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Information design and sequential screening with ex post
participation constraint

Tibor Heumann
Department of Applied Economics, HEC Montreal

We study a principal–agent model. The parties are symmetrically informed at first;
the principal then designs the process by which the agent learns his type and, con-
currently, the screening mechanism. Because the agent can opt out of the mech-
anism ex post, it must leave him with nonnegative rents ex post. We character-
ize the profit-maximizing mechanism. In that optimal mechanism, learning pro-
ceeds in continuous time and, at each moment, the agent learns a lower bound on
his type. For each type, there is one of two possible outcomes: the type is allocated
the efficient quantity or is left with zero rents ex post.

Keywords. Information design, sequential screening, ex post participation con-
straint, sequential information disclosure, dynamic mechanism design.
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1. Introduction

Motivation and model There is an extensive literature that studies principal–agent
models in which the principal (she) sells a good to an agent (he) who is privately in-
formed about his marginal valuation.1 This paper examines situations in which the
principal can control the process by which the agent learns his valuation of the good.
By gradually disclosing information about the good, the principal can elicit information
about the agent’s preferences before he fully knows his own valuation. Although we al-
low for the principal to control the agent’s learning process, we assume throughout that
the agent can opt out of the mechanism ex post (i.e., after the agent has learned his val-
uation) if this leaves him with negative rents. We answer the following three questions.
Does the principal derive any benefit from controlling the agent’s learning process? Can
the agent earn any informational rents when he initially has no private information and
the principal can design his learning process? What is the optimal mechanism from the
principal’s perspective?

The model consists of a principal who supplies a good to an agent in return for trans-
fers. Both principal and agent have quasi-linear preferences. The agent’s valuation of
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the good and the principal’s cost of supplying the good are both determined by a one-
dimensional parameter (henceforth, the agent’s type). At the outset, the principal and
the agent are symmetrically (un)informed about the agent’s type. The agent learns his
type by observing signals over time; after each observed signal, he sends a message to
the principal. The principal designs the mechanism: the joint distribution of signals
and types (which defines the agent’s learning process) and the function that maps the
messages sent by the agent into the payments received and the quantity of the good
supplied by the principal. The principal’s objective is profit maximization. Once the
mechanism has ended, any residual uncertainty about the agent’s type is resolved, and
at this point the agent can either keep the allocation yielded by the mechanism or opt
out of the mechanism. In other words, the agent can guarantee himself nonnegative
rents ex post regardless of the messages he sent during the mechanism. We next dis-
cuss our key assumptions in detail. These assumptions are that (i) the agent can opt
out of the mechanism ex post, (ii) the principal has full control over the agent’s learning,
and (iii) the principal and the agent are symmetrically informed about the agent’s type
before the mechanism starts.

In our model, the agent can opt out of the mechanism after he has learned his val-
uation (i.e., ex post). We interpret the agent’s valuation as the expected utility he will
derive from the good conditional on all available information about the good (that is, all
information available to him and the principal). This assumption represents situations
in which legal stipulations allow a buyer to renege on a contract after inspecting the
good. These legal stipulations—usually present in consumer protection laws and other
standard buyer–seller contracts—prevent the seller from concealing information about
the good at the time the agent commits to buying the good.2 For example, the European
Union has legislated withdrawal rights that allow customers to return online purchases
without penalty (cf. Krähmer and Strausz 2015). Another example consists of real estate
contracts, which give the buyer time to do due diligence and allow him to void the con-
tract (during this period) at no cost.3 In both examples, the buyer can inspect the good
and learn essentially everything there is to learn about the good before committing to
purchasing the good.

Our second assumption—that the principal has full control over the agent’s learn-
ing process—accounts for situations in which she can actually influence the agent’s
learning process. For example, by disclosing different characteristics of the good be-
ing sold and eliciting the agent’s responses to these pieces of information, the principal
can control how the agent learns about the good. Assuming that the principal has full
control over the agent’s learning process makes the problem tractable. This assump-
tion is common in research addressing information design (Kamenica and Gentzkow
2011 or Bergemann and Pesendorfer 2007). In Section 6.2, we discuss learning processes

2Krähmer and Strausz (2015) discuss additional interpretations of the ex post participation constraint
(e.g., bankruptcy laws and labor laws).

3For example, a 10-day inspection period is included in every Arizona Association of Realtors (AAR) stan-
dard residential contract. During those 10 days, the buyer is allowed to renege on the contract without
penalty. This clause allows the buyer to get an estimated value of the house using all available information
at the moment that he commits to buying it.
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that have appeared in the literature and compare them with the learning process in our
mechanism.

Third, the assumption that principal and agent are (initially) symmetrically in-
formed simplifies the problem by allowing the principal to choose any learning process.
More specifically, the principal’s problem when the agent has private information be-
fore entering the mechanism is isomorphic to that in a model where again the agent has
no private information before entering the mechanism yet the principal is constrained
in the class of learning processes she can design.4 Thus, our assumption that principal
and agent are symmetrically informed at the outset plays a role similar to our assump-
tion that the principal has full control over the agent’s learning process.

Results The paper’s first result is to establish a lower bound on the rents that the agent
can attain in a mechanism (possibly, a suboptimal one). This lower bound is constructed
by evaluating the agent’s rents when he uses simple strategies in which he announces the
same messages irrespective of the observed signals. If these messages result in a contract
that yields positive rents when the agent’s type is high enough, then the expected rents
will be strictly positive. The agent can guarantee himself strictly positive expected rents
because he can opt out of the mechanism ex post if his realized type turns out to be not
high enough. Therefore, the possibility of informational rents is driven not by the pres-
ence of private information before the mechanism starts, but rather by the assumption
that the agent can opt out of the mechanism ex post.

Our first theorem presents a “relaxed” problem that yields an upper bound on the
principal’s profits; later we show that this upper bound is achieved by the optimal mech-
anism (i.e., the upper bound is tight). In the relaxed problem, the principal maximizes
the total surplus less the aforementioned lower bound on the agent’s rents. Those rents
are smaller in the relaxed problem than in a static mechanism, which leads us to con-
clude that (i) the principal does benefit from designing the agent’s learning process, and
(ii) the trade-off between maximizing the principal’s surplus and minimizing the agent’s
informational rents is different than under a static mechanism. We emphasize that if the
principal had no constraint on the ex post losses she can impose on the agent, then no
trade-off would occur because the principal could maximize the total surplus and leave
the agent with zero rents.

Our second theorem characterizes the profit-maximizing mechanism. The learn-
ing process is continuous in this mechanism: at each moment, the agent learns a lower
bound on his type and is asked to report whether his type strictly exceeds the bound.
The agent always learns his type, which happens when the lower bound in the learning
process is equal to the agent’s type. We refer to this learning process as upward disclo-
sure.

4The isomorphism is constructed by considering a model in which the agent is initially uninformed but
the principal is constrained to designing learning processes under which the first signal observed by the
agent has the same distribution as the agent’s private information in the original model. In the initial pe-
riod, the agent has no information and, therefore, has nothing to announce to the principal. Because the
participation constraint is satisfied ex post, it does not matter whether the agent sends the first message
before or after he learns his initial private information.
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Upward disclosure allows the principal to relax some of the incentive constraints
that appear in the static mechanism design problem. Whenever the agent (mis)reports
a type lower than his true type, it must happen without knowledge of his type’s exact
realization. The reason is that such misreporting would occur before the agent learns
his type. So when misreporting downward, the agent is forced to report the same lie for
all realizations of his type. Because the agent cannot tailor his reports when misreport-
ing downward, the principal can extract more rents from the agent than under a static
mechanism.

The transfers under the optimal mechanism are described in terms of a threshold
type. The transfers for types above the threshold are constructed using the envelope
theorem (as in the problem of designing a static mechanism). Types below the threshold
are left with zero rents (in this case, the transfers are equal to the agent’s utility). These
transfers leave the agent with rents equal to the lower bound characterized by the paper’s
first result. It follows from our construction of this lower bound that the agent’s rents
under the optimal mechanism are the same as if his choice of announced messages were
entirely independent of the observed signals. Under the optimal mechanism, then, the
agent does not benefit from conditioning his reports on the signals he observes.

The quantities under the optimal mechanism are also described in terms of a thresh-
old type. If the agent’s realized type is above (resp., below) the threshold, then the quan-
tity supplied is equal to (resp., less than) the surplus-maximizing quantity. These quan-
tities enable the best trade-off between maximizing the principal’s surplus and minimiz-
ing the agent’s rents.

The paper proceeds as follows. Section 2 describes our model, and Section 3
presents the benchmark established by the optimal static mechanism. We give an upper
bound on the principal’s profits in Section 4 and characterize an optimal mechanism in
Section 5. Finally, Section 6 details the model’s main assumptions and discusses how
our paper is related to the literature. Proofs are collected in the Appendix. Additional
material is provided in the Supplemental Material, available in a supplementary file on
the journal website, http://econtheory.org/supp/2818/supplement.pdf.

2. Model

2.1 Payoffs

We study a principal–agent model. The agent’s rents and the principal’s profits are deter-
mined by the quantity q ∈ Q � [0� q] ⊂ R of a good supplied by the principal, the trans-
fers x ∈ R from the agent to the principal, and the agent’s type θ ∈ � � [θ�θ] ⊂ R. The
agent has quasi-linear rent function

v(q�x�θ)� u(q�θ)− x�

By the agent’s utility we refer to his rents net of transfers (i.e., u(q�θ)); this utility is twice
continuously differentiable, and

∀(q ∈Q�θ ∈�)�
∂u(q�θ)

∂θ
≥ 0� and

∂2u(q�θ)

∂q∂θ
> 0�

http://econtheory.org/supp/2818/supplement.pdf
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The principal has quasi-linear profits

π(q�θ�x)� x− c(q�θ)�

We refer to her profits net of transfers (i.e., c(q�θ)) as the cost, which we assume to be
twice continuously differentiable also. The total surplus,

S(q�θ)� u(q�θ)− c(q�θ)�

is strictly quasi-concave in q and has a unique maximum for all θ. The maximizer of this
surplus,

qs(θ)� arg max
q∈Q

S(q�θ)�

is nondecreasing (i.e., ∂qs(θ)/∂θ ≥ 0) and continuous. If q = 0 is implemented, then the
agent’s utility and the principal’s cost are both zero:

∀θ ∈�� c(0� θ)= u(0� θ)= 0�

The principal and the agent have a common prior over �. The measure over � is as-
sumed to be absolutely continuous with respect to the Lebesgue measure and to have
strictly positive density f (i.e., f (θ) > 0 for all θ ∈�).

The principal designs a mechanism that includes two parts: the learning process by
which the agent learns his type and the mapping from the messages sent by the agent
to the final allocation. The principal’s objective is to maximize her own profit. In what
follows, we formally describe that maximization problem.

2.2 Mechanism design

Time is indexed by t ∈ T ⊂ R. At each t, the agent observes a signal st ∈ S ⊂ R, where
S denotes the set of signals. There is no discounting in our model, so time is only a
subjective index used to keep track of the order in which signals are observed. The joint
distribution of type and signals is denoted μ ∈ �(�×ST ).5 At each t ∈ T , the agent, after
observing st , sends a message zt ∈ Z ⊂ R, where Z denotes the set of messages. For any
report z ∈ZT , the outcome of the mechanism is determined by the functions6

q : ZT → Q and x : ZT →R�

The principal chooses the functions (q�x) and the distribution μ ∈ �(�× ST ) subject to
the restriction that the marginal distribution of μ over � has density f . The sets T , S,

5We assume that μ is defined on the cylindrical σ-algebra. The cylindrical σ-algebra is the same as the
Borel σ-algebra in finite-dimensional spaces. However, the cylindrical σ-algebra is the natural σ-algebra
to consider in infinite-dimensional spaces. These technical considerations do not play an important role
in our analysis.

6We assume that the functions are measurable with respect to the cylindrical σ-algebra.
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and Z are primitives of the model; T is an interval of R, and the sets S and Z each have
at least two elements.7 It follows that a mechanism is defined by

M �
(
μ�(q�x)

)
�

and M denotes the set of all possible mechanisms.
Finally, we note that the signal observed by the agent at t does not depend on the

message he sent in previous periods. Adopting this convention serves only to reduce
the amount of notation, since all the proofs go through unchanged in any event.

2.3 The agent’s strategies

We now describe the agent’s maximization problem under a mechanism. An agent’s
strategy specifies the message he sends at each t ∈ T and the decision to opt out of the
mechanism ex post. The set 
 of all valid mappings from signals to messages is defined
as


�
{
σ : ST →ZT | σ is adapted to the natural filtration associated to {st}t∈T

}
�

When the signals disclosed by the mechanism are s ∈ ST and the agent uses strategy
σ ∈ 
, the messages he sends are σ(s) ∈ ZT . The condition that σ is adapted to the
natural filtration associated to {st}t∈T means that σ is a measurable function and the
message sent by the agent at time t—denoted by σt—depends only on the history of
signals {st ′ }t ′≤t (i.e., σ is non-anticipating). The set O of all opt-out strategies is defined
as the set of all functions,

O �
{
o : �× ST → {0�1}}�

where o(θ� s)= 0 (resp. o(θ� s)= 1) means that the agent decides to opt out (resp. opt in)
of the mechanism when his type is θ and the signals he observes are s ∈ ST .8 The agent’s
type is an argument in his decision to opt out of the mechanism because he makes this
decision after learning his type.9

If the agent uses strategy (σ�o) ∈ 
×O, then his expected utility is equal to

E
μ
(θ�s)

[(
u
(
q
(
σ(s)

)
� θ

) − x
(
σ(s)

)) · o(θ� s)]�
where E

μ
(θ�s)[·] denotes the expectation over (θ� s) ∈�× ST using measure μ.

