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Random utility coordination games on networks

Marcin Pęski
Department of Economics, University of Toronto

We study static binary coordination games with random utility played on net-
works. In equilibrium, each agent chooses an action only if a fraction of her neigh-
bors choosing the same action is higher than an agent-specific i.i.d. threshold.
A fuzzy convention x is a profile where (almost) all agents choose the high action
if their threshold is smaller than x and the low action otherwise. The random-
utility (RU) dominant outcome x∗ is a maximizer of an integral of the distribution
of thresholds. The definition generalizes Harsanyi–Selten’s risk dominance to co-
ordination games with random utility. We show that, on each sufficiently large
and fine network, there is an equilibrium that is a fuzzy convention x∗. On some
networks, including a city network, all equilibria are fuzzy conventions x∗. Finally,
fuzzy conventions x∗ are the only behavior that is robust to misspecification of the
network structure.
Keywords. Random utility, coordination games, networks.
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1. Introduction

An individual’s behavior in social or economic situations is often positively influenced
by similar decisions made by their friends, acquaintances, or neighbors. An important
recent example is the post-Covid era mask-wearing: some people wear masks to protect
themselves or others, others do not wear them because of inconvenience or personal
beliefs, and many, including the author of this paper, are positively affected by how
many people around them wear masks. Other examples include the decision to main-
tain a neat front yard, to obey speed limits or tax laws, to engage in criminal activity,
or to adopt a technology with network externalities. A large literature has established
conditions under which a particular behavior becomes a convention: it is adopted by
everyone (see Young (1993), Ellison (1993), Morris (2000), among many others). These
results typically assume that agents have almost identical preferences, and show that
a contagion-like process, possibly initiated by a small perturbation to the preferences,
leads to uniformity.
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At the same time, completely uniform behavior is rarely observed in the real world.
Even in situations which clearly involve positive externalities, there will often be interac-
tions in which neighbors make opposite choices. An obvious reason is that individuals
are different and their tastes and unique circumstances play just as important role in
determining their decisions as the behavior of their neighbors. The goal of this paper is
to study coordination games with heterogeneous payoffs with the following questions
in mind. Is there a useful and coherent way in which heterogeneous-behavior equi-
libria can be understood as conventions? Can we explain how people coordinate on a
convention? Are some conventions more natural than others?

For this purpose, we study a random utility binary coordination game played in a
network. Each network node contains a single agent who interacts with her neighbors.
We are interested in the asymptotic of equilibrium behavior as the network becomes ar-
bitrarily large, and importantly, as the graph becomes sufficiently fine, that is, the weight
of the largest neighbor in the neighborhood of each agent becomes sufficiently small.
The latter ensures that no single individual has a disproportionate impact on another,
and it is the first key assumption in our model.

Each agent chooses a binary (high or low) action, and the relative gain from the ac-
tion is increasing in the fraction of neighbors who make the same choice. Each agent has
an individual threshold τi, with the interpretation that the high action is the agent’s best
response if and only if more than fraction τi of her neighbors do the same. Thresholds
are distributed i.i.d., with distribution given by cdf P(.). The independence assumption
is the second key assumption of our model and it is appropriate for some but not all ap-
plications. An example of cdf P(.) is drawn on Figure 1; for each x, P(x) is the fraction
of the population with a threshold equal to or smaller than x. Importantly, unlike in the
coordination literature mentioned above, the level of preference heterogeneity captured
by P(.) is nonzero and nondisappearing.

A conceptual contribution of this paper is a definition of a convention appropriate
for large random utility coordination games. Define a fuzzy convention x as an action
profile where almost all agents choose the high action if τi < x and the low action if
τi > x. If x is an atom of distribution P(.), the definition allows for randomization at
τi = x. Our assumptions on networks imply that, in a fuzzy convention, almost all agents
observe approximately P(x) fraction of their neighbors choosing the high action. This
definition captures individual heterogeneity of actions, with two types of uniformity:
(a) almost all agents choose their action as the same function of their threshold and (b)
almost all agents experience almost the same average behavior of their neighbors. For
a fuzzy convention x to be an equilibrium, the choice in (a) must be a best response,
which implies that it is an intersection with 45◦ line, x = P(x). Figure 1 illustrates with
multiple candidate solutions.

Next, we define a particular fixed point. Let random utility-dominant, or RU-
dominant, outcome x∗ be a solution to the maximization problem

x∗ ∈ arg max
x

x∫
0

(
y − P−1(y )

)
dy. (1)
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Figure 1. Threshold cdf P .

The definition implies that P(x∗ ) = x∗. Geometrically, the maximized objective on the
right-hand side is equal to the area above the 45◦ line and below function P (blue area
on Figure 1) minus the area below the 45◦ line and above P (red area). The RU-dominant
outcome depends on the threshold distribution, and generically, it is unique. Two ob-
servations about special cases of our model motivate this definition further. First, (1) is
equivalent to a formula from Morris and Shin (2006), where it is derived as a potential
function for the continuum population version of the model where agents treat the en-
tire population as their neighbors. Second, if the threshold distribution is concentrated
on a single outcome (i.e., all agents’ preferences are identical), then the RU-dominant
outcome is equivalent to the standard risk-dominant outcome of a 2 × 2 coordination
game (Harsanyi and Selten (1988)).

The results of the paper show that fuzzy convention x∗ is the “right” solution: Infor-
mally, all networks have an equilibrium that is a fuzzy convention x∗, and on some net-
works, there are no other equilibria. More precisely, first, we show that for each network
that is sufficiently large and fine, with a probability close to 1 (i.e., for almost all real-
izations of thresholds), there is an equilibrium that is a fuzzy convention x∗. The proof
relies on a characterization of coordination games as potential games. (For an arbitrary
network, a potential function is necessarily different than the one in (1).) Such games
are introduced in Monderer and Shapley (1996), where it is shown that any profile that
is a local maximizer of the potential function is an equilibrium of the underlying game.
In the proof, we show that, regardless of the structure of the network, with a probability
close to 1, the global maximizer of the potential function is a fuzzy convention x∗. The
difficult part of the proof is to derive a version of a uniform law of large numbers and
to show that it guarantees that action profiles that are not fuzzy conventions x∗ cannot
maximize the potential.



586 Marcin Pęski Theoretical Economics 20 (2025)

Second, we show there exist networks, where with a large probability, all equilibria
are fuzzy conventions x∗. An example of such a network is a city-like network, where
agents live on a 2-dimensional grid lattice and they interact with agents in a sufficiently
large neighborhood. The idea of the proof is to show that, for each profile with an av-
erage behavior that is not RU-dominant, contagion-like best response dynamics would
bring the behavior close to x∗. The proof uses an idea from Blume (1995a) and Lee and
Valentinyi (2000) (see also Morris (2000)) to show how a contagion wave spreads across
lattice networks. There are two novel difficulties relative to earlier literature. First, un-
like in the earlier literature, the agent preferences are random and heterogeneous. In-
stead of a binary wave (where there is a sharp separation between risk-dominated and
risk-dominant regions), the contagion wave here has multiple values as it describes the
fraction of agents that adopt the high action. Second, we must compare the likelihood
that a favorable configuration of payoff shocks may initiate such a wave, with the likeli-
hood that such a wave would not be stopped by an unfavorable configuration of payoff
shocks. The problem with the latter is the reason why the 1-dimensional network of El-
lison (1993) is not a good example for the result and a 2- (or more) dimensional lattice is
needed.

The two results together suggest that RU-dominant outcome x∗ is the only predic-
tion of aggregate equilibrium behavior that is network-independent. We formalize this
through a definition that is inspired by Kajii and Morris (1997): Consider an analyst who
predicts agents’ behavior but she is not certain whether her model correctly specifies
the network interactions, or whether the agents know the entire network. We say that
the behavior is robust to misspecifications if, even if she or the agents are wrong, her
prediction is close to some equilibrium of the true model. Our results imply that fuzzy
convention x∗ is the only robust prediction.

1.1 Literature review

This is the first paper with predictions about behavior in static complete-information
random-utility games on networks. The model and techniques used draw from two
strands of the literature: random utility games on networks and models of learning (or
evolution) in games.

The first random-utility coordination model was introduced in Granovetter (1978).
Granovetter works with a complete (continuum) network, where the agents’ payoffs de-
pend on the average behavior in the entire population. A large literature generalized
Granovetter’s model to networks. Typically, each agent is a single node on a network and
adopts the new behavior (e.g., wears a mask) only if the fraction of her neighbors doing
the same is larger than her threshold. Many papers, like Watts (2002) or López-Pintado
(2008) (among many others) study Granovetter’s model on an Erdős–Renyi style of a ran-
dom graph with heterogeneous degree distribution. The limitation of such models is
that they do not capture many important aspects of real-world networks, like clustering,
or overlapping neighborhoods, which are known to play important role in coordination
or contagion phenomena.
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Jackson and Yariv (2007) (see also Galeotti, Goyal, Jackson, Vega-Redondo, and Yariv
(2010)) analyzes a Bayesian equilibrium, where the agents choose their action with-
out knowing the thresholds of their neighbors. This assumption improves the model’s
tractability as the agent’s behavior does not depend on the individual thresholds of her
neighbors. At the same time, this assumption is not satisfactory if the equilibrium is to
be interpreted as a long-term process as each agent may change her behavior when she
observes the actions of her neighbors. This is the first key difference from our model,
where an equilibrium is a steady-state behavior after the thresholds are realized and
actions are chosen. Because our model is a static, complete information equilibrium
for a given realization of thresholds, it is also much more difficult to analyze. Further,
because the neighbors in the Bayesian equilibrium of Jackson and Yariv (2007) are se-
lected at random, the neighborhood structure looks like a random graph. Like other
random-graph-based models, there are typically multiple equilibria. In contrast, in this
paper, we are serious about the topology of the network and explain an important role
of overlapping neighborhoods that cannot be captured in random graphs models.

The results of this paper are closely related to the literature on evolutionary learn-
ing and contagion in networks. Evolutionary game theory (Kandori, Mailath, and Rob
(1993), Young (1993), Blume (1993), Newton (2021), and many others) studies the long-
run behavior of perturbed best response processes, where agents commit mistakes with
a small probability, and instead of choosing a best response, take some other action.

A major contribution of this literature is a demonstration of a contagion phe-
nomenon. Ellison (1993) (see also Ellison (2000)) shows that a best response may spread
a risk-dominant action from a small initial set of deviators to the rest of a 1-dimensional
lattice network. Blume (1995b) and Lee and Valentinyi (2000) extend this observation
to higher-dimensional lattices. Morris (2000) describes general properties of networks
for which Ellison’s contagion wave exists. Morris (2000) also shows that risk-dominated
actions cannot spread through a best response process regardless of the geometry of the
network.

A strand of the literature studies evolutionary equilibrium selection in games with
heterogeneous populations. For instance, Friedman (1991) describes a general frame-
work with multiple continuum populations choosing actions and receiving payoffs and
studies evolutionary steady states of continuous time adjustment dynamics. More
closely related to this paper is Neary (2012), which studies a similar model to ours but
with two payoff shocks (more precisely, two subpopulations of deterministic size) and
agents located on a complete graph. The paper presents conditions under which the
evolutionary dynamics of Kandori, Mailath, and Rob (1993) selects a fuzzy convention,
that is, an equilibrium where members of different subpopulations play different ac-
tions. Neary and Newton (2017) study general payoff shocks and presents a sufficient
condition under which the logit dynamics of Blume (1993) select a fuzzy convention.

