state (μ0�p0��0) admits no blocking
pair, then by Lemma 1, there is a finite learning-blocking path to either a stable state or
a state with a blocking pair and a partition profile strictly finer than �0. Hence, we only
need to focus on the case where a state admits a blocking pair.

Definition 6. A set of agents A ⊂ I ∪ J is internally stable under state (μ�p��) if the
following hold:

(i) Agents in A are only matched with agents in A.

(ii) The set A does not contain two agents who form a blocking pair for (μ�p��).

(iii) Moreover, every matched agent in A has a strictly positive payoff.

Pick an internally stable set A at state (μ0�p0��0). If (μ0�p0��0) admits a blocking
pair (ī� j̄), then either one or both of agents ī and j̄ are outside A. We deal with the case
where exactly one agent is in A in Lemma 2 below and then the other case in the proof
of Theorem 2. To be precise, we show that we can construct a finite learning-blocking
path that leads to a state (μ�p��) under which either (a) we obtain a strict superset of
A which is still internally stable; or (b) there is a firm j such that �j is strictly finer than
�j . The former case resembles RV, and the latter is new.

Lemma 2. Suppose that Assumption 1 holds. Let A0 be a set of agents which is internally
stable under a state (μ0�p0��0). Suppose that worker i0 /∈A0 (resp., firm j0 /∈A0) forms a
blocking pair for (μ0�p0��0) with a firm (resp., a worker) in A0. Then, starting from state
(μ0�p0��0), there exists a finite learning-blocking path to a state (μ�p��) under which
either (a) the internally stable set is expanded, i.e., A0 ∪ {i0} (resp., A0 ∪ {j0}) is internally
stable; or (b) there exists a firm j whose information partition is strictly refined, i.e., �j is
strictly finer than �0

j .



Theoretical Economics 15 (2020) Learning by matching 45

We document the following simple lemma that will be used in the proof of Lemma 2
and Theorem 2.

Lemma 3. Suppose that there is a finite learning-blocking path starting from state
(μ�p��) to state (μ′�p′��′); moreover, (i� j;p) is a blocking combination for state
(μ′�p′��′) but not for state (μ�p��). If both worker i and firm j get no less pay-
off in state (μ′�p′��′) than in state (μ�p��), then �′′

j is strictly finer than �j , where
(μ′′�p′′��′′)= (μ′�p′��′) ↑(i�j;p).

Proof. Suppose to the contrary that �′′
j = �j . Since i and j are matched under

(μ′′�p′′��′′), firm j knows the type of worker i, which implies that firm j knows the type
of worker i under (μ�p��), and thus also under (μ′�p′��′). Since worker i and firm j gets
no less payoff in state (μ′�p′��′) than in state (μ�p��), (i� j;p) being a blocking com-
bination of (μ′�p′��′) implies that it is also a blocking combination for state (μ�p��).
This is a contradiction.

To prove Lemma 2, we will explicitly construct a learning-blocking path which either
(a) outputs a state such that the internally stable set is expanded in the sense of set in-
clusion; or (b) identifies a combination (i� j;p) that satisfies the conditions in Lemma 3,
satisfying which leads to a strictly finer partition for firm j. The lemma is proved using
what we call the Worker-Adding (Firm-Adding) Algorithm. The algorithm resem-
bles the argument of RV by trying to expand the internally stable set but differs in an
essential manner, i.e., the internally stable set may shrink to an empty set due to infor-
mation updating.

Proof of Lemma 2. Consider the case of a worker i0 /∈ A0 who forms a blocking pair
for state (μ0�p0��0) with firm in A0. To prove the claim, we input state (μ�p��) =
(μ0�p0��0), A = A0, worker α = i0, and (i� j;p) = (∅�∅;0) into the following Worker-
Adding Algorithm. The case of a firm j0 /∈A0 who forms a blocking pair with a worker
in A0 can be similarly proved by switching the roles of worker and firm. In describing
the algorithm, for each input value x of a variable, we denote by x′ the updated value
of x.

The Worker-Adding Algorithm

Start. Input state (μ�p��), a (possibly empty) subset A of I ∪ J, worker α, and
(i� j;p) where i = α. Consider four mutually exclusive cases:

Case 1. There exists a blocking combination for (μ�p��) which includes worker α

and some firm in A.
Pick an arbitrary blocking combination (α� j̄; p̄) with firm j̄ ∈ A for (μ�p��). Set

(μ′�p′��′) = ((μ�p��) ↑(α�j̄;p̄)) ↑(i�j;p), A′ = A ∪ {α}, worker α′ = α, and (i′� j′;p′) =
(μ−1(j̄)� j̄; pμ−1(j̄)�j̄). Go to Start.

Case 2. There exists no blocking combination for (μ�p��) which includes worker
α and a firm in A but there exists a blocking combination for (μ�p��) which includes
worker i ∈ I and some firm in A.
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Pick an arbitrary blocking combination (i� j̄; p̄) with firm j̄ ∈ A for (μ�p��). Set
(μ′�p′��′)= (μ�p��) ↑(i�j̄;p̄), A′ =A, worker α′ = i, and (i′� j′;p′) = (μ−1(j̄)� j̄; pμ−1(j̄)�j̄).
Go to Start.

Case 3. There exists no blocking combination for (μ�p��) which includes either
worker α or worker i and a firm in A. However, there exists a blocking combination
(ī� j̄; p̄) for (μ�p��) with both the firm and the worker in A.

Set (μ′�p′��′) = (μ�p��) ↑(ī�j̄;p̄) and A′ = ∅. Go to end.
Case 4. There exists no blocking combination for (μ�p��) which includes a pair of

agents in A∪ {α}.
Set (μ′�p′��′) = (μ�p��) and A′ =A. Go to end.
End. Output A := A′ and (μ�p��) := (μ′�p′��′).

