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Private sunspots in games of coordinated attack

Yuliyan Mitkov
Department of Economcs, University of Bonn

I endogenize the probability of self-fulfilling outcomes in a game where the only
uncertainty comes from extrinsic sunspots. There is a group of players wishing to
coordinate on the same action and another player—the regime defender—whose
action affects the payoff from coordination. The coordinating players’ actions can
be based on a sunspot state, which, unlike in the classic sunspot approach, is ob-
served with a small, idiosyncratic noise (a private sunspot). I show how private
sunspots, combined with the action of the regime defender, can be used to derive
a unique coordination probability in any equilibrium where sunspots influence
actions. I show how this approach can be used to determine the probability of a
sunspot-driven bank run.
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1. Introduction

Several economic phenomena, such as currency attacks, bank runs, sovereign defaults,
and technology adoption, can be understood as collective action games where the play-
ers can coordinate on one of two equilibria with very different welfare consequences
(Diamond and Dybvig (1983), Obstfeld (1996), Calvo (1988), Katz and Shapiro (1986),
Cole and Kehoe (2000)). Multiple equilibria emerge in those settings because of strate-
gic complementarities: the benefit of an action for a player increases with the number of
players choosing the same action (Bulow, Geanakoplos, and Klemperer (1985)). Equilib-
rium multiplicity poses issues since the effect of a given policy on equilibrium outcomes
may be indeterminate. One approach to studying games with multiple equilibria is to
introduce extrinsic uncertainty to the model: a sunspot reflecting agents’ sentiment.
In this approach, each agent is influenced by the sunspot only because he expects the
others to be.1 However, a shortcoming of the sunspot-based approach is that the prob-
ability of coordinating on a specific action is exogenous: it depends on the probability
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of the associated sunspot state. Stated differently, the standard sunspot approach offers
no theoretical rationale for why good outcomes should be correlated with good funda-
mentals and vice versa (Morris and Shin (2000)).

I propose a systematic way to endogenize the probability of a coordination event
within the sunspot-based approach. Specifically, I perturb the original public sunspot
game by assuming that each coordinating player receives a signal of the realization of
the sunspot state, which is arbitrarily close to the true realization—a private sunspot. I
show how and when this private sunspot approach generates a unique probability of co-
ordinating on a given action when sunspots matter (namely, when players’ actions are
contingent on sunspots). The general approach, presented in Sections 2 and 3, assumes
a continuum of homogeneous coordinating players (the agents) taking a binary action
(to attack or not) and another player (the regime defender) taking a continuous action
that affects each agent’s net payoff from an attack. The setup is similar to Morris and
Shin (2003) with the following important differences. (i) There is no intrinsic (i.e., fun-
damental) uncertainty. (ii) The defender makes a strategic choice that affects the benefit
of the attack for the agents and rules out an attack as the strictly dominant action. (iii)
The defender’s action is unobservable to the agents when deciding whether to attack.
(iv) The defender cannot credibly commit to a specific action, but will best respond to
the agents’ strategies.

As is well known, the strategies of the coordinating players could be conditioned
on a sunspot state, i.e., an extrinsic random variable. Even though the state is payoff-
irrelevant, each coordinating player would base his actions on the realized sunspot if he
expects others to do the same. With the usual sunspot-based approach, however, the
equilibrium probability of an attack is generally indeterminate and can be any num-
ber within an interval. Such a prediction is unsatisfactory and reveals a weakness in
that approach. Notice that if the sunspot state is perfectly observed, there is no strate-
gic uncertainty: given his signal, each coordinating player can perfectly predict the ac-
tions of the others. This is an unappealing assumption since some strategic uncertainty
(however small) is likely to persist. The private sunspot approach introduces a small de-
gree of strategic uncertainty: each coordinating player is never sure of the exact private
sunspot received by each of the other coordinating players. As a result, the strategies of
the coordinating players must satisfy an additional condition, which, together with the
defender’s actions, pins down the probability of an attack.

The private sunspot approach allows the coordinating players to hold idiosyncratic
sentiments about the prospect of coordinating on a given outcome. One interpreta-
tion of this approach is as a modeling device whose goal is to sharpen the predictions of
sunspot equilibria. Another is that the correlating device (the sunspot structure) is noisy
and unreliable because its realizations cannot be measured precisely or are open to in-
terpretation. This point was made by Angeletos (2008), who analyzes a model with im-
perfectly observed sunspots (see also Angeletos and La’O (2013)). My approach differs
in several ways. First, no regime defender exists in Angeletos (2008), whereas this player
is instrumental here. Second, Angeletos (2008) is interested in how private sunspots in-
duce variation in the equilibrium actions, even if all players share the same information
about the fundamentals. In contrast, the analysis here perturbs the original game by
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adding small noise in the player’s coordination device. Ex ante, the coordinating players’
probability of choosing different actions is arbitrarily close to zero.

One popular approach to resolving the multiplicity of equilibrium when strategic
complementarities are present is the global games approach (Rubinstein (1989), Carls-
son and Van Damme (1993), Morris and Shin (1998), Goldstein and Pauzner (2005)).
That approach requires the underlying model to have a particular structure, which is
not satisfied for the environments I study here. In particular, the fundamental value de-
termining the payoff from attacking is a strategic choice of the defender in my model
rather than an exogenous random variable. The approach proposed here is appropri-
ate for situations where the defender is not a Stackelberg leader, either because he lacks
commitment or his actions are unobservable to the coordinating players. This setup is
similar to Jann and Schottmüller (2021), where an active defender invests in costly, un-
observable defenses. They show that the game has a unique Nash equilibrium where no
attack occurs if the number of potential attackers is large enough. My approach differs in
several ways. First, they explicitly rule out correlating devices (such as sunspots), which
are crucial to my analysis. Second, my results do not depend on the number of attack-
ers. Third, the private sunspot approach generates an attack with positive probability as
part of equilibrium.

The private sunspot approach has another feature that distinguishes it from global
games. Conditional on the fundamentals, a global game selects a particular equilibrium:
either an attack happens or it does not (in the limiting case where the noise goes to zero).
The implication is that a small change in the fundamentals can lead to a large, discon-
tinuous change in the outcome. The private sunspots approach, in contrast, assigns a
nontrivial probability to each outcome, which captures the idea that the coordination
process is somewhat random. Moreover, that probability responds continuously to a
change in the fundamentals. The approach here can be viewed as endogenously gener-
ating the equilibrium selection mechanism advocated by Ennis and Keister (2005a) for
analyzing government policy in models with complementarities and multiple equilib-
ria.2

Finally, to illustrate the advantages of the private sunspots approach, I apply the
method to a version of the canonical bank runs model of Diamond and Dybvig (1983).
Specifically, I use a version of the model in which a policymaker without commitment
can intervene and resolve the bank when it faces a run, as in Ennis and Keister (2009,
2010). The policymaker in this framework plays the role of the defender in my frame-
work as it reschedules payments to depositors to achieve ex post efficiency. If depositors
run on the bank in some states, the private sunspots approach delivers a unique equi-
librium probability of a run. I show how this probability has natural comparative statics,
as changes in economic fundamentals lead to continuous changes in the probability of
a run. I conclude by discussing the advantages of my approach relative to the global
games approach to bank runs pioneered by Goldstein and Pauzner (2005).

2In related work, Ennis and Keister (2005b) show how an equilibrium selection mechanism with these
general properties can result from an adaptive learning process with boundedly rational agents. In contrast,
the approach here is fully consistent with rationality.
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2. The setup

There is a continuum of coordinating players called the agents. Each agent chooses an
action ai ∈ {0, 1}, where ai = 1 is an attack on the regime.3 There is another player called
the regime defender, who chooses an action θ ∈ [θ, θ]. All agents have the same payoff
function u : {0, 1} × [θ, θ] × [0, 1] → R, where u(a, θ, α) is an agent’s payoff if he chooses
action a, the defender chooses an action θ, and a proportion α = ∫ 1

0 ai di of the other
agents choose action 1. The defender’s payoff is W : [θ, θ] × [0, 1] → R, where W (θ, α)
is his payoff if he chooses an action θ and a proportion α of the agents choose action 1.
Define �u : [θ, θ] × [0, 1] → R as the payoff for an agent from choosing action 1 minus
the payoff from choosing action 0. That is, �u(θ, α) ≡ u(1, θ, α) − u(0, θ, α). I impose
that �u(θ, α) is bounded and, in addition, make the assumptions listed below.

