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Ergodic Markov equilibrium with incomplete markets
and short sales

Luis H. B. Braido
Graduate School of Economics, Getulio Vargas Foundation

This paper studies recursive exchange economies with short sales. Agents maxi-
mize discounted expected utility. The asset structure is general and includes real
securities, infinite-lived stocks, options, and other derivatives. The main result
shows the existence of a competitive equilibrium process that is stationary and
has an invariant ergodic measure. Ergodicity is required in finance for time series
analysis of structural asset pricing models. This equilibrium property is difficult
to obtain when heterogeneous agents can accumulate debt over time. Bounded
marginal utility is shown to be a key condition for ergodicity in this setting.
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1. Introduction

Contemporaneous works by Magill and Quinzii (1994), Hernández and Santos (1996),
and Levine and Zame (1996) prove the existence of a sequential equilibrium for a broad
class of infinite-horizon exchange economies with incomplete financial markets. In
Magill and Quinzii (1994), for instance, agents trade one-period numeraire securities
in zero net supply and their debt paths are restricted by three alternative criteria: (i) per-
sonalized transversality conditions, (ii) implicit debt constraints, or (iii) an explicit uni-
form debt ceiling that never binds. They show that the equilibrium concepts implied
by each of these three criteria coincide, given their stated assumptions. Similar equiva-
lence results appear in Hernández and Santos (1996) and Levine and Zame (1996). These
papers are celebrated because they present different ways to rule out Ponzi schemes
without introducing additional market imperfections into the economy. Among the al-
ternatives, models with explicit debt constraints became usual in macroeconomics and
finance.

In another seminal paper, Duffie et al. (1994) analyze a class of recursive exchange
economies with incomplete financial markets. Agents maximize expected discounted
utility and trade numeraire assets of infinite maturity in positive net supply. Short sales
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are not allowed and agents cannot accumulate debt. The authors prove the existence of
a spotless sequential equilibrium that can be represented by a stationary Markov tran-
sition probability. Moreover, they show that if one introduces a weak form of sunspot,
then the stationary Markov equilibrium has an invariant ergodic measure.

This paper extends the ergodic analysis to recursive economies in which agents can
accumulate debt over time. The setup accommodates one-period numeraire assets
traded in zero net supply, infinite-lived real assets in positive net supply, and complex
securities in zero net supply. Complex securities represent forward contracts, options,
and other derivatives whose payoffs depend on the prices of other assets. Agents can
short-sell all assets. As in Radner (1972), trades in securities whose payoffs depend on
prices are restricted by exogenous short-sale constraints.1 Moreover, as in Magill and
Quinzii (1994), individual total debt is restricted by an explicit debt ceiling that never
binds in equilibrium. In other words, agents can accumulate debt without restriction
by selling one-period numeraire securities. They can also short-sell a limited amount of
infinite-lived stocks, forward contracts, options, and derivatives.

This general asset structure is adopted so as to make the results useful for financial
economists. In a stationary Markov equilibrium process with initial states drawn from
the invariant ergodic measure μ, the time series distribution of the state vector (which
includes asset prices) asymptotically converges to μ. Since ergodicity is not empirically
testable, this type of existence result is our best justification for using asymptotic theory
in financial time series.2

Ergodicity is not a simple object in economies where heterogeneous agents are al-
lowed to hold debt. For instance, consider the standard setup with complete markets,
one consumption good, time-separable preferences with different discount factors, and
continuously increasing and concave Bernoulli utilities. As pointed out by Ramsey
(1928), any Pareto optimal allocation in this setting is such that agents with the low-
est discount factor gradually accumulate the entire wealth of the economy, and the con-
sumption levels of all other agents gradually converge to zero over time.3 When marginal
utilities are unbounded, the Pareto optimal consumption of the less patient agents ap-
proaches zero but never reaches that level. This type of process does not have an in-
variant ergodic measure and thus, from the first welfare theorem, there is no ergodic
equilibrium in this context. The main result in this paper shows that bounded marginal
utility is a sufficient condition for the existence of an ergodic Markov equilibrium.

The remainder of the paper is organized as follows. Section 2 describes a general
class of recursive exchange economies, defines the competitive equilibrium concept,

1Hart (1975) shows that a competitive equilibrium might not exist when asset payoffs depend on en-
dogenous prices and portfolios are not subject to short-sale constraints. Typically, the set of economies
without an equilibrium is not generic. For instance, Magill and Quinzii (1996) and Hernández and San-
tos (1996) present generic existence results for economies with long-lived assets and debt constraints that
never bind.

2Tests for stationarity of a time series are important and useful, but they do not assure the existence of
an invariant ergodic measure, as required in standard time series econometrics.