Our current results (specifically, Theorems 1 and 2) are related, but with some key
differences. First, here, we are interested in static equilibria instead of a dynamic ad-
justment process. The evolutionary literature is subject to the criticism that one may
need to wait for a very long time before reaching a stochastically stable outcome (El-
lison (1993)). That criticism does not apply to our static model. Second, the previous
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papers study games with homogeneous payoffs and a behavior that is subject to small
and disappearing perturbations: small and disappearing shocks in the case of Ellison
(1993) or Blume (1995b), and a finite and small fraction of society modifying their ac-
tions in Lee and Valentinyi (2000) or Morris (2000). Instead, the payoff shocks in our
model are significant, and as a result, we are serious about heterogeneity. The nontrivial
payoff shocks make our model more difficult to analyze, but they also render it closer to
reality. Third, the evolutionary literature results show convergence to Harsanyi and Sel-
ten (1988)’s risk-dominance. Here, due to payoff heterogeneity, we need a new solution
concept in the form of the RU-dominance. We show that the RU-dominance becomes
equivalent to the risk-dominance when payoffs are homogeneous. Finally, the network
topology plays an important role in both evolutionary models and in the current paper.
In evolutionary models, the network affects the time for the coordination on the risk-
dominant outcome. However, it does not affect the final outcome: one of the key results
of this literature is that risk-dominant coordination is (uniquely) stochastically stable on
all networks (Peski (2010)). In our case, similarly to Lee and Valentinyi (2000) and Morris
(2000), the network topology affects the equilibrium outcome.

In a recent contribution, Leister, Zenou, and Zhou (2022) study coordination games
with a fixed network and a fixed (not random) threshold distribution. The paper works
with arbitrary networks. To deal with a possible multiplicity of equilibria, they use global
games as an equilibrium selection device. The authors develop an algorithm to compute
the equilibrium adoption. The outcome of the algorithm depends on the details of pay-
off heterogeneity and how they interact with the topology of the network. In contrast, in
our paper, the assumption that thresholds are randomly and independently drawn from
the same distributions allows us to separate the effects of the payoff distributions and
the topology of the network.

2. Numerical example

Although our results are asymptotic, the coordination on RU-dominant outcome as well
as the role of the networks can be demonstrated through simulations in a numerical
example.

We compare the behavior under two threshold distributions. In both cases, the high
action is strictly dominant for 30% of the population and the low action is strictly domi-
nant for another 30%. Under P1, the remaining 40% plays the high action only if at least
0.55 of their neighbors do the same. Under P2, the remaining 40% plays the high action
only if at least 0.4 of their neighbors do the same. The distributions are drawn in the top
row of Figure 2.

If, like in Granovetter (1978), the population is a continuum, and all agents play
against the entire population, the equilibrium average behavior can be found as a fixed
point of P(.), that is, an intersection of P(.) with the 45◦ line. In both cases, there are two
stable equilibria: A with 0.3 and B with 0.7 fractions playing high. (In each case, there
is also an unstable equilibrium in between.) For each distribution, only one of these
outcomes is RU-dominant—A in the case of distribution P1 and B in the case of P2.

Instead, consider a population of agents living on one of two networks. Both net-
works have ∼ 60,000 agents and each agent has, on average, ∼ 120 neighbors.
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Figure 2. Monte-Carlo simulations of average equilibrium behavior in the lowest (blue, “\”
hatch areas) and the highest equilibria (yellow, “/” hatch areas). The distributions substantially
overlap (brown color) in the last row, corresponding to the city network.

• In a random graph (Erdős and Rényi (1959)), neighbors are randomly selected from
the population.

• In a “city” network, people are located on a two-dimensional grid. Each agent
neighborhood is a square of agents with a side equal to 11, centered at the agent.

We use Monte Carlo simulations to estimate the probability distributions of average
equilibrium behavior. In each simulation, we draw i.i.d. thresholds for all agents. For
each realization of thresholds, we find the highest and lowest equilibria. Such equilibria
are well-defined for binary coordination games. For example, to find the highest equi-
librium, we start with a profile where all agents play the high action, and then run the
best response process until none of the agents wants to change their action. Next, for
each equilibrium, we compute the average equilibrium behavior. By combining average
behaviors in two equilibria across different threshold realizations, we obtain the Monte
Carlo estimates.

These distributions for each network, each threshold distribution, and each equilib-
rium type (the lowest is marked with blue, “\” hatch areas and the highest with yellow,
“/” hatch areas) are plotted in the two bottom rows of Figure 2. Because both distribu-
tions are highly concentrated around 0.3 (i.e., A) and 0.7 (i.e., B) values, for clarity, we
only show regions around these two values.
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There is a significant difference between random and city networks. In the random
graph, the lowest and the highest equilibria correspond to the lowest (A) and highest (B)
equilibria from the population model of Granovetter (1978), regardless of the threshold
distribution. This is not unexpected as a random graph with a relatively large number of
agents is a good approximation of the continuum model.

On the city network, the range of equilibrium behaviors is much smaller and it de-
pends on a threshold distribution. Under P1, the lowest and the majority of realizations
of the highest equilibria are concentrated around A. Under P2, the average behavior in
the highest and lowest equilibria is essentially equal to B. In other words, for a signifi-
cant majority of threshold realizations, all equilibria on the city network have aggregate
behavior consistent with the RU-dominant prediction.

The goal of the rest of the paper is to explain this pattern.

3. Model

3.1 Model

We are studying agents living in the nodes of a network. The network is defined as an
undirected weighted graph with weights gij = gji ≥ 0 for i, j ≤ Ng, where Ng is the size
of the network. The weights can be interpreted as a frequency of interactions between
two agents and we assume that gii = 0. Let gi =∑j gij > 0 for each agent i. Each agent i
has a threshold τi drawn i.i.d. from probability distribution P . Each network g, and each
realization of thresholds τ defines a complete information static game G(g, τ).

Each agent chooses a binary action ai ∈ {0, 1} and uses it in each interaction. The
payoff in interaction with agent j is equal to ui(ai, aj , τi ) = aiaj − aiτi, and the total pay-
off of agent i in all (weighted) interactions is equal to

∑
j gijui(ai, aj , τi ). For each action

profile a, let βa = (βa
i ) be a profile of average neighborhood fractions of agents who play

action 1, that is, βa
i = 1

gi

∑
j gijaj . An action profile is a Nash equilibrium if all agents

best respond, or alternatively, if each agent plays action 1 (resp., 0) if the average action
in their neighborhood is strictly larger (resp., smaller) than their threshold, that is, for
each i,

1
{
τi < βa

i

}≤ ai ≤ 1
{
τi ≤ βa

i

}
. (2)

The model is strategically equivalent to general random-utility binary-action coordi-
nation games on networks.1 The notion of equilibrium is a standard, static equilibrium
of a complete information game. Although it is convenient to assume that agents know
the thresholds and the network structure of the entire society, this assumption is nei-
ther realistic nor necessary. For the interpretation of the equilibrium, it is sufficient that
agents observe the actions of their neighbors. Because ours is a coordination game, we

1A general model is as follows: For each agent i and j, i’s payoff from interaction with agent j is equal to
u(ai, aj , εi ), where ai, aj ∈ {0, 1} are actions and εi is a random shock to agent i’s utility drawn from some
distribution F . Assume that, for each ε,

�(ε) := u(1, 1, ε) + u(0, 0, ε) − u(1, 0, ε) − u(0, 1, ε) > 0.

To translate this model to the threshold model, for each x, let τi = 1
�(ε) (u(1, 0, εi ) − u(0, 0, εi )).



Theoretical Economics 20 (2025) Random utility coordination games 591

can safely think about an equilibrium as a steady state of myopic best response adjust-
ment process.

Two special cases are worth mentioning:

• homogeneous payoffs: Suppose that τi = τ for all agents i (i.e., P is degenerate;
see Figure 3 for τ = 0.4 and 0.6). This is a standard model of coordination game
on networks (Ellison (1993), Blume (1993), Lee and Valentinyi (2000), and others).
Peski (2010) showed that, regardless of the network, various evolutionary dynamics
select coordination on risk-dominant action as a stochastically stable outcome,

• complete graph: Suppose that gij = 1 for each i �= j. In the continuum limit Ng →
∞, our model becomes equivalent to Granovetter (1978). Complete graphs share
similar features with Erdős–Renyi style random graphs.

We assume that none of the agents has significantly more connections than others,
maxi,j gi/gj ≤ w∗, where w∗ < ∞ is an (arbitrary) constant fixed throughout the paper.
This paper is concerned with asymptotic results when the network becomes sufficiently
large and fine.

3.2 Fuzzy convention

For ε > 0 and x ∈ [0, 1], a profile a is ε-fuzzy convention x if all but ε fraction of agents
play 1 if and only if their threshold is strictly below x:

1
Ng

∣∣ai − 1(τi ≤ x)
∣∣≤ ε. (3)

In a fuzzy convention, the behavior of almost all agents can be deduced from their
threshold alone. Denote the 0-fuzzy convention of x as a profile ax, where for each agent
i, ax = 1(τi ≤ x).

A fuzzy convention allows for a substantial heterogeneity of the behavior on a micro-
level: individuals with different thresholds may choose different actions. At the same
time, almost all agents use approximately the same procedure of determining their ac-
tion as a function of their thresholds. Because the thresholds are i.i.d., for any large
group of agents, with a large probability, fraction P(x) of them will play 1. Thus, fuzzy
conventions do not exhibit macro-level heterogeneity, with differences of aggregate be-
havior across different parts of the network.

An important feature of a fuzzy convention is that it is network independent: (al-
most) all agents choose their actions purely based on their own threshold. Such strate-
gies are necessarily employed in models like Jackson and Yariv (2007) and Galeotti et al.
(2010), where agents choose their action before their neighbors are drawn randomly
from the rest of the population. In principle, there is no reason why such strategies
should play any role in our paper, which is concerned with static complete informa-
tion equilibrium and where actions must be best responses after the network and all
thresholds are determined.

In a fuzzy convention x, the expected fraction of neighbors who play 1 is equal to
P(x). It turns out that if the agents’ neighborhoods are sufficiently large, the expected
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Figure 3. RU- and risk-dominance when P is degenerate for τ = 0.4 (left panel) and τ = 0.6
(right panel).

fraction is also close to the observed one. If the fuzzy convention is also an equilibrium,
we expect that x∼ P(x).

3.3 RU-dominant outcome

An outcome x∗ ∈ [0, 1] is random utility (RU) dominant if

x∗ ∈ arg max
x

x∫
0

(
y − P−1(y )

)
dy. (4)

(When P is not invertible, we define P−1(y ) = inf{(x : P(x) ≥ y )}.) It is strictly RU-
dominant if it is the unique maximizer. Graphically, the integral (4) is equal to the sum
of signed measures of areas between the cdf P(.) and the 45◦ line: the area below the
45◦ line and above P(.) is added with a “−” sign and the area above the 45◦ line and
below P(.) is added with the “+” sign. Figure 1 illustrates such a calculation for generic
function P(.).

Any maximizer of (4) is a nonatomic fixed point of P(x) = x. However, even if there
are multiple stable fixed points, generically, there exists a unique RU -dominant out-
come.

In a special case of homogeneous payoffs (see Section 3.1), the definition of RU-
dominance reduces to the risk-dominance of Harsanyi and Selten (1988). To see that,
suppose that P(.) is degenerate and concentrated on a single threshold τ (i.e., there is
no uncertainty about thresholds). Figure 3 shows the distribution P for two values of τ.
In both cases, the integral from expression (4) is equal to 1

2x
2 − τx= x( 1

2 − τ) and

• when τ = 0.4, the integral is maximized at x∗ = 1,

• when τ = 0.6, the integral is maximized at x∗ = 0.