A1. Complementarities. For all θ ∈ [θ, θ], �u(θ, α) is weakly increasing in α.

A2. Action monotonicity. There is α̂ ∈ (0, 1) such that �u(θ, α) is (a) weakly increasing
in θ for α< α̂ and (b) strictly increasing in θ for α> α̂.

A3. Continuity. The integral
∫ 1

0 �u(θ, α)dα is continuous in θ.

According to A1, there are strategic complementarities: the incentive for an agent to
choose action 1 increases in the proportion of agents choosing that action, namely α.
According to A2, the incentive for an agent to choose action 1 weakly increases in the
defender’s action θ and strictly increases when α is sufficiently close to 1. Thus, higher
θ makes an attack more appealing.4 Finally,

∫ 1
0 �u(θ, α)dα is the expected net bene-

fit from an attack for an agent assigning a uniform probability over the proportion of
agents choosing to attack. According to A3, this net benefit varies continuously with the
defender’s action θ.

Next, recall that the defender’s choice of θ is unobservable by the agents, implying
that their actions cannot be contingent on the defender’s action. They would, of course,
infer θ in equilibrium. Thus, a no-attack Nash equilibrium exists whenever there is some
θNA ∈ [θ, θ] such that (i) θNA ∈ argmaxθ W (θ, 0) and (ii) �u(θNA, 0) ≤ 0. According to (i),
the defender best responds with θNA when he expects all agents to choose action 0. Ac-
cording to (ii), each agent best responds with action 0 when the defender picks θNA and
no other agent attacks. Similarly, a sure-attack Nash equilibrium exists whenever there
is some θA ∈ [θ, θ] such that (i) θA ∈ argmaxθ W (θ, 1) and (ii) �u(θA, 1) ≥ 0. According
to (i), the defender best responds with θA when all agents choose action 1. According to
(ii), each agent best responds with action 1 when the defender selects θA and all other
agents attack. I assume there is at least one Nash equilibrium in pure strategies.

3. Sunspot equilibria

Sunspot equilibria are introduced as follows: nature first draws a payoff-irrelevant ran-
dom variable s that no one observes. The variable s, with support S ⊆ R and cumulative

3The continuum of agents is for simplicity. The results hold for a finite number of agents, as shown in
Section 4.

4For example, �u(θ, α) = −c for α< α̂ and �u(θ, α) = θ− c for α≥ α̂, where α̂ ∈ (0, 1).
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distribution function (CDF) F(.), is the underlying sunspot state. Each agent then pri-
vately observes a payoff-irrelevant random variable ŝ, which, conditional on s, is inde-
pendent and identically distributed (i.i.d.) with support Ŝ ⊆R and CDF F̂(.|s, ε). Hence-
forth, ŝi is agent i’s private sunspot. The parameter ε ≥ 0 captures the precision of the
private sunspots and is normalized so that lower values of ε correspond to greater pre-
cision. Public sunspots correspond to ε= 0. The defender does not observe the sunspot
state or receive an informative private sunspot. The sunspot structure �ε = (S, F , Ŝ, F̂ )
is common knowledge.5

Definition 1. An equilibrium with private sunspots consists of a sunspot structure
�ε = (S, F , Ŝ, F̂ ), a strategy for each agent â∗ : Ŝ→ {0, 1}, and an action for the defender
θ∗ such that

â∗( ŝ) ∈ argmax
â∈{0,1}

lim
ε→0

∫
S
u
(
â, θ∗, α∗(s, ε)

)
dP(s|ŝ, ε) (1)

and

θ∗ ∈ argmax
θ∈[θ,θ]

lim
ε→0

∫
S
W

(
θ, α∗(s, ε)

)
dF(s), (2)

where α∗(s, ε) = ∫
Ŝ
â∗( ŝ)dF̂( ŝ|s, ε) is the proportion of agents choosing to attack for

given underlying sunspot state s and noise precision ε, and P(s|ŝ, ε) is the CDF of s con-
ditional on private sunspot ŝ and noise precision ε as implied by Bayes rule.

I focus on the vanishing noise case where the precision of the agents’ private
sunspots ε is arbitrarily close to zero. Specifically, I require each agent’s equilibrium
strategy to be an optimal choice in the limit as ε→ 0, holding the strategies of all other
agents fixed. I further impose the following assumptions on the sunspot structure.

A4. Sunspot structure. (i) The sunspot state s is a continuous random variable with
density f (.), (ii) agent i’s private sunspot is ŝi = s+εηi, where ηi are i.i.d. continu-
ous random variables that are independent of the sunspot state. The distribution
of the noise terms ηi isH(.) with support [−b, b] ⊆ R and density h(.).6

Finally, sunspots will be said to matter if agents’ actions are contingent on their private
sunspots. Henceforth, I only focus on equilibria where sunspots matter.

3.1 Strategies

Since the sunspot structure is continuous and the noise is arbitrarily small, we can as-
sume without loss of generality that the strategy of each agent will be contingent on

5Note that �ε is not part of the model primitives, but is a modeling device. As in Angeletos (2008), one
can think of private sunspots as idiosyncratic sentiments due to disagreements, different interpretations,
or measurement errors.

6The support of the sunspot state s and the noise terms ηi can be a bounded interval or the entire real
line. In addition, ηi need not be mean zero or even symmetrically distributed.



432 Yuliyan Mitkov Theoretical Economics 20 (2025)

M threshold points χ1 · · ·χM such that each threshold is a switch from one action to an-
other (the action at a threshold can be either of the two). For example, a single-threshold
strategy such that an agent attacks if and only if his private sunspot is greater than or
equal to χ. That is,

â( ŝ) =
{

0 if ŝ < χ

1 if ŝ ≥ χ.
(3)

As the noise in the private sunspots vanishes, ε→ 0, either all agents attack with proba-
bility q = 1 − F(χ) or there is no attack with the complement probability, where F(.) is
the CDF of the sunspot state. In general, denote by A ≡ {ŝ ∈ Ŝ : â( ŝ) = 1} the set of private
sunspots leading to an attack. Then, as ε→ 0, either all agents attack with probability
q= P(s ∈ A) or there is no attack with probability 1 −q, where P(s ∈ A) is the probability
that the sunspot state belongs to A. The defender’s best response in (2) is then given by

θ̂(q) ∈ argmax
θ∈[θ,θ]

(1 − q)W (θ, 0) + qW (θ, 1). (4)

A5. Defender’s action. The defender’s action θ̂(q) is unique for each q ∈ [0, 1]. The
function θ̂(q) is continuous and strictly decreasing in q.

A6. Laplacian action monotonicity. The Laplacian action monotonicity is∫ 1
0 �u(θ̂(0), α)dα > 0>

∫ 1
0 �u(θ̂(1), α)dα.

According to A5, θ̂(q) decreases in q, which, in turn, reduces the agents’ incentive to
attack since �u(θ, α) increases in θ. Next, recall that an agent’s beliefs are said to be
Laplacian when he assigns a uniform probability distribution over the proportion of
agents that attack, i.e., α ∼ U[0, 1] (see, e.g., Morris and Shin (2003)). According to A6,
an agent who has Laplacian beliefs would attack when q= 0, since, in that case, the de-
fender’s best response θ̂(0) is relatively high, making attacking the preferable action. On
the other hand, an agent who has these same beliefs will not attack if q= 1, since the de-
fender’s best response, in that case, θ̂(1) is relatively low, making no attack the preferable
action.