2.4 The principal’s maximization problem

The principal designs a mechanism to maximize profits, and her problem is expressed
formally as

�� max
M∈M

E
μ
(θ�s)

[(
x
(
σ̃(s)

) − c
(
q
(
σ̃(s)

)
� θ

)) · õ(θ� s)] (1a)

7The principal’s profits in an optimal mechanism are independent of the choice of these sets.
8The opt-out strategy must also be measurable with respect to the cylindrical σ-algebra.
9Note that the signals the agent observed are a sufficient statistic for the messages he sent, so it is not

necessary for the opt-out decision to explicitly condition on the sent messages.
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s.t. (σ̃� õ) ∈ arg max
(σ�o)∈
×O

E
μ
(θ�s)

[(
u
(
q
(
σ(s)

)
� θ

) − x
(
σ(s)

)) · o(θ� s)]� (1b)

The principal’s profits are multiplied by õ(θ� s) in (1a) because these are equal to
(x(σ̃(s)) − c(q(σ̃(s))�θ)) when the agent does not opt out of the mechanism and are
zero otherwise. We say that a mechanism M∗ ∈ M is optimal if it solves (1a) and (1b)
(hence, referred to simply as (1)).

2.5 Discussion on the interpretation

Before we proceed, we interpret our model as a single-unit, indivisible good model. For
this, we focus on the parametrization

u(q�θ)= θ · q and c(q�θ)= c0�

where q ∈ [0�1] and c0 ≥ 0. We interpret the quantity q as the probability that the agent
is assigned the good and interpret the transfer x as a payment equal to x/q (resp., zero)
whenever the lottery is such that the agent receives (resp., does not receive) the good.10

The agent’s type θ is interpreted as the agent’s expected valuation of the good at the
moment he commits to buying the good. In the examples discussed in the Introduc-
tion, the interpretation is as follows. In an online purchase (in the European Union),
the agent’s type represents the buyer’s expected valuation of the good after inspecting
it but before the withdrawal period ends. In a real estate transaction, the agent’s type
represents the buyer’s expected valuation of the house after inspecting it but before the
inspection period ends. In both instances, by the time the withdrawal period ends, the
buyer can get an estimate of the utility he would derive from the good based on all avail-
able information. Note that the agent’s valuation could change after buying the good
(e.g., the utility derived from a house may change due to unexpected flooding). How-
ever, by the time the agent needs to decide whether (or not) to opt out of the mechanism,
his expected valuation of the good conditions on all available information.

From the principal’s perspective, the ex post participation constraint is as if she can-
not conceal information from the agent at the time he agrees to buy the good. The
agent’s decision to opt out of the mechanism conditions on θ and she does not have
any additional information that would change the agent’s expected valuation after he
already learned θ. Thus, it is as if the principal is obligated to disclose all payoff-relevant
information to the agent by the time he makes the final decision to buy the good.

More broadly, u(q�θ) is interpreted as the agent’s expected utility at the moment
he commits to buying q units of the good. In the Supplemental Material, we extend
our model by allowing the agent’s valuation to be affected by additional shocks (i.e., in
addition to θ) after the mechanism ends. We show that in this extension, the principal’s
profit-maximization problem remains unchanged.

10In most of the mechanism design literature, an allocation {q�x} ∈ [0�1]×R can be implemented by any
lottery that sells the object with total probability q and that requires the agent to pay x in expectation. In
models with an ex post participation constraint, the agent pays the principal only when he gets the object.
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3. Benchmark: Optimal static mechanism

We first study the optimal static mechanism. In other words, we assume that the agent
knows θ ∈ �. The principal’s problem is then11

max
{q(θ)�x(θ)}θ∈�∈(Q×R)�

E
f
θ

[
x(θ)− c

(
q(θ)�θ

)]
(2a)

subject to θ ∈ arg max
θ′∈�

u
(
q
(
θ′)� θ) − x

(
θ′) (2b)

∀θ ∈��u
(
q(θ)�θ

) − x(θ) ≥ 0� (2c)

This maximization problem is solved by using standard techniques. To simplify the anal-
ysis, we assume that

S(q�θ)−
(
1 − F(θ)

)
f (θ)

∂u(q�θ)

∂θ

has a unique maximum and that the cross-derivative with respect to q and θ is positive.
These two assumptions are not used in any result of this paper other than Lemma 1. We
represent the optimal static mechanism by the allocation policy {qc(θ)�xc(θ)}θ∈�.

Lemma 1 (Optimal static mechanism). The optimal static mechanism {qc(θ)�xc(θ)}θ∈�
is given by

qc(θ) = arg max
q∈Q

S(q�θ)−
(
1 − F(θ)

)
f (θ)

∂u(q�θ)

∂θ

xc(θ) = u
(
qc(θ)�θ

) −
∫ θ

θ

∂u
(
qc(s)� s

)
∂θ

ds� (3)

Lemma 1 characterizes the optimal static mechanism. It will prove useful that, under
this mechanism, an agent’s informational rents can be written as

Uc(θ)� u
(
qc(θ)�θ

) − xc(θ) =
∫ θ

θ

∂u
(
qc(s)� s

)
∂θ

ds� (4)

This expression is the standard construction (using the envelope theorem) of the agent’s
rents.

4. Upper bound on profits

In this section, we give an upper bound on the principal’s profits �, after which we show
that the optimal mechanism achieves the same profits as this upper bound. We start

11In (2), the agent is guaranteed nonnegative rents only if he reports truthfully. In other words, if the
agent reports a type different than his true type, then he may earn negative rents. So the participation con-
straint in (2) is more lax than that which we assume in Section 2. However, the analysis of this benchmark
remains unchanged if we strengthen the participation constraint by allowing the agent to opt out of the
mechanism after he has reported his type. We present the benchmark model as in (2) because this is the
standard formulation in the literature.
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by constructing a lower bound on the agent’s rents and then maximize the total surplus
minus that lower bound, which yields an upper bound on the principal’s profits. The
analysis here demonstrates that the agent can guarantee himself positive rents even in
the absence of private information before the mechanism starts. For this reason, the
principal faces a trade-off between maximizing total surplus and minimizing the agent’s
rents.

4.1 Lower bound on the agent’s rents

We establish a lower bound on the agent’s rents by considering a class of simple strate-
gies. Under any mechanism M ∈ M, there exists a strategy that corresponds to reporting
the same messages z ∈ZT regardless of the observed signals. If the agent optimally opts
out of the mechanism ex post, then reporting the same messages z ∈ZT yields expected
rents

E
f
θ

[{
u
(
q(z)�θ

) − x(z)
}+]

� (5)

Here {·}+ is the “positive part” function, which accounts for the ex post participation
constraint; the agent opts out of the mechanism whenever messages z ∈ ZT yield nega-
tive rents. The expectation (5) is taken over random variable θ using measure f because
the agent is (by construction) reporting the same messages irrespective of the particular
signals observed. As a result, the expected rents depend only on the realization of θ.12

Of course, reporting the same messages regardless of the observed signals must yield
weakly lower rents than an optimal strategy. It follows that, for any mechanism M ∈ M
and any optimal strategy (σ̃� õ) ∈ 
×O,

E
μ
(θ�s)

[(
u
(
q
(
σ̃(s)

)
� θ

) − x
(
σ̃(s)

))
õ(θ� s)

] ≥ sup
z∈ZT

E
f
θ

[{
u
(
q(z)�θ

) − x(z)
}+]

� (6)

Note that the previous lower bound is computed using only the set of quantities and
transfers implemented by the mechanism; that is, without reference to the learning
process. In other words, we calculate the right-hand side of (6) without referencing μ.
Next we describe a bound whose calculation references neither μ nor the transfers
{x(σ̃(s))}s∈ST .

Before we proceed with our analysis, we simplify the notation by defining

���× ST �

We use θ(ω) (resp. s(ω)) to denote the projection of ω ∈ � onto θ ∈ � (resp. s ∈ ST ) and
write more simply σ(ω) = σ(s(ω)). The allocation implemented in mechanism (q�x)

when the agent sends messages according to σ ∈ 
 and he opts out of the mechanism
when the allocation yields negative rents, is denoted by

(
qσ(ω)�xσ(ω)

)
�

{(
q
(
σ(ω)

)
�x

(
σ(ω)

))
if u

(
q
(
σ(ω)

)
� θ(ω)

) − x
(
σ(ω)

) ≥ 0

(0�0) otherwise�
(7)

12The density of the marginal distribution of μ over θ is always equal to f .
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The definition of (qσ(ω)�xσ(ω)) takes the value (0�0) whenever the allocation yields
negative rents for the agent because it incorporates that, in this case, o(ω) = 0. In other
words, the definition of {(qσ(ω)�xσ(ω))}ω∈� already reflects the agent’s decision to opt
out of the mechanism ex post whenever it is optimal for him to do so.

We now fix an optimal strategy (σ̃� õ) ∈ 
 × O and then consider a strategy that re-
ports the exact same messages σ̃(ω′) ∈ ZT (i.e., regardless of the observed signals) for
some ω′ ∈ �. This strategy yields expected rents

E
f
θ

[{
u
(
qσ̃

(
ω′)� θ) − xσ̃

(
ω′)}+]

�

Of course, an agent who reports “as if” the state were always ω′ ∈ � captures rents that
must be weakly lower than those under the optimal strategy σ̃ , from which it follows
that

E
μ
(θ�s)

[(
u
(
q
(
σ̃(s)

)
� θ

) − x
(
σ̃(s)

))
õ(θ� s)

] ≥ sup
ω′∈�

E
f
θ

[{
u
(
qσ̃

(
ω′)� θ) − xσ̃

(
ω′)}+]

� (8)

In other words, the expected rents under the optimal strategy are weakly greater than
reporting as if the state were always ω′ ∈ �—a statement that holds for all ω′ ∈ �. In-
equality (8) is the analogue of (6) but considers the messages sent under strategy σ̃ for
some state ω′.

We can now use the ex post participation constraint to write an inequality that makes
no reference to the transfers {xσ̃(ω)}ω∈�. The definition of (qσ(ω)�xσ(ω)) (see (7)) im-
plies that xσ̃(ω) ≤ u(qσ̃(ω)�θ(ω)) and so, for all ω ∈�, we have

E
f
θ

[{
u
(
qσ̃(ω)�θ

) − xσ̃(ω)
}+] ≥ E

f
θ

[{
u
(
qσ̃(ω)�θ

) − u
(
qσ̃(ω)�θ(ω)

)}+]
� (9)

We use this inequality to bound the agent’s rents, as formalized in our next lemma.

Lemma 2 (Bound on the agent’s rents). For any mechanism M ∈ M and an optimal strat-
egy (σ̃� õ) ∈ 
×O, the agent’s rents under mechanism M satisfy

E
μ
(θ�s)

[(
u
(
q
(
σ̃(s)

)
� θ

) − x
(
σ̃(s)

))
õ(θ� s)

]
≥ sup

ω∈�
E
f
θ

[{
u
(
qσ̃(ω)�θ

) − u
(
qσ̃(ω)�θ(ω)

)}+]
� (10)

This lemma establishes a lower bound on the agent’s rents. Of particular interest is
that this lower bound is computed using only the set of quantities implemented by the
mechanism, that is, without reference to either the learning process or the transfers as-
sociated with each quantity. In other words, the right-hand side of (10) can be computed
using only {qσ̃(ω)}ω∈� (i.e., neither μ nor {xσ̃(ω)}ω∈� is required).

Lemma 2 shows that there is a limit to how much rent the principal can extract from
the agent, a limit that depends solely on the set of quantities implemented in the mech-
anism. If the mechanism provides type θ′ with quantity q(θ′), then the agent is guaran-
teed an expected rent of no less than

E
f
θ

[{
u
(
q
(
θ′)� θ) − u

(
q
(
θ′)� θ′)}+]

� (11)
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This conclusion shows that the ex post participation constraint allows the agent to ex-
tract rents even when, initially, he and the principal were symmetrically informed. We
emphasize that this lower bound hinges on the participation constraint being satisfied
ex post: the agent’s rents would be zero if there were no limit on the losses that the agent
can incur ex post (see Section 6.1 for a discussion).

4.2 Upper bound on the principal’s profits

Lemma 2 gives a lower bound on the agent’s rents that depends only on the quantities
implemented by the optimal mechanism. In any mechanism, the principal’s profits are
equal to the total surplus minus the agent’s rents. Hence, we can use the lower bound
on the agent’s rents to compute an upper bound on the principal’s profits.