The algorithm keeps track of the following variables to be updated in each step: a
state (μ�p��), a set A of agents, a worker α, and a “potential blocking combination
(i� j;p).” In each step, exactly one of the four cases will be triggered. Case 1 says that
worker α has the first priority to block the state: as long as he still wants to do so, we
update the state by satisfying one such blocking combination, say matching worker α

and firm j̄; at the same time, we satisfy (i� j;p), update A to A ∪ {α}, and update the
“potential blocking combination” to (i′� j′;p′) where j′ becomes firm j̄, and i′ and p′
become the employee of firm j̄ and the wage which firm j̄ paid to him before she left
for worker α, respectively. Hence, when Case 1 is triggered at a state in which firm j and
worker α are matched, the “potential blocking combination” (i� j;p) is actually firm j’s
match immediately before she is matched with worker α.

We keep triggering Case 1 until there is no more blocking combination which in-
volves worker α. Then we turn to trigger Case 2 if there is a blocking combination which
involves worker i. In this case, we update the state by satisfying one such blocking com-
bination, say matching worker i and firm j̄; moreover, we let worker i become the new
worker α and update the “potential blocking combination” to (i′� j′;p′) where j′ be-
comes firm j̄, and i′ and p′ become the employee of firm j̄ and the wage which firm
j̄ paid to him before she left for worker α, respectively. The algorithm will stop, once
there is no blocking combination which involves either worker α or worker i. Then the
algorithm outputs the updated state and ∅ if there is still a blocking combination with
two agents both in A; otherwise, it outputs the state and the set A of the final step.

First of all, we claim that the algorithm produces a learning-blocking path. It suffices
to clarify that in Case 1, (i� j;p) is a blocking combination for (μ�p��) ↑(α�j̄;p̄). For the
initial input (i� j;p) = (∅�∅;0), this is a dummy condition. If (i� j;p) is updated after
either Case 1 or Case 2 is triggered, worker i is unmatched; moreover, after we satisfy
a new blocking combination (α� j̄; p̄) in Case 1, firm j also becomes unmatched. Since
every matched agent in A has a strictly positive payoff (and remains so along the path),
we know that i and j both prefer being rematched with each other at p to standing alone,
i.e., (i� j;p) is indeed a blocking combination for (μ�p��) ↑(α�j̄;p̄).

Second, we claim that the constructed path is finite. Indeed, by Assumption 1, some
firm’s payoff is strictly increased when Case 1 or Case 2 is triggered; moreover, a firm’s
payoff never decrease in the algorithm unless she is firm j in Case 1, in which case her
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payoff drops after a temporary increase and, at the same time, some other firm’s payoff
must strictly increase. Since we have only finitely many firms in A, the constructed path
can be infinite only if some firm’s payoff is improved indefinitely. However, this con-
tradicts individual rationality of workers and that the surpluses are uniformly bounded
across all matches.

Third, if the path terminates by triggering Case 4, then A = A0 ∪ {i0} is internally
stable. Hence, it suffices to argue that when the path terminates by triggering Case 3,
the updated partition of the blocking firm j̄ in Case 3 must be strictly finer than her
partition under the initial state. To see this, we denote by {(αk� ik)}Kk=1 the sequence of
workers who serve in order the role of worker α and the role of worker i in Case 2 up until
Case 3 is triggered. Let k∗ ≤K−1 be the maximal k such that ī = αk (k∗ := 0 if ī has never
served the role of worker α). Hence, worker ī is neither αk nor ik for every k≥ k∗ + 1.

Since only worker α or worker i changes his partner or wage in the algorithm before
it terminates, worker ī remains matched with the firm and wage which he settled as
worker αk∗

(or at the initial state (μ0�p0��0) if k∗ = 0). Moreover, no firm’s payoff goes
down in the algorithm. Finally, Case 2 must be triggered when worker αk∗+1 succeeds
worker ī to become a new worker α and when there was no more blocking combination
which involves worker ī. In particular, (ī� j̄; p̄) was not a blocking combination for the
state in the underlying Case 2 but becomes one when Case 3 is triggered. It follows from
Lemma 3 that firm j̄ has an updated partition �j that is strictly finer than �0

j .

Proof of Theorem 2. Consider an initial state. Without loss of generality, we assume
that the initial state is individually rational (otherwise, break up all pairs with an agent
who obtains a negative payoff). Furthermore, it is straightforward that any learning-
blocking path preserves individual rationality. Thus, as long as we construct a learning-
blocking path, the terminal state is individually rational.

We take an initial set of agents A0 = ∅, where the variable A will be updated during
the construction below. For each state (μ�p��), we distinguish two cases: (i) (μ�p��)

admits no blocking pair; (ii) (μ�p��) admits a blocking pair. First, by Lemma 1, for each
state (μ�p��) in Case (i), there is a finite learning-blocking path to either a stable state or
a state in Case (ii) with a partition profile that is strictly finer than �, where we update A

to A′ = ∅ and proceed. Second, for each state (μ�p��) in Case (ii) with a set of agents A
which is internally stable under (μ�p��), consider two subcases: First, if some blocking
combination involves an agent in A and an agent outside A, then by Lemma 2, starting
from (μ�p��), there exists a finite learning-blocking path to a state (μ′�p′��′) under
which either (a) a setA′ �A is internally stable; or (b)�′ is strictly finer than �, where we
set A′ =∅ and proceed. Second, if every blocking combination involves only two agents
outside A, then we satisfy a blocking combination (ī� j̄; p̄) to obtain (μ�p��) ↑(ī�j̄;p̄). If

A′ = A∪ {ī� j̄} is internally stable under (μ�p��) ↑(ī�j̄;p̄), then (a) holds. If A′ = A∪ {ī� j̄}
contains a blocking pair (i� j), with wage p, for (μ�p��) ↑(ī�j̄;p̄), then by Lemma 3, (b)
holds for (μ′�p′��′) := ((μ�p��) ↑(ī�j̄;p̄)) ↑(i�j;p), where we set A′ =∅ and proceed.