3.2 Public sunspots

I first examine the more familiar type of sunspot equilibria where the sunspot state s is
observed perfectly by the agents, corresponding to setting ε = 0 in A4. Consequently,
there is no strategic uncertainty in that case, each agent (after observing the sunspot)
knows what the other agents will do.

Proposition 1. Public sunspots. Suppose A1–A3, A5, and A6 are satisfied. Suppose each
agent perfectly observes the sunspot state. Then there are q1 and q2 (q1 < q2) such that
for any q ∈ [q1, q2] ⊆ [0, 1], there exists a sunspot equilibrium with an attack probability
equal to q.
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This proposition illustrates a critical shortcoming of the public sunspot approach:
the probability of an attack can be any value in the interval [q1, q2] and, in particular,
there is a continuum of equilibria where the attack probability is strictly between 0 and
1.7 The public sunspot approach does not provide a way to select among these equilibria
or to link the probability of an attack to the model’s primitives.

3.3 Private sunspots

I now show that the model yields much sharper predictions if the agents observe the
sunspot state with a small noise. In that case, as long as agents’ actions are contingent
on sunspots, the equilibrium attack probability is unique and can be directly related to
the model’s primitives.

Proposition 2. Private sunspots. Suppose A1–A6 are satisfied. Suppose the agents ob-
serve the sunspot state with a vanishing noise, and their actions are contingent on their
private sunspots. Then, the equilibrium attack probability q∗ is unique and is given as
the solution of ∫ 1

0
�u(θ̂(q∗), α

)
dα= 0. (5)

Proof. Assume each agent follows the single-threshold strategy in (3) and attacks if and
only if his private sunspot is greater than or equal to χ∗, where χ∗ will be determined in
equilibrium. Recall from Definition 1 that I require each agent’s strategy to be an optimal
choice in the limit as the noise in the private sunspots vanishes, holding the strategies of
the other agents fixed. Hence, I need to establish two things. First, as ε→ 0, each agent
best responds by an attack (no attack) if his private sunspot is greater (smaller) than χ∗
(thus χ∗ is an equilibrium). Second, the corresponding equilibrium attack probability
q∗ must satisfy condition (5) (hence χ∗ is unique).

In particular, as ε→ 0, the CDF of the proportion of agents who attack converge to
a distribution with mass q∗ on full attack and mass 1 − q∗ on no attack, where q∗ is the
probability that the sunspot is greater than or equal to χ∗. That is, P(s ≥ χ∗ ), where since
F(.) is the CDF of the sunspot state, we have

q∗ ≡ P
(
s ≥ χ∗) = 1 − F(

χ∗).

I will show that q∗ must satisfy the condition in (5). From A4, agent i’s private sunspot
is ŝi = s + εηi. Then, if the sunspot state is s, the proportion of agents who observe a
private sunspot greater than or equal to χ∗ is

P
(
s+ εηi ≥ χ∗|s, ε

) = 1 −H
(
χ∗ − s
ε

)
,

7The lower bound q1 is 0 whenever the no-attack Nash equilibrium exists, and the upper bound q2 is 1
whenever the sure-attack Nash equilibrium exists.
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whereH(.) is the CDF of the noise term ηi. We then get, for α ∈ [0, 1],

1 −H
(
χ∗ − s
ε

)
≤ α⇔ s ≤ χ∗ − εH−1(1 − α). (6)

Denote by G(α|ŝ, ε) the probability that an agent who has a private sunspot ŝ assigns to
the event that the proportion of agents who attack is at most α. From (6), we get, for
α ∈ [0, 1],

G(α|ŝ, ε) = P
(
s ≤ χ∗ − εH−1(1 − α)|ŝ, ε

)
. (7)

Denote by �( ŝ, ε) the net expected payoff of an agent who has a private sunspot equal
to ŝ. We have

�( ŝ, ε) =
∫
S
�u(θ̂(q∗), α(s, ε)

)
dP(s|ŝ, ε) =

∫ 1

0
�u(θ̂(q∗), α

)
dG(α|ŝ, ε).

The threshold strategy in (3) is consistent equilibrium if and only if limε→0�( ŝ, ε) ≤ 0 for
ŝ < χ∗ and limε→0�( ŝ, ε) ≥ 0 for ŝ > χ∗. That is, as the noise vanishes, each agent best
responds by an attack for ŝ < χ∗ and by no attack for ŝ > χ∗, implying that an agent who
has ŝ = χ∗ will be indifferent between the two actions

�
(
χ∗, ε

) = lim
ε→0

∫ 1

0
�u(θ̂(q∗), α

)
dG

(
α|χ∗, ε

) = 0,

whereG(α|χ∗, ε) is the probability that an agent who has a private sunspot equal to the
threshold χ∗ assigns to the event that the proportion of agents who attack is at most
α. Thus, q∗ will be determined by the equality in (5) if the CDF G(.|χ∗, ε) converges to
U[0, 1] as the noise in the private sunspots vanishes, ε→ 0. That is, we must show

lim
ε→0

G
(
α|χ∗, ε

) = α for all α ∈ [0, 1].

First, recall that the density of the sunspot state s is f (.) and the density of the noise term
ηi is h(.). We can then expressG(α|ŝ, ε) as

G(α|ŝ, ε) =
∫ χ∗−εH−1(1−α)

−∞
p(s|ŝ, ε)ds =

∫ χ∗−εH−1(1−α)

−∞
f (s)h

(
ŝ− s
ε

)
ds∫ ∞

−∞
f (s)h

(
ŝ− s
ε

)
ds

, (8)

where p(s|ŝ, ε) is the posterior of the sunspot state s as implied by Bayes rule

p(s|ŝ, ε) =
f (s)h

(
ŝ− s
ε

)
∫ ∞

−∞
f (s)h

(
ŝ− s
ε

)
ds

.
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I now proceed along the lines of Morris and Shin (2003). In particular, implementing a
change of variable z = ŝ−s

ε into (8) yields

G(α|ŝ, ε) =

∫ ∞

( ŝ−χ∗ )/ε+H−1(1−α)
f ( ŝ− εz)h(z)dz∫ ∞

−∞
f ( ŝ− εz)h(z)dz

. (9)

To characterize the limit of the above CDF as ε goes to 0, we need to consider three cases.
Case 1: ŝ > χ∗. For α ∈ (0, 1), the limit of integration in (9) goes to infinity as ε goes

to 0. Thus, for all α ∈ (0, 1),

lim
ε→0

G(α|ŝ, ε) = 0.

Also, sinceG(.|ŝ, ε) is a CDF, limε→0G(0|ŝ, ε) = 0 and limε→0G(1|ŝ, ε) = 0, implying that
the limiting distribution in that case assigns all probability mass on α= 1.

Case 2: ŝ = χ∗. Here ε does not enter the limit of integration in (9). Then, as ε→ 0,
f ( ŝ−εz) converges to f ( ŝ), and, as a result, f (.) drops out from the expression in (9) and
we get

lim
ε→0

G
(
α|χ∗, ε

) =

∫ ∞

H−1(1−α)
h(z)dz∫ ∞

−∞
h(z)dz

= 1 −H(
H−1(1 − α)

) = α. (10)

As the noise vanishes, the CDF G(.|χ∗, ε) converges to the uniform distribution U[0, 1].
Stated differently, an agent who has a private sunspot equal to the threshold assigns a
uniform probability over the proportion of agents who attack.

Case 3: ŝ < χ∗. For α ∈ (0, 1), the limit of integration in (9) goes to minus infinity as
ε goes to 0. We then get limε→0G(α|ŝ, ε) = 1 for all α ∈ [0, 1], implying that the limiting
distribution in that case assigns all probability mass on α= 0.