In both cases, the RU-dominant outcome is identical to the risk-dominant one.
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For future reference, note that any strictly RU-dominant outcome is also a unique
maximizer of

ν(x) = 1
2

(
P(x)
)2 −

x∫
0

ydP(y ). (5)

Indeed, the maximizer of (5) must satisfy P(x) = x, and a change of variables shows that
the two expressions are equal for such x.

4. RU-dominant fuzzy convention

This section contains the first main result of the paper: all sufficiently large and fine
networks have an equilibrium that is fuzzy convention x∗. Define a bound on the im-
portance of a single agent in another agent’s neighborhood as

d(g) = max
i,j

gij

gi
∈ [0, 1].

For d(g) to be small, each agent must have many neighbors. In the next result, the
phrase “with probability” refers to the probability distribution over all threshold profiles.

Theorem 1. Suppose that x∗ is the strictly RU-dominant outcome. For each η> 0, there
is d > 0 such that, for each network g st. d(g) ≤ d, with probability 1 − η, there is an
equilibrium that is η-fuzzy convention x∗.

If the network is sufficiently fine, that is, when d(g) is small, then for almost all real-
izations of thresholds, there is an equilibrium where almost all agents behave as if they
were playing fuzzy convention x∗.

It is worth pointing out that the theorem is not true for any other x �= x∗. This is
because there are networks on which there are no other equilibria than fuzzy conven-
tions x∗ (see Theorem 2 below). The fact that the result does not hold for any other
fixed point of P(.) but x∗ should caution the reader that there is no “straightforward” or
“immediate” proof based on Granovetter (1978) or convergence to random graphs.

At the same time, the theorem does not say that the equilibrium is unique, or that
all equilibria are fuzzy conventions x∗, or even that all equilibria are fuzzy conventions.
None of it is true. For example, one can easily show that the Granovetter’s analysis of
the continuum population extends to complete or random graphs: If the population is
sufficiently large, for a large probability set of thresholds realizations, a complete graph
has multiple equilibria, including x-fuzzy convention for each x that is a fixed point of
P(.). Even more, denoting by xmin and xmax the smallest and the largest fixed points
of P(.), there are networks where, with a large probability, there is an equilibrium with
average behavior close to x for each x ∈ [xmin, xmax] and there are many equilibria that
are not fuzzy conventions.2

2An example is a network consisting of K complete graphs, each of size N , disconnected from each other.
Then, for each k ≤ K, if N is sufficiently large, there is an equilibrium where agents in the first k complete
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The condition that d(g) is small corresponds to requirements of vanishing influ-
ence in social learning literature (for instance, Jackson (2010) or Mossel, Sly, and Tamuz
(2015)). In our case, we require that each agent has a vanishing influence on every other
agent. This ensures that the empirical (i.e., realized) distribution of thresholds in each
agent neighborhood weighted by the link weights is close to distribution P(.). This is re-
lated to the role of this condition in social learning literature, where it is important that
a random signal observed by one agent does not unduly affect the rest of the society.

The proof of Theorem 1 relies on the fact that the threshold model is a potential
game (Monderer and Shapley (1996)). For each action profile a and threshold profile τ,
define

V (a; τ) = 1
2

∑
i,j

gijaiaj −
∑

giaiτi. (6)

Then V (ai, a−i; τ) −V (a′
i, a−i; τ) = gi(βa

i − τi )(ai − a′
i ), which implies that V (1, a−i; τ) −

V (0, a−i; τ) ≥ 0 if and only if βa
i ≥ τi, or if and only if 1 is a best response for agent i. In

other words, V is an (ordinal) potential function. Monderer and Shapley (1996) shows
that a profile is an equilibrium profile of a potential game if and only if it is a local max-
imizer of a potential function.

We emphasize that (6), not the expression in (4), is the potential of the game for a
given network. The latter can be shown to be a (some type of) potential of the contin-
uum limit of complete graphs. Formula (6) applies to all networks.

The proof consists of four steps. First, we show that, if the network is sufficiently
large and fine, then with a large probability, the potential of profile ax

∗
is very close to

the maximum value of (5). In the next two steps, we consider all profiles a such that a
is an equilibrium that is not ε-fuzzy convention. In the second step, we show that, if
inequality (3) fails, neighborhood averages βa

i must be significantly different from x∗.
Third, we estimate potential for all such profiles a and show that it is approximately

graphs play fuzzy convention xmin (restricted to this complete graph) and agents in the remaining K − k

complete graphs play fuzzy convention xmax. Such a profile is an equilibrium, but it is not a fuzzy (or any
other) convention in the network as a whole. The average behavior in such a profile is k

K xmin + K−k
K xmax.

An example where K = 8 and k = 2 can be found below.
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equal to the value that depends on βa
i and it is strictly smaller than the maximum of

(5) for βa
i �= x∗. Finally, we recall that any maximizer of the potential must be an equi-

librium. Together with the previous steps, this observation implies that the maximizer
must be a fuzzy convention x∗.

The fourth step is immediate. The first step is a relatively straightforward applica-
tion of a standard concentration inequality (i.e., a version of the law of large numbers).
The second and the third steps are relatively straightforward calculations that rely on a
version of the concentration inequality that holds uniformly across all profiles a. The
proof of the latter is the most difficult part of the entire argument. The reason why we
need a uniform concentration inequality is that the bounds used in computations in the
second and the third steps must simultaneously hold for all profiles a. 3

4.1 Concentration inequalities

We sketch the main steps of the proof. We start with a concentration inequality. Let F
be the set of measurable functions f : [0, 1]2 → [0, 1]. For each f ∈ F and each b, let
E f (., b) = ∫ f (x, b)dP(x) denote the expectation of f (., b) with respect to the distribu-
tion of thresholds P . The Hoeffding inequality implies that there exist constants B < ∞
and cε > 0 such that for each profile a and measurable function f (τ, β) ∈ [0, 1],

Prob
(∣∣∣∣∑

i

gif
(
τi, β

a
i

)−∑
i

giE f
(
., βa

i

)∣∣∣∣≥ ε
∑

gi

)
≤ B exp(−cεNg ). (7)

(Here, and below, Prob is the probability over the realizations of threshold profiles.) Sim-
ilarly, the Hanson–Wright inequality says that, for possibly different constants B and cε,

Prob
(∣∣∣∣∑

i,j

gij

( ∏
k=i,j

f
(
τk, βa

k

))−
∑
i,j

gij

( ∏
k=i,j

E f
(
., βa

k

))∣∣∣∣≥ ε
∑

gi

)

≤ B exp(−cεNg ). (8)

The above inequalities hold for each profile a separately. The next lemma shows that
they can be strengthened to hold uniformly across all profiles.

3To see the difference between the two types of probabilistic inequalities, consider the following prob-
lem. Suppose that ai, τi ∈ {0, 1}, and τis are i.i.d., uniformly distributed on {0, 1}. Consider a function
V0(a, τ) = 1

N

∑
aiτi. Then, for each arbitrarily small ε > 0, there exists Nε such that for each N >Nε,

sup
a

P

(∣∣∣∣V0(a, τ) − 1
2

∣∣∣∣> ε

)
< ε.

At the same time, the uniform version of the above inequality is not valid: for any N ,

P

(
sup
a

∣∣∣∣V0(a, τ) − 1
2

∣∣∣∣> ε

)
> 1 − ε.

In fact, supa |V (a, τ) − 1
2 | = 1

2 and it can be attained by a = τ.
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Lemma 1. There exist constants B < ∞ and c(ε, K, d) for each ε > 0, K < ∞, and d > 0
such that lim infd→0 cε,K,d > 0 and such that if f ∈ F is a K-Lipschitz function, then

Prob
(

sup
a

∣∣∣∣∑
i

gif
(
τi, β

a
i

)−∑
i

giE f (., β)

∣∣∣∣≥ ε
∑

gi

)

≤ B exp(−cε,K,d(g)Ng ), (9)

Prob
(

sup
a

∣∣∣∣∑
i,j

gij

( ∏
k=i,j

f
(
τk, βa

k

))−
∑
i,j

gij

( ∏
k=i,j

E f
(
., βa

k

))∣∣∣∣≥ ε
∑

gi

)

≤ B exp(−cε,K,d(g)Ng ). (10)

The proof of the lemma establishes probabilistic bound (9) (resp., (10)) as a product
between bound (7) (resp., (8)) and a measure of the size of the set of neighborhood pro-
files B = {βa : a is a profile}. To explain the idea, notice that, for any function F(βa ) of
the neighborhood profile βa, we get

Prob
(

sup
a

F
(
βa
))= Prob

(
sup
β∈B

F(β)
)

≤ |B| sup
β∈B

Prob
(
F(β)
)= |B| sup

a
Prob
(
F
(
βa
))

.

In other words, the uniform probabilistic bound is a product of the individual bound and
the counting measure of set B. It turns out that the counting measure is too large (|B| ∼
exp(2Ng )) for our purposes. Instead, the proof relies on the metric entropy of set B (see
Appendix A.1 for details). We show the metric entropy of B is of order exp(d(g)N ), which
when d(g) is small, leads to bounds that are sufficient to conclude the proof of Lemma 1.
The use of metric entropy requires some modifications to the above argument, including
the restriction to Lipschitz functions f .

4.2 Estimates of the potential function

We use Lemma 1 in three calculations below. In all cases, we assume that the network is
sufficiently large and fine and the thesis of the lemma holds. First, we find the potential
of 0-fuzzy convention x∗ profile a∗ = ax

∗
: for each i, a∗

i = 1{τi ≤ x∗}.
Note that E1{. ≤ x∗} = P(x∗ ). Lemma 1 implies the following estimate:

V
(
a∗; τ
)= 1

2

∑
i,j

gijaiaj −
∑

giaiτi

= 1
2

∑
i,j

gij1
{
τi ≤ x∗}1{τj ≤ x∗}−∑gi1

{
τi ≤ x∗}τi

≈ 1
2

∑
i,j

gi
(
P
(
x∗))2 −

∑
gi

x∗∫
0

ydP(y ) =
∑

giν
(
x∗).
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(Because 1{. ≤ x∗} is not Lipschitz, the lemma is applied to a Lipschitz approximation—
the details are left for the Appendix.)

Second, take an arbitrary equilibrium profile that is not ε-fuzzy convention of x∗.
Because of (2) and (3), we get

ε ≤ 1
Ng

∣∣ai − 1
(
τi ≤ x∗)∣∣

≤ 1
Ng

∑
i

(
1βa

i ≤x∗1
(
τi ∈
[
βa
i , x∗])+ 1βa

i ≥x∗1
(
τi ∈
[
βa
i , x∗])).

By Lemma 1, with a large probability, the following bound holds:

1
Ng

∑
i

∣∣P(βa
i

)− P
(
x∗)∣∣≥ 1

2
ε. (11)

Third, we estimate the potential for such a profile a. Applying Lemma 1 once more,
we obtain

V (a; τ) = 1
2

∑
i,j

gijaiaj −
∑

giaiτi

= 1
2

∑
i,j

gi1
(
τi ≤ βa

i

)
1
{
τj ≤ βa

j

}−∑gi1
(
τi ≤ βa
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)
τi

≈ 1
2

∑
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gijP
(
βa
i

)
P
(
βa
j

)−∑gi

βa
i∫

0

ydP(y ).

Because 2P(βa
i )P(βa

j ) ≤ P(βa
i )2 + P(βa

j )2, the potential of a is not larger than

≤ 1
2

∑
i,j

gij
(
P
(
βa
i

))2 −
∑

gi

βa
i∫

0

ydP(y ) =
∑
i

giν
(
βa
i

)
.