Theorem 1 (Upper bound on the profits). The principal’s profits satisfy

�≤ sup
I∈R

sup
{q(θ)}θ∈�∈R�

{
E
f
θ

[
S

(
q(θ)�θ

)] − I
}

(12a)

s.t. I ≥ sup
θ′∈�

E
f
θ

[{
u
(
q
(
θ′)� θ) − u

(
q
(
θ′)� θ′)}+]

� (12b)

This theorem provides an upper bound on the principal’s profits. The upper bound
can be found by solving a maximization problem over a function {q(θ)}θ∈� ∈ R

� and a
scalar I ∈R, but with no reference to the transfers or the learning process. This two-step
maximization problem can be viewed as first maximizing over the rents left to the agent
(which corresponds to maximizing over I ∈ R) and then maximizing over the quanti-
ties implemented subject to the constraint that the lower bound on the agent’s rents is
less than I. Theorem 1 is proved by (i) writing the principal’s profits as the total sur-
plus minus the agent’s rents and (ii) replacing the agent’s rents with the lower bound
characterized in Lemma 2, a procedure that yields an upper bound on the principal’s
profits.

Theorem 1 illustrates that the principal faces a trade-off between maximizing the to-
tal surplus and minimizing the rents left to the agent. Increasing the quantity allocated
to type θ enables the principal to increase the total surplus, but it also increases the
agent’s rents (which must be no less than the term given in (11)). The trade-off between
total surplus and the agent’s rents follows from the ex post participation constraint,
not from the presence of private information before the agent enters the mechanism.
Hence, the trade-off differs from that which arises in the optimal static mechanism.

The optimal mechanism we construct will implement quantities that solve (12a) and
(12b) (henceforth, referred to simply as (12)). Therefore, the properties of the quantities
that solve this maximization problem are also satisfied in this optimal mechanism. We
revisit the solution to (12)—and give its properties—after first describing the optimal
mechanism. The only property of (12) that is used in the construction of this mechanism
is that a nondecreasing solution exists (as stated formally in Lemma 4).
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5. An optimal mechanism

In this section, we describe a mechanism that achieves the upper bound characterized
by Theorem 1 and, therefore, that maximizes profits. Our description consists of three
steps. First we formalize the learning process, then we calculate the optimal transfers
for some fixed quantities, and finally we characterize the quantities implemented under
the optimal mechanism. The second and third steps echo the logic of our analysis in
Section 4: after calculating the transfers that minimize the agent’s rents for any quanti-
ties (for this, we use Lemma 2), we show that the quantities solving (12) also maximize
the principal’s profits (for this, we use Theorem 1).

5.1 The learning process

The learning process of the optimal mechanism is defined as follows.

Definition 1 (Upward disclosure). Upward disclosure is the learning process in which
T = � and13

st(θ) =
{

1 if t = θ

0 if t 
= θ�

Under upward disclosure, the agent learns, at each t ∈ T , whether (or not) his type is
θ = t. If the agent’s type is θ < t, then the agent learned his type prior to t; if the agent’s
type is θ > t, then at time t, the agent knows only that his type is strictly higher than t.
In other words, at each t ∈ T , the agent either learns his type or learns a lower bound on
his type.

5.2 Incentive-compatible mechanisms

A strategy is truth-telling if the agent reports the signal he observes. A mechanism is
incentive compatible if it is optimal for the agent to report the signals he observes truth-
fully. In this section, we restrict our attention to incentive-compatible mechanisms.

An incentive-compatible mechanism is defined by a quantity and a transfer for each
type {q(θ)�x(θ)}θ∈�. At each t ∈ T , the agent sends a message z ∈ Z = {0�1}.14 If the
agent sends message z = 1 at t ∈ T and only at t, then the principal will implement al-
location {q(t)�x(t)} (provided that it yields the agent nonnegative rents). If the agent
sends message z = 1 either at more than one t ∈ T or at no t ∈ T , then the principal will
implement q = x = 0. A mechanism {q(θ)�x(θ)}θ∈� is incentive compatible if and only
if

E
f
θ

[
u
(
q(θ)�θ

) − x(θ)
] ≥ sup

(σ�o)∈
×O

E
f
(θ�s)

[(
u
(
q
(
σ(s)

)
� θ

) − x
(
σ(s)

))
o(s�θ)

]
�

13In setting up the model, we require only that T be an interval; however, we can assume without loss of
generality that T = � because it is always possible to relabel T .

14In the description of the model, we assume only that Z has at least two elements. However, we can
assume Z = {0�1} by relabeling the elements and ignoring any extras.
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We shall find the incentive-compatible optimal mechanism. Any incentive-compatible
mechanism will also give the agent incentives to opt in the mechanism ex post, and so
we focus on mechanisms that satisfy u(q(θ)�θ)≥ x(θ).

5.3 Incentive-compatibility constraints

When the learning process proceeds via upward disclosure, the agent knows either his
type or a lower bound on his type. If the agent wants to misreport a type higher than his
true type, then he can do so without uncertainty; the time to report the lie is after the
agent learns his type. Yet, if the agent wants to misreport being a type lower than his true
type, then he must do so without knowing the exact realization of his true type because
the time to report that lie is before the agent learned his type. Our next lemma char-
acterizes the set of constraints that must be satisfied for a mechanism to be incentive
compatible.

Lemma 3 (Incentive-compatibility constraints under upward disclosure). When the
learning proceeds by upward disclosure, an allocation {(q(θ)�x(θ))}θ∈� is incentive com-
patible if and only if the following statements hold:

∀θ′′ < θ′ ∈ �� u
(
q
(
θ′)� θ′′) − x

(
θ′) ≤ u

(
q
(
θ′′)� θ′′) − x

(
θ′′) (13)

∀θ′ ∈ �� E
f
θ

[
u
(
q
(
θ′)� θ) − x

(
θ′)|θ ≥ θ′] ≤ E

f
θ

[
u
(
q(θ)�θ

) − x(θ)|θ ≥ θ′]� (14)

Lemma 1 characterizes the incentive-compatibility (IC) constraints that must be sat-
isfied when learning proceeds by upward disclosure. On the one hand, the upward IC
constraints of (13) are the same as in the static mechanism design problem. This follows
because, if an agent of type θ′′ wants to report θ′ and if θ′ > θ′′, then he can do so without
uncertainty (as described previously). On the other hand, the principal need not satisfy
all the downward IC constraints in the design of a static mechanism, for which these
constraints are

∀θ > θ′� u
(
q
(
θ′)� θ) − x

(
θ′) ≤ u

(
q(θ)�θ

) − x(θ)� (15)

Constraint (14) can be derived by taking expectations of the previous inequalities with
respect to θ conditional on θ > θ′. It is clear that satisfying (15) is more difficult than sat-
isfying (14). The implication is that there are mechanisms under which (14) is satisfied
but (15) is not.

At this point, two questions arise. (i) Why should the principal focus on relaxing the
downward IC constraints when she designs the learning process? (ii) How does upward
disclosure relax these particular constraints?

To answer the first question, it is useful to consider a mechanism design problem
in which the principal must satisfy only the individual rationality constraints. Then the
quantities {q(θ)}θ∈� would be implemented via transfers:

x(θ)= u
(
q(θ)�θ

)
�
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In other words, the principal would leave the agent with zero rents. Even though all the
upward IC constraints (i.e., (13)) are satisfied, the downward IC constraints are violated.
Thus, it is only the downward IC constraints that prevent the principal from extract-
ing all the agent’s rents. In general, if the principal tries to implement some quantities
{q̃(θ)}θ∈� using transfers that increase more rapidly than prescribed by the envelope
theorem (see (3)), then the downward IC constraints will be violated. So in a static mech-
anism, what limits the principal’s reduction of the agent’s rents is the existence of these
downward IC constraints.

As for the second question, upward disclosure relaxes downward IC constraints by
confounding the local with the global IC constraints that appear in a static mecha-
nism. An agent who is given only a lower bound on his type cannot gauge precisely
who to mimic, which confounds local with global IC constraints. In a static incentive-
compatible mechanism, the local IC constraints are binding; if the transfers are per-
turbed by even a small amount, then the agent misreports a type in the vicinity of his
true type. However, in a static incentive-compatible mechanism, the global IC con-
straints are satisfied “with slack”: the agent has strict incentives not to misreport a type
that is far from his true type. If the principal does not allow the agent to tailor his misre-
porting to his true type, then she can relax the local IC constraints by using the slack in
the global IC constraints.

5.4 Optimal transfers

We now fix some nondecreasing quantities {q̃(θ)}θ∈�—possibly different from the cor-
responding quantities of the optimal mechanism—and find transfers that implement
{q̃(θ)}θ∈� and so leave the agent with rents equal to

max
θ′∈�

E
f
θ

[{
u
(
q̃
(
θ′)� θ)

)− u
(
q̃
(
θ′)� θ′))}+]

� (16)

These rents are equal to the lower bound described in Lemma 2, which means that
these transfers minimize the rents left to the agent across all transfers that implement
{q̃(θ)}θ∈�. The intuition behind the construction is as follows. A mechanism cannot
be incentive compatible unless the agent’s expected informational rents from reporting
truthfully in that mechanism exceed the expected rents from misreporting his type too
early. As long as the agent is capturing informational rents, the principal’s interests are
best served by providing all the informational rents later in the mechanism. This ap-
proach maintains, throughout the mechanism, a high level of expected informational
rents from engaging with it truthfully. In other words, providing informational rents to
a high type relaxes the IC constraint of all lower types because those rents keeps the
agent’s expected informational rents high. Of course, positive rents cannot be allocated
only to the highest type because this would violate the upward IC constraints.

We define a class of transfers in which “low” types are left with zero rents and the
transfers of “high” types are constructed (as in a static mechanism) according to the
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envelope theorem:

x̃(θ)�

⎧⎪⎨
⎪⎩
u
(
q̃(θ)�θ

)
if θ ≤ θ̃

u
(
q̃(θ)�θ

) −
∫ θ

θ̃

∂u
(
q̃(s)� s

)
∂θ

ds if θ > θ̃�
(17a)

Under transfers (17a), if the agent’s type is below θ̃, then the transfers are equal to the
agent’s utility. If the agent’s type is above θ̃, then the transfers are constructed using the
envelope theorem (as in (3)), but starting from type θ̃ instead of from type θ.

The transfers (17a) can be defined a priori for any threshold θ̃. However, we will fix
the threshold such that the agent’s rents under the truth-telling strategy are equal to (16);
this approach corresponds to finding a θ̃ that satisfies

E
f
θ

[{∫ θ

θ̃

∂u
(
q̃(s)� s

)
∂θ

ds

}+]
= max

θ′∈�
E
f
θ

[{
u
(
q̃
(
θ′)� θ) − u

(
q̃
(
θ′)� θ′)}+]

� (17b)

We remark that there exists a unique θ̃, which appears only in the integral’s limit,
that solves (17b) (this claim is proved in the Supplemental Material). The left-hand side
of (17b) is the agent’s expected rents under truth-telling, which we compute much as in
(4), while the right-hand side is the lower bound characterized in Lemma 2. The follow-
ing proposition states that under the transfers defined by (17a) and (17b) (henceforth,
referred to simply as (17)), the mechanism is incentive compatible.

Proposition 1 (Minimal rents). Let {q̃(θ)}θ∈� be nondecreasing and let {x̃(θ)}θ∈� be de-
fined as in (17). Then {(q̃(θ)� x̃(θ))}θ∈� is incentive compatible under upward disclosure
and

E
f
θ

[
u
(
q̃(θ)�θ

) − x̃(θ)
] = max

θ′∈�
E
f
θ

[{
u
(
q̃
(
θ′)� θ) − u

(
q̃
(
θ′)� θ′)}+]

� (18)

This proposition shows that any nondecreasing quantities {q̃(θ)}θ∈� can be imple-
mented by leaving the agent with the minimum rents characterized in Lemma 2. Be-
cause the threshold θ̃ in (17a) is constructed according to (17b), it is hardly surprising
that the mechanism—conditional on being truth-telling—leaves the agent with the min-
imum rents characterized in Lemma 2. We now offer some intuition concerning just
why the quantities and transfers are incentive compatible under an upward disclosure
learning process.

It is easy to check that any mechanism under which transfers are constructed ac-
cording to (17) does not satisfy the downward IC constraints (15) required of a static
incentive-compatible mechanism. In fact, every type θ < θ̃ captures more rents if he
misreports as type θ′ < θ. Under an upward disclosure learning process, however, the
applicable downward IC constraints (i.e., (14)) are satisfied. Note that an agent may be
left with zero rents ex post, but the mechanism is still incentive compatible because the
learning process is upward disclosure. So even though an agent may regret (ex post)
not misreporting a type lower than his true type, at the moment of reporting that lie,
the agent could know only the lower bound on his true type. Hence the agent reports
truthfully because he expects thereby to receive high informational rents.
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Finally, we explain why the transfer’s threshold constructed in (17b) guarantees that
the downward IC constraints (14) are satisfied for some fixed type θ′ < θ̃. On the one
hand, the agent’s expected rents if he always reports type θ′ (i.e., regardless of the signals
he observes) are equal to the probability of his type being higher than θ′ multiplied by
his expected rents conditional on his type actually being higher than θ′:

E
f
θ

[{
u
(
q
(
θ′)� θ) − u

(
q
(
θ′)� θ′)}+] = (

1 − F
(
θ′))

E
f
θ

[
u
(
q
(
θ′)� θ) − u

(
q
(
θ′)� θ′)|θ ≥ θ′]� (19)

On the other hand, the agent’s expected rents if he reports truthfully are equal to the
probability that his type is higher than θ′ multiplied by his expected rents conditional
on his type actually being higher than θ′:15

E
f
θ

[{∫ θ

θ̃

∂u
(
q̃(s)� s

)
∂θ

ds

}+]
= (

1 − F
(
θ′))

E
f
θ

[{∫ θ

θ̃

∂u
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q̃(s)� s

)
∂θ

ds

}+∣∣∣θ > θ′
]
� (20)

It is easy to see that (17b) implies (19) is smaller than (20) for all θ′ < θ̃. If we now simplify
the (1 − F(θ′)) term on the right-hand side of each equation, then (17b) implies also
that the expected informational rents conditional on being an agent of type higher than
θ′ exceed the expected rents of misreporting type θ′. It follows that the downward IC
constraint for θ′ is satisfied; that is, (14) is satisfied for θ′ < θ̃.