By combining the above three cases, we get limε→0G(α|ŝ, ε) 
 limε→0G(α|χ∗, ε) for
all ŝ < χ∗ and limε→0G(α|ŝ, ε) � limε→0G(α|χ∗, ε) for all ŝ > χ∗, where 
 denotes first-
order stochastic dominance. Then, since �u(θ̂(q∗ ), α) is weakly increasing in α (from
A1), it follows that limε→0�( ŝ, ε) ≤ limε→0�(χ∗, ε) = 0 for ŝ < χ∗ and limε→0�( ŝ, ε) ≥
limε→0�(χ∗, ε) = 0 for ŝ > χ∗. Consequently, the strategy in (3) with a threshold point
χ∗ = F−1(1 − q∗ ), where q∗ solves the equality in (5), is consistent with equilibrium.

It remains to show that q∗ exists and is unique. It will be useful to define the function

ϕ(q) ≡
∫ 1

0
�u(θ̂(q), α

)
dα.

From A3,
∫ 1

0 �u(θ, α)dα is continuous in θ, whereas, from A5, θ̂(q) is continuous in
q. Thus, ϕ(q) will be continuous in q. Also, let q1 and q2 be such that q1 < q2. From
A5, θ̂(q) is strictly decreasing in q, hence θ̂(q1 ) > θ̂(q2 ), whereas from A2, �u(θ̂, α) is
weakly increasing in θ for α< α̂ and strictly increasing for α> α̂, where α̂ ∈ (0, 1). Hence,
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�u(θ̂(q1 ), α) ≥ �u(θ̂(q2 ), α) with strict inequality whenever α> α̂. We then have

ϕ(q1 ) −ϕ(q2 ) =
∫ 1

0

(�u(θ̂(q1 ), α
) − �u(θ̂(q2 ), α

))
dα

≥
∫ 1

α̂

(�u(θ̂(q1 ), α
) − �u(θ̂(q2 ), α

))
dα > 0.

The function ϕ(q) is thus continuous and strictly decreasing in q. Finally, from A6,
ϕ(0) > 0 > ϕ(1). Then, by the intermediate value theorem, there exists a unique q∗ ∈
(0, 1) such that ϕ(q∗ ) = 0.

The reverse case, where each agent attacks if and only if his private sunspot is less
than or equal to a given threshold, is treated analogously and is omitted. Finally, the
multiple-threshold case requires some additional technical details and is relegated to
the Appendix.

4. Discussion

The private sunspot approach implies that the equilibrium in which the agents’ actions
are contingent on sunspots is unique and generates a probability of an attack that re-
sponds continuously to a change in the parameters. It thus captures the intuitive idea
that the coordination process is somewhat random and cannot be perfectly predicted
given the fundamentals (see, e.g., Ennis and Keister (2005a,b)).

4.1 Defender’s role

The private sunspot approach is not applicable if θ is not determined as part of the
equilibrium. Specifically, the equilibrium value of the attack probability q∗ leads the
defender to choose θ∗ = θ̂(q∗ ) such that an agent who has Laplacian beliefs about the
proportion of other agents who attack (i.e., α ∼ U[0, 1]) is indifferent between an at-
tack and no attack

∫ 1
0 �u(θ∗, α)dα = 0. Many applications naturally feature a player

whose action affects the benefit of an attack for the coordinating players. For example,
the central bank will choose the level of reserves in a currency attack model, the bank
will choose its early payment in a bank run model, and the incumbent will choose the
amount spent on defense in a regime change model.

4.2 The discrete case

It is not hard to adapt the analysis to a discrete number of agents. To illustrate, assume
there are two agents and a defender. An agent has a payoff of 0 if he does not attack, a
payoff of −c if he is the only one attacking, and a payoff of ψ(θ) if both agents attack,
whereψ(.) is some strictly increasing function of θ. For simplicity, the sunspot structure
is taken to be uniform, s ∼U[0, 1] and ŝi = s + εηi, where ηi ∼U[−1, 1].8 Assume each
agent attacks if and only if his private sunspot is greater than or equal toχ and, as before,

8Then, conditional on ŝi , agent i’s posterior about the sunspot state is s|ŝi ∼ U[ŝi − ε, ŝi + ε] and his
posterior about the private sunspot of the other agent is ŝj|ŝi ∼U[ŝi − 2ε, ŝi + 2ε].
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focus on vanishing noise ε→ 0. Thus, if agent i’s private sunspot is ŝi = χ, the probability
he assigns to the other agent’s private sunspot ŝj being greater than or equal to χ will be
1
2 . Then the equilibrium probability of an attack q∗ is determined as the solution of

1
2
ψ

(
θ̂
(
q∗)) = c or θ̂

(
q∗) =ψ−1(2c), (11)

where θ̂(q) is the defender’s best response given an attack with probability q. The so-
lution q∗ exists, is unique, and decreasing in c, whenever θ̂(0) > ψ−1(2c) > θ̂(1), and
θ̂(q) is continuous and strictly decreasing in q. In contrast, all values of q such that
θ̂(q) ≥ψ−1(c) will be consistent with a public sunspot equilibrium.

4.3 Higher-order beliefs

The approach to establishing the uniqueness of the private sunspot equilibrium is rem-
iniscent of the global game’s literature (Carlsson and Van Damme (1993)). It is known
that the global games selection rule is not robust to perturbations of higher-order be-
liefs (Weinstein and Yildiz (2007)). Here, I show that similar issues plague the private
sunspot approach.9 Take the two-agent example from the previous subsection. Assume
the sunspot state is uniform s ∼U[0, 1] as before, but now for given s with probability λ,
each agent’s private sunspot is s, and with probability 1−λ, each agent’s private sunspot
is drawn independently from U[s − ε, s + ε]. Then, for any ε > 0, agent i assigns prob-
ability λ + 1

2 (1 − λ) that agent j’s private sunspot is weakly higher, P( ŝj ≥ ŝi ) = 1
2 . The

equilibrium attack probability q∗ is then determined as the solution of(
λ+ 1

2
(1 − λ)

)
ψ

(
θ̂
(
q∗)) = c.

Notice that q∗ now depends on the sunspot structure through the parameter λ ∈ [0, 1].
The only case such that q∗ is independent of the sunspot structure is λ= 0, correspond-
ing to the private sunspot selection rule. The private sunspot method is thus appropriate
for applications where sunspots matter (i.e., agents’ actions are contingent on them),
but one wishes to model the probability of an attack as independent of the sunspot
structure and, instead, dependent only on the fundamentals.

5. An application

This section demonstrates the versatility of the private sunspots approach by applying
it to the limited commitment version of the Diamond and Dybvig (1983) model in En-
nis and Keister (2009, 2010). Most Diamond–Dybvig models assume full commitment
by the bank and policymakers to a course of action, even in a run. However, it is well
known that a bank with commitment can eliminate runs by promising to suspend pay-
ments as soon as a run is detected (see, e.g., Diamond and Dybvig (1983)).10 At the

9I thank an anonymous referee for raising this point.
10The literature generates runs in environments with commitment by assuming banks must give a pre-

specified payment until they run out of funds (Postlewaite and Vives (1987), Cooper and Ross (1998), Allen
and Gale (2004), Goldstein and Pauzner (2005)). In practice, however, bank liabilities are frequently altered
in a crisis (see Ennis and Keister (2009)).
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same time, the actions taken during financial crises are often characterized by delayed
response and only partial suspensions. Ennis and Keister (2009, 2010) show how such
delays arise naturally under limited commitment and how the anticipation of delays
can cause runs.11 However, runs in their setup are either unanticipated or their proba-
bility is exogenously based on sunspots. I will show how the private sunspots approach
is natural in this setup and delivers a unique run probability that depends on the pa-
rameters in an intuitive way. I then relate my analysis to the global games approach to
Diamond–Dybvig that builds on Goldstein and Pauzner (2005).12

5.1 The environment

There are three time periods t = 0, 1, 2. There is a continuum of agents, called the de-
positors, that is indexed by i ∈ [0, 1]. Each depositor has preferences given by

u(c1 +ωic2 ) = (c1 +ωic2 )1−γ

1 − γ , (12)

where ct is consumption in period t and ωi is a binomial random variable with support
� = {0, 1}. As is standard, the coefficient of relative risk aversion is greater than one
(γ > 1). If ωi = 0, the depositor is impatient and values consumption only in period 1,
whereas ifωi = 1, he is patient and values consumption in periods t = 1, 2. Each depos-
itor learns his type privately in period 1. Each depositor is impatient with probability π,
and the fraction of impatient depositors is also π.