By the remark at the end of Section 3.3, unless βa
i = x∗, the above is strictly smaller than

the potential of a∗. Hence, together with the estimate of potential for profile a∗, the
bound (11) implies that an arbitrary equilibrium profile that is not ε-fuzzy convention
of x∗ cannot maximize potential.

Finally, recall that any potential maximizer must be an equilibrium. It follows that
the potential maximizer must be ε-fuzzy convention of x∗.

5. RU-dominant selection

In the previous section, we showed that all sufficiently fine networks have equilibria
that are fuzzy conventions x∗. Here, we show that there are networks where, with a large
probability, all equilibria are fuzzy conventions x∗:
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For each η > 0, the proof constructs a “city” network, where agents live on a two-
dimensional grid and interact with other agents who live around them. The network is
parameterized with M and m. There are M2 agents living on square [0, M

m ]2 ⊆R
2 at frac-

tional points ( k
m , l

m ) for k, l = 1, � � � , M . Any two agents i and j are connected, gij = 1,
if the (Euclidean) distance between them is no larger than 1. To avoid separately deal-
ing with border cases, we assume that all distance calculations are done mod M

m , which
transforms the square [0, M

m ]2 into a torus.

Theorem 2. Suppose that x∗ is the strictly RU-dominant outcome and that either (a)
x∗ ∈ (0, 1) and 0 < P(0) ≤ P(1) < 1, (b) x∗ = 1 and P(0) > 0, or (c) x∗ = 0 and P(1) <
1. For each η > 0, if m and M

m are sufficiently large, then with probability 1 − η, each
equilibrium on (M , m) city network is η-fuzzy convention x∗.

The theorem says that there exist networks where all equilibria are fuzzy conventions
x∗, or that all equilibria have a form identified by Theorem 1.

We emphasize that the theorem makes a statement about static, complete informa-
tion game equilibria. At the same time, the proof relies on a dynamic technique of con-
tagion waves (Ellison (1993), Morris (2000)). We show that if an action profile is, in some
sense, higher (resp., lower) than fuzzy convention x∗, then best response dynamics will
push the profile below (resp., above) x∗. This shows that the original profile could not
have been an equilibrium. We describe the intuition behind the proof, including the
relation to the maximization problem, below.

If P(0) > 0 (resp., P(1) < 1), then with a positive probability, there are agents for
whom action 1 (resp., 0) is strictly dominant and it is played in any equilibrium. The
only assumption of the theorem is that there is a positive probability of such agents. The
role of such agents is similar to the role of initial infectors in Lee and Valentinyi (2000)
and Morris (2000) or the role of small probability mistakes in evolutionary models.

The city network is an example of a two-dimensional lattice. The proof could easily
extend to K > 2 dimensional lattices (but, as we explain below, not to K = 1). After
we describe the proof, we point to the properties of multidimensional lattices that are
important for the proof. Extending the theorem to other networks is beyond the goals of
this paper.

5.1 Contagion on line

Next, we describe the intuition for the proof. We assume that x∗ = 0 and P(1) < 1.
We start with the intuition behind the contagion argument. It is useful initially to

work with a toy version of the line network from Ellison (1993) (the general argument
does not work on a line and it requires at least two-dimensional lattices). Suppose that
agents are distributed uniformly along a line at discrete and equally spaced locations.
Each location contains a continuum population of mass 1. The populations in locations
i and j are connected with each other, with weights that depend only on the distance
gij = gi−j =: gj−i. We assume there are no connections between agents in the same lo-
cation, that is, g0 = 0, and the weights are normalized so that

∑
gd = 1. Finally, we as-

sume that there are no connections between agents at distance larger than d: gi−j = 0
for |i− j| > d.
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Figure 4. Contagion wave.

Take an action profile a0 such that agents in locations i ∈ [−2d, 0] play action 0 and
all other agents play 1. In our model (but not its continuum toy version), assumption
P(1) < 1 implies that there is a positive probability that a contiguous group of agents
have 0 as a strictly dominant action. If the line network is long enough, the existence of
a group of 2d agents who play 0 for sure can be guaranteed with a probability arbitrarily
close to 1.

Going back to the toy line with a continuum of agents in each location, consider a
revision process in which agents in all locations apart from i ≥ 0 switch to their myopic
best responses. Complementarities imply that they can switch at most once, and if they
do, they switch from action 1 to 0. Figure 4 illustrates the first two stages of such a pro-
cess. In the first stage, actions are changed by agents in locations i > 0 for whom action 0
is strictly dominant, as well as high-threshold agents in locations i ∈ [0, d] for whom 0 is
a best response given a0. In the second stage, additional agents in locations i ≤ 2d may
change actions, and so on. The process will continue until a stable point where no more
agents i ≥ 0 want to switch to 0. Denote the fraction of agents who play 1 in location i in
stage n as ani and the limit fraction as limn a

n
i = ai. Due to the payoff complementarities,

profiles ani for each n and ai must be increasing in i.
In this toy version, the continuum law of large numbers allows us to express the

fraction of agents for whom 1 is a best response given profile a as P(
∑

d gdai+d ). Given
that a is the limit of the best response dynamics, we have, for each location i ≥ −2d,

ai ≤ P

(∑
d

gdai+d

)
.

Taking the inverse, we obtain

P−1(ai ) ≤
∑
d

gdai+d =
∑
j

( ∑
d≥j−i

gd

)
(aj+1 − aj ),

where the equality is due to a discrete version of the integration-by-parts formula and
the fact that ai ≥ 0 for each i. After multiplying by ai+1 − ai ≥ 0, and summing up across
all locations i, we get

∑
i

P−1(ai )(ai+1 − ai ) ≤
∑
i,j

( ∑
d≥j−i

gd

)
(ai+1 − ai )(aj+1 − aj ). (12)
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The left-hand side of the inequality is approximately equal to
∫ a

0 P−1(y )dy when the
distance between locations is small and for large m. To compute the right-hand side,
notice that we can switch the roles of i and j in the summation without affecting its
value. Together with the fact that

∑
d≥j−i gd +∑d≥i−j gd =∑gd = 1, we get

∑
i,j

( ∑
d≥j−i

gd

)
(ai+1 − ai )(aj+1 − aj )

= 1
2

(∑
i,j

( ∑
d≥j−i

gd +
∑

d≥i−j

gd

)
(ai+1 − ai )(aj+1 − aj )

)

= 1
2

(∑
i,j

(ai+1 − ai )(aj+1 − aj )

)
= 1

2
a2

= 1
2
a2 =

a∫
0

ydy.

Putting the two sides together, inequality (12) implies that

a∫
0

(
y − P−1(y )

)
dy ≥ 0.

If a > 0, this contradicts the fact that x∗ = 0 is the unique maximizer of the integral on
the right-hand side of (4). Thus, in the limit of best response revision process, it must be
that all locations play ai = 0.

The contagion argument extends from a line to higher-dimensional lattices due to
an elegant argument from Blume (1995b) (see also Lee and Valentinyi (2000) and Morris
(2000)). The idea is that if the initial group is sufficiently large, we can approximate it
using a set with a smooth (i.e., low curvature) boundary. Then we can analyze the spread
of the contagion wave behavior in the direction that is normal to the boundary. This trick
turns the problem into a one-dimensional one, and the above argument applies.

5.2 Obstacles

Although the continuum assumption is useful in explaining the intuition, the argument
needs to be modified for our model. For example, the assumption ignores a positive
probability of a contiguous group of “bad” agents for whom 1 is the strictly dominant
action. If sufficiently large, such a group of “bad” agents will stop the best response
revisions towards action 0 and block the contagion wave (see the left panel of Figure 5).

“Bad” sets cannot be eliminated or avoided in the one-dimensional “line” network.
However, “bad” sets are intuitively less likely to block the contagion wave on higher-
dimensional lattices (see the right panel of Figure 5). The reason is that to block the
wave, the “bad” sets would have to be arranged so as to surround it. We show that, on
a two-dimensional lattice, if m and M

m are sufficiently large, the likelihood of “bad” sets
surrounding the initial infectors is very small.
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Figure 5. Obstacles to the contagion wave.

5.3 Proof summary

More generally, without the continuum assumption, the argument behind contagion
waves must work with finite laws of large numbers. Below, we sketch the main ideas of
how we do it. The details of the proof can be found in Appendix B.

The lattice is divided into large and small cubes so that the number of large cubes in
the lattice is very large, each large cube contains a very large number of disjoint neigh-
borhoods, each neighborhood contains a very large number of small cubes, and each
small cube contains a very large number of agents (see Figure 6). These numbers are
chosen so that the following series of claims holds:

(1) The number of agents in a small cube and the number of small cubes in a neigh-
borhood are sufficiently large, so that the fraction of shared agents and the frac-
tion of shared small cubes in the neighborhoods of any two agents i and j is well
approximated by the area of the intersection of two 1-radius circles with centers
at i and j (Lemma 3).

(2) The size of each small cube is sufficiently large so that, for each small cube, with a
probability close to 1, the empirical distribution of payoff shocks within the cube
is close to the true distribution. We say that a small cube is (γ-)bad if, for some
fraction x, the average best response action of the agents within the cube is (γ-
)larger than P(x). Agents in bad cubes may tilt toward higher best responses than
a statistical agent. Agents in a small cube that is not bad are well approximated
by the continuum assumption in the following sense: the average best response
in the small cube is not higher than P(β), where β is the average “belief” (i.e., the
average neighborhood action) for members of the cube.

(3) A large cube is good if it contains no bad small cubes. The ratio of the size of a
small cube (i.e., the number of agents within each small cube) to the number of
small cubes in a large cube is sufficiently large, so that the probability p that the
large cube is good is arbitrarily close to 1.

A large cube is extraordinary if it contains only agents for whom 0 is the strictly
dominant action. Extraordinary cubes play the role of initial infectors. The num-
ber of large cubes is sufficiently large, so that the probability that an extraordinary
large cube exists is arbitrarily close to 1.
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Figure 6. Lattice division.

(4) Two large cubes are connected if they share a wall. The number of large cubes is
sufficiently large, and the probability p that a large cube is not good is sufficiently
small, so that there exists a giant component of good large cubes—a set of good
large cubes that contains almost all large cubes on the lattice and such that all of
its elements are connected with each other by paths of good large cubes that share
a wall. This argument is the content of Lemma 7 and it relies on definitions and
results from the percolation theory (Bollobás and Riordan (2006)).

(a) First, we show that each connected set S can be surrounded by a connected
“boundary” ∂S that isolates set S (and, possibly, some other large cubes) from
the remaining large cubes. The total number of large cubes isolated away from
set S is not larger than |S|2. (On a two-dimensional lattice, the worst-case sce-
nario bound comes from elements of set S arranged in a way that surrounds
an interior proportional in size to the square of its perimeter.)

(b) For a collection of connected sets S1, � � � , SJ that are not connected with each
other, the giant connected component that omits all sets Sj contains all but at
most

∑ |Sj|2 large cubes.

(c) Let S1, � � � , SJ be the collection of all maximally connected collections of large
bad cubes. We estimate the expected value of

∑ |Sj|2 as proportional to the
number of all large cubes multiplied by the probability p that a single large
cube is bad (Lemma 5). An application of the Markov inequality shows that,
if p is sufficiently small, the giant connected component that contains only
good cubes contains a fraction of all large cubes that is arbitrarily close to 1.
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(5) Using the ideas from Blume (1995b), we show that if the curvature of the two-
dimensional contagion wave is sufficiently small relative to the curvature of an
individual neighborhood, the contagion wave will spread, as long as its path con-
tains only good small cubes (Lemma 9).