To sum up, for each state in Case (ii) with a set A which is internally stable, we can
construct a finite learning-blocking path to a state under which either (a) a set A′ �A

is internally stable; or (b) the partition profile is strictly finer. Moreover, for each state in
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Case (i), we can also construct a finite learning-blocking path to either (a′) a stable state
or (b′) a state in Case (ii) with a strictly finer partition profile. Since � is finite, the par-
tition profile cannot be refined indefinitely. Hence, along the path which we construct
by applying Lemma 1 and Lemma 2, eventually neither (b) nor (b′) happens. Therefore,
(a) keeps enlarging the internally stable set until (a′) happens. That is, there is a finite
learning-blocking path which leads to a stable state.

5. Discussions

5.1 Robustness of convergence

The learning-blocking path described in Section 4.1 includes three kinds of inferences
that can be drawn from different observations. We use Hμ�p(�), defined in (10), to de-
scribe agents’ updated information structure when they observe no rematching. Note
that we only require that the firms be “level-1 sophisticated” in applying the operator
Hμ�p(·) once. When agents observe a rematching, we allow for the flexibility of the up-
dated information structure. More precisely, we put no additional restrictions on �′ in
condition (iv) beyond requiring that it is finer than �∨�μ′

. To sum up, we only build in
naive behavioral rules in defining a learning-blocking path, yet our result shows that a
stable state can be reached with probability one. In this sense, our result share a similar
spirit as the literature on learning in game theory.

In fact, it is clear from its proof that Theorem 2 remains valid even if equation (10),
as an information-updating rule, and condition (iv) are violated for finitely many times
along each learning-blocking path. Such violations include situations in which the firms
do not have perfect recall (i.e., �′ is not necessarily finer than � ∨ �μ′

as required in
condition (iv)) or in which it takes some time for firms to learn how to draw the inference
embodied in (10).

5.2 Initial states and limit states

In general, the set of stable states that can arise from a learning-blocking path depends
on its initial state. For instance, when the initial state is stable, there is only a trivial
learning-blocking path which leads to itself. RV shows that in a complete-information
setting, starting from an initial matching where all agents stand alone imposes no re-
striction on the limit matching beyond stability. That is, every stable matching can be
achieved by a blocking path that starts from the no-match status. As a result, a random
blocking path starting at a no-match initial status will achieve every stable matching
with strictly positive probability. However, this is no longer the case if information is
incomplete.

Example 2. Consider a job market with only one worker α and one firm a. The firm’s
type is given by fa = 1. The worker’s type is either w1

α = 1 or w−1
α = −1. The premunera-

tion value functions are given by φwf = wf and νwf = |wf |.
Suppose that w1

α is the true type for the worker. In this market, any state with a match
μ(α) = a, wage payment p in [−1�1], and the firm’s partition given by �a = {{w1

α}� {w−1
α }},
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is stable. Moreover, the no-match state with μ(α) = ∅, p = 0, and �a = {{w1
α�w

−1
α }}, is

also stable. Obviously, starting from the no-match state, the stable states with a match
cannot be achieved by any learning-blocking path.

Given an arbitrary initial state, we know that the limiting stable state necessarily has
a partition profile that is finer than the initial partition profile. That is, only a state which
is stable with a finer partition profile can be a limit. However, Example 2 shows that the
converse is not true, i.e., not every such stable state can be achieved from the given
initial state via learning-blocking paths.

There are also situations where all initial states lead to a unique limit matching (up
to the relabeling of agents who have the same type). For example, if agents have one-
dimensional types and the value functions satisfy monotonicity and supermodularity,
then every stable matching outcome is efficient (see Proposition 3 in LMPS). It then fol-
lows from Theorem 1 that every stable state is efficient, where the matching is positive
assortative and thereby unique up to the relabeling of agents with the same type.24

5.3 Allocation change along learning-blocking paths

As RV observed, the blocking path to stability which they construct is closely related
to the deferred acceptance (DA) algorithm proposed by Gale and Shapley (1962). To
be precise, consider the blocking path in a marriage matching market with an initial
matching in which all agents are single. Under the initial matching, the set of men is
internally stable. Then a woman is added to the set and a blocking path is triggered.
Once the blocking path stops (i.e., once the expanded set becomes internally stable),
another woman is added to the expanded set. Inductively, women are added one by one
until a stable matching is reached. The sequence of matchings which RV construct in
proving their convergence result is precisely the sequence of matchings which occur in
the women-proposing DA algorithm. As in DA, along the path every man gets better and
better partners while every woman gets worse and worse partners.

With transfers and incomplete information, the learning-blocking path which we
construct in the proof of Theorem 2 exhibits a similar kind of monotonicity. Consider
the situation in Lemma 2 with i0 /∈ A. Suppose that the Worker-Adding Algorithm

outputs A ∪ {i0}, i.e., that the internally stable set is expanded. We observe that the
wage which a firm pays to the same worker must be monotonically decreasing. This
is because the payoff of every firm in A monotonically increases as the “competition”
of workers intensifies. Similarly, in the Firm-Adding Algorithm, i.e., j0 /∈ A in the
statement of Lemma 2, if the algorithm outputs A ∪ {j0}, then the wage which a firm
pays to the same worker must be monotonically increasing. Hence, along the learning-
blocking path that we constructed, the wage which a firm pays to the same worker must
be piecewise monotonic, except for some construction steps where we simultaneously
add a worker-firm pair to the internally stable set A.

24With discrete transfer (Assumption 1), we can show that when the monetary unit is sufficiently small,
the monotonicity and supermodularity of value functions still imply the efficiency of stable states.
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5.4 Bayesian stability

One crucial assumption which we made is that firms evaluate the prospect of a blocking
opportunity according to the worst possible scenario. We adopt this assumption from
LMPS to obtain a stability notion which is comparable to theirs (Theorem 1). Here, we
demonstrate that we can instead adopt a Bayesian perspective in defining stability and
still prove the result on paths to stability.