Technology Each depositor is endowed with 1 unit of the good in period 0 and there is
a constant-returns-to-scale technology for transforming goods in period 0 into goods in
periods 1 and 2. One unit of the good placed in this technology in period 0 yields R> 1
units in period 2, but only 1 unit in period 1.

Sequential service There is banking technology that allows depositors to pool their en-
dowment to insure against idiosyncratic liquidity risks. As in Wallace (1988), the depos-
itors are isolated from each other, and no trade can occur among them. Each depositor
can visit the banking technology to receive a payment from the pooled resources (i.e., to
withdraw). Those choosing to withdraw in period 1 arrive one at a time and must con-
sume immediately upon arrival. This sequential service constraint implies the payment
to a depositor can only depend on the information available to the banking technology
when this payment is being determined.13

11The limited commitment approach to the Diamond–Dybvig framework has been used to study a range
of topics, including how financial fragility is affected by interest rates (Li (2017)), inequality (Mitkov (2020)),
asset opacity (Izumi (2021)), competition (Gao and Reed (2021)), and banking regulation (Keister and
Mitkov (2023)).

12Gu (2011) considers asymmetric observations of the sunspot state in a setup very different from mine.
In particular, the bank in Gu (2011) has full commitment and there are multiple sunspot-based equilibria.

13If there is no sequential service, the bank would first collect all withdrawal requests and then assign
payments. Then, if payments can be made contingent on that information, runs will not occur as part of
equilibrium, since if all depositors request early payment, the bank’s best response is to give 1 to each in
period 1. But then each patient depositor prefers to leave his share in the bank to get a larger payment in
period 2.
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Banking authority A benevolent banking authority (BA) operates the banking tech-
nology. The BA anticipates that a fraction π of the depositors will be impatient and
withdraw in period 1, and always act to maximize the depositors’ expected utilities. Im-
portantly, as in Ennis and Keister (2009, 2010), the BA cannot commit to actions that are
not ex post optimal, and, instead, chooses payments as a best response given its infor-
mation and taking as given the profile of withdrawal strategies of the depositors. As will
become clear, the BA is the defender.

Timing In period 0, all endowments are deposited. At the start of period 1, the de-
positors are isolated from each other. After observing his typeωi and private sunspot ŝi,
depositor i chooses to contact the banking technology in period 1 or 2. Those depositors
who choose to withdraw in period 1 arrive at the bank in the order given by their index
i. Thus, depositor i= 0 knows that he has the opportunity to be the first to withdraw in
period 1, whereas depositor i = 1 knows that his opportunity comes last. The deposi-
tor’s position in this order is private information.14 The BA determines the payment to
each depositor as he arrives and as a best response to the situation. In particular, the BA
detects a run as soon as period 1 withdrawals exceed π and, as explained below, would
reschedule payments for the remaining depositors to reflect this new information.

The efficient allocation To derive a benchmark allocation, suppose a benevolent plan-
ner observes all depositors’ types and controls their withdrawal actions. The planner
gives c∗1 in period 1 to each impatient depositor and c∗2 in period 2 to each patient de-
positor. These payments will be chosen to solve

max
{c1,c2}

πu(c1 ) + (1 −π )u(c2 ) (13)

subject to (1 − π )c2 = R(1 − πc1 ). The planner’s solution satisfies 1< c∗1 < c∗2 <R. As is
well known, this solution can be implemented as an equilibrium by a bank that does not
observe depositors’ types. In particular, the bank pays c∗1 to each of the first π depositors
in period 1. In period 2, the bank’s remaining resources mature and are evenly divided
among the remaining depositors.

5.2 Sunspot equilibria

Consider now the decentralized economy, where each depositor chooses his withdrawal
strategy as part of a non-cooperative game, and the BA chooses payments as a best re-
sponse to the strategy profile for the depositors.

Sunspot structure Fix a sunspot structure �ε = (S, F , Ŝ, F̂ ) and suppose the depositors
observe their private sunspots before withdrawals begin. A strategy for depositor i is a
mapping from his realized type ωi and his private sunspot ŝi to a decision of whether

14The approach here follows Green and Lin (2003) and Ennis and Keister (2010), among others. It sim-
plifies the analysis while capturing in a tractable way the notion that the depositors may have some infor-
mation about their position in the withdrawal order. The results will be very similar if the depositors first
choose when to withdraw and are then randomly assigned positions in the withdrawal order.
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to withdraw in period 1 or period 2. The following observations simplify the analysis.
First, each impatient depositor has a strictly dominant strategy to withdraw in period 1,
implying that the measure of withdrawals in period 1 will be at least π. Second, the BA
detects a run as soon as the measure of withdrawals exceedsπ, but not before that, since
at least π withdrawals always happen. Finally, one can show that any run in this setup
is necessarily partial and restricted to those patient depositors who have an opportunity
to withdraw before the BA detects a run, namely those who have an index i ≤ π. So
consider the following strategy profile for the depositors. (i) Each impatient depositor
withdraws early. (ii) Each patient depositor who has i ≤ π withdraws early (i.e., runs on
the bank) if and only if his private sunspot falls in the attack set A⊆ Ŝ. (iii) Each patient
depositor who has an index i > π withdraws late.

Next, I will derive the BA’s best response to this strategy profile and then apply the
private sunspot approach to derive the equilibrium run probability.

Remaining payments Denote by α ∈ [0, 1] the fraction of patient depositors among the
first π to contact the bank, implying that the measure of depositors that run on the bank
is απ. Also, let π̂α denote the fraction of the remaining 1 − π depositors who are impa-
tient. We have dπ̂α

dα > 0, π̂0 = 0, and π̂1 = π.15 The BA does not observe α, but instead
makes inferences based on the flow of withdrawals. If withdrawals stop at π, the BA
infers there is no run (α = 0), and all remaining depositors are patient. The BA would
then give ĉ2NR = R( 1−πc1

1−π ) in period 2 to each patient depositor, implying that the sum
of expected utilities of the remaining depositors is

VNR

(
1 −πc1

1 −π
)

= (1 −π )u
[
R

(
1 −πc1

1 −π
)]

. (14)

On the other hand, if withdrawals continue after the first π, the BA infers a run is hap-
pening (i.e., α > 0) and, therefore, not all impatient depositors have been served. Pay-
ments for the remaining depositors will then be rescheduled to (c1R, c2R ) depending on
the BA’s updated belief about the distribution of α. Specifically, since the BA’s prior on
the event {α ∈ (0, 1)} goes to 0 as the noise in the depositor’s private sunspots vanishes,
Bayes’ rule implies that the BA’s posterior on the event {α ∈ (0, 1)} also goes to 0. Then
the rescheduled payments in a run (c1R, c2R ) converge to the solution of the program

VR

(
1 −πc1

1 −π
)

= max
{ĉ1R, ĉ2R}

πu(ĉ1R ) + (1 −π )u(ĉ2R ) (15)

s.t. πĉ1R + (1 −π )ĉ2R/R= 1 −πc1

1 −π . (16)

After a run is detected, the BA would set ĉ1R and ĉ1R to maximize the sum of expected
utilities of the remaining depositors given that α = 1. Then, for given α ∈ (0, 1], the
measure of remaining impatient depositors is (1 − π )π̂α and each of those is paid ĉ1R,
whereas the measure of the remaining patient depositors is (1 −π )(1 − π̂α ) and each is

15The exact expression for π̂α is derived in the proof of Proposition 3.
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paid ĉ2α, where

ĉ2α = R
(
1 −πc1 − (1 −π )π̂αĉ1R

)
(1 −π )(1 − π̂α )

. (17)

Thus, given c1 and α, the late payment for each remaining patient depositor, after in-
corporating the response of the BA, will be determined as the solution of the program
in (15)–(16). The function ĉ2α is equal to ĉ2NR for α = 0, is strictly decreasing in α, and
is equal to ĉ2R for α = 1. Then, since the solution of the program in (15)–(16) satisfies
ĉ2R > ĉ1R, we get ĉ2α > ĉ1R for all α ∈ [0, 1]. Next, each of the remaining patient depos-
itors would best respond by withdrawing late, as specified in the depositors’ strategy
profile. Finally, I turn to the incentive of the depositors who have a chance to withdraw
before the BA detects a run.