3This result was studied in many alternative settings. Becker (1980), Rader (1981), and Bewley (1982)
address this topic in environments without uncertainty. Blume and Easley (2006) analyze the problem
under uncertainty.
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derives a uniform debt ceiling that never binds, and constructs bounds for equilibrium
portfolios and prices. Section 3 proves the existence of two related Markov equilibrium
concepts. Concluding remarks appear in Section 4. The Appendix is reserved for a tech-
nical step of the main proof.

2. Model

Consider a class of pure exchange economies with uncertainty, countably infinite peri-
ods t ∈ T ≡ {0�1� � � �}, multiple consumption goods l ∈ L ≡ {1� � � � �L}, and long-lived het-
erogeneous agents i ∈ I ≡ {1� � � � � I}, where L ≥ 1 and I ≥ 1. Uncertainty is represented
by a probability space (�� B��ν), where � ≡ [0�1], B� is the Borel σ-algebra on �, and ν

is the Lebesgue measure on (�� B�). Each ω ∈ � determines a sequence of fundamen-
tal shocks {st(ω)}t∈T, where st(ω) takes S ≥ 1 possible values in the set S ≡ {1� � � � � S}.
The sequence {st(ω)}t∈T follows a time-homogeneous Markov process with transition
P(st+1|st) > 0.

The possibility of extrinsic (sunspot) uncertainty is represented by independent and
uniformly distributed random variables ηt :� → [0�1] for t ∈ T. The economy’s infor-
mation structure is given by a filtration {Ft}t∈T, where Ft is the σ-algebra generated
by (s0(ω)� � � � � st(ω)�η0(ω)� � � � �ηt(ω)). The period-t entry of each stochastic process
in this economy is Ft-measurable. A process is said to be spotless when its period-t en-
try is also measurable with respect to the σ-algebra generated by (s0(ω)� � � � � st(ω)), that
is, when it does not vary with the history of sunspots (η0(ω)� � � � �ηt(ω)).

For notational convenience, the decision node index (t�ω) is omitted throughout
the paper. The time index t is used when the context requires. Otherwise, the subscripts
+1 and −1, respectively, indicate the next-period and previous-period realization of the
underlying random variable. The same letter is used to represent the random variable
and its respective realizations. For instance, s+1 might represent the random variable
st+1(ω) or a particular realization st+1 ∈ S. The distinction is clear from the context.

In each period t, individual endowments are determined by time-invariant functions
ei :S → RL+ with the property that, for every i and s, ei�1�s > 0 and

∑
i∈I ei�s ∈ RL++. Agent i’s

preference is numerically represented by a time-separable discounted expected utility
function Ui. For any RL+-valued stochastic process xi ≡ {xi�t}t∈T on (�� B��ν), define

Ui(xi)≡ E

[∑
t∈T

βt
iui(xi�t)

∣∣∣F0

]
�

where βi ∈ (0�1) is an agent-specific discount factor, xi�t ∈ RL+ is agent i’s random con-
sumption in period t, and ui :X → R is a continuous, nondecreasing, and concave
Bernoulli utility function that is increasing in its first entry and whose domain X is an
open set containing RL+.

Remark 1. The assumptions on ui imply that the supergradient correspondence

∂ui(xi) ≡ {di ∈ R
L+ :ui(x̃i) ≤ ui(xi)+ di · (x̃i − xi)�∀x̃i ∈ X}
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is upper hemicontinuous, nonempty, and compact valued at every xi ∈ RL+. (Marginal
utilities are bounded on the boundary of RL+, since ui is defined on an open set X ⊃ RL+.)

Markets open in each decision node (t�ω) to trade the L > 0 consumption goods
at prices p ∈ RL+. Good 1 is the numeraire and its price is normalized to 1 in all nodes.
Markets also trade the following three types of assets.

1. One-period numeraire assets in zero net supply. There are Ja ≥ 1 one-period nu-
meraire assets traded in zero net supply. In each period, their payoffs are con-
tingent on the current realization of the exogenous shock s ∈ S. Payoffs are mea-
sured in units of good 1 and represented by (nonnull) linearly independent vectors
aj ∈ RS+ for j ∈ Ja ≡ {1� � � � � Ja}. For each decision node, let θai ∈ RJa and qa ∈ RJa+
represent agent i’s portfolio and the market prices for these Ja securities. There is
no explicit short-sale constraint on these assets.