Consider a Bayesian setting in which we fix the firms’ common prior λ, which has full
support on �. Given an allocation (μ�p), let D(μ�p)

ijp denote the set of type assignments
under which worker i gains after the combination (i� j;p) is satisfied, i.e.,

D
(μ�p)
ijp := {w ∈� : νw(i)�f(j) +p> νw(i)�f(μ(i)) + pi�μ(i)}�

Drawing on Bikhchandani (2017), we can define a Bayesian blocking notion which ac-
commodates heterogeneous information among firms. Given a state (μ�p�w��) and a
combination (i� j;p), let D(μ�p�w��)

ijp be the set of type assignments which is consistent
with firm j’s partition and under which worker i finds the combination (i� j;p) prof-
itable, i.e.,

D
(μ�p�w��)
ijp := D

(μ�p)
ijp ∩�j(w)�

Definition 7. A state (μ�p�w��) is said to be Bayesian blocked if there exists a worker-
firm pair (i� j) and a payment p ∈ R such that worker i and firm j both prefer to be re-
matched with each other at wage p, i.e.,

νw(i)�f(j) +p> νw(i)�f(μ(i)) + pi�μ(i) and

Eλ
[
φw′(i)�f(j)|D(μ�p�w��)

ijp

] −p>φw(μ−1(j))�f(j) − pμ−1(j)�j�
25

Equipped with Definition 7, we can define NB
μ�p�� and ĤB

μ�p(·) in a way that is sim-

ilar to how we define Nμ�p�� and Ĥμ�p(·) in Section 3.3. Then we say that a state
(μ�p�w��) is Bayesian stable if it is individually rational (Definition 1) and not Bayesian
blocked, and if it satisfies ĤB

μ�p(�) = �. Clearly, if a state is blocked, then it must
be Bayesian blocked. Hence, if a state (μ�p�w��) is Bayesian stable, then the state
(μ�p�w� Ĥ∞

μ�p(�)) is stable, where Ĥk
μ�p(·) := Ĥμ�p(Ĥ

k−1
μ�p (·)).26 Thus, a Bayesian sta-

ble outcome must be a stable outcome. Example 2 (with minor modifications) demon-
strates that the converse is not true.

Example 2 (Revisited). Let λ be a full-support prior over w1
α and w−1

α . Recall that the no-
match state with μ(α) = ∅, p = 0, and �a = {{w1

α�w
−1
α }}, is stable. However, according

25Note that the conditional expectation in the second condition is well-defined given the first condition
because λ has full support on �.

26Since blocking implies Bayesian blocking, (μ�p�w��) is not blocked and NB
μ�p�� ⊂ Nμ�p��. An argu-

ment similar to that in the proof of Corollary 1 shows that (μ�p�w� Ĥ∞
μ�p(�)) is not blocked. Since Ĥ∞

μ�p(�)

is a fixed point of Ĥμ�p, we know that (μ�p�w� Ĥ∞
μ�p(�)) is stable.
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to Definition 7, the no-match state can be Bayesian blocked. To be precise, consider the
wage p = 1/2[−1 +λ(w1

α)−λ(w−1
α )]. In the match with p, the worker’s payoff is given by

1 +p = 1
2

+ 1
2
[
λ
(
w1
α

) − λ
(
w−1
α

)]
�

Thus, since λ(w1
α) − λ(w−1

α ) > −1, it follows that the worker’s payoff is greater than the
payoff of being unmatched (i.e., zero). Similarly, the firm’s expected payoff in the match
with p is

[
λ
(
w1
α

) · 1 + λ
(
w−1
α

) · (−1)
] −p= 1

2
+ 1

2
[
λ
(
w1
α

) − λ
(
w−1
α

)]
,

which, again, is greater than zero. Therefore, the no-match state can be Bayesian
blocked.

We can also study the path-to-stability problem under the notion of Bayesian stabil-
ity. To prove results parallel to Theorems 2–3, we need to make only two changes: (i) re-
place blocking combinations by Bayesian blocking combinations and the operator Hμ�p

by HB
μ�p; and (ii) modify the proof of Lemma 2. We provide the details in Appendix B.

As in the rest of our paper, we adopt the interim notion of stability with arbitrary
information structure to study the path-to-stability problem. In contrast, Bikhchandani
(2017), like LMPS, considers a setting where firms’ private information is only the ob-
served types of their own employees. Liu (2017) defines an ex ante notion of Bayesian
stable matching which refers to neither the true type assignment nor the information
partition. In particular, an allocation (μ�p) is ex ante Bayesian blocked by (i� j;p) if
λ(D

(μ�p)
ijp ) > 0 and

Eλ
[
φw(i)�f(j)|D(μ�p)

ijp

] −p> max
{
0�Eλ

[
φw(μ−1(j))�f(j)|D(μ�p)

ijp

] − pμ−1(j)�j

}
�

An allocation (μ�p) is ex ante Bayesian stable if it is (ex ante) individually rational and
not ex ante Bayesian blocked by any (i� j;p). In this stability notion, information sta-
bility becomes irrelevant because neither the information partition nor the true type
assignment is fixed.

6. Concluding remarks

In this paper, we propose a notion of stability for matching with one-sided incomplete
information, a notion which accommodates arbitrary heterogeneity of firms’ informa-
tion. Moreover, we show the convergence of random learning-blocking paths to sta-
ble states; the convergence extends the result due to Roth and Vande Vate (1990) to an
incomplete-information environment. For the current paper, it is crucial to describe
what firms know and how firms update their possibilistic information. From this per-
spective, our analysis complements that of Liu et al. (2014) and provides a benchmark
for studying the dynamic decentralized foundation of incomplete-information stabil-
ity.27

27See, e.g., Lauermann and Nöldeke (2014) for a formulation of decentralized matching markets.



52 Chen and Hu Theoretical Economics 15 (2020)

Appendix A: Proofs for Section 3

Proof of Theorem 1. Necessity. Suppose that (μ�p�w) ∈ 
∞. Define

�0 = {
w′ ∈� : (μ�p�w′) ∈ 
∞}

�

Define � as the partition induced by μ and �0, i.e., � := �μ∨{�0��\�0}. Since (μ�p�w)

is individually rational, it follows that (μ�p�w��) is individually rational. Since (μ�p�w)

is not 
∞-blocked, it follows that (μ�p�w��) is not blocked. Moreover, for each w′ ∈ �0

we have (μ�p�w′) ∈ 
∞, and hence (μ�p�w′��) is not blocked. This implies that

�0 ⊂Nμ�p��� (11)

Since �j(w′) ⊂ �0 for every w′ ∈ �0 and every j ∈ J, it follows from (11) that �j(w′) ∩
Nμ�p�� =�j(w′) for every w′ ∈�0, i.e., Ĥμ�p(�) = �. Therefore, (μ�p�w��) is stable.