Equilibrium run probability Recall that all impatient depositors would withdraw early,
whereas all patient depositors who have a chance to withdraw after the BA has detected
a run (i.e., i > π) would withdraw late. So consider a patient depositor who has an op-
portunity to withdraw before the BA has detected a run (i.e., i ≤ π). For given c1 and α,
this depositor gets a payoff of u(c1 ) for running on the bank and a payoff of u(ĉ2α ) for
waiting, where ĉ2α is given in (17). Thus, the net payoff from a run for such a patient
depositor for given c1 and α is

�u(c1, α) = u(c1 ) − u(ĉ2α ). (18)

The BA does not learn new information during the first π withdrawals and, since depos-
itors are risk-averse, would give a common amount c1 to each of the first π depositors.
Then, once the measure of withdrawals reaches π, one of two things can happen. First,
withdrawals stop and the bank’s remaining matured resources are spread equally among
the patient depositors. Second, withdrawals continue, and the BA immediately resched-
ules payments to ĉ1R and ĉ2R to solve the program in (15). Notice that all remaining pay-
ments are uniquely pinned down once c1 and α have been determined. As the noise in
the private sunspots goes to 0, we have α= 1 with probability q or α= 0 with probability
1 − q. Given any q ∈ [0, 1], the BA selects c1 to maximize the sum of expected utilities of
all depositors, anticipating how it reacts after a run is detected. That is,

c1(q) ∈ argmax
c1∈[0,1/π]

πu(c1 ) + (1 −π )

[
(1 − q)VNR

(
1 −πc1

1 −π
)

+ qVR
(

1 −πc1

1 −π
)]

, (19)

where VNR( 1−πc1
1−π ) and VR( 1−πc1

1−π ) are defined in (14) and (15), respectively.

Proposition 3. Suppose the depositors observe the sunspot state with a vanishing noise.
Then the equilibrium bank run probability q∗ (when sunspots matter, i.e., q∗ ∈ (0, 1)) is
determined as the solution of

∫ 1

0
�u(c1

(
q∗), α

)
dα= 0,

where �u(c1, α)dα is defined in (18) and c1(q) in (19).
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Figure 1. Bank run probability.

Figure 1 displays q∗ as a function of the coefficient of relative risk aversion γ (left
panel), the return of the investment technology R (middle panel), and the aggregate
proportion of impatient depositors π (right panel).16 There are several notable impli-
cations. First, a higher coefficient of relative risk aversion γ leads to a higher q∗ since
it pushes the bank to engage in more maturity transformation by setting a higher early
payment. In particular, a higher early payment implies that the bank will be in worse
financial shape when a run is discovered (after π withdrawals), which implies that the
payments for depositors who wait will be lower. This fact creates a stronger incentive to
run, thus pushing up the equilibrium run probability. Second, R has a non-monotone
effect on q∗. AsR increases, the bank will give a larger early payment. However, there are
two competing effects on the expected late payment and, thus, on the return to staying
invested. First, if there is no run, the late payment will increase relative to the early pay-
ment. Second, when a run occurs, more investment will be liquidated (due to the larger
early payments), reducing the late payment relative to the early payment. As the mid-
dle panel in Figure 1 shows, the second effect dominates for relatively small values of R,
whereas the first effect dominates for relatively large values.17 Finally, π also has a non-
monotone effect on q∗. Recall that π in this setup also measures how many depositors
will get to withdraw before the bank discovers and responds to a run: a large π implies
that the response to a run comes later when the bank is in worse financial shape. This
force also appears in models with public sunspots (see, e.g., Ennis and Keister (2010)
and Keister (2016)) where fragility always increases in π. The private sunspots approach
introduces strategic uncertainty, bringing a second competing effect. A depositor who
receives the threshold signal will be relatively more optimistic about the value of wait-
ing because he anticipates that some agents may not be participating in the run. The
magnitude of this effect is increasing in π because the bank reacts more strongly to a
run when π is large. This second effect, therefore, decreases the incentive to run as π
becomes larger. The right panel in Figure 1 shows that, for this example, the first ef-
fect dominates when π is small, but the second effect dominates as π becomes larger,
eventually pushing the equilibrium run probability to 0.

16I set π = 0.5 in the left and the middle panel, R = 2 in the left and the right panel, and γ = 5 in the
middle and the right panel.

17The non-monotonicity inR reflects forces similar to those identified by Li (2017) by arbitrarily focusing
on the largest possible sunspot-based run probability.
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5.3 Relation to Goldstein and Pauzner

It is informative to conclude this section by comparing the approach here to the large
literature that follows Goldstein and Pauzner (2005) in changing the Diamond–Dybvig
model to fit into the global games framework of Carlsson and Van Damme (1993). Some
of these changes are questionable on theoretical grounds.

First, Goldstein and Pauzner (2005) assume the bank continues to pay withdrawing
depositors at face value until it is out of resources. They need to take this approach be-
cause having a fixed contract allows them to use global game techniques. This, however,
is not how a financial crisis usually unfolds in practice, as discussed at the start of this
section. I show how a more realistic version of the Diamond and Dybvig (1983) model—
one where the bank can adjust payments as the crisis unfolds—fits naturally into the
private sunspots framework.

Second, Goldstein and Pauzner (2005) assume that the bank is fully liquid in some
states of the world, meaning it could repay all of its depositors immediately, at face value,
and without defaulting. This is another strong assumption required for the global game
techniques to work, but is not required by the private sunspots method.

Third, the private sunspots approach delivers more intuitively appealing compar-
ative statics. Conditional on fundamentals, the framework based on Goldstein and
Pauzner (2005) predicts the probability of a run is either 0 or 1 (as the noise vanishes). In
contrast, in my case, the probability of a run is either 0 or strictly between 0 and 1, and
it varies smoothly with the parameters. For example, Cipriani, Eisenbach, and Kovner
(2024) show that in the 2023 regional banking crisis in the United States, some banks
experienced runs, while others who have similar fundamentals did not. This observa-
tion is consistent with the private sunspots model with vanishing noise, but not with
vanishing noise in global games.

Finally, global games tie fundamental and strategic uncertainty. But suppose (as in
the model from this section) that the bank can react to an incipient run by changing
the payment schedule. As the noise in the depositors’ private signals vanishes, a banker
who is well informed about the fundamentals can also accurately predict whether the
depositors would run and, if necessary, cut payments to preserve resources. Such pre-
emptive actions generally imply that the equilibrium run probability collapses to 0. To
avoid this conclusion, one must assume that either (i) the bank must rely on less precise
information about its fundamentals than the investors or (ii) the bank is not allowed to
act on interim information. These are unappealing assumptions.18

6. Conclusion

I propose a method to endogenize the probability of self-fulfilling outcomes based
on sunspots, which I call the private sunspots approach. The framework is a non-
cooperative game where each agent chooses between two actions: to attack or not to

18The private sunspots approach assumes the bank is unaware of investor sentiment and must make in-
ferences based on withdrawal demand (as in Ennis and Keister (2009, 2010)). This is perhaps more plausible
than the bank having less precise information about its fundamentals than the depositors.