5.5 Optimal mechanism

We now construct the optimal mechanism, under which the principal’s profits will be as
given in (12). Here we show that a nondecreasing solution to (12), when combined with
transfers constructed as in Proposition 1, constitute (under upward disclosure) an opti-
mal mechanism. In Section 5.6, we show that a nondecreasing solution to (12) always
exists.

Theorem 2 (Optimal mechanism). Let {q∗(θ)}θ∈� be a nondecreasing solution to (12)
and let {x∗(θ)}θ∈� be constructed as in (17). Then {(q∗(θ)�x∗(θ))}θ∈�, as implemented
via upward disclosure, is an optimal mechanism and yields profits equal to (12).

Theorem 2 characterizes an optimal mechanism. As explained previously, there is a
natural sense in which upward disclosure relaxes the relevant IC constraints; the trans-
fers constructed as in (17) leverage these relaxed constraints to minimize the agent’s
rents. The intuition underlying the trade-offs faced by the principal are analogous to
those arising under the optimal static mechanism: providing the agent with higher
quantities of the good increases not only the social surplus, but also the agent’s rents.
Yet here the agent’s rents differ from those under a static mechanism, which ultimately
leads to different quantities and different transfers in this optimal mechanism. The fol-
lowing sections explore the optimal mechanism in more detail.

15This equality follows because the agent earns positive rents only if his type is higher than θ′.
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5.6 Properties of the optimal mechanism

According to Theorem 2, there exists an optimal mechanism under which the quantities
implemented are a solution to (12). These quantities are easy to find because, for a fixed
I, constraint (12b) is a pointwise constraint. In other words, if I is fixed, then one can
see whether the quantities {q(θ)}θ∈� satisfy (12b) by checking each individual value of
q(θ) independently. For a fixed I, then, it is optimal to set q(θ) equal to the surplus-
maximizing quantity qs(θ) whenever doing so does not violate (12b); otherwise, it is
optimal to find the maximum q(θ) such that (12b) is satisfied.

To characterize the solution to (12), we first define

q̂I
(
θ′)� max

{
q ∈Q : Ef

θ

[{
u(q�θ)− u

(
q�θ′)}+] ≤ I

}
� (21)

That is to say, q̂I(θ′) is the maximum quantity that can be allocated to type θ′ such that
(12b) is not violated. For a fixed I, the optimal quantities are given by

qI(θ)� min
{
qs(θ)� q̂I(θ)

}
� (22)

In the next lemma, we use qI(θ) to find a simple characterization of (12).

Lemma 4 (Equivalent formulation of maximization). The maximization problem (12)
can be written as

max
I∈R

{
E
f
θ

[
S

(
qI(θ)�θ

)] − I
}
� (23)

Moreover, for all I > 0, (a) the quantity {qI(θ)}θ∈� is continuous and nondecreasing, and
(b) there exists a threshold θ̂I < θ̄ such that qI(θ)= qs(θ) for all θ > θ̂I .

This lemma offers a compact characterization of the optimal solution to the problem
(12). Because qI(θ) is nondecreasing, Lemma 4 establishes that a nondecreasing solu-
tion to this problem exists and that it can be used to construct (per Theorem 2) an opti-
mal mechanism. The solution to (12) has the property that “high-enough” types are al-
ways allocated the surplus-maximizing quantity. At the same time, in the optimal mech-
anism, “low-enough” types are left with zero informational rents. In fact, the optimal
mechanism has the property that every type is either assigned the surplus-maximizing
quantity or is left with zero rents ex post.

Proposition 2 (Property of the optimal mechanism). Let {q∗(θ)}θ∈� be a nondecreasing
solution to (12) and let {x∗(θ)}θ∈� be given by (17). Then

∀θ ∈�� q∗(θ) = qs(θ) or x∗(θ)= u
(
q∗(θ)�θ

)
� (24)

Proposition 2 states that every type is either allocated his surplus-maximizing quan-
tity or is left with zero rents ex post. This statement clearly illustrates the basic intuitions
behind the optimal mechanism. High types are given rents, so there is no need to distort
their allocation; in contrast, allocation to low types is distorted and they are left with zero
rents. Observe that an agent’s allocation is never greater than the efficient quantity. The
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reason for this is that an agent’s informational rents are increasing in the quantity allo-
cated to him, so giving the agent a quantity higher than the surplus-maximizing quantity
decreases the total surplus and also increases the agent’s rents.

5.7 Uniqueness of the optimal mechanism

We now discuss the uniqueness of the optimal mechanism. Our results in this section
rely on the assumptions (i.e., in addition to those given in Section 2)

∂2S(q�θ)
∂q2 ≤ 0 and

∂3u(q�θ)

∂q2∂θ
≥ 0� (25)

These assumptions guarantee that (12) has a unique solution.

Lemma 5 (Uniqueness of solution to (12)). If (25) is satisfied, then there exists a unique
set of quantities {q∗(θ)}θ∈�, up to a set of measure 0, that solve (12).

This lemma guarantees that the solution to (12) is unique. Because Lemma 4 guar-
antees the existence of a nondecreasing solution to (12), we henceforth assume that
{q∗(θ)}θ∈� is a nondecreasing solution—in essence, the unique solution—to (12).

Our next proposition states that in every optimal mechanism, the quantities imple-
mented are the same; also, in every optimal mechanism, types that are allocated a so-
cially inefficient quantity are left with zero rents.

Proposition 3 (Uniqueness of the optimal mechanism). If (25) is satisfied, then, in ev-
ery optimal mechanism and associated optimal strategy (M∗� (σ∗�o∗)) for μ-a.e. (θ� s) ∈
�× S, the implemented quantities and transfers satisfy

q
(
σ∗(s)

) · o∗(s� θ) = q∗(θ) (26)

if q∗(θ) < qs(θ)� x
(
σ∗(s)

) · o∗(s� θ) = u
(
q∗(θ)�θ

)
� (27)

Here q∗(θ) is the unique solution to the maximization problem (12).

According to Proposition 3, the quantities implemented by any optimal mechanism,
which can be found by solving (12), are essentially unique. It is immediate that every op-
timal mechanism induces the same surplus and the same expected rents for the agent.
In addition, transfers are uniquely determined for types that are allocated an inefficient
quantity. Note that a direct corollary of this proposition is that Proposition 2 holds across
all optimal mechanisms.

Proposition 3 makes no reference to the transfers of types that are allocated a so-
cially efficient quantity. Transfers associated with types that are assigned the efficient
quantity are not, in general, uniquely determined across all optimal mechanisms (see
Supplemental Material B for a counterexample). Yet in a model with linear utility and
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zero marginal costs (i.e., when u(q�θ) = q · θ and c(q�θ)= 0), the transfers in every opti-
mal mechanism are uniquely determined.16

Like transfers, information disclosure is not uniquely defined across all optimal
mechanisms (a counterexample is given in Supplemental Material B). Although the in-
formation disclosure is not unique, it must satisfy some constraints. Consider two types
θ > θ′ such that both are allocated a socially inefficient quantity (i.e., q∗(θ) < qs(θ) and
q∗(θ′) < qs(θ′)). Proposition 3 shows that both of these types receive zero rents ex post
in every optimal mechanism. However, an agent of type θ can usually earn positive rents
by (falsely) reporting that he is of type θ′. Therefore, an agent who learns he is of type θ

must not be allowed to report being type θ′; it follows that to satisfy the IC constraints,
type θ′ must learn and report his type before type θ. So even though the learning process
is not unique, there is a natural sense in which it must have a similar structure to that of
upward disclosure.

Social surplus and agent’s rents An immediate implication of Proposition 3 is that every
optimal mechanism induces the same social surplus and agent’s rents. It is thus natu-
ral to compare these quantities with those induced by the optimal static mechanism. It
is possible to find examples of the surplus under the optimal mechanism being larger
(or smaller) than under the optimal static mechanism. Some of these examples are dis-
cussed in Section 5.8. In those examples, the agent’s rents in the optimal mechanism
end up being smaller than his rents in the optimal static mechanism. We were not able
to prove, or to disprove via counterexample, that the agent’s rents are always less in the
optimal mechanism than in the optimal static mechanism.

5.8 Examples

This section gives two examples that illustrate the optimal mechanism. In the first ex-
ample, we also explain how we find the optimal mechanism.

5.8.1 Indivisible good model We study the example

u(q�θ)= θ · q and c(q�θ) = 0�

The space of types and quantities is � = Q = [0�1], and the prior distribution over types
is uniform (i.e., f = 1).

In Figure 1(a), we plot the quantities under the optimal mechanism ({q∗(θ)}θ∈�)
and under the optimal static mechanism ({q̂(θ)}θ∈�) as well as the surplus-maximizing
quantities ({qs(θ)}θ∈�). There are types under which {q∗(θ)}θ∈� assigns the object to the
agent with probability less than 1 even though the optimal static mechanism would as-
sign the object to the agent with probability 1. However, there are also types that are

16The intuition here is that, in this model, the efficient allocation is qs(θ) = 1 for all θ ∈ �. In addition,
incentive compatibility dictates that there exists a unique transfer associated with the quantity q = 1 and
that this transfer must equal the utility of the lowest type that is assigned an efficient quantity. The reason
is that the transfers associated with all quantities q(θ) < 1 are designed to leave the agent with zero rents ex
post and so, by continuity, the transfer associated with q = 1 must likewise leave zero rents for the lowest
type to be assigned q = 1.
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Figure 1. Indivisible good model. In blue is plotted the optimal mechanism ({q∗(θ)�x∗(θ)}θ∈�),
in green, the optimal static mechanism ({qs(θ)�xs(θ)}θ∈�), and in red, the surplus-maximizing
quantity (qs(θ)). (For interpretation of the colors in the figure(s), the reader is referred to the web
version of this article.)

assigned the object with probability 0 under the optimal static mechanism yet are as-
signed the object with positive probability under the optimal dynamic mechanism. We
can check numerically that the dynamic mechanism generates a higher expected sur-
plus.

A remarkable property of the optimal dynamic mechanism is that there is always
a positive probability of the object being sold to the agent. A sharp intuition can be
gained by analyzing the agent’s decision about whether to misreport, at the beginning
of the mechanism, that his type is θ = 0. The agent can obtain the object free of charge
(x∗(0) = 0) with probability q∗(0) ≈ 0�2 if he immediately reports his type to be θ = 0.
Nevertheless, the agent reports truthfully that his type is not θ = 0 because his expected
rents under truthful reporting are (weakly) greater than the rents from misreporting his
type (in fact, the agent is indifferent between these options). It is clear that allowing the
agent to win the object with small probability but at an extremely low price when his

type is very low does not necessarily increase the agent’s rents. Formally, this situation is
captured in the pointwise nature of the constraint in the relaxed problem (i.e., in (12b)).
In other words, since the agent is provided with some rents I in expectation, low types
can be assigned the object with positive probability without having to increase those
expected rents I.

In Figure 1(b), we plot the rents left to the agent under the optimal mechanism
({θ · q∗(θ)− x∗(θ)}θ∈�) and under the optimal static mechanism ({θ · qs(θ)− xs(θ)}θ∈�).
The graphs illustrate the properties of the optimal mechanism stated in Proposition 2,
which include that the agent earns strictly positive rents only when he receives the ob-
ject with probability 1 (this is the efficient allocation). We can make the following sharp
comparison: for every type, the agent’s rents are (weakly) lower under the optimal dy-
namic mechanism than under the optimal static mechanism.
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In this example, the optimal mechanism implements a higher social surplus than
does the static mechanism. That property does not hold in general, however. For in-
stance, if the distribution of the types is uniform in [1�2], then the optimal static mech-
anism implements the efficient allocation for all types, whereas the optimal mechanism
will not (this claim can be verified numerically). Hence it is clear that, in general, one
cannot know ex ante whether the optimal mechanism will induce a higher or a lower
surplus than the optimal static mechanism. (Along these lines, recall that we were un-
able to prove or disprove that the optimal mechanism always yields lower rents to the
agent than the optimal static mechanism.)