Putting it together, the contagion wave is going to spread through a vast majority of
the giant connected component of good large cubes, and thus a vast majority of the
lattice. Hence, with a large probability, the average action in the largest equilibrium on
a sufficiently large two-dimensional lattice is close to x∗.

5.4 Key properties of the city network

We summarize the above discussion by identifying four properties of (M , m)-city net-
work that play key roles in the proof.

(1) Large number of connections m allows us to approximate the empirical distribu-
tion of thresholds in an agent’s neighborhood by the model distribution P . This
approximation forms a basis for the continuum model discussed in Section 5.1.

(2) Large network: The population must be sufficiently large to ensure that, for each
action, with a high probability, there is a sufficiently large number of agents for
whom this action is strictly dominant. Such agents start the contagion argument
and they play a similar role as initial infectors in Lee and Valentinyi (2000) or Mor-
ris (2000). In the city network, we require that M

m is sufficiently large.

(3) Slow neighborhood growth: For the contagion argument of Section 5.1 to hold,
the size of neighborhoods must grow sufficiently slowly (see Morris (2000) for the
definition and properties).

(4) Percolation property: The contagion cannot be obstructed by the obstacle phe-
nomenon described in Section 5.2. Using the language introduced above, the
good set of cubes must contain a large connected component of the graph.

It is not immediately obvious how to formalize the last property in a simple way. (A
nonsimple way is to assume that the thesis of Lemma 4 from the Appendix must hold.)
We leave this task for future research.

6. Equilibrium selection

In this section, we point out two equilibrium selection theories that select fuzzy conven-
tion x∗ as the unique solution for random utility coordination games on networks.

6.1 Evolutionary stability

The proof of Theorem 1 shows that fuzzy convention x∗ is, with a large probability, a
global maximizer of a potential function for the coordination game. Recall that global
maximizers of the potential function are selected in complete information static coordi-
nation games by two different equilibrium selection theories: robustness to incomplete
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information (Ui (2001)) and stochastic stability under logistic dynamics (Blume (1993),
Blume (2018)).

6.2 Robust behavior

Next, we explain that fuzzy convention x∗ is the only behavior that is robust to incom-
plete information about the network. The idea is parallel to the definition of robustness
to incomplete information from Kajii and Morris (1997). We take a perspective of a re-
searcher/analyst who observes a large population of agents and attempts to predict in-
dividual behavior αi(τi ) ∈ [0, 1], where αi(τ) is the probability of playing action 1, as a
function of individual thresholds τi. The researcher understands that the agents play a
coordination game with their neighbors on some large and fine network and she under-
stands the parameters of the game, but she does not necessarily understand the details
of the network topology. She would like her prediction to be robust to a misspecification
of the network.

Definition 1. A threshold behavior (αi(.))i is robust to the misspecification of the net-
work if and only if, for each η, there exists d > 0, such that for each network g, if d(g) < d,
with probability at least 1 −η (over the realization of thresholds τi), there exists an equi-
librium ai ∈ {0, 1} of the network game G(g, τ) such that

1
Ng

∑
i≤Ng

∣∣ai − αi(τi )
∣∣≤ η.

To interpret the definition, notice that threshold behavior (αi(.))i is network-
independent: each agent’s action depends on their own threshold and not to whom
they are connected and what their neighbors are doing. If the behavior is robust to
misspecification, it prescribes a best response behavior for a great majority of agents,
whatever is the true network of interactions, and whether the agents know the network
or not. In other words, the behavior is approximately an equilibrium on the true network
regardless of whether the researcher or the agents know the true network.

Recall that the 0-fuzzy convention of x∗ is a network-independent profile where
agents play 1 if and only if their threshold is smaller than x, a∗(τi ) = 1(τi ≤ x∗ ).

Theorem 3. Suppose that x∗ is the strictly RU-dominant outcome. Then a threshold
behavior α is robust to misspecification of the network if and only if it is the 0-fuzzy con-
vention of x∗.

The above result shows that playing a∗ is the only profile that is robust to misspeci-
fication of the network.

Proof. The “if” direction follows from Theorem 1. The “only if” direction follows from
Theorem 2.
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7. Conclusions

This paper presented a theory of behavior in random utility binary coordination games
on large networks. We showed that on some networks, with a large probability, large
coordination games have essentially a unique equilibrium. Because this equilibrium
exhibits micro-, but not macro-level heterogeneity of behavior, we refer to it as a fuzzy
convention. The average behavior in such a convention corresponds to a natural exten-
sion of risk-dominance from deterministic to random-utility coordination games. We
also showed that, with a large probability, all sufficiently fine networks (i.e., networks
where each agent has sufficiently many neighbors), coordination on the special fuzzy
convention of RU-dominant outcome is always an approximate equilibrium, regardless
of the network structure.

The paper leaves many important questions unanswered. First, how do the results
extend to small-degree networks? Second, in real applications, both macro- and micro-
level heterogeneity are observed. Likely, the latter is due to systematic differences in
preferences (perhaps differences in the threshold distributions) across different parts of
the network. Can the two idiosyncratic and systematic differences be combined in a
single model? Third, and related, can real-world data be used to estimate parameters
of the model, like the threshold distribution function P(.)? We leave these questions for
future research.

Appendix A: Proof of Theorem 1

A.1 Proof of Lemma 1

Define a distance on the space of (mixed) profiles: For any a, b ∈ [0, 1]N , let

d(a, b) =
√√√√ 1∑

g2
i

∑
g2
i (ai − bi )2.

Recall that B = {βa : a is action profile} is the space of neighborhood fractions. For
each δ > 0, let N (δ, B) be the covering number of B, that is, the smallest cardinality n of
a list of profiles b1, � � � , bn ∈ B such that, for each b ∈ B, there is l ≤ n so that d(b, bl ) ≤ δ.

Lemma 2. There exists a universal constant c < ∞ such that, for each δ > 0, and each
network g,

N (δ, B) ≤ exp
(

1

δ2 cw
∗2d(g)N

)
.

Proof. We will use Sudakov’s minoration inequality (Theorem 7.4.1 from Vershynin
(2018)), which provides an upper bound on the covering number via the expectation of
a certain Gaussian process. For this, let Zi for each agent i be an i.i.d. standard normal
random variable. For each (possibly mixed) profile a ∈A, define

Xa = 1√∑
i

g2
i

∑
i

giaiZi.
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For any two profiles a, b ∈ A,

√
E(Xa −Xb )2 =

√√√√ 1∑
g2
i

E

(∑
i

gi(ai − bi )Zi

)2

=
√√√√ 1∑

g2
i

∑
i

gi(ai − bi )2 = d(a, b).

Given the definition and the above property, Sudakov’s minoration inequality implies
that, for some universal constant c1 > 0 (i.e., a constant that is independent of parame-
ters and the current problem),

logN (δ, B) ≤ c1

(
E sup

b∈B
Xb

)2

δ2 .

We compute

E sup
b∈B

Xb = E sup
a∈A

Xβa = E

⎛
⎜⎜⎜⎜⎝sup

a∈A
1√∑
i

g2
i

∑
i

giZi

(
1
gi

∑
gijaj

)
⎞
⎟⎟⎟⎟⎠

= 1√∑
i

g2
i

E

(
sup
a∈A

∑
i

ai

(∑
j

gijZj

))
≤ 1√∑

i

g2
i

E

∑
i

∣∣∣∣∑
j

gijZj

∣∣∣∣

≤
√

2
π

1√∑
i

g2
i

∑
i

√∑
j

g2
ij ,

where the last inequality is due to a bound on the expectation of the absolute value of the

normal variable
∑

gijZj via its standard deviation σi =
√∑

j g
2
ij . Because

∑
j g

2
ij ≤ d(g)g2

i

and (
∑

i gi )
2 ≤N2w∗2g2

min ≤Nw∗2∑g2
i , we have

logN (δ, B) ≤
√

2
π
c1

1

δ2

1∑
i

g2
i

(∑
i

√
d(g)gi

)2

d(g) ≤ 1

δ2

√
2
π
c1w

∗2d(g)N .

We proceed with the proof of Lemma 1. For the first inequality, suppose f is K-
Lipschitz. Fix ε > 0 and δ > 0 so that δ = 1

12K
√
w∗ ε. Find δ-cover b1, � � � , bn of B. Because

n ≤ N (δ, B), Lemma 2 implies that

Prob
(

sup
l≤n

∣∣∣∣∑
i

gif
(
τi, b

l
i

)−∑
i

giE f
(
., bli
)∣∣∣∣≥ 1

2
ε
∑

gi

)
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≤ nB exp
(

−c

(
1
2
ε

)
N

)
≤ B exp

(
−
(
c

(
1
2
ε

)
− 1

δ2 cw
∗2d(g)

)
N

)
.

Assume that the complement of the event in the parentheses of the first line of the above
inequality holds. For each action profile a, find l so that d(bl, βa ) ≤ δ. Then, by the

Jensen’s inequality, and because gi∑
gi

≤w∗ g2
i∑
g2
i

,

∑
i

gi∑
i

gi

∣∣βa
i − bli

∣∣≤√∑ gi∑
gi

(
βa
i − bli

)2 ≤
√√√√∑w∗ g2

i∑
g2
i

(
βa
i − bli

)2 ≤ √
w∗δ.

Hence, ∣∣∣∣∑
i

gif
(
τi, β

a
i

)−∑
i

giE f
(
., βa

i

)∣∣∣∣
≤
∣∣∣∣∑

i

gif
(
τi, b

l
i

)−∑
i

giE f
(
., bli
)∣∣∣∣+ 2K

∣∣∣∣∑
i

gi
∣∣βa

i − bli
∣∣∣∣∣∣

≤
∣∣∣∣∑

i

gif
(
τi, b

l
i

)−∑
i

giE f
(
., bli
)∣∣∣∣+ 2K

√
w∗δ
(∑

i

gi

)
≤ ε
∑
i

gi.

Take c(ε, K, d) = c( 1
2ε) − 1

ε2 c(6Kw∗ )2d. The claim follows.
For the second inequality, we first derive a version of (7): we show that there exist

constants B < ∞ and c(ε) > 0 such that, for each profile a and measurable function
f (τ, β) ∈ [0, 1],

Prob
(∣∣∣∣∑

i

gij

( ∏
k=i,j

f
(
τk, βa

k

))−
∑
i

gij

( ∏
k=i,j

E f
(
., βa

k

))∣∣∣∣≥ ε
∑

gi

)

≤ B exp
(−c(ε)N

)
. (13)

Indeed, suppose that Xi ∈ [−1, 1] is a collection of independent mean zero random vari-
ables. The Hanson–Wright inequality (Theorem 6.2.1 Vershynin (2018)) implies that
there exists a universal constant c > 0 such that, for each t > 0,

P

(∣∣∣∑gijXiXj −E

∑
gijXiXj

∣∣∣≥ t
)

≤ 2 exp
(

−cmin
(

t2

‖G‖2
F

,
t

‖G‖
))

, (14)

where G = [gij ] is the adjacency matrix, ‖G‖F is the Frobenius norm and ‖G‖ is the
operator L2-norm. Let Xi = f (τi, βa

i ) − E f (., βa
i ) and t = εi

∑
gi. Recall that random

variables Xi are independent and that gij = gji and gii = 0 to obtain

∑
gijXiXj −E

∑
gijXiXj =

∑
gijXiXj

=
∑

gij

( ∏
k=i,j

f
(
τk, βa

k

))−
∑
i

gij

( ∏
k=i,j

E f
(
., βa

k

))
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− 2
∑

gi
(
E f
(
., βa

j

))(
f
(
τi, β

a
i

)−E f
(
., βa

i

))
.