444 Yuliyan Mitkov Theoretical Economics 20 (2025)

attack. A regime defender also participates, taking action in response to the agents’
strategies, which in turn affects the agents’ payoffs. Although the equilibrium attack
probability is self-fulfilling, the private sunspot approach pins down this probability
as a function of the model’s parameters. This is possible because the approach intro-
duces strategic uncertainty: each agent observes the sunspot state with vanishing noise.
Consequently, the agents’ strategies must satisfy an additional equilibrium condition,
which, combined with the defender’s actions, uniquely determines the equilibrium at-
tack probability. This approach is particularly well suited for applications where the
defender makes strategic choices without commitment, as exemplified by the bank run
scenario discussed in the previous section.

Appendix

Proof of Proposition 1. Since the sunspot state is perfectly observed, the agents’
strategies can be directly contingent on it. So assume each agent attacks if and only
if s ≥ χ. The probability of an attack is then q = 1 − F(χ), where F(.) is the CDF of the
sunspot state. Notice that focusing on a single-threshold strategy is without loss of gen-
erality since one can generate any q ∈ (0, 1) through χ = F−1(1 − q). An attack with
probability q will be consistent with a public sunspot equilibria whenever

�u(θ̂(q), 0
) ≤ 0 ≤ �u(θ̂(q), 1

)
(20)

is satisfied, where θ̂(q) is the defender’s best response to an attack probability of q. The
first inequality in (20) ensures that each agent best responds by not attacking when all
other agents do not attack (α = 0), whereas the second inequality ensures that each
agent best responds with an attack when all other agents attack (α= 1). Next, define

ϕ(q) ≡
∫ 1

0
�u(θ̂(q), α

)
dα. (21)

From A2 and A3,
∫ 1

0 �u(θ, α)dα is continuous and strictly increasing in θ, whereas, from
A5, θ̂(q) is continuous and strictly decreasing in q. Hence,ϕ(q) is continuous and strictly
decreasing in q. Further, from A6„ we have ϕ(0)> 0> ϕ(1). Then, by the intermediate
value theorem, there exists (in this case a unique) q∗ ∈ (0, 1) such that ϕ(q∗ ) = 0. That
is,

ϕ
(
q∗) =

∫ 1

0
�u(θ̂(q∗), α

)
dα= 0.

Next, since �u(θ̂(q∗ ), α) is nondecreasing in α, we get from the above that

�u(θ̂(q∗), 0
) ≤ 0 ≤ �u(θ̂(q∗), 1

)
.

Hence, q∗ will be consistent with a public sunspot equilibrium. Then, since �u(θ, 0) is
nondecreasing in θ whereas θ̂(q∗ ) is nonincreasing in q, the following set of conditions
will be satisfied. First, if the probability of an attack is greater than q∗ and no other agent
attacks (α= 0), then each agent best responds by not attacking:

�u(θ̂(q), 0
) ≤ �u(θ̂(q∗), 0

) ≤ 0 for each q ∈ (q∗, 1]. (22)
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Second, if the probability of an attack is less than q∗ and all other agents attack (α= 1),
then each agent best responds by attacking:

�u(θ̂(q), 1
) ≥ �u(θ̂(q∗), 1

) ≥ 0 for each q ∈ [0, q∗ ). (23)

Letting q1 (q2) denote the smallest (largest) value of q consistent with public sunspot
equilibrium, we have q1 ≤ q∗ ≤ q2 and, to establish that there is a continuum of public
sunspot equilibria, we must show that either q1 < q

∗ or q2 > q
∗. Recall that either the

no-attack or the sure-attack Nash equilibrium is assumed to exist. If the no-attack Nash
equilibrium exists, we have �u(θ̂(0), 0) ≤ 0. The last equation implies �u(θ̂(q), 0) ≤ 0
for each q ∈ [0, 1], which, combined with (23), implies that each q ∈ [0, q∗] is a public
sunspot equilibrium (i.e., q1 = 0). On the other hand, if the sure-attack Nash equilib-
rium exists, we have �u(θ̂(1), 1) ≥ 0. Then �u(θ̂(q), 1) ≥ 0 for each q ∈ [0, 1], which,
combined with (22), implies that each q ∈ [q∗, 1] is a public sunspot equilibrium (i.e.,
q2 = 1).

Proof of Proposition 2. The main text deals with the single-threshold case; it re-
mains to establish the multiple-threshold case. So consider a strategy containing M > 1
thresholds χ∗

1 < χ
∗
2 < · · ·< χ∗

M . I consider the equilibrium as ε goes to 0 while the num-
ber of thresholds M remains fixed. Also, suppose that each agent attacks whenever his
private sunspot is less than or equal to the lowest of those thresholds. That is,

â( ŝ) = 1 for all ŝ ≤ χ∗
1. (24)

Hence, â( ŝ) = 0 for ŝ ∈ (χ∗
1, χ∗

2 ), â( ŝ) = 1 for ŝ ∈ [χ∗
2, χ∗

3], and so on. The flip case â( ŝ) = 0
for ŝ ≤ χ∗

1 is very similar and is omitted. I will show that q∗ will still be determined by
the equality in (5) as in the single-threshold case. Consider any agent iwho has a private
sunspot ŝ, and define the random variables Y ( ŝ),X( ŝ, y ), andX( ŝ) as follows:

• The variable Y ( ŝ) = y is the realized proportion of agents who have a sunspot less
than or equal to agent i’s private sunspot ŝ. Let Ψ (y|ŝ) denote the CDF of Y ( ŝ).

• The variable X( ŝ, y ) = x is the realized proportion of agents who attack given that
agent i’s private sunspot is ŝ and y is the fraction of agents who have a private
sunspot less than or equal to ŝ. LetQy(x|ŝ) denote the CDF ofX( ŝ, y ).

• The variable X( ŝ) = x is the realized proportion of agents who attack given that
agent i’s private sunspot is ŝ. LetQ(x|ŝ) denote the CDF ofX( ŝ).

The CDF Ψ (.|ŝ) depends on the sunspot structure, but not on the agents’ strategies,
whereas the CDFs Qy(x|ŝ) and Q(x|ŝ) depend on the sunspot structure and the agents’
strategies. In particular,Q(x|ŝ) is a mixture distribution whereQy(x|ŝ) is the component
CDF and Y ( ŝ) is the mixing variable with CDF Ψ (y|ŝ). That is,

Q(x|ŝ) =
∫ 1

0
Qy(x|ŝ)dΨ (y|ŝ) for x ∈ [0, 1]. (25)
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Also, notice that (25) is an equivalent way to define the CDF G(α|ŝ) in (8). The net ex-
pected payoff of an agent whose private sunspot is equal to ŝ is then

�( ŝ) =
∫ 1

0
�u(θ̂(q∗), x

)
dQ(x|ŝ) for ŝ ∈ Ŝ.

If the strategy in (24) is consistent with equilibrium, an agent who has a private sunspot
equal to one of those thresholds will be indifferent between an attack and no attack.
That is, �(χ∗

k ) = 0 for all k ∈ {1, � � � ,M }. I will show that as ε→ 0, Ψ (.|ŝ) converges to

U[0, 1] for all ŝ ∈ Ŝ. That is,

lim
ε→0

Ψ (y|ŝ) = y for all y ∈ [0, 1] and all ŝ ∈ Ŝ.