Sufficiency. Suppose that there exists a partition profile � such that � is consistent
with μ and (μ�p�w��) is a stable state. Then obviously (μ�p�w) is individually rational.
Define


K := {(
μ�p�w′) : w′ ∈K�(w)

}
�

It suffices to show that 
K is a self-stabilizing set.28 Then it follows from Proposition 2 of
LMPS that 
K ⊂ 
∞; hence, (μ�p�w), which belongs to 
K , is a stable outcome. To see
that 
K is self-stabilizing, fix an arbitrary w′ ∈ K�(w) and we show that (μ�p�w′) is not

K-blocked. First, since w′ ∈K�(w), we have

�j

(
w′) ⊂K�(w)� (12)

Second, since � is consistent with μ, we also have for each w′′ ∈ �j(w′) that

w′′(μ−1(j)
) = w′(μ−1(j)

)
� (13)

Third, since (μ�p�w��) is a stable state, we have Ĥμ�p(�) = �, which implies K�(w) ⊂
Nμ�p��, and thus, by (12), w′ ∈ Nμ�p��. Finally, since (μ�p�w��) is not blocked and w′ ∈
Nμ�p��, it follows that (μ�p�w′��) is not blocked, either. Thus, by (12), (13), and Fact 1,
we conclude that (μ�p�w′) is not 
K-blocked.

Proof of Corollary 1. By Theorem 1, it suffices to prove the necessity part. Consider
an outcome (μ�p�w) in 
∞. By Theorem 1, there exists a partition profile � such that
(μ�p�w��) is stable. Hence, � = Ĥμ�p(�) and (μ�p�w��) is not blocked. Since � is
consistent with μ, it follows that � is (weakly) finer than �μ. Therefore, by Fact 1, we
know that (μ�p�w��μ) is not blocked. Similarly, for every w′ ∈ Nμ�p��, (μ�p�w′��μ) is
not blocked. That is, Nμ�p�� ⊂ Nμ�p��μ . Note that � = Ĥμ�p(�) implies K�(w) ⊂ Nμ�p��.
Thus, we have

K�(w) ⊂ Nμ�p��μ�

28A nonempty set of individually rational matching outcomes E is self-stabilizing if every (μ�p�w) ∈ E

is E-stable.
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As a result, �j(w′) ⊂�
μ�p�1
j (w′) for all w′ ∈K�(w) and all j. Inductively, we have

K�(w) ⊂ Nμ�p��μ�p�k�

which implies that �j(w′) ⊂ �
μ�p�k
j (w′) for all w′ ∈ K�(w), all j, and all k. Finally,

since (μ�p�w��) is not blocked, it follows from Definition 2 that (μ�p�w��μ�p�∞) is
not blocked.

Appendix B: Convergence under Bayesian stability

Under Bayesian stability, the proof of the convergence of learning-blocking paths is
identical to that under (worst-case) stability (i.e., the proof of Theorem 2), except that
we need to modify the proof of Lemma 2. In particular, cases in the Worker-Adding

Algorithm are replaced by the following two cases.
Case 0. (i� j;p) is a Bayesian blocking combination for (μ�p��).
Set (μ′�p′��′) = (μ�p��) ↑(i�j;p) and A′ =∅. Go to end.
Case 1. (i� j;p) is not a Bayesian blocking combination for (μ�p��). Consider four

subcases as in the Worker-Adding Algorithm, which are now referred to as Cases 1.1–
1.4.

In contrast to the worst-case notion, a firm may “regret” joining a blocking pair in
a Bayesian setting; for example, after she joins a Bayesian blocking pair, she discovers
that her payoff under the new employee’s true type ends up being strictly lower than her
payoff with the previous employee. The only difference between the modified Worker-
Adding Algorithm and the previous Worker-Adding Algorithm is that whenever
firm j “regrets,” we let firm j hire her previous partner worker i again and terminate the
algorithm (Case 0). With this modification, we only need to make the following minor
changes in the proof of Lemma 2.

First, the path which we construct is still finite. Indeed, the payoff of any firm in A

never decrease before the algorithm terminates, unless she is the firm j in Case 1.1. In
this case, firm j is first abandoned by worker α (and suffer a payoff decrease) and then
rematched with the previous worker i. As a result, firm j still gets her payoff before be-
ing matched with worker α. Moreover, when Case 1.1 or Case 1.2 is triggered, one of
the following two situations must be true: (a) firm j̄’s payoff is strictly increased; or (b)
the information partition of firm j̄ gets strictly finer. To see this, suppose firm j̄ gets
no higher payoff when Case 1.1 is triggered. Since firm j̄ is the blocking firm, her ex-
pected payoff from being rematched with α at p̄ must be strictly higher than her status
quo payoff, i.e., the one she gets when she was matched with μ−1(j̄) at pμ−1(j̄)�j̄ . Since

firm j̄ expects strictly higher payoff but ends up getting no higher payoff (from being
rematched with α at p̄), firm j̄ must have imprecise information about worker α’s type.
Therefore, after being rematched, firm j̄’s partition gets strictly finer because she has
learned the true type of α. The argument for Case 1.2 is identical to that for Case 1.1, ex-
cept that we need to replace α with i. As a result, we only need to focus on situation (a),
and thus the situation where the payoff of any firm in A never decrease (essentially) and
that of at least one firm in A strictly increases. Since we have only finitely many firms
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in A, the constructed path can be infinite only if some firm’s payoff is improved indefi-
nitely. However, this contradicts individual rationality of workers and that the surpluses
are uniformly bounded across all matches.

Second, we argue that if the path terminates by triggering Case 0, then the partition
of the blocking firm j in Case 0 must be strictly finer than her partition under the pre-
ceding state. Indeed, if firm j “regrets” leaving worker i for worker α, it must be the case
that firm j has not learned worker α’s type prior to her match with α. Hence, firm j’s
partition becomes strictly finer after observing the type of α.