2. Infinite-lived real assets in positive net supply. There are also Jb ≥ 0 infinite-
lived real assets traded in positive net supply. These assets pay dividends in each
period—measured in units of the L consumption goods—according to vectors
Aj�s ∈ RL+ for s ∈ S and j ∈ Jb ≡ {Ja + 1� � � � � Jb}. Their total supply is normalized

to 1. For each decision node, θbi ∈ RJb and qb ∈ RJb+ represent agent i’s portfolio
and the market prices for these Jb securities. There is a vector of short-sale limits
θ̄b ∈ RJb+ such that

θbi ≥ −θ̄b� (1)

3. Complex securities in zero net supply. The third class of assets in this econ-
omy comprises Jc ≥ 0 complex financial securities traded in zero net supply.
These assets pay in units of good 1 depending on the exogenous shock s ∈ S and
prices (p�qa�qb). Formally, their payoffs are defined by continuous functions

rj�s :RL+Ja+Jb+ → R+ for each s ∈ S and j ∈ Jc ≡ {Ja + Jb + 1� � � � � J}. The term
rj�s(p�q

a�qb) represents the payoff of security j in nodes in which the shock s and
the prices (p�qa�qb) are realized. For each decision node, let θci ∈ RJc and qc ∈ RJc+
represent agent i’s portfolio and the market prices for these Jc securities. There is a
vector of short-sale limits θ̄c ∈ RJc++ such that

θci ≥ −θ̄c� (2)

Short-sale and debt constraints. Conditions (1) and (2) are short-sale constraints on
assets whose payoff depends on equilibrium prices (namely, infinite-lived real assets
and complex securities). This follows well established results in the general equilib-
rium literature and is necessary for the existence of a competitive equilibrium (see foot-
note 1). It must be emphasized, however, that no short-sale constraint is imposed on
trades of the one-period numeraire assets. Agents are free to accumulate debt on these
assets and, therefore, a restriction on total debt is needed to preclude Ponzi schemes.
Define a uniform debt ceiling M > 0 such that

q · θi ≥ −M� (3)
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where q ≡ (qa�qb�qc) ∈ RJ+, θi ≡ (θai � θ
b
i � θ

c
i ) ∈ RJ , and J ≡ Ja + Jb + Jc . The value of M is

chosen later such that inequality (3) never binds in equilibrium.
Individual problem and market clearing. In each node (t�ω), agents choose their

personal consumption bundle and portfolio (xi� θi) ∈ RL+ × RJ , taking as given (i) their
previous-period portfolio θi�−1 ∈ RJ , (ii) the current prices (p�q) ∈ R

L+J+ , and (iii) the
stochastic process describing the future prices. The choices (xi� θi) must be Ft-
measurable, that is, they must coincide for all nodes (t�ω) belonging to the same in-
formation set in Ft . Moreover, agents’ choices must ν-almost surely (ν-a.s.) satisfy con-
straints (1)–(3) and the budget inequality

p · (xi − ei�s)+ q · θi ≤Ws(θi�−1�p�q)� (4)

where

Ws(θi�−1�p�q)≡
∑
j∈Ja

aj�sθ
a
i�j�−1 +

∑
j∈Jb

(p ·Aj�s + qbj )θ
b
i�j�−1 +

∑
j∈Jc

rj�s(p�q
a�qb)θci�j�−1� (5)

This economy is characterized by

E ≡ {I�T� (�� B��ν)� {Ft}t∈T�S�P� (Ui� ei)i∈I� a�A� r� θ̄b� θ̄c�M}�
Markets are said to clear when the feasibility conditions∑

i∈I

(xi − ei�s)=
∑
j∈Jb

Aj�s (6)

and ∑
i∈I

θi ≡
∑
i∈I

(θai � θ
b
i � θ

c
i )= (0�1�0) (7)

hold ν-almost surely.4 Equation (6) states that the aggregate consumption equals the ag-
gregate endowment plus the amount of goods delivered by assets in positive net supply.
Equation (7) is the financial market clearing condition.

Remark 2. Conditions (1)–(4), (6), and (7) are required to hold ν-a.s. since the frame-
work allows for sunspots. The sets {ω ∈ � : (s0(ω)� � � � � st(ω)) = (s0� � � � � st)} in Ft have
positive probability under ν. They constitute the relevant information in a spotless
scenario.

2.1 Competitive equilibrium

A competitive equilibrium is represented in this setting by a stochastic sequence {zt}t∈T

on (�� B��ν). Each element zt—or equivalently z ≡ (s�θ−1�x�θ�p�q)—is a random vari-
able consisting of the exogenous state s ∈ S, the previous-period portfolios θ−1 ∈ RIJ ,
and the current individual choices and market prices (x�θ�p�q) ∈ RIL+ × RIJ × R

L+J+ .

4The vector (0�1�0) has zeros in its first Ja entries, ones in the following Jb entries, and zeros in the final
Jc entries.
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A stochastic sequence {zt}t∈T on (�� B��ν) is