Construction of the optimal mechanism We use this example to illustrate how to find
the optimal mechanism. If the utility function of the agent is linear (i.e., if u(q�θ) = θ ·q),
then q̂I(θ) (as defined in (21)) can be computed in closed form as

q̂I(θ)= I(
1 − F(θ)

)
E
f
θ′

[
θ′ − θ|θ′ > θ

] = I

(1 − θ)
1 − θ

2

� (28)

Here the second equality is implied by the assumption that the types are uniformly dis-
tributed in [0�1]. Now we can use (28) to write (22) explicitly:

qI(θ) =

⎧⎪⎨
⎪⎩

1 if θ > 1 − √
2 · I

2I

(1 − θ)2 if θ ≤ 1 − √
2 · I�

Note that I ≤ 1/2 in this example because the expected valuation of the agent is 1/2;
hence the agent’s expected rents never exceed 1/2. The quantities in the optimal mech-
anism are found by solving (23), which corresponds to

max
I≤1/2

E
f
θ

[
θ · qI(θ)

] − I�

Given the optimal I∗ that solves the previous maximization problem, we can use (24)
and compute the transfers

x∗(θ) =
{

1 − √
2 · I∗ if θ > 1 − √

2 · I∗

q∗(θ) · θ if θ ≤ 1 − √
2 · I∗�

This completes the description of the optimal mechanism.

5.8.2 Quadratic cost Next we study the example

u(q�θ)= θ · q and c(q�θ)= q2/2�

As before, the space of types and quantities is � = Q = [0�1] and the prior distribution
over types is uniform (f = 1). The optimal screening policy is constructed analogously
to the construction of the indivisible good example, but here we find the solution nu-
merically.
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Figure 2. Quadratic cost model. In blue is plotted the optimal mechanism ({q∗(θ)�x∗(θ)}θ∈�),
in green, the optimal static mechanism ({qs(θ)�xs(θ)}θ∈�), and in red, the surplus-maximizing
quantity (qs(θ)). (For interpretation of the colors in the figure(s), the reader is referred to the web
version of this article.)

As in Figure 1(a), in Figure 2(a) we plot the quantities under the optimal mechanism
and under the optimal static mechanism as well as the surplus-maximizing quantities,
and just as in Figure 1(b), in Figure 2(b) we plot the rents left to the agent under the op-
timal mechanism and under the optimal static mechanism. We can see that sufficiently
high types receive the surplus-maximizing quantity while some intermediate types re-
ceive less than the surplus-maximizing quantity. The optimal quantities are equal to
the surplus-maximizing quantity even for some types below the threshold; for these
types, the IC constraint does not bind. We can also see that {q∗(θ)}θ∈� creates more
surplus than the optimal static mechanism for all θ ∈ �. Finally, the optimal allocation
{q∗(θ)�x∗(θ)}θ∈� leaves the agent with less informational rents.

6. Discussion and literature review

In this section, we discuss the results in this paper and relate them to the literature.
Table 1 tabulates some classic papers, grouping them in terms of their assumptions on
the timing of the participation constraint and on the principal’s ability to control the
agent’s learning process. Our paper is the first to study optimal sequential screening
when the principal designs the learning process and the participation constraint must
be satisfied ex post.

6.1 Role of the participation constraint

One of the key assumptions of our model is that the principal must satisfy the agent’s
participation constraint ex post. We now explain how different assumptions about the
participation constraint shape the agent’s ability to gain informational rents and the
principal’s trade-offs when she designs a profit-maximizing mechanism.
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Timing of
participation

Learning process
is exogenous

Principal can control
learning process

Ex ante Harris and Raviv (1978)
Interim Courty and Hao (2000) Esö and Szentes (2007)
Posterior Bergemann and Wambach (2015)
Ex post Krähmer and Strausz (2015) This paper

Table 1. Literature review.

Ex ante participation constraint An ex ante participation constraint is evaluated before
the agent learns any private information. If the participation constraint must be satis-
fied ex ante, then the optimal mechanism implements the surplus-maximizing quan-
tity and the agent pays a transfer equal to his ex ante expected utility. In that case, the
mechanism is efficient, but the agent is left with zero rents. This problem was studied
by Harris and Raviv (1978), among others.17

Interim participation constraint The interim participation constraint is evaluated be-
fore the agent enters the mechanism but after he observes some private information.
Because the agent in our model has no private information before entering the mech-
anism, relaxing the ex post participation constraint to an interim constraint is equiva-
lent to relaxing the former to an ex ante constraint.18

 Courty and Hao (2000) study the
optimal mechanism under an interim participation constraint and when the principal
cannot control the agent’s learning process.

Esö and Szentes (2007) characterize the optimal mechanism when satisfying an in-
terim participation constraint and when the principal can design the information dis-
closure. They show that, in the optimal mechanism, the principal can optimize “as if”
she could observe all the additional information that the agent observes. The implica-
tions are that (i) the principal does not benefit from controlling the information disclo-
sure under an interim participation constraint and (ii) the agent’s informational rents
result only from the private information he observes before entering the mechanism.
Neither of these properties holds when the participation constraint is satisfied ex post.

More recently, Li and Shi (2017) show that the principal can do better than the mech-
anism proposed by Esö and Szentes (2007) if she uses discriminatory disclosure policies.
This shows that by studying discriminatory disclosure policies, the principal can reduce
the agent’s informational rents. However, those rents are still solely attributable to the
agent’s private information before entering the mechanism.

17The nature of the solution is similar to that of Gershkov (2002) in a multi-agent context and also to the
optimal regulation of a natural monopoly, which suggests the ex ante sale of all future rents (see Demsetz
1968 and Loeb and Magat 1979).

18Under an interim participation constraint, the agent (usually) observes some private information be-
fore entering the mechanism; otherwise, this constraint is indistinguishable from the ex ante participation
constraint.
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Posterior participation constraint A posterior participation constraint is evaluated at
the end of the mechanism but before the agent learns his valuation.19 If the princi-
pal were to maximize her profits subject only to posterior participation constraint, then
her maximization problem would be as in (1), but the agent’s decision to opt out of
the mechanism would be determined by a function o : ST → {0�1}. In other words, the
agent’s decision to opt out of the mechanism does not condition explicitly on the agent’s
type.20 If we relax the participation constraint to posterior and focus on a model with
linear utility and zero cost (i.e., with u(q�θ) = q · θ and c(q�θ) = 0), then the optimal
mechanism discloses no information and sells the good to the agent at his (ex ante)
expected valuation.21

The conceptual difference between ex post and posterior participation constraints
is that under the latter, the principal is allowed to conceal information from the agent at
the time he must decide whether (or not) to buy the good.22 A posterior participation
constraint does not adequately capture consumer protection laws that allow a buyer to
inspect the good before committing to buying it. These laws prevent the seller from con-
cealing any substantive amount of information about the good before the buyer com-
mits to purchase it, and so a posterior participation constraint is too lax to model these
situations appropriately.

Bergemann and Wambach (2015) study the optimal mechanism when there are mul-
tiple buyers who have private information about their own valuation before entering the
mechanism, the principal can control the buyers’ learning process, and she must satisfy
the posterior participation constraint. They show that, provided the principal can con-
trol the information disclosure, the allocation implemented by Esö and Szentes (2007)
can also be implemented when the participation constraint is strengthened to a poste-
rior participation constraint. Thus, there is no loss in strengthening the participation
constraint when the principal can control the learning process. Since Bergemann and
Wambach (2015) implement the same allocation as Esö and Szentes (2007), it clearly fol-
lows that the source of informational rents, as well as the trade-off between minimizing
those rents and maximizing total surplus, is the same under a posterior participation
constraint as under an interim constraint.

19The notion of posterior implementation was first proposed by Green and Laffont (1987).
20The participation constraint studied by Bergemann and Wambach (2015) is slightly weaker than that

which we present here: they require that the agent’s expected utility is nonnegative after every history if
the agent reports truthfully. In other words, they require the agent to get nonnegative expected rents under
his optimal strategy, but he is not guaranteed nonnegative rents if he deviates. We give a slightly stronger
version of the participation constraints because it is simpler to make the connection with the notation in
our paper, and the optimal mechanism found by Bergemann and Wambach (2015) can be implemented
under both versions of the posterior participation constraint.

21Bergemann and Wambach (2015) study only an indivisible good model; hence, there is no clear iden-
tification of the optimal mechanism under a posterior participation constraint with other utility and cost
functions (i.e., when u(q�θ) 
= q · θ or a nonconstant c(q�θ)). If the cost is not zero, then the principal dis-
closes to the agent only whether his valuation is above the cost. As before, the principal can extract the full
surplus.

22Bergemann and Wambach (2015, p. 1077) explain it as follows: “These notions of posterior constraints
were first introduced by Green and Laffont (1987) to reflect the possibility that the mechanism may reveal
some, but not necessarily all, payoff-relevant information to the agents.”
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The analysis of our model differs in important ways from the analysis in Bergemann
and Wambach (2015). Under an ex post participation constraint, the optimal mech-
anism does not implement quantities or transfers that equal some benchmark in the
literature; hence we must construct a “relaxed” problem and then show that the opti-
mal mechanism achieves the same solution. Our approach has the further benefit of
allowing for more general preferences than those that are accommodated by much of
the literature. In particular, we allow the agent to have a general utility function and
allow the principal to have a general cost function. While the analysis in our paper dif-
fers from that in Bergemann and Wambach (2015), the learning process in the optimal
mechanism in our paper is very similar to that which appears in their paper. In the fol-
lowing section, we explain the similarities between our optimal mechanism and theirs,
while relating them also to other papers in the literature.

Ex post participation constraint An ex post participation constraint is evaluated us-
ing the agent’s type θ. This constraint amounts to a strengthening of the posterior par-
ticipation constraint because the ex post constraint is evaluated using the agent’s real-
ized type. It can also be viewed as a constraint that forces the principal to disclose all
available information to the agent before he decides whether (or not) to opt out of the
mechanism. This strengthening generates fundamental differences between the ex post
constraint and all weaker forms of the participation constraint.

We show that under the optimal mechanism with an ex post participation constraint,
the agent can gain informational rents and the quantities that the principal allocates to
the agent are distorted to reduce those rents. As previously explained, if we relax the
participation constraint to posterior and focus on a model with linear utility and con-
stant marginal cost, then the allocation implemented would be efficient and the agent
would gain zero rents. Thus, we conclude that the informational rents attainable by the
agent under an ex post participation constraint would not be attainable if the partici-
pation constraint was weakened to a posterior constraint (or any further weakening).
These rents generate new trade-offs for the principal as she balances the maximization
of surplus and the reduction of informational rents.

In our model, the principal must leave the agent with nonnegative rents ex post. Yet
one can imagine cases where the agent could incur limited but nonzero losses ex post.
Imposing limited liability conditions that allow for some (but limited) losses would allow
for the study of models that smoothly connect the ex post participation constraint with
the ex ante participation constraint. Doing so would help us understand how strength
of the participation constraint affects the optimal mechanisms in sequential screening
and the agent’s ability to earn informational rents. Sappington (1983) studies a model
in which the principal and the agent are initially symmetrically informed and the prin-
cipal must satisfy a limited liability restriction. The class of limited liability constraints
studied therein is more general than those allowed in our paper; however, the agent
learns his type immediately after entering the mechanism (i.e., the principal has no con-
trol over the learning process). We believe that studying a model in which the principal
can control the learning process—and in which the agent can incur limited but nonzero
losses ex post—would be a fruitful avenue for future work to explore.
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Finally, there is an alternative version of the ex post participation constraint in which
the agent is guaranteed nonnegative rents if he reports truthfully, but he may get neg-
ative rents if he deviates from the truth-telling strategy. This alternative formulation of
the ex post participation constraint would be more suitable to study problems in which
the principal wants to guarantee the agent nonnegative rents ex post, but the agent is
not allowed to opt out of the mechanism ex post. We give a discussion of this alternative
version of the ex post participation constraint in the Supplemental Material.

6.2 Learning process

Under the optimal mechanism (characterized in Theorem 1), the learning process is
upward disclosure; this process is similar to other disclosure policies that have appeared
in the literature. The optimal mechanism of Bergemann and Wambach (2015) features
a learning process similar to upward disclosure; the only difference is that their learning
process stops before each agent learns his type. Thus, the learning process does not
disclose all available information to the agents. This difference allows the principal to
leave the agent with ex post losses.23

Ata and Dana (2015) study the profit-maximizing mechanism in a model in which an
agent has private information about the distribution of his valuations at the outset and
the participation constraint must be satisfied interim. The learning proceeds in contin-
uous time (much as in our model), where agents with different interim expected valu-
ations learn at different times. They specify conditions under which the principal can
implement the surplus-maximizing quantity and extract all of the agent’s rents, while
also characterizing her second-best strategy whenever the first-best is not possible (see
also Akan et al. 2015).

The reason why the learning process in our optimal mechanism is similar to those
that have appeared in the literature is that these learning processes relax the down-
ward incentive constraints. A similar intuition underlies the optimal mechanism of our
model. Our paper helps to explain how sequential screening relaxes the downward in-
centive constraints.

6.3 Initial private information

Krähmer and Strausz (2015) study a model of sequential screening in which the agent
has private information before entering the mechanism, the principal has no control
over the agent’s learning process, and the participation constraint must be satisfied ex
post. They show that, for a wide range of (exogenous) learning processes, sequential
screening does not yield higher profits than the optimal static mechanism. They inter-
pret this result to mean that imposing an ex post participation constraint protects the
agent because it increases his informational rents.