Hence,

Prob
(∣∣∣∣∑

i

gij

( ∏
k=i,j

f
(
τk, βa

k

))−
∑
i

gij

( ∏
k=i,j

E f
(
., βa

k

))∣∣∣∣≥ ε
∑

gi

)

≤ Prob
(∣∣∣∑gijXiXj −E

∑
gijXiXj

∣∣∣≥ 1
2
ε
∑

gi

)

+ Prob
(∣∣∣∑gi

(
E f
(
., βa

j

))(
f
(
τi, β

a
i

)−E f
(
., βa

i

))∣∣∣≥ 1
4
ε
∑

gi

)
.

We apply (14) to the first bound (notice that ‖G‖ ≤ ‖G‖F ≤ √
N‖G‖ and gmin ≤ ‖G‖ ≤

w∗gmin, where gmin = mini gi) and Hoeffding’s inequality (7) to the second bound to ob-
tain

≤ 2 exp

⎛
⎜⎝−cmin

⎛
⎜⎝ε2

(∑
gi

)2

Nw∗2g2
min

, ε

∑
gi

w∗gmin

⎞
⎟⎠
⎞
⎟⎠+B exp

(
−c

(
1
4
ε

)
N

)

≤ 2 exp
(

−c
1

w∗2 ε
2N

)
+B exp

(
−c

(
1
4
ε

)
N

)
.

This concludes the proof of (13).
Given (13), we conclude the proof of the second inequality of Lemma 1 in the same

manner as in the case of the first inequality. In particular, if d(bl, βa ) ≤ δ,∣∣∣∣∑gij

( ∏
k=i,j

f
(
τk, βa

k

)− ∏
k=i,j

f
(
ak, blk

))∣∣∣∣
≤
∑

gijf
(
τi, β

a
i

)∣∣f (τj , βa
j

)− f
(
τk, blj
)∣∣+∑gijf

(
τj , b

l
j

)∣∣f (τi, βa
i

)− f
(
τi, b

l
i

)∣∣
≤K

(∑
j

(∑
i

gijf
(
τi, β

a
i

))∣∣βa
j − blj

∣∣+∑
i

(∑
j

gijf
(
τj , b

l
j

))∣∣βa
i − bli

∣∣)

≤ 2K
∑
i

gi
∣∣βa

i − bli
∣∣≤ 2K

√
w∗δ
∑
i

gi ≤ 1
2
ε
∑
i

gi.

Similar calculations apply to
∑

i gij(
∏

k=i,j E f (., βa
k )). Hence, if

sup
l≤n

∣∣∣∣∑
i

gij
∏
k=i,j

f
(
τk, blk

)−∑
i

gij E
∏
k=i,j

f
(
., blk
)∣∣∣∣≥ 1

2
ε
∑

gi for each l,

then ∣∣∣∣∑
i

gij

( ∏
k=i,j

f
(
τk, βa

k

))−
∑
i

gij

( ∏
k=i,j

E f
(
., βa

k

))∣∣∣∣≤ ε
∑
i

gi.

The rest of the argument follows.
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A.2 Proof of Theorem 1

Fix η > 0. For each δ > 0, let ν0
δ = maxx:|x−x∗|≤δ(ν(x∗ ) − ν(x)) and let ν1

δ =
minx:|x−x∗|≥δ(ν(x∗ ) − ν(x)). Because x∗ is the unique maximizer of ν(.), ν1

δ > 0 for each
δ. Moreover, limδ→0 ν

0
δ > 0.

Let κ > 0 and define 1
κ -Lipshitz functions:

1−(τ, β) = max
(

0, min
(

1,
1
κ

(β− τ)

))
,

1+(τ, β) = max
(

0, min
(

1, 1 + 1
κ

(β− τ)

))
.

Then 1(τ ≤ β− κ) ≤ 1−(τ, β) ≤ 1(τ ≤ β) ≤ 1+(τ, β) ≤ 1(τ ≤ β+ κ).
For any equilibrium profile ai = 1(τ ≤ βa

i ), we have

V (a; τ) ≤1
2

∑
gij1+(τi, βa

i

)
1+(τj , βa

j

)−∑gi1−(τi, βa
i

)
τi.

An application of probabilistic bounds (7) and (13) shows that, if N is sufficiently large,
then with a probability of at least 1 − ε,

V
(
a∗; τ
)≥ 1

2

∑
gijP
(
x∗ − κ

)
P
(
x∗ − κ

)−∑gi

∫ x∗+κ

0
ydP(y ) − ε

∑
gi

=
∑

gi
(
ν
(
x∗ − κ

)− ε− 2κ
)

≥
∑

gi
(
ν
(
x∗))− κNw∗gminν

0
κ − (ε+ 2κ)Nw∗gmin,

where in the last inequality, we use constants ν0
. .

Because E1−(., b) ≥ P(b − κ) and E1+(., b) ≤ P(b + κ), an application of Lemma 1
shows that, for each ε > 0, there is d > 0 small enough such that if d(g) < d (hence N is
sufficiently large), then with probability of at least 1 − ε, we have for each equilibrium
profile a,

V (a; τ) ≤ 1
2

∑
gijP
(
βa
i + κ
)
P
(
βa
j + κ
)−∑gi

∫ bi−κ

0
ydP(y ) + ε

∑
gi

≤ 1
2

∑
gi
(
P
(
βa
i + κ
))2 −
∑

gi

∫ bi−κ

0
ydP(y ) + ε

∑
gi

=
∑

gi
(
ν
(
βa
i + κ
)+ ε+ 2κ

)
.

If an equilibrium profile a = 1(τi ≤ βa
i ) is not a η-fuzzy convention, then we get

V (a; τ) ≤
∑

gi
(
ν
(
x∗))+Nw∗gmin(ε+ 2κ) −ηNgminν

1
1
2η

,

where we used the definition of constants ν1
. . If κ and ε ≤ 1

2η (and d(g)) are sufficiently
small, V (a; τ) < V (a∗; τ) with a probability of at least 1 − 2ε ≥ 1 −η. In such a case, the
potential maximizer must be an η-fuzzy convention x∗.
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Appendix B: Proof of Theorem 2

In part B.1 of this Appendix, we formally define the city network (M , m) and also develop
some of its properties. Part B.2 contains the probabilistic part of the proof: We establish
the existence of a large connected component of the network that is also obstacle-free,
that is, without “bad” groups of agents. The last part elaborates on the contagion argu-
ment from the main body of the paper to conclude the proof of the theorem.

B.1 Lattice

We start by formally defining the city network. For each M ≥ m, the (M , m)-lattice is a
network with

• N =M2 nodes from the set IM = {1, � � � , M }2. We define a distance on IM by

d(i, j) = 1
m

√∑
l

(
(il − jl ) mod M

)2
,

and a ball in this metric as B(i, r ) = {y : d(x, y ) ≤ r}. The subtraction “modM” turns
the lattice into a subset of “discrete Euclidean torus” [0, M

m ]2, and

• connections gi,j = 1 ⇐⇒ j ∈ B(i, 1).

For each i ∈ IM , and two sets U , W ⊆ IM , let

d(i, W ) = min
j∈W

d(i, j) and d(U , W ) = min
i∈U

min
j∈W

d(i, j). (15)

For each set W , and each r, define the r-neighborhood of W :

B(W , r ) = {i : d(i, W ) ≤ r
}=⋃

i∈W
B(i, r ).

B.1.1 Large m approximations For large m, the neighborhoods of each agent have
similar properties as open balls on a Euclidean plane. This is formalized as follows. Let
B
R

2 (x, r ) be the ball on the plane with center x ∈ R
2 and radius r. Let |A| be a Lebesgue

measure of a measurable set A ⊆R
2. Let

f0(d, r1, r2 ) = 1
π

∣∣B
R

2
(
(0, 0), r1

)∩B
R

2
(
(d, 0), r2

)∣∣
be the mass of the intersection of two balls, with radii r1 and r2, respectively, separated
by distance d, and normalized by the mass of the unit ball B((0, 0), 1).

Lemma 3. The following holds:

• For each ρ > 0, there exists Cρ < ∞ such that if m ≥ Cρ, then for any two agents i, j,
for any r1 ≤ 1 ≤ r2, we have∣∣∣∣

∣∣B(i, r1 ) ∩B(j, r2 )
∣∣∣∣B(i, 1)

∣∣ − f0
(
d(i, j), r1, r2

)∣∣∣∣≤ ρ.
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Figure 7. Illustrations of functions f1 and f .

• Function f0 has the following properties:
– f0 is Lipschitz over d and r1 ≤ 1 ≤ r2,

– f0 is decreasing in d, and

– f0(d, r1, r2 ) = 0 if r1 + r2 ≤ d, and f0(d, r1, r2 ) = 1 if r1 = 1 and d ≤ r2 − r1.

• Functions f1(x, r1; r2 ) = f0(r2 − x, r1, r2 ) for r1 ≤ 1 and x ∈ R converge uniformly to
function limr2→∞ f1(x, r1; r2 ) = f2(x, r1 ). In particular, for each ρ > 0, there exists Rρ

such that, if r1 ≤ 1 and r2 ≥Rρ, then

sup
r1≤1,x

∣∣f2(x, r1 ) − f1(x, r1; r2 )
∣∣≤ ρ.

Functions f1 and f2 are Lipschitz over d and r1 ≤ 1 and increasing in x.

• Let f (x) = f2(x, 1). Then f (x) + f (−x) = 1.

Proof. The properties of f0, f1, f2, and f follow from their geometric interpretations
and from the fact that the counting measure on IM converges weakly to the Lebesgue
measure on the torus. For example, f2(x, r1 ) is a segment of radius r1 ball with height
equal to r1 + x for x ∈ (−r1, r1 ); see Figure 7.

B.1.2 Cubes Let G be a (M , m)-lattice. We divide the lattice into disjoint areas that we
refer to as cubes. We will assume there exist values b such that 0 � b� m, and M is divis-
ible by b. (This divisibility assumption simplifies the proof. The theorem remains valid
without it, but the proof requires small modifications due to the existence of non-zero
remainders from the division by b. We omit the details.) Each cube has b2 elements and,
because b � m, it is much smaller than the diameter of the neighborhood of each node
so that the neighborhoods of nodes in the same cube are largely overlapping. At the
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same time, each cube contains a sufficiently large number of nodes so that the distribu-
tion of thresholds within the cube can be probabilistically approximated by its expected
distribution.

Formally, for each real number x, let �x� be the largest integer no larger than x. For
each node i, the set of nodes

cb(i) = {j ∈ {1, � � � , M }2 : ∀l�il/b� = �jl/b�}
is referred to as a cube that contains i. Any two cubes are either disjoint or identical.
Each cube c is uniquely identified by a pair of numbers cl = �il/b� for each l = 1, 2 and
any i ∈ c. Due to the divisibility assumption, there are ( M

b )2 cubes on the (M , m)-lattice.
Let Gb = {cb(i) : i ∈ G} be the set of all cubes. We refer to the elements of Gb as cubes.

The network of cubes Gb consists of cubes as vertices and edges between any two cubes
that share one of their sides: for any c, c′ ∈ Gb, gbc,c′ = 1 if and only if for some l = 1, 2,

cl = c′
l, and |(c−l − c′

−l ) mod M
b | = 1. Thus, each cube shares an edge with four other

cubes.
Say that set S ⊆ Gb is r-connected if for any subset A ⊆ S, A �= S, there is c ∈ A,

c′ ∈ S\A, and at most an r-element path between c and c′. (A path is a tuple of cubes
connected by the edges of the cube network.) S is connected if it is 1-connected.