The rest of the proof of Lemma 2, Lemma 3, and Theorem 2 does not change in the
Bayesian setting.
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Abdulkadiroğlu, Atila and Tayfun Sönmez (2003), “School choice: A mechanism design
approach.” American Economic Review, 729–747. [29]

Anderson, Axel and Lones Smith (2010), “Dynamic matching and evolving reputations.”
The Review of Economic Studies, 77, 3–29. [32]

Aumann, Robert J. (1976), “Agreeing to disagree.” The Annals of Statistics, 1236–1239. [39]

Balinski, Michel and Tayfun Sönmez (1999), “A tale of two mechanisms: Student place-
ment.” Journal of Economic Theory, 84, 73–94. [29]

Bikhchandani, Sushil (2017), “Stability with one-sided incomplete information.” Journal
of Economic Theory, 168, 372–399. [30, 32, 50, 51]

Chakraborty, Archishman, Alessandro Citanna, and Michael Ostrovsky (2010), “Two-
sided matching with interdependent values.” Journal of Economic Theory, 145, 85–105.
[32]

Chen, Bo, Satoru Fujishige, and Zaifu Yang (2010), “Decentralized market processes to
stable job matchings with competitive salaries.” KIER Discussion paper, 749. [32, 41]

Chen, Bo, Satoru Fujishige, and Zaifu Yang (2016), “Random decentralized market pro-
cesses for stable job matchings with competitive salaries.” Journal of Economic Theory,
165, 25–36. [32, 42]

Chen, Yi-Chun and Gaoji Hu (2017), “A theory of stability in matching with incomplete
information.” Working paper. [33]

Crawford, Vincent P. and Elsie Marie Knoer (1981), “Job matching with heterogeneous
firms and workers.” Econometrica, 49, 437–450. [33, 37, 42]

Dutta, Bhaskar and Rajiv Vohra (2005), “Incomplete information, credibility and the
core.” Mathematical Social Sciences, 50, 148–165. [32]

Ehlers, Lars and Jordi Massó (2007), “Incomplete information and singleton cores in
matching markets.” Journal of Economic Theory, 136, 587–600. [32]

http://www.e-publications.org/srv/te/linkserver/setprefs?rfe_id=urn:sici%2F1933-6837%282020%2915%3A1%3C29%3ALBM%3E2.0.CO%3B2-M
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:1/abdulkadiroglu2003school&rfe_id=urn:sici%2F1933-6837%282020%2915%3A1%3C29%3ALBM%3E2.0.CO%3B2-M
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:2/anderson2010dynamic&rfe_id=urn:sici%2F1933-6837%282020%2915%3A1%3C29%3ALBM%3E2.0.CO%3B2-M
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:3/aumann1976agreeing&rfe_id=urn:sici%2F1933-6837%282020%2915%3A1%3C29%3ALBM%3E2.0.CO%3B2-M
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:4/balinski1999tale&rfe_id=urn:sici%2F1933-6837%282020%2915%3A1%3C29%3ALBM%3E2.0.CO%3B2-M
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:5/bikhchandani2017stability&rfe_id=urn:sici%2F1933-6837%282020%2915%3A1%3C29%3ALBM%3E2.0.CO%3B2-M
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:6/chakraborty2010two&rfe_id=urn:sici%2F1933-6837%282020%2915%3A1%3C29%3ALBM%3E2.0.CO%3B2-M
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:8/chen2016random&rfe_id=urn:sici%2F1933-6837%282020%2915%3A1%3C29%3ALBM%3E2.0.CO%3B2-M
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:10/crawford1981job&rfe_id=urn:sici%2F1933-6837%282020%2915%3A1%3C29%3ALBM%3E2.0.CO%3B2-M
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:11/dutta2005incomplete&rfe_id=urn:sici%2F1933-6837%282020%2915%3A1%3C29%3ALBM%3E2.0.CO%3B2-M
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:12/ehlers2007incomplete&rfe_id=urn:sici%2F1933-6837%282020%2915%3A1%3C29%3ALBM%3E2.0.CO%3B2-M
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:1/abdulkadiroglu2003school&rfe_id=urn:sici%2F1933-6837%282020%2915%3A1%3C29%3ALBM%3E2.0.CO%3B2-M
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:2/anderson2010dynamic&rfe_id=urn:sici%2F1933-6837%282020%2915%3A1%3C29%3ALBM%3E2.0.CO%3B2-M
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:4/balinski1999tale&rfe_id=urn:sici%2F1933-6837%282020%2915%3A1%3C29%3ALBM%3E2.0.CO%3B2-M
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:5/bikhchandani2017stability&rfe_id=urn:sici%2F1933-6837%282020%2915%3A1%3C29%3ALBM%3E2.0.CO%3B2-M
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:6/chakraborty2010two&rfe_id=urn:sici%2F1933-6837%282020%2915%3A1%3C29%3ALBM%3E2.0.CO%3B2-M
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:8/chen2016random&rfe_id=urn:sici%2F1933-6837%282020%2915%3A1%3C29%3ALBM%3E2.0.CO%3B2-M
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:8/chen2016random&rfe_id=urn:sici%2F1933-6837%282020%2915%3A1%3C29%3ALBM%3E2.0.CO%3B2-M
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:10/crawford1981job&rfe_id=urn:sici%2F1933-6837%282020%2915%3A1%3C29%3ALBM%3E2.0.CO%3B2-M
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:11/dutta2005incomplete&rfe_id=urn:sici%2F1933-6837%282020%2915%3A1%3C29%3ALBM%3E2.0.CO%3B2-M
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:12/ehlers2007incomplete&rfe_id=urn:sici%2F1933-6837%282020%2915%3A1%3C29%3ALBM%3E2.0.CO%3B2-M


Theoretical Economics 15 (2020) Learning by matching 55

Ehlers, Lars and Jordi Massó (2015), “Matching markets under (in) complete informa-
tion.” Journal of Economic Theory, 157, 295–314. [32]