Indeed, if the underlying sunspot is s, the proportion of agents who observe a private
sunspot less than or equal to ŝ is

P(s+ εηi ≤ ŝ) =H
(
ŝ− s
ε

)
,

whereH(.) is the CDF of the noise term ηi. This proportion will be less than or equal to
y ∈ [0, 1] if and only if s ≥ ŝ− εH−1(y ). In other words, agent i who has private sunspot ŝ
assigns probability

P
(
s ≥ ŝ− εH−1(y )|ŝ

) =Ψ (y|ŝ)

to the event that the proportion of other agents who have received a private sunspot less
than or equal to his private sunspot ŝ is no greater than y. Then

Ψ (y|ŝ) =
∫ ∞

ŝ−εH−1(y )
p(s|ŝ)ds =

∫ ∞

ŝi−εH−1(y )
f (s)h

(
ŝ− s
ε

)
ds∫ ∞

−∞
f (s)h

(
ŝ− s
ε

)
ds

,

where h(.) is the probability density function (PDF) of the noise terms ηi. Changing the
variable of integration in the above equation to z = ŝ−s

ε yields

Ψ (y|ŝ) =

∫ H−1(y )

−∞
f ( ŝ− εz)h(z)dz∫ ∞

−∞
f ( ŝ− εz)h(z)dz

.

As ε→ 0, f ( ŝ − εz) converges to f ( ŝ) and the density f (.) drops out from Ψ (y|ŝ). Then,
for each y ∈ [0, 1], we get, as ε→ 0,

Ψ (y|ŝ) =

∫ H−1(y )

−∞
h(z)dz∫ ∞

−∞
h(z)dz

=H(
H−1(y )

) = y.
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Hence, limε→0Ψ (y|ŝ) = y for y ∈ [0, 1] and ŝ ∈ Ŝ, implying that as the noise vanishes, the
CDF Ψ (.|ŝ) converges to U[0, 1]. Then, since Y ( ŝ) ∼ Ψ (.|ŝ) converges in distribution to
U[0, 1] for all ŝ, the mixture CDF in (25) becomes

lim
ε→0

Q(x|ŝ) =
∫ 1

0
Qy(x|ŝ)dy for all x ∈ [0, 1].

Next, fix the lowest threshold point χ∗
1 and recall that â( ŝ) = 1 for all ŝ ≤ χ∗

1. The strategy
profile in (24) thus implies P(X(χ∗

1, y ) ≥ y ) for all y ∈ [0, 1]. In other words, X(χ∗
1, y )

is obtained from Y (χ∗
1 ) by adding a nonnegative random variable to each realization

of Y (χ∗
1 ). Hence, P(X(χ∗

1 ) ≥ Y (χ∗
1 )) = 1, which implies X(χ∗

1 ) � Y (χ∗
1 ), where � means

first-order stochastic dominance (see, e.g., Section 6 in Mas-Colell, Whinston, and Green
(1995)). Then, since �u(θ̂(q∗ ), y ) is nondecreasing in y,∫ 1

0
�u(θ̂(q∗), x

)
dQ

(
x|χ∗

1
) ≥

∫ 1

0
�u(θ̂(q∗), y

)
dy, (26)

where the above inequality uses Y ( ŝ) ∼ U[0, 1] for all ŝ. Also, let χ∗
k for k ∈ {2, � � � ,M }

be any threshold point greater than χ∗
1. The strategy profile in (24) then implies P(y ≥

X(χ∗
k, y )) = 1 for all y ∈ [0, 1]. Hence, P(Y (χ∗

k ) ≥ X(χ∗
k )) = 1. Hence, Y (χ∗

k ) � X(χ∗
k ),

which, in turn, implies∫ 1

0
�u(θ̂(q∗), y

)
dy ≥

∫ 1

0
�u(θ̂(q∗), x

)
dQ

(
x|χ∗

k

)
. (27)

Combining (26) and (27) with �(χ∗
k ) = 0 for all k yields

0 =
∫ 1

0
�u(θ̂(q∗), x

)
dQ

(
x|χ∗

1

)

≥
∫ 1

0
�u(θ̂(q∗), y

)
dy

≥
∫ 1

0
�u(θ̂(q∗), x

)
dQ

(
x|χ∗

k

) = 0. (28)

The first equality follows from �(χ∗
1 ) = 0, the first inequality from (26), the second in-

equality from (27), and the second equality from�(χ∗
k ) = 0. We then get from (28) that

∫ 1

0
�u(θ̂(q∗), y

)
dy = 0

must be satisfied in equilibrium. That is, the equilibrium attack probability is still deter-
mined by (5) as in the single-threshold case. In other words, the number of thresholds
in the agents’ strategy does not affect the equilibrium attack probability, since the equi-
librium location of those thresholds will be such that the equilibrium attack probability
corresponds to its value in the single-threshold case.

Proof of Proposition 3. I first show that equilibrium runs will be restricted to pa-
tient depositors who have an opportunity to withdraw before the BA detects a run. To
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see why, suppose withdrawals continue beyond the first π, leading the BA to infer that
a run is happening. Then, if the BA anticipates that some fraction ρ of the remaining
depositors withdraw in period 1, he reschedules the payment plan for the remaining
depositors (ĉ1ρ, ĉ2ρ ) to maximize the sum of their expected utilities

ρu(ĉ1ρ ) + (1 − ρ)v(ĉ2ρ )

subject to the budget constraint

ρĉ1ρ + (1 − ρ)ĉ2ρ/R= 1 −πc1

1 −π .

The solution of this program will be characterized by the above budget constraint and
the first-order condition

u′(ĉ1ρ ) =Ru′(ĉ2ρ ).

SinceR> 1, we have ĉ1ρ < ĉ2ρ for all ρ ∈ [0, 1], implying that a patient depositor who has
an opportunity to withdraw after the BA detects a run strictly prefers to wait. Next, the
late payment to each patient depositors ĉ2α, defined in (17), depends on c1, ĉ1R, and π̂α,
where π̂α is obtained from the depositors’ strategy profile and is given by

π̂α = π

1 −π
(

1 − π

π + α(1 −π )

)
.

Thus π̂0 = 0 for α = 0, π̂α strictly increases in α, and π̂1 = π. Next, since the deposi-
tors’ utility function u is of the constant relative risk aversion form, the solution of the
program in (15)–(16) is given by

ĉ1R = 1 −πc1

(1 −π )
(
π + (1 −π )R(1−γ)/γ) and ĉ2R =R1/γ 1 −πc1

(1 −π )
(
π + (1 −π )R(1−γ)/γ) .

We have ĉ1R < ĉ2R and, in addition, ĉ1R and ĉ2R are decreasing functions of c1. Thus,
ĉ2α defined in (17), equals ĉ2NR for α = 0, is strictly decreasing in α, and equals ĉ2R for
α = 1. Also, ĉ2α is strictly decreasing in c1. Hence, A1 and A2 hold since �u(c1, α) =
u(c1 ) − u(ĉ2α ) is strictly increasing in α and c1. Next, the optimal choice of c1 in (19) is
characterized by the first-order condition

u′(c1 ) = (1 − q)Ru′(ĉ2NR ) + qRu′(ĉ2R ). (29)

Given that u is constant relative risk aversion, we can solve for c1 in terms of q to get

c1(q) = 1

π +A(q)1/γ whereA(q) = (1 − q)λ−γ
0 + qλ−γ

1 ,

where λ0 and λ1 are such that λ0 > λ1, and are given by

λ0 = 1

(1 −π )R(1−γ)/γ
and λ1 = 1

(1 −π )
(
π + (1 −π )R(1−γ)/γ) .
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Observe that A5 holds since c1(q) is unique for each q ∈ [0, 1] and decreasing in q. Fi-
nally, as q → 1, we get from (29) that u′(c1(q)) converges to Ru′(ĉ2R ), implying c1 <

ĉ2R. Then ĉ2R ≤ ĉ2α for all α ∈ [0, 1] implies c1(q) < ĉ2α for all α ∈ [0, 1]. As a result,∫ 1
0 [u(c1(q)) −u(ĉ2α )]dα < 0 for all q sufficiently close to 1, implying that the equilibrium

run probability will be strictly less than 1 (q∗ < 1) (that is, q∗ is then either 0 or strictly
between 0 and 1).
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