For any two cubes, define a distance db(c, c′ ) = maxl |(cl − c′
l ) mod M

b |. For any S, S′ ⊆
Gb, let db(S, S′ ) = minc∈S,c′∈S′ db(c, c′ ) be the distance between two sets of cubes. Let
U(c, r ) = {c′ : d(c, c′ ) ≤ r} be the r-neighborhood of c. Thus, each cube has 8 other cubes
in its 1-neighborhood.

B.2 Probabilistic part

We will show that if the lattice is sufficiently large then, with arbitrarily high probability,
we can find a set W of cubes that (a) contains almost all cubes and (b) is connected in
the cube network, where (c) each cube in the set is far away from bad cubes, and (d)
contains a large set of agents for whom action 0 is dominant. Properties (b)–(c) will
allow the contagion wave to spread across the entire set W , property (a) will ensure that
spreading to set W means spreading almost everywhere, and property (d) will ensure
that the set contains sufficiently many “initial infectors” to start the contagion wave.

For each realization of threshold profile τ, define the empirical cdf of best response
thresholds in cube c ∈ Gb:

Pc(x|τ) = 1
|c|
∑
i∈c

1{τi < x}.

For γ > 0, say that a cube c is γ-bad if there exists x such that Pc(x|τ) > P(x) + γ; other-
wise, the cube is γ-good.

Agent x is extraordinary if action 0 is strictly dominant for such an agent. A cube
c ∈ Gb is extraordinary if it only consists of extraordinary agents. In any equilibrium,
a(c) = 0 for extraordinary cube c. Clearly, an extraordinary cube is γ-good for each γ ≥ 0.

Say that set W ⊆ Gb of cubes is (γ, R)-good if
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(a) W contains at least a fraction (1 − γ) of cubes, |W | ≥ (1 − γ)|Gb|,
(b) W is connected as a subset of the cube network,

(c) if c ∈ Gb is γ-bad, then db(c, c′ ) > 3R for each c′ ∈W (in particular, each cube in W

is γ-good), and

(d) W contains a cube c0 such that each cube c such that d(c, c0 ) ≤R is extraordinary.

We show that large good sets of cubes exist with high probability.

Lemma 4. For each γ, ρ > 0, and R< ∞, there exist mγ,ρ,R > 0, and for each m>mγ,ρ,R,
there exist Mγ,ρ,R(m) such that, if m≥ mγ,ρ,R and M ≥ Mγ,ρ,R(m) then, if G is an (M , m)-
lattice, b = �ρm�, and Gb is the associated cube network, then

P
(
there exists (γ, R)-good set W ⊆ Gb

)≥ 1 − γ.

B.2.1 Intermediate results We need two intermediate results. The first result provides
a bound on the size of the largest connected component of the graph obtained from the
network of cubes after removing a group of smaller and connected sets of cubes.

Lemma 5. Suppose that {S1, � � � , SJ } is a collection of connected subsets of Gb such that
Si ∪ Sj are not 2-connected for any i �= j. Then there is a connected subset V ⊆ Gb\⋃Sj
such that |Gb\V | ≤∑j |Sj|2.

Proof. First, observe that for each connected set S such that |S|2 < |Gb| there is a set
S′ and a loop (i.e., a path with the same beginning and ending) cS0 , � � � , cSn = c0 of cubes
cSl /∈ S′ such that

• S′ ⊇ S and |S′| ≤ |S|2, and

• loop cS0 , � � � , cSn tightly surrounds set S′ and separates it from the rest of the graph:
|{c : d(c, S′ ) = 1}| ⊆ {cSl } ⊆ |{c : d(c, S′ ) ≤ 2}|.

This observation follows from the Jordan curve theorem and from the fact that each
connected set S such that |S|2 < |Gb| can be contained in a |S′2|-element “square” of
cubes such that the set outside the square is connected.

For each set Si from the hypothesis of the lemma, find loop ci and set S′
i as in the

observation above. We will show that set Gb\⋃S′
j is connected, which will conclude

the proof of the lemma. Take any two cubes c, c′ ∈ Gb\⋃S′
j , and an arbitrary path c =

c0, � � � , cn = c′ between them. We will modify this path so that it avoids each set Si. For
each i, either the existing path avoids set S′

i, or it intersects it. Find li0 = min{l : d(cl, Si ) =
1} and li1 = max{l : d(cl, Si ) = 1}. Then replace the interval cli0

, � � � , cli1
of the path with

the path from cli0
to cli0

along path ci. The new path avoids set S′
i. Because the modified

part of the path stays within 2-distance of set S′
i, the modification does not create new

intersections with other sets S′
j . After possibly modifying the path for any i, we obtain a

path between c and c′ that avoids each set S′
i. Thus, set Gb\⋃S′

j is connected.
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The second result provides an upper bound on the number of different r-connected
sets of cubes.

Lemma 6. The number of r-connected sets in Gb of cardinality n is not larger than 22n(2r+
1)n|Gb|.

Proof. We first find an encoding for each r-connected tuple. Let mr be the size
of the r-neighborhood of an element of Gb. Then mr ≤ (2r + 1)2. Consider tuples
(s1, (l2, � � � , ln ), (k2, � � � , kn )) such that s1 ∈ Gb, ki ∈ {1, .., mr }, and li ≤ i and li ≤ lj for
each 2 ≤ i ≤ j.

We show that each r-connected set can be encoded as one of the above tuples in
such a way that any two different r-connected sets must have a different encoding. Let
e : Gb → {1, � � � , |Gb|} be an enumeration of set Gb. For each s ∈ Gb, let es : {s′ : d(s, s′ ) =
1} → {1, � � � , 4} be the enumeration of the immediate neighborhood of s that has the
same ranking in the neighborhood as enumeration e. Choose s1 = arg mins∈S e(s). Sup-
pose that s1, � � � si−1 are chosen for 1 < i < n. For each x ∈ S\{s1, � � � , si−1}, let l(x) =
mind(x,sl )=1 l and let it equal ∞ if the set is empty. Then l(x) < i for at least one x. Let
k(x) = esl(x)(x). Choose

si = arg min
lexicograpically,x∈S

(
l(x), k(x)

)
,

so as to minimize lexicographically (l(x), k(x)) among all x ∈ S\{s1, � � � , si−1}. Let li =
l(si ) and ki = k(si ).

We derive an upper bound on the number of encoding tuples. Say that a sequence
li, � � � , ln is (i, m)-sequence if it is increasing, lj < j for each j, and li = i − m − 1. Let
S(i, m) denote the number of different (i, m)-sequences. It is easy to see that

S(i, m) =
m+1∑
p=0

S(i+ 1, p),

where S(n, m) = 1. We check by induction on i that S(i, n) ≤ 22(n−i)+m.
The number of choices for s1 is not larger than |Gb|. By the above, the number of

(2, 0)-sequences is not larger than 22(n−2). The number of choices of k2, � � � , kn is not
larger than (2r + 1)n−1. It follows that the total number of encodings, and hence the
number of connected sets is not larger than 22n(2r + 1)n|Gb|.

B.2.2 Proof of Lemma 4 Lemma 4 follows from the following two results. The first re-
sult establishes the existence of a large connected component that is far from bad cubes.
Let Bγ = {c ∈ Gb : c is γ-bad} be the (random) set of γ-bad cubes.

Lemma 7. For each γ > 0 and R< ∞, there exists bγ,R > 0 such that if b > bγ,R, then

P
(∃W 0 ⊆ Gb, st. W 0 is connected,

∣∣W 0
∣∣≥ (1 − γ)

∣∣Gb
∣∣, db
(
W 0, Bγ

)≥ 5R
)≥ 1 − 1

4
γ.
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Proof. Let pγ > 0 be the probability that a cube is γ-bad. Due to the Dvoretzky–
Kiefer–Wolfowitz–Massart inequality, the probability that a cube c is γ-bad is bounded
by

pγ ≤ Ce−2b2γ2

for some universal constant C.
Let S0

1, � � � , S0
n be the smallest division of the set of bad cubes Bγ =⋃S0

i into sets
that are 11R-connected and such that S0

i ∪ S0
j are not 11R-connected for i �= j. Let X =∑ |S0

i |2. We compute the expected value of X . Let mn = (22n(11R+ 1)n|Gb|) be an upper
bound on the cardinality of all 11R-connected sets (obtained from Lemma 6). Then

EX ≤
∑
n≥1

n2mnp
n
γ ≤ |Gb|

∑
n≥1

2n22n(6R+ 1)npn
γ

= |Gb| 8(11R+ 1)pγ

1 − 8(11R+ 1)pγ
.

Let S1
i ⊇ S0

i be the smallest connected set such that sets S1
i ∪ S1

j are not 11R-

connected for i �= j and such that |S1
i | ≤ 11R|S0

i |. Such sets can be constructed by con-
necting elements of S0

i by a path inside the intersection of the 11R-neighborhood of the
two sets.

Let Si be the 5R-neighborhood of set S1
i . Clearly, sets Si are disjoint (and separated

by R). Because each 5R-neighborhood of an element of a set S1
i has no more than (11R+

1)2|S1
i | cubes, the cardinality of Si is at most (11R+ 1)2|S1

i | ≤ (11R+ 1)3|S0
i |.

Let W 0 be the largest connected component of Gb that does not contain elements of
sets Si. By construction, each set Si is connected, but sets Si ∪Sj are not 2-connected. By
Lemma 5, the cardinality of W 0 is at least |Gb| − 4(11R+ 1)6X . By Markov’s inequality,

P
(∣∣W 0
∣∣≥ (1 − γ)

∣∣Gb
∣∣)≤ P

(
4(11R+ 1)6X ≤ γ

∣∣Gb
∣∣)

≤ 4(11R+ 1)6
EX

γ
∣∣Gb
∣∣ ≤ 1

γ

32(11R+ 1)7pγ

1 − 8(11R+ 1)pγ
.

Assume that bγ,R > 0 is large enough so that for each b > bγ,R, 1
γ

32(11R+1)7Ce−2b2γ2

1−8(11R+1)Ce−2b2γ2 ≤
1
4γ.

Say that cube c ∈ GR is an extraordinary center if all cubes in U(c, R) are extraordi-
nary.

Lemma 8. There exists Kγ,R < 0 large enough so that if M
b >Kγ,R, then

P

(
∃W ⊆ Gb, st.

W ⊇W 0, W is connected, db(W , Bγ ) ≥ 3R

and W contains an extraordinary center

)
≥ 1 − γ,

where W0 inside the probability satisfies the conditions from Lemma 7.
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Proof. Recall that K = M
b is the number of cubes. If K is divisible by (2R + 1), we

can find a grid of cubes GR ⊆ Gb such that any two c, c′ ∈ G, d(c, c′ ) = 2R and Gb =⋃
c∈GR

U(c, R). Because the U(c, R) neighborhoods are disjoint, |Gb| = |GR|(2R + 1)2,
where (2R + 1)2 is the size of each neighborhood. For simplicity, the rest of the argu-
ments rely on the divisibility assumption. The argument is easily modified for the case
when the divisibility does not hold (and b and M

b are sufficiently large).
Let W 0 be the (random) set from Lemma 7. Let W 1 = ⋃c U(c, R + 1) and W =⋃

c U(c, 2R + 1). Then d(W , Bγ ) > 2R. Because for each c′ ∈ U(c, r ) there is a path be-
tween c and c′ that is inside set U(c, r ), W is connected.