23In Bergemann and Wambach (2015), the learning process is as in upward disclosure, but it sometimes
stops before the agent learns his type. Because the learning process does not always disclose all the in-
formation to the agent, the principal can leave the agent with losses ex post and still satisfy the posterior
participation constraint. Bergemann and Wambach (2015) describe a model that identifies particular agent
preferences and object characteristics that allow the principal to implement upward disclosure as a learning
process.
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Our results are consistent with their interpretation of the ex post participation con-
straint: in our model, the agent earns positive informational rents only if there is no
weakening in the timing of the participation constraint (in which case his informational
rents would be zero). Although our results support the notion that the ex post partici-
pation constraint increases the agent’s rents, we also show that this constraint does not
preclude the possibility of profiting from sequential screening (as also demonstrated in
a multi-unit model by Krähmer and Strausz 2016). In sum, the rents that an agent can
guarantee himself under an ex post participation constraint are greater than zero but
less than his informational rents under a static mechanism.

The agent in our model learns his type in continuous time, which maximizes the
principal’s capacity to screen the agent. Yet even with a two-stage information disclo-
sure (as in Krähmer and Strausz 2015), the principal can do better than in the optimal
static mechanism.24

 Bergemann et al. (2018) analyze two-stage disclosure policies with
ex post participation constraints when the principal cannot control the agent’s learning
process. Our paper (indirectly) gives an upper bound on the principal’s profits under
any mechanism in which the participation constraint must be satisfied ex post.

Appendix: Proofs

The proof of Lemma 1 is well known in the literature (see, for example, Baron and Myer-
son 1982).

Proof of Lemma 2. Let (σ̃� õ) ∈ 
×O be an optimal strategy in mechanism M . Then

∀σ ∈ 
� E
μ
ω

[
u
(
qσ̃(ω)�θ(ω)

) − xσ̃(ω)
] ≥ E

μ
ω

[
u
(
qσ(ω)�θ(ω)

) − xσ(ω)
]
�

For all ω′ ∈ �, there exists σ ′ ∈ 
 such that

(
qσ ′(ω)�xσ ′(ω)
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(
ω′)�xσ̃(

ω′)) if u
(
qσ̃

(
ω′)� θ) − xσ̃

(
ω′) ≥ 0

(0�0) otherwise�

That is, there exists a strategy σ ′ ∈ 
 that yields the same outcomes as strategy σ̃ when
the agent reports as if the state is ω′ regardless of the observed signals.25 The expected
rents under strategy σ ′ ∈ 
 are

E
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ω

[
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qσ ′(ω)�θ(ω)
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Thus, for all ω′ ∈�,
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f
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(
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(
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� (29)

The result follows from (29) and (9).

24In Supplemental Material B, we give an example that uses the intuition of upward disclosure but in
a two-stage mechanism. The same example is cited by Krähmer and Strausz (2015), who provide a more
detailed discussion.

25It is sufficient to define σ ′
t ({st′ }t′≤t ) = σ̃t (ω

′).
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Proof of Theorem 1. Let M ∈ M be any mechanism and let (σ̃� õ) ∈ 
× O be an op-
timal strategy in this mechanism

(σ̃� õ) ∈ arg max
(σ ′�o′)∈
×O
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(θ�s)
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σ ′(s)
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� θ
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o′(θ� s)

]
�

The principal’s profits in this mechanism are equal to the total surplus minus the agent’s
rents:
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Here πM is the principal’s profits in mechanism M , possibly different than the optimal
mechanism. Using the lower bound on the agent’s rents (see Lemma 2),
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Because q(σ̃(ω)) 
= qσ̃(ω) only when õ(θ� s) = 0, the previous inequality can be written
as
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The right-hand side of this inequality is computed using quantities {qσ̃(ω)}ω∈�. By max-
imizing over all possible quantities {q(ω)}ω∈�, we get the upper bound
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Since the above inequality holds for all mechanisms M ∈M, we have that
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The maximization on the right-hand side of (30) is over {q(ω)}ω∈�. We now prove that
this can be reduced to a maximization over {q(θ)}θ∈�.

Consider any set of quantities {q(ω)}ω∈�, and construct {q̃(θ)}θ∈� as

q̃(θ) = arg sup
q∈R

S(q�θ)

subject to: ∃ω′ ∈ ��θ = θ
(
ω′) and q ≤ q

(
ω′)�
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For each θ ∈ �, q̃(θ) is constructed as the quantity that yields the highest surplus sub-
ject to the constraint that it must be lower than some quantity implemented when the
agent’s type is θ (i.e., lower than some q(ω′) with θ = θ(ω′)). We make two observations:

(i) Quantities {q̃(θ)}θ∈� yield a weakly larger expected surplus than {q(ω)}ω∈�:
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)]
� (31)

This is because for each θ ∈�, q̃(θ) is constructed by considering the quantity that
yields the highest surplus across all ω′ ∈� such that θ = θ(ω′).

(ii) The lower bound on the agent’s rents constructed in Lemma 2 is weakly lower
when computed with quantities {q̃(θ)}θ∈� than when computed with quantities
{q(ω)}ω∈�:
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To prove (32), note that
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is an increasing function of q (we show this separately in the Supplemental Mate-
rial). Thus, for all θ′ ∈�,
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This is because q̃(θ′) is less than or equal to the supremum of {q(ω)}ω∈�:θ(ω)=θ′ .
By taking the supremum of the previous equation with respect to θ′ ∈�, we prove
(32).

From (31) and (32), it follows that
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Thus, for all quantities {q(ω)}ω∈�,
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The result follows from (30) and (33).
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Proof of Lemma 3. We provide the proof in three steps. We first reformulate the IC
constraint, then show the sufficiency of the conditions, and, finally, show the necessity
of the conditions.

Step 1: Reformulation of IC constraints. In a mechanism, the set of strategies 
 is
the set of functions {σt}t∈T of the form σt : ×t ′≤tS → {0�1}. That is, at each period t, the
agent needs to report whether his current signal is 0 or 1; his report may condition on the
history of all signals. However, the only relevant decision for the agent is when to report
that the process {st}t∈T changed from 0 to 1. If the agent reports message z = 1 more than
once, then he will get a payoff of 0, which he can guarantee ex post anyway. Therefore,
the set of strategies for the agent is a family of functions σ : T → T such that, if the
process st changes from 0 to 1 at t, then the agent reports z = 1 at time σ(t). However,
the agent’s reports must be measurable with respect to the information he has at the
time. So we define the set of functions σ : T → T that constitute a valid strategy:


̃�
{
σ : T → T : if σ(t) < t then for all t ′ >σ(t)�σ

(
t ′
) = σ(t)

}
� (34)

The set of available strategies for the agent is equal to 
̃. Recall that under upward dis-
closure, � = T and so the same condition can be reinterpreted in terms of the agent’s
type. If type θ ∈ � reports being a type θ′ < θ, then he must do so without knowing the
exact realization of his type. Thus, for all types θ′′ > θ′, the agent must also report θ′.

For any strategy σ ∈ 
̃, let θ̂σ ∈� be such that

∃θ > θ̂σ� σ(θ) = θ̂σ �

That is, type θ reports being θ̂σ and θ > θ̂σ . However, this implies that ∀θ > θ̂σ , σ(θ) =
θ̂σ . Thus, we can write the expected utility that strategy σ yields
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) − x(θ̂σ)|θ > θ̂σ
]
� (36)

The positive part function accounts for the ex post participation constraint; the agent
opts out of the mechanism whenever σ yields a negative rent. We do not need to add the
positive part function in the second term (i.e., in (36)) because the ex post participation
constraint guarantees that u(q(θ̂σ)� θ̂σ) − x(θ̂σ) ≥ 0 and so u(q(θ̂σ)�θ) − x(θ̂σ) ≥ 0 for
all θ > θ̂σ (this is implied by ∂u(q�θ)/∂θ ≥ 0). Finally, note that in (35), σ(θ) ≥ θ for all
θ ≤ θ̂σ (this is implied by the measurability condition (34)).

We now denote by σi : �→� the set of functions such that σi(θ) > θ. A mechanism
{q(θ)�x(θ)}θ∈� is incentive compatible if

E
f
θ

[
u
(
q(θ)�θ

) − x(θ)
] ≥ sup

σ∈
̃
E
f
θ

[{
u
(
q
(
σ(θ)

)
� θ

) − x
(
σ(θ)

)}+]
� (37)

We can rewrite the right-hand side of (37) as

sup
{σi:T→T

θ̂σ∈� }
E
f
θ

[
u
(
q
(
σi(θ)

)
� θ

) − x
(
σi(θ)

)|θ ≤ θ̂σ
] +E

f
θ

[
u
(
q(θ̂σ)�θ

) − x(θ̂σ)|θ > θ̂σ
]
� (38)
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In other words, the maximization over all strategies 
̃ can be written in two parts: (i) as
the optimal cutoff type θ̂σ ∈ �, such that all types θ > θ̂σ report σ(θ) = θ̂σ , and (ii) as
the optimal reports for types θ ≤ θ̂σ , which must satisfy that θ ≤ σ(θ). Observe that
neither term in (38) has the positive part function. As previously explained, the positive
part function in the second term is redundant because u(q(θ̂σ)� θ̂σ) − x(θ̂σ) ≥ 0 and
∂u(q�θ)/∂θ ≥ 0 implies that u(q(θ̂σ)�θ) − x(θ̂σ) ≥ 0 for all θ > θ̂σ . In the first term, it is
also redundant because, if for some σi and some θ′, u(q(σi(θ′))�θ′)−x(σi(θ′)) < 0, then
the agent would opt out of the mechanism ex post. So in this case, we can redefined the
strategy so that σi(θ′) = θ′, which would obviously give weakly larger rents. Thus, it is
never optimal for the agent to use a strategy in which σi(θ′) > θ′ and u(q(σi(θ′))�θ′) −
x(σi(θ′)) < 0.

We conclude this part of the proof by writing (37) as

E
f
θ

[
u
(
q(θ)�θ

) − x(θ)
] ≥ sup

{σi:T→T
θ̂σ∈� }

E
f
θ

[
u
(
q
(
σi(θ)

)
� θ

) − x
(
σi(θ)

)|θ ≤ θ̂σ
]

+E
f
θ

[
u
(
q(θ̂σ)�θ

) − x(θ̂σ)|θ > θ̂σ
]
� (39)

Step 2: Equations (13) and (14) are necessary for incentive compatibility. Inequality
(39) implies that

E
f
θ

[
u
(
q(θ)�θ

) − x(θ)
] ≥ sup

{σi:T→T }
E
f
θ

[
u
(
q
(
σi(θ)

)
� θ

) − x
(
σi(θ)

)]
�

By definition, σi(θ) ≥ θ for all θ ∈ � and so the previous inequality implies that (13) is
satisfied. Similarly, if (39) is satisfied, then

E
f
θ

[
u
(
q(θ)�θ

) − x(θ)
]

≥ sup
{θ̂σ∈�}

E
f
θ

[
u
(
q(θ)�θ

) − x(θ)|θ ≤ θ̂σ
] +E

f
θ

[
u
(
q(θ̂σ)�θ

) − x(θ̂σ)|θ > θ̂σ
]
�

The previous inequality can be written as

0 ≥ sup
{θ̂σ∈�}

E
f
θ

[
u
(
q(θ̂σ)�θ

) − x(θ̂σ)− (
u
(
q(θ)�θ

) − x(θ)
)|θ > θ̂σ

]
�

The previous inequality implies that (14) is satisfied (this can be seen directly by relabel-
ing θ̂σ with θ′).

Step 3: Equations (13) and (14) are sufficient for incentive compatibility. We write (39)
as

0 ≥ sup
{σi:T→T

θ̂σ∈� }
E
f
θ

[
u
(
q
(
σi(θ)

)
� θ

) − x
(
σi(θ)

) − (
u
(
q(θ)�θ

) − x(θ)
)|θ ≤ θ̂σ

]

+E
f
θ

[
u
(
q(θ̂σ)�θ

) − x(θ̂σ)− (
u
(
q(θ)�θ

)
�x(θ)

)|θ > θ̂σ
]
�
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If (13) and (14) are satisfied, then both terms are going to be nonpositive, so (39) will
be satisfied. Therefore, (13) and (14) imply incentive compatibility. This concludes the
proof.

Proof That (17b) Has a Solution. We prove that there exists a θ̃ that solves (17b). For
this, note that the right-hand side of (17b) does not depend on θ̃. Also note that the left-

hand side is continuous in θ̃. Because ∂2u(q�θ)
∂θ∂q > 0 and ∂u(q�θ)

∂θ ≥ 0, we have that ∂u(q�θ)
∂θ > 0

for all q > 0. Thus, the left-hand side is additionally strictly decreasing in θ̃. This is
because ∂u(q�θ)

∂θ is strictly positive and, hence, the term inside the integral is positive.
Thus, there is at most one θ̃ that solves for (17b).

We now show that a solution exists. We show this by proving that in the limit θ̃ → θ̄,
the left-hand side of (17b) is smaller than the right-hand side of (17b), while in the limit
θ̃ → θ, the inequality is reversed. Because the left-hand side of (17b) is continuous in θ̃,
the intermediate value theorem guarantees that there exists θ̃ such that the inequality is
satisfied with equality.