Fudenberg, Drew and David K. Levine (1998), The Theory of Learning in Games, volume
2. MIT press. [41]

Fujishige, Satoru and Zaifu Yang (2017), “On a spontaneous decentralized market pro-
cess.” The Journal of Mechanism and Institution Design, 2, 1–37. [32]

Gale, David and Lloyd S. Shapley (1962), “College admissions and the stability of mar-
riage.” The American Mathematical Monthly, 69, 9–15. [31, 49]

Grinstead, Charles M. and James Laurie Snell (1997), Introduction to Probability. Amer-
ican Mathematical Society. [43]

Kelso, Alexander S. Jr and Vincent P. Crawford (1982), “Job matching, coalition forma-
tion, and Gross substitutes.” Econometrica: Journal of the Econometric Society, 50, 1483–
1504. [42]

Klaus, Bettina and Flip Klijn (2007), “Paths to stability for matching markets with cou-
ples.” Games and Economic Behavior, 58, 154–171. [32]

Knuth, Donald Ervin (1976), Mariages Stables et Leurs Relations Avec d’Autres Problèmes
Combinatoires. Presses de l’Université de Montréal. [30, 41]

Kojima, Fuhito and M. Utku Ünver (2008), “Random paths to pairwise stability in many-
to-many matching problems: A study on market equilibration.” International Journal of
Game Theory, 36, 473–488. [32]

Lauermann, Stephan and Georg Nöldeke (2014), “Stable marriages and search frictions.”
Journal of Economic Theory, 151, 163–195. [51]

Lazarova, Emiliya and Dinko Dimitrov (2017), “Paths to stability in two-sided matching
under uncertainty.” International Journal of Game Theory, 46, 29–49. [32]

Liu, Qingmin (2017), “Stable belief and stable matching.” Working paper. [51]

Liu, Qingmin, George J. Mailath, Andrew Postlewaite, and Larry Samuelson (2014), “Sta-
ble matching with incomplete information.” Econometrica, 82, 541–587. [29, 30, 51]

Ma, Jinpeng (1996), “On randomized matching mechanisms.” Economic Theory, 8, 377–
381. [32]

Mailath, George J., Andrew Postlewaite, and Larry Samuelson (2013), “Pricing and in-
vestments in matching markets.” Theoretical Economics, 8, 535–590. [33]

Mailath, George J., Andrew Postlewaite, and Larry Samuelson (2017), “Premuneration
values and investments in matching markets.” The Economic Journal. [33]

Pomatto, Luciano (2019), “Stable matching under forward-induction reasoning.” Work-
ing paper. [32]

Roth, Alvin E. (1989), “Two-sided matching with incomplete information about others’
preferences.” Games and Economic Behavior, 1, 191–209. [32, 35]

http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:13/ehlers2015matching&rfe_id=urn:sici%2F1933-6837%282020%2915%3A1%3C29%3ALBM%3E2.0.CO%3B2-M
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:14/fudenberg1998theory&rfe_id=urn:sici%2F1933-6837%282020%2915%3A1%3C29%3ALBM%3E2.0.CO%3B2-M
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:15/fujishige2017spontaneous&rfe_id=urn:sici%2F1933-6837%282020%2915%3A1%3C29%3ALBM%3E2.0.CO%3B2-M
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:16/gale1962college&rfe_id=urn:sici%2F1933-6837%282020%2915%3A1%3C29%3ALBM%3E2.0.CO%3B2-M
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:18/kelso1982job&rfe_id=urn:sici%2F1933-6837%282020%2915%3A1%3C29%3ALBM%3E2.0.CO%3B2-M
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:19/klaus2007paths&rfe_id=urn:sici%2F1933-6837%282020%2915%3A1%3C29%3ALBM%3E2.0.CO%3B2-M
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:20/knuth1976mariages&rfe_id=urn:sici%2F1933-6837%282020%2915%3A1%3C29%3ALBM%3E2.0.CO%3B2-M
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:21/kojima2008random&rfe_id=urn:sici%2F1933-6837%282020%2915%3A1%3C29%3ALBM%3E2.0.CO%3B2-M
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:22/lauermann2014stable&rfe_id=urn:sici%2F1933-6837%282020%2915%3A1%3C29%3ALBM%3E2.0.CO%3B2-M
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:23/lazarova2017paths&rfe_id=urn:sici%2F1933-6837%282020%2915%3A1%3C29%3ALBM%3E2.0.CO%3B2-M
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:25/liu2014stable&rfe_id=urn:sici%2F1933-6837%282020%2915%3A1%3C29%3ALBM%3E2.0.CO%3B2-M
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:26/ma1996randomized&rfe_id=urn:sici%2F1933-6837%282020%2915%3A1%3C29%3ALBM%3E2.0.CO%3B2-M
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:27/mailath2013pricing&rfe_id=urn:sici%2F1933-6837%282020%2915%3A1%3C29%3ALBM%3E2.0.CO%3B2-M
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:28/mailath2017premuneration&rfe_id=urn:sici%2F1933-6837%282020%2915%3A1%3C29%3ALBM%3E2.0.CO%3B2-M
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:30/roth1989two&rfe_id=urn:sici%2F1933-6837%282020%2915%3A1%3C29%3ALBM%3E2.0.CO%3B2-M
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:13/ehlers2015matching&rfe_id=urn:sici%2F1933-6837%282020%2915%3A1%3C29%3ALBM%3E2.0.CO%3B2-M
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:14/fudenberg1998theory&rfe_id=urn:sici%2F1933-6837%282020%2915%3A1%3C29%3ALBM%3E2.0.CO%3B2-M
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:15/fujishige2017spontaneous&rfe_id=urn:sici%2F1933-6837%282020%2915%3A1%3C29%3ALBM%3E2.0.CO%3B2-M
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:16/gale1962college&rfe_id=urn:sici%2F1933-6837%282020%2915%3A1%3C29%3ALBM%3E2.0.CO%3B2-M
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:18/kelso1982job&rfe_id=urn:sici%2F1933-6837%282020%2915%3A1%3C29%3ALBM%3E2.0.CO%3B2-M
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:18/kelso1982job&rfe_id=urn:sici%2F1933-6837%282020%2915%3A1%3C29%3ALBM%3E2.0.CO%3B2-M
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:19/klaus2007paths&rfe_id=urn:sici%2F1933-6837%282020%2915%3A1%3C29%3ALBM%3E2.0.CO%3B2-M
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:20/knuth1976mariages&rfe_id=urn:sici%2F1933-6837%282020%2915%3A1%3C29%3ALBM%3E2.0.CO%3B2-M
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:21/kojima2008random&rfe_id=urn:sici%2F1933-6837%282020%2915%3A1%3C29%3ALBM%3E2.0.CO%3B2-M
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:21/kojima2008random&rfe_id=urn:sici%2F1933-6837%282020%2915%3A1%3C29%3ALBM%3E2.0.CO%3B2-M
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:22/lauermann2014stable&rfe_id=urn:sici%2F1933-6837%282020%2915%3A1%3C29%3ALBM%3E2.0.CO%3B2-M
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:23/lazarova2017paths&rfe_id=urn:sici%2F1933-6837%282020%2915%3A1%3C29%3ALBM%3E2.0.CO%3B2-M
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:25/liu2014stable&rfe_id=urn:sici%2F1933-6837%282020%2915%3A1%3C29%3ALBM%3E2.0.CO%3B2-M
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:26/ma1996randomized&rfe_id=urn:sici%2F1933-6837%282020%2915%3A1%3C29%3ALBM%3E2.0.CO%3B2-M
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:27/mailath2013pricing&rfe_id=urn:sici%2F1933-6837%282020%2915%3A1%3C29%3ALBM%3E2.0.CO%3B2-M
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:28/mailath2017premuneration&rfe_id=urn:sici%2F1933-6837%282020%2915%3A1%3C29%3ALBM%3E2.0.CO%3B2-M
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:30/roth1989two&rfe_id=urn:sici%2F1933-6837%282020%2915%3A1%3C29%3ALBM%3E2.0.CO%3B2-M