We show that |GR ∩ W 1| ≥ (1 − γ)|GR|. On the contrary, suppose that |GR\W 1| >
γ|GR|. Then A =⋃c∈GR\W U(c, R) ⊆ Gb\W 0. Moreover, |A| > γ|GR|(2R + 1)2 = γ|Gb|.
However, this contradicts |Gb\W 0| ≤ γ|Gb|.

Let q > 0 be the probability that a cube c is an extraordinary center. Then q ≥
P(0)(2R+1)2b2

. Let q∗ be the probability that cube c is an extraordinary center, condi-
tional on c ∈ W 1. Because being in c ∈ W 1 provides no other information about the
distribution of taste shocks apart from c is not γ-bad and γ-bad cubes are not extraordi-
nary, it must be that q∗ ≥ q. Similarly, conditional on c, c′ ∈ W 1, if c and c′ are separated
by 2R+ 1, the events that the two are extraordinary centers are independent. Hence, the
probability that none of the cubes in c ∈GR ∩W1 is an extraordinary center is at most

(
1 − q∗)|GR∩W 1| ≤ (1 − P(0)(2R+1)2b2)(1−γ)K2(2R+1)−2

≤ e−(1−γ)Kγ,R(2R+1)−2P(0)(2R+1)2b2

.

If K is sufficiently large, the above is smaller than 1
4γ.

To conclude the proof of the lemma, we set mγ,ρ,R > 1
ρbγ,R and then Mγ,ρ,R(m) ≥

ρmKγ,R.

B.3 Proof of Theorem 2

Below, we will show the following lemma.

Lemma 9. For each ε > 0, there exists sufficiently small γ, ρ > 0, and sufficiently large
R > 0 so that if b = �ρm�, W is a (γ, R)-good set in the network of cubes Gb, and a is an
equilibrium profile, then for each i ∈ c ∈ W , βa

i ≤ x∗ + ε.

Together with Lemma 4, Lemma 9 shows that for each ε > 0, if m and M
m are suf-

ficiently large, with probability of at least 1 − ε, if a is an equilibrium profile, then
βa
i ≤ x∗ + ε for all agents i but a ε-fraction of the population (i.e., all members of the

“good” set W ).
A similar argument shows that βa

i ≥ x∗ − ε for elements of an analogously defined
“good” set (with the appropriate modification of what good and extraordinary cubes
are). Together, the two arguments show that, with probability of at least 1 − 2ε, for each
agent in the good set, the agent’s average neighborhood behavior is within ε of x∗. All
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such agents, if they have a threshold outside interval [x∗ −ε, x∗ +ε], will choose the best
response as in 0-fuzzy convention x∗ profile ax

∗
.

Finally, choose ε small enough so that P(x∗ + ε) − P(x∗ − ε) ≤ 1
4η. Then, if the

network is sufficiently large, the probability that the fraction of agents with threshold
τi ∈ [x∗ − ε, x∗ + ε] is larger than 1

2η is smaller than ε.
Take ε = 1

4η. Then, with a probability of at least 1 −η, at most η
2 agents have thresh-

olds in the ε− interval, and at most 2ε = η
2 agents observe equilibrium neighborhood

behavior that is outside the ε− interval. All the other agents choose the same behavior
as in profile ax

∗
.

Proof. We divide the proof of the lemma into two steps.
Preparation. Find ε0 > 0, such that

σ∗ = max
a≥x∗+ ε

2

a∫
x∗+ε0

(
P−1(y ) − y

)
dy > 0.

The existence of such ε0 ∈ (0, ε
2 ) comes from the definition of x∗ as the unique maxi-

mizer of
∫ a
x∗(y − P−1(y ))dy. Let δρ be a fraction of neighbors of i who are not members

of a cube that is fully contained in the neighborhood of i. It is easy to see that δρ → 0 as
ρ→ 0.

Let a be an equilibrium profile. For each cube c, define

ac = 1
|c|
∑
j∈c

aj and βc = 1
|c|
∑
j∈c

βa
j .

Then |βc −βa
i | ≤ δρ, and

βc ≤ δρ + |c|∣∣B(i, 1)
∣∣ ∑
c⊆B(i,1)

ac . (16)

If cube c is γ-good, then

ac = 1
|c|
∑
i∈c

1
{
τi < βa

i

}≤ 1
|c|
∑
i∈c

1{τi < βc + δρ} ≤ P(βc + δρ ) + γ. (17)

From now on, assume that W ⊆ Gb is (γ, R)-good. If db(c, W ) ≤ 3R, then cube c is
γ-good.

Define

C0 = {c : ∀c′ d
(
c, c′)≤R=⇒ ac ≤ x∗ + ε0

}
.

For each i ∈ C0, the average behavior in all the cubes fully contained in the neighbor-
hood of i is ≤ x∗ + ε0, which, together with (16), implies that

βa
i ≤ (x∗ + ε0

)
(1 − δρ ) + δρ ≤ x∗ + ε.

The last inequality holds when ρ is sufficiently small so that δρ ≤ ε
2 . Hence, to establish

our claim, it is enough to show that W ⊆ C0.
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Notice that C0 cannot be empty as it contains at least one extraordinary cube. For
each a > x∗ + ε

2 , define

d(a) = min
c∈W :ac≥a

db(c, C0 ) ≥R,

where the value is ∞ if the set over which the distance is minimized is empty.
On the contrary to our claim, suppose that there is a cube c ∈ W0 such that ac > a >

x∗ + ε
2 . Then there exists a > x∗ + ε

2 such that d(a) < ∞. Find a∗ ≥ x∗ + ε0 such that
d(a∗ ) ≤ 2R and d(a∗ + 1

R ) ≥ d(a∗ ) + 1. Such a∗ exists: otherwise, if for each a such that
d(a) ≤ 2R, d(a + 1

R ) ≤ d(a) + 1, then d(a + 1) ≤ 2R, which is impossible (as there is no
cube with the action average strictly larger than 1).

Contagion wave. Notice that ac takes discrete values a ∈ A = {0, 1
|c| , � � � , 1}, where |c|

is the size of a cube. Let ak = k
|c| be the enumeration of set A∩ {a : a ≥ x∗ + ε

2 }. For each
such cube c, and each i ∈ c, (16) implies

βc ≤ δρ + |c|∣∣B(i, 1)
∣∣ ∑
c⊆B(i,1)

ac

≤ δρ +
∑
a∈A

a

∣∣{c ⊆ B(i, 1) : ac = a
}∣∣∣∣B(i, 1)

∣∣/c
≤ δρ + x∗ + ε0 +

∑
k

(ak+1 − ak )

∣∣{c ⊆ B(i, 1) : ac ≥ a
}∣∣∣∣B(i, 1)

∣∣/c
≤ δρ + δR,ρ + x∗ + ε0 +

∑
k

(ak+1 − ak )
(
1 − f
(
d(ak ) − db(c, C0 )

))
,

where the third inequality is a consequence of a discrete version of the integration by
parts (i.e.,

∑
xi(yi − yi+1 ) =∑(xi+1 − xi )yi+1), and the fourth one is due to Lemma 3,

where δR,ρ → 0 as R is sufficiently large and ρ is sufficiently small. Let δ1
R,ρ = δρ + δR,ρ.

Additionally, for each al ∈ A, al ≤ a∗, find a cube c such that db(c, C0 ) = dR(al ) < 2R
and ac ≥ al. Using the above inequality and (17), we obtain

P−1(al − γ) ≤ P−1(ac − γ) ≤ βc + δρ

≤ δ1
R,ρ + x∗ + ε0 +

∑
k

(ak+1 − ak )
(
1 − f
(
d(ak ) − d(al )

))
.

Let k∗ = max{k : ak ≤ a∗}. Then the right-hand side is not larger than

≤ δ1
R,ρ + x∗ + ε0 +

∑
k≤k∗

(ak+1 − ak )
(
1 − f
(
d(ak ) − d(al )

))

+
∑

k>k∗:ak≤a∗+ ε
10

(ak+1 − ak )
(
1 − f
(
d(ak ) − d(al )

))

+
∑

k:ak>a∗+ ε
10

(ak+1 − ak )
(
1 − f
(
d(ak ) − d(al )

))
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≤ δ1
R,ρ + x∗ + ε0 + 1

R
+
∑
k≤k∗

(ak+1 − ak )
(
1 − f
(
d(ak ) − d(al )

))
,

due to the second term in the first line being not larger than ε
10 , and the third term being

equal to 0 (as f (d(ak ) − d(al )) ≥ f (1) = 1).
Let � = a∗ − (x∗ + ε0 ). Multiplying by (al+1 − al ) and summing across l ≤ k∗, we

obtain

∑
l≤K∗

P−1(al − γ)(al+1 − al )

≤ (δ1
R,ρ+ 1

R

+ x∗)�+
∑
l≤K∗

∑
k≤K∗

(ak+1 − ak )(al+1 − al )
(
1 − f
(
dR(al ) − dR(ak )

))

=
(
δ1
R,ρ + 1

R
+ x∗
)
�+ 1

2

∑
l,k≤K∗

(ak+1 − ak )(al+1 − al )

=
(
δ1
R,ρ + 1

R
+ x∗ + ε0

)
�+ 1

2
�2

≤ δ1
R,ρ + 1

R
+

a∗∫
x∗+ε0

ydy.

To obtain the equality, we use the fact that f is balanced.
Because P−1(.−γ) ∈ [0, 1] and al+1 −al = 1

|c| , the left-hand side of the above inequal-
ity is smaller than

a∗∫
x∗+ε0

P−1
(
y − γ − 1

|c|
)
dy ≥

a∗−γ− 1
|c|∫

x∗+ε0−γ− 1
|c|

P−1(y )dy.

Assuming that b is large enough so that 1
|c| ≤ γ, the above is not smaller than∫ a∗

x∗+ε0
(P−1(y ) − y )dy − 2γ. Putting it back into the main inequality, we obtain

a∗∫
x∗+ε0

(
P−1(y ) − y

)
dy ≤ δ1

R,ρ + 1
R

+ 2γ.

If γ, ρ > 0 are sufficiently small and R sufficiently large, δ1
R,ρ + 1

R + 2γ < σ∗. The contra-
diction shows that W ⊆ C0, which concludes the proof of the lemma.

Appendix C: Proof of Theorem 3

For each η> 0, define Pη = P(x : |x− x∗| ≤ η) as the probability that the threshold real-
ization is within η of x∗. If P does not have an atom at x∗, then we can choose ηδ such
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that Pηδ ≤ 1
30δ. Assume w.l.o.g. that ηδ ≤ δ. Let

Tδ =
{
τ :

1
N

∣∣{τi :
∣∣τi − x∗∣∣≤ ηδ

}∣∣≤ 1
3
δ

}
.

The law of large numbers implies that for sufficiently high N , Prob(Tδ ) ≥ 1 − δ.
Fix threshold profile τ ∈ Tδ. Let I0 = {i : |τi − x∗| ≤ ηδ}. Suppose that a is 1

3ηδ-fuzzy
convention x∗. Let I(g) = {i : |βa

i − x∗| > 1
3ηδ} be the set of agents that is an equilibrium

in game G(g, τ). Let I = I0 ∩ I(g). Then 1
N |I| ≤ 2

3δ. For each i /∈ I, either

• τi > x∗ +ηδ and βa
i ≤ x∗ + 1

3ηδ, which implies ai = a∗
i = 0, or

– τi < x∗ −ηδ and βa
i ≥ x∗ − 1

3ηδ, which implies ai = a∗
i = 1.

Hence, for any i /∈ I, ai = a∗
i . This concludes the proof of the theorem.
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