In the limit θ̃ → θ̄, we have that the left-hand side of (17b) converges to 0 and, hence,
the right-hand side of (17b) is larger than the left-hand side of (17b). We now show that
in the limit θ̃ → θ, the right-hand side of (17b) is smaller than the left-hand side of (17b).
For this, we note that

max
θ′∈�

E
f
θ

[{
u
(
q
(
θ′)� θ) − u

(
q
(
θ′)� θ′)}+]

= max
θ′∈�

(
1 − F

(
θ′))

E
f
θ

[∫ θ

θ′

u
(
q
(
θ′)� s)
∂θ

ds
∣∣∣θ > θ′

]
(40)

≤ max
θ′∈�

(
1 − F

(
θ′))

E
f
θ

[∫ θ

θ′

∂u
(
q(s)� s

)
∂θ

ds
∣∣∣θ > θ′

]
(41)

= (
1 − F(θ)

)
E
f
θ

[∫ θ

θ

∂u
(
q(s)� s

)
∂θ

ds
∣∣∣θ > θ

]
� (42)

The explanation of the steps is as follows. Equation(40) uses that ∂u(q�θ)/∂θ ≥ 0 and
rewrites the difference as an integral. Equation (41) uses that ∂2u(q�θ)/∂θ∂q ≥ 0 and
that q(θ) is nondecreasing. Equation (42) follows from the fact that the term inside the
expectation is positive and, hence, the whole term on the right-hand side of (41) is de-
creasing in θ′. Hence, the maximum is achieved at θ′ = θ. However, (42) is equal to the
left-hand side of (17b) evaluated at θ̃ = θ. Hence, the left-hand side of (17b) evaluated
at θ̃ = θ is greater than the right-hand side of (17b). Thus, there is always a θ̃ that solves
(17b).

Proof of Proposition 1. To prove incentive compatibility, we need to prove that if
the transfers are defined as in (17a) and (17b), then the IC constraints (13) and (14) are
satisfied.

Step 1: Constraint (13). We first note that for θ ∈ [θ̃� θ̄], the transfers are essentially
the same as those dictated by a static incentive-compatible mechanism (shifted only by
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a constant) and, thus,

∀θ′′� θ′ ∈ [θ̃� θ̄]� u
(
q
(
θ′′)� θ′′) − x

(
θ′′) ≥ u

(
q
(
θ′)� θ′′) − x

(
θ′)� (43)

Hence, for all θ′′� θ′ ∈ [θ̃� θ̄], (13) is satisfied. If θ′′ < θ′ ≤ θ̃, then

u
(
q
(
θ′)� θ′′) − x

(
θ′) = u

(
q
(
θ′)� θ′′) − u

(
q
(
θ′)� θ′) ≤ u

(
q
(
θ′)� θ′) − x

(
θ′) = 0�

where the inequality is implied by ∂u(q�θ)/∂θ ≥ 0. If θ′′ < θ̃ ≤ θ′, then

u
(
q
(
θ′)� θ′′) − x

(
θ′) ≤ u

(
q
(
θ′)� θ̃) − x

(
θ′) ≤ u

(
q(θ̃)� θ̃

) − x(θ̃)= 0�

In the first inequality, we use the fact that ∂u(q�θ)/∂θ ≥ 0. In the second inequality,
we use that for all θ′′� θ′ ∈ [θ̃� θ̄], constraint (13) is satisfied. Thus (13) is satisfied for all
θ′′� θ′ ∈�.

Step 2: Constraint (14). For all θ′ ≥ θ̃, we can take expectation of (43) with respect to
θ′′ ≥ θ′. We get

E
f
θ

[
u
(
q(θ)�θ

) − x(θ)|θ ≥ θ′] ≥ E
f
θ

[
u
(
q
(
θ′)� θ) − x

(
θ′)|θ ≥ θ′]�

Thus, (14) is satisfied for θ′ ≥ θ̃. For all θ′ < θ̃,

E
f
θ

[
u
(
q
(
θ′)� θ) − x

(
θ′)|θ ≥ θ′] = E

f
θ

[
u
(
q
(
θ′)� θ) − u

(
q
(
θ′)� θ′)|θ ≥ θ′] (44)

= 1
1 − F

(
θ′)Ef

θ

[{
u
(
q
(
θ′)� θ) − u

(
q
(
θ′)� θ′)}+]

(45)

≤ 1
1 − F

(
θ′) max

θ′′∈�
E
f
θ

[{
u
(
q
(
θ′′)� θ) − u

(
q
(
θ′′)� θ′′)}+]

(46)

= 1 − F(θ̃)

1 − F
(
θ′)Ef

θ

[∫ θ

θ̃

∂u
(
q(s)� (s)

)
∂θ

ds
∣∣∣θ ≥ θ̃

]
(47)

= 1 − F(θ̃)

1 − F
(
θ′)Ef

θ

[
u
(
q(θ)�θ

) − x(θ)|θ ≥ θ̃
]

(48)

= 1
1 − F

(
θ′)Ef

θ

[
u
(
q(θ)�θ

) − x(θ)
]

(49)

= E
f
θ

[
u
(
q(θ)�θ

) − x(θ)|θ > θ′]� (50)

The explanation of the previous steps are as follows. Equation (44) uses that for θ′ < θ̃,
x(θ′) = u(q(θ′)�θ′). Equation (45) is because ∂u(q�θ)/∂θ ≥ 0 and, hence, u(q(θ′)�θ) <
u(q(θ′)�θ′) for θ < θ′. By taking the positive part and normalizing, we get (45). Equa-
tion (46) is by the definition of the maximum. Equation (47) follows from the definition
of θ̃ (see (17b)). Equation (48) follows from the fact that the transfers are constructed
using the envelope theorem as in a static incentive-compatible mechanism; (48) is anal-
ogous to (4). Equations (49) and (50) are implied by u(q(θ)�θ) − x(θ) = 0 ∀θ ≤ θ̃. Thus,
inequality (14) is satisfied for all θ′ ∈ �.

Finally note that (18) is obtained by replacing x̃(θ) with (17a) and then using (17b).
This proves the result.
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Proof of Theorem 2. Lemma 4 (proved later in the Supplemental Material) states that
there exists a nondecreasing solution to (12). Proposition 1 shows that the solution to
(12) can be implemented with transfers as in (17a) and (17b). The principal’s profits are

π = E
f
θ

[
x∗(θ)− c

(
q∗(θ)�θ

)] = E
f
θ

[
S

(
q∗(θ)�θ

) − (
u
(
q∗(θ)�θ

) − x∗(θ)
)]
�

Using Proposition 1,

E
f
θ

[
u
(
q∗(θ)�θ

) − x∗(θ)
] = max

θ′∈�
E
f
θ

[{
u
(
q∗(θ′)� θ) − u

(
q∗(θ′)� θ′)}+]

�

Hence,

π = E
f
θ

[
S

(
q∗(θ)�θ

)] − max
θ′∈�

E
f
θ

[
u
(
q∗(θ′)� θ) − u

(
q∗(θ′)� θ′)]�

However, {q∗(θ)}θ∈� is a nondecreasing solution to (12). Hence,

π = max
{q(θ)}θ∈�∈R�

{
E
f
θ

[
S

(
q(θ)�θ

)] − max
θ′∈�

E
f
θ

[{
u
(
q
(
θ′)� θ) − u

(
q
(
θ′)� θ′)}+]}

�

It follows from Theorem 1 that this is an optimal mechanism.

Proof of Lemma 4. Let {q̃I(θ)}θ∈� be a solution to the maximization (12) for a fixed I:

{
q̃I(θ)

}
θ∈� ∈ arg max

{q(θ)}θ∈�∈R�

{
E
f
θ

[
S

(
q(θ)�θ

)] − I
}

subject to I ≥ max
θ′∈�

E
f
θ

[{
u
(
q
(
θ′)� θ) − u

(
q
(
θ′)� θ′)}+]

� (51)

It follows from the definition of q̂I(θ) (see (21)) that q̃I(θ) ≤ q̂I(θ); otherwise (51) would
be violated. Because S(q�θ) is strictly quasi-concave if q̂I(θ) < qs(θ), then

∀q < q̂I(θ)� S(q�θ) < S
(
q̂I(θ)�θ

)
�

Alternatively, since E
f
θ[{u(q�θ)−u(q�θ′)}+] is increasing in q (we prove this separately in

the Supplemental Material), if qs(θ) < q̂I(θ), then implementing qs(θ) would not violate
(51). Thus, for almost every θ ∈ �, q̃I(θ) must be equal to qs(θ) whenever possible or
equal to q̂I(θ). Thus, q̃(θ) is given by

q̃I(θ) = min
{
qs(θ)� q̂(θ)

}
�

However, this is the same as the definition of qI(θ) in (22). In other words, qI(θ) solves
the maximization (12) for a fixed I. This proves that (12) is equivalent to (23).

Properties of qI(θ). We now show that for all I > 0, (a) the quantity {qI(θ)}θ∈�
is continuous and nondecreasing, and (b) there exists a threshold θ̂I < θ̄ such that
qI(θ) = qs(θ) for all θ > θ̂I . We now observe that {q̂I(θ)}θ∈� is continuous and non-
decreasing (we prove this later). Therefore, {qI(θ)}θ∈� is a minimum of two continuous
nondecreasing functions, so it is also continuous and nondecreasing (remember that
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{qs(θ)}θ∈� is also nondecreasing and continuous). Additionally, because ∂u(q�θ)/∂θ ≥ 0,
we can write (21) as

q̂I(θ)= max
{
q ∈ Q : (1 − F(θ)

)
E
f
θ′

[
u
(
q�θ′) − u(q�θ)|θ′ > θ

] ≤ I
}
�

Because all functions are continuous, and because Q and � have bounded support, we
have that

∀q ∈Q� lim
θ→θ̄

(
1 − F(θ)

)
E
f
θ′

[
u
(
q�θ′) − u(q�θ)|θ′ > θ

] = 0�

Thus, if I > 0, then q̂(θ)= q̄ for all θ high enough. Thus, qI(θ) is equal to qs(θ) for θ high
enough. This proves the properties of qI(θ).

Proof that q̂I(θ) is continuous and nondecreasing. First note that u(0� θ) = 0 for
all θ and, thu q̂I(θ) > 0 for all I > 0. Because ∂u(q�θ)/∂θ ≥ 0 and ∂2u(q�θ)/∂θ∂q > 0, we
in fact have that ∂u(q�θ)/∂θ > 0 for all q > 0.

As before, we can write (21) as

q̂I(θ)= max
{
q ∈ Q : (1 − F(θ)

)
E
f
θ′

[
u
(
q�θ′) − u(q�θ)|θ′ > θ

] ≤ I
}
�

Writing the difference as an integral, we get

q̂I(θ)= max
{
q ∈Q : (1 − F(θ)

)
E
f
θ′

[∫ θ′

θ

∂u(q� s)

∂θ
ds

∣∣∣θ′ > θ

]
≤ I

}
�

Because ∂2u(q�θ)/∂θ∂q > 0, the term inside the integral is strictly increasing in q. Thus,
for all θ ∈� such that q̂I(θ) < q̄, we have that

I = (
1 − F

(
θ′))

E
f
θ

[
u
(
q̂I

(
θ′)� θ) − u

(
q̂I

(
θ′)� θ′)|θ ≥ θ′]� (52)

The previous equation defines q̂I(θ). The implicit function theorem guarantees that
q̂I(θ) is differentiable for all θ such that q̂I(θ) < q̄. We now take the derivative of (52)
with respect to θ′:

0 = (
1 − F

(
θ′))

E
f
θ

[
−∂u

(
q̂I

(
θ′)� θ′)

∂θ

∣∣∣θ ≥ θ′
]

+ (
1 − F

(
θ′))∂q̂I(θ′)

∂θ′ E
f
θ

[
∂u

(
q̂I

(
θ′)� θ)

∂q
− ∂u

(
q̂I

(
θ′)� θ′)

∂q

∣∣∣θ ≥ θ′
]
�

Rearranging terms, we write

∂q̂I
(
θ′)

∂θ′ =
E
f
θ

[
∂u

(
q̂I

(
θ′)� θ′)

∂θ

∣∣∣θ ≥ θ′
]

E
f
θ

[∫ θ

θ′

∂2u
(
q̂I

(
θ′)� s)

∂q∂θ
ds

∣∣∣θ ≥ θ′
] �

Because ∂u(q�θ)/∂θ ≥ 0 and ∂2u(q�θ)/∂q∂θ > 0, the numerator and denominator are
positive, which implies that {q̂I(θ)}θ∈� is nondecreasing for all values of θ such that
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q̂I(θ) < q̄. Moreover, since it is differentiable, it is obviously also continuous for all θ
such that q̂I(θ) < q̄.

Since q̂I(θ) is nondecreasing and continuous when the value is less than q̄, it follows
that there exists a type θ′′ such that q̂I(θ) = q̄ if and only if θ ≥ θ′′. It follows that q̂I(θ)
is nondecreasing for all values of θ and it is also continuous at θ′′. Therefore, q̂I(θ) is
continuous and nondecreasing. �

The proof of Proposition 2 is a corollary of Proposition 3 (proved later in the Supple-
mental Material).