56 Chen and Hu Theoretical Economics 15 (2020)

Roth, Alvin E. (2008), “Deferred acceptance algorithms: History, theory, practice, and
open questions.” International Journal of Game Theory, 36, 537–569. [29, 31]

Roth, Alvin E. and Marilda A. Oliveira Sotomayor (1990), Two-Sided Matching: A Study
in Game-Theoretic Modeling and Analysis. Cambridge University Press. [31]

Roth, Alvin E. and John H. Vande Vate (1990), “Random paths to stability in two-sided
matching.” Econometrica, 58, 1475–1480. [31, 32, 41, 42, 51]

Shapley, Lloyd S. and Martin Shubik (1971), “The assignment game I: The core.” Inter-
national Journal of Game Theory, 1, 111–130. [29, 33]

Wilson, Robert (1978), “Information, efficiency, and the core of an economy.” Economet-
rica: Journal of the Econometric Society, 46, 807–816. [32]

Yenmez, M. Bumin (2013), “Incentive-compatible matching mechanisms: Consistency
with various stability notions.” American Economic Journal: Microeconomics, 5, 120–
141. [32]

Co-editor Simon Board handled this manuscript.

Manuscript received 3 December, 2017; final version accepted 20 June, 2019; available online 8
July, 2019.

http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:31/roth2008deferred&rfe_id=urn:sici%2F1933-6837%282020%2915%3A1%3C29%3ALBM%3E2.0.CO%3B2-M
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:32/roth1990two&rfe_id=urn:sici%2F1933-6837%282020%2915%3A1%3C29%3ALBM%3E2.0.CO%3B2-M
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:33/roth1990random&rfe_id=urn:sici%2F1933-6837%282020%2915%3A1%3C29%3ALBM%3E2.0.CO%3B2-M
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:34/shapley1971assignment&rfe_id=urn:sici%2F1933-6837%282020%2915%3A1%3C29%3ALBM%3E2.0.CO%3B2-M
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:35/wilson1978information&rfe_id=urn:sici%2F1933-6837%282020%2915%3A1%3C29%3ALBM%3E2.0.CO%3B2-M
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:36/yenmez2013incentive&rfe_id=urn:sici%2F1933-6837%282020%2915%3A1%3C29%3ALBM%3E2.0.CO%3B2-M
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:31/roth2008deferred&rfe_id=urn:sici%2F1933-6837%282020%2915%3A1%3C29%3ALBM%3E2.0.CO%3B2-M
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:32/roth1990two&rfe_id=urn:sici%2F1933-6837%282020%2915%3A1%3C29%3ALBM%3E2.0.CO%3B2-M
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:33/roth1990random&rfe_id=urn:sici%2F1933-6837%282020%2915%3A1%3C29%3ALBM%3E2.0.CO%3B2-M
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:34/shapley1971assignment&rfe_id=urn:sici%2F1933-6837%282020%2915%3A1%3C29%3ALBM%3E2.0.CO%3B2-M
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:35/wilson1978information&rfe_id=urn:sici%2F1933-6837%282020%2915%3A1%3C29%3ALBM%3E2.0.CO%3B2-M
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:36/yenmez2013incentive&rfe_id=urn:sici%2F1933-6837%282020%2915%3A1%3C29%3ALBM%3E2.0.CO%3B2-M
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:36/yenmez2013incentive&rfe_id=urn:sici%2F1933-6837%282020%2915%3A1%3C29%3ALBM%3E2.0.CO%3B2-M

	Introduction
	The related literature

	The model
	Stability with incomplete information
	Individual rationality
	Blocking
	Stability
	Equivalence of two stability notions

	Matching processes with incomplete information
	Learning-blocking paths
	Convergence of learning-blocking paths
	A comparison of Theorem 2 and RV's theorem
	Proof of Theorem 2

	Discussions
	Robustness of convergence
	Initial states and limit states
	Allocation change along learning-blocking paths
	Bayesian stability

	Concluding remarks
	Appendix A: Proofs for Section 3
	Appendix B: Convergence under Bayesian stability
	References