Proof of Lemma 5. Remember that we can write (12) as

max
I∈R

E
f
θ

[
S

(
qI(θ)�θ

)] − I� (53)

We define

Ī � max
θ′∈�

E
f
θ

[{
u
(
qs

(
θ′)� θ) − u

(
qs

(
θ′)� θ′)}+]

�

In other words, Ī is the minimum rent such that qĪ(θ) = qs(θ). It is clear that the maxi-
mizer of (53) is never larger than Ī. It is also clear that if I < Ī, then there exists a positive
measure of types θ ∈� such that qI(θ) < qs(θ) (i.e., such that qI(θ)= q̂I(θ)).

We now show that for all I ∈ [0� Ī], the objective function is strictly concave as a func-

tion of I (i.e., Ef
θ[S(qI(θ)�θ)] − I is strictly concave). We define {θ−

1 � θ
+
1 � � � � � θ

−
k �θ

+
k � } as

the cutoffs such that qI(θ)= q̂I(θ), i.e.,

qI(θ) =
{
q̂I(θ) if θ ∈ [

θ−
j � θ

+
j

]
for some j ∈ {1� � � � �k}

qs(θ) otherwise�

We write E
f
θ[S(qI(θ)�θ)] − I in terms of these thresholds:

E
f
θ

[
S

(
qI(θ)�θ

)]− I =
k∑

j=1

∫ θ+
j

θ−
j

S
(
q̂I(θ)�θ

)
f (θ)dθ+

k∑
j=0

∫ θ−
j+1

θ+
j

S
(
qs(θ)�θ

)
f (θ)dθ− I� (54)

Here we adopted the convention that θ+
0 = θ and θ−

k+1 = θ̄ (these two terms appear in

the second summation). The derivative of Ef
θ[S(qI(θ)�θ)] − I with respect to I is given

by

∂E
f
θ

[
S

(
qI(θ)�θ

)] − I

∂I
=

∑
j∈k

∫ θ+
j

θ−
j

∂S
(
qI(θ)�θ

)
∂q

∂q̂I(θ)

∂I
f (θ)dθ− 1�

We remind the reader that qI(θ) is continuous, and so the derivative of (54) with re-
spect to the thresholds {θ−

1 � θ
+
1 � � � � � θ

−
k �θ

+
k � } is zero; also ∂qs(θ)/∂I = 0 (i.e., the surplus-

maximizing quantity does not depend on I) and so the derivative of S(qs(θ)�θ) with

respect to I is equal to 0. If we take the second derivative of Ef
θ[S(qI(θ)�θ)] − I with
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respect to I, we get

∂2
E
f
θ

[
S

(
qI(θ)�θ

)] − I

∂I2

=
∑
j∈k

∫ θ+
j

θ−
j

(
∂2S

(
qI(θ)�θ

)
∂q2

(
∂q̂I(θ)

∂I

)2
+ ∂S

(
qI(θ)�θ

)
∂q

∂2q̂I(θ)

∂I2

)
f (θ)dθ (55)

−
∑
j∈k

∂θ−
j

∂I

∂S
(
qI

(
θ−
j

)
� θ−

j

)
∂q

∂q̂I
(
θ−
j

)
∂I

f
(
θ−
j

)
(56)

+
∑
j∈k

∂θ+
j

∂I

∂S
(
qI

(
θ+
j

)
� θ+

j

)
∂q

∂q̂I
(
θ+
j

)
∂I

f
(
θ+
j

)
� (57)

Remember that {θ−
1 � θ

+
1 � � � � � θ

−
k �θ

+
k � } are the cutoffs in which qI(θ) is equal to q̂I(θ). We

remind the reader that if q̂I(θ) < q̄, then q̂I(θ) is strictly increasing in I. Thus, when-
ever qI(θ) = q̂I(θ), we have that q̂I(θ) is strictly increasing in I. Thus, the intervals
{θ−

1 � θ
+
1 � � � � � θ

−
k �θ

+
k � } get smaller as I increases (i.e., the zones where qI(θ) = qs(θ) get

larger). Therefore,

∂θ−
j

∂I
≥ 0 and

∂θ+
j

∂I
≤ 0�

Moreover, the previous inequalities are strict whenever θ−
1 
= θ and θ+

j 
= θ̄. In other
words, the intervals get strictly smaller as long as the cutoffs are not equal to the limits
of the type space. This is because qI(θ) = min{q̂I(θ)�qs(θ)} and both functions inside
the minimum are continuous, so if q̂I(θ) is strictly increasing, then the zones where
qI(θ) = qs(θ) must also increase. Since we showed in Lemma 4 that qI(θ) = qs(θ) for θ
high enough, we have that θ+

j 
= θ̄ always and, hence,

∂θ+
j

∂I
< 0�

We also have that

∀θ ∈ [
θ−
j � θ

+
j

]
�

∂S
(
qI(θ)�θ

)
∂q

∂q̂I(θ)

∂I
f (θ) > 0�

The previous inequality follows from the fact that S(q�θ) is strictly quasi-concave and,
hence, it is strictly increasing for q < qs(θ), and q̂I(θ) is strictly increasing in I. Thus (56)
is weakly negative (with strict inequality whenever θ−

1 
= θ) and (57) is strictly negative.
If we show that (55) is weakly negative, then we will conclude that

∂2
E
f
θ

[
S

(
qI(θ)�θ

)] − I

∂I2 < 0�

We now show that (55) is weakly negative. We first check that q̂I(θ) is a concave
function of I. For this, we remind the reader that whenever q̂I(θ) < q̄, then q̂I(θ) is
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implicitly defined as in (52). Taking the second derivative of (52) with respect to I, we
have that for all θ such that q̂I(θ) < q̄,

∂2q̂I
(
θ′)

∂I2 = −
E
f
θ

[(
∂2u

(
q̂I

(
θ′)� θ)

∂q2 − ∂2u
(
q̂I

(
θ′)� θ′)

∂q2

)(
∂q̂I

(
θ′)

∂I

)2∣∣∣θ ≥ θ′
]

E
f
θ

[(
∂u

(
q̂I

(
θ′)� θ)

∂q
− ∂u

(
q̂I

(
θ′)� θ′)

∂q

)∣∣∣θ ≥ θ′
] �

Because ∂2u(q�θ)/∂q∂θ > 0 when q > 0, then

∀θ > θ′�
(
∂u

(
q̂I

(
θ′)� θ)

∂q
− ∂u

(
q̂I

(
θ′)� θ′)

∂q

)
> 0

and, thus, the denominator of the fraction is strictly positive. Because ∂3u/∂q∂q∂θ ≥ 0,
then

∀θ > θ′�
∂2u

(
q̂I

(
θ′)� θ)

∂q2 − ∂2u
(
q̂I

(
θ′)� θ′)

∂q2 ≥ 0

and, thus, the numerator of the fraction is weakly positive. Thus, the fraction is positive,
which multiplied by −1 gives a negative number. Hence, q̂I(θ) is a concave function of I.
Looking at the term inside the integral in (55), we have that S(q�θ) is weakly concave,
and we showed that qI(θ) is also concave and that S(q�θ) is strictly increasing in q for
q ≤ qs(θ);26 thus, all the terms inside the integral in (55) are positive. Hence, the term

(55) is nonnegative, which implies that ∂2(E
f
θ[S(qI(θ)�θ)] − I)/∂I2 < 0. This concludes

the proof.

Proof of Proposition 3. Let M∗ = (q�x) and (σ∗�o∗) be an optimal mechanism and
an optimal strategy in this mechanism. We define

q̈(ω)� q
(
σ∗(ω)

) · o∗(ω)�

In other words, q̈(ω) is equal to the quantity implemented in mechanism M∗. Using the
same arguments as in the proof of Theorem 1, we get that

�= E
μ
ω

[
x
(
σ∗(ω)

) − c(q∗(σ(ω)
)
� θ(ω)

]
≤ E

μ
ω

[
S(q̈(ω)�θ(ω)

] − max
ω′∈�

E
μ
ω

[{
u
(
q̈
(
ω′)� θ(ω)

) − u
(
q̈
(
ω′)� θ(

ω′))}+]
�

This expression is derived by writing the principal’s profits as the total surplus minus the
lower bound on the agent’s rents characterized in Lemma 2. We now construct {q̃(θ)}θ∈�
as in the proof of Theorem 1, that is, we construct it as

q̃(θ)= arg sup
q∈R

S(q�θ)

subject to ∃ω′ ∈��θ = θ
(
ω′) and q ≤ q̈

(
ω′)�

26The strict quasi-concavity of S(q�θ) implies that S(q�θ) strictly increases in q for q < qs(θ).
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Using the same arguments as in the proof of Theorem 1, we get that

E
μ
ω

[
S(q̈(ω)�θ(ω)

] − max
ω′∈�

E
μ
ω

[{
u
(
q̈
(
ω′)� θ(ω)

) − u
(
q̈
(
ω′)� θ(

ω′))}+]
≤ E

f
θ

[
S(q̃(θ)�θ

] − max
θ′∈�

E
f
θ

[{
u
(
q̃
(
θ′)� θ) − u

(
q̃
(
θ′)� θ′)}+]

� (58)

Moreover, the inequality is strict if there exists a positive measure of states ω ∈ � such
that q̈(ω) 
= q̃(θ(ω)).27 Therefore, we must have that for almost every ω ∈ �, q̈(ω) =
q̃(θ(ω)).

Because we showed in Lemma 5 that (12) has a unique solution, it must be that q̃(θ)
is the (essentially unique) solution to (12). Otherwise, (58) evaluated at a different set of
quantities would be strictly lower than (12). Thus, we have that for almost every ω ∈�,

q
(
σ∗(ω)

) · o∗(ω) = q∗(θ(ω)
)
�

This proves (26).
We previously proved that the quantities implemented by any optimal mechanism

must solve (12) (i.e., must be equal to q∗(θ)). Note that for all θ′′ ∈ � such that q∗(θ′′) <
qs(θ′′),

max
θ′∈�

E
f
θ

[{
u
(
q∗(θ′)� θ) − u

(
q∗(θ′)� θ′)}+] = E

f
θ

[{
u
(
q∗(θ′′)� θ) − u

(
q∗(θ′′)� θ′′)}+]

� (59)

In other words, constraint (12b) is satisfied with equality for all θ′′ ∈� such that q∗(θ′′) <
qs(θ′′). Suppose there exists ω ∈ � such that q∗(θ(ω)) < qs(θ(ω)) and x(σ∗(ω)) <

u(q∗(θ(ω))�θ(ω)) (i.e., suppose (27) is violated). Then

E
f
θ′

[{
u
(
q∗(θ(ω)

)
� θ′) − u(q∗(θ(ω)�θ(ω)

)}+]
< E

f
θ′

[{
u(q∗(θ(ω)�θ′) − x∗(σ(ω)

)}+]
� (60)

As we showed in Section 4.1, in this case, the agent can guarantee himself rents at least

as high as Ef
θ[{u(q∗(ω)�θ)−x∗(σ(ω))}+]. Because the principal’s profits are equal to the

total surplus minus the agent’s rents, the principal’s profits will be less than

�< E
f
θ

[
S

(
q∗(θ)�θ

)] −E
f
θ

[{
u
(
q∗(ω)�θ

) − x∗(σ(ω)
)}+]

�

It follows from (59) and (60) that the principal’s profits will be strictly lower than

�< E
f
θ

[
S

(
q∗(θ)�θ

)] − max
θ′∈�

E
f
θ

[{
u
(
q
(
θ′)� θ) − u

(
q
(
θ′)� θ′)}+]

�

Thus the principal’s profits will be lower than the optimal mechanism. Therefore, it must
be the case that x(σ∗(ω)) = u(q∗(θ(ω))�θ(ω)) for all ω such that q∗(θ(ω)) < qs(θ(ω)).
This proves the result.

27The strict inequality follows from the fact that S(q�θ) is strictly quasi-concave. Therefore, for
every θ ∈ �, if there exists ω�ω′ ∈ � such that θ(ω) = θ(ω′) and q̈(ω) 
= q̈(ω′), then S(q̃(θ)�θ) >

min{S(q̈(ω)�θ)�S(q̈(ω′)�θ)}.
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Proof that E
f
θ[{u(q�θ)− u(q�θ′)}+] is increasing in q. First, note that ∂u(q�θ)/∂θ ≥

0 and, hence,

E
f
θ

[{
u(q�θ)− u

(
q�θ′)}+] = (

1 − F
(
θ′))

E
f
θ

[
u(q�θ)− u

(
q�θ′)|θ ≥ θ′]�

Now note that

∂

∂q

(
1 − F

(
θ′))

E
f
θ

[{
u(q�θ)− u

(
q�θ′)}+|θ ≥ θ′]

= (
1 − F

(
θ′))

E
f
θ

[
∂u(q�θ)

∂q
− ∂u

(
q�θ′)
∂q

∣∣∣θ ≥ θ′
]

= (
1 − F

(
θ′))

E
f
θ

[∫ θ

θ′
∂2u(q�θ)

∂q∂θ

∣∣∣θ ≥ θ′
]
�

Since ∂2u(q�θ)/∂q∂θ > 0 and θ > θ′, we get the result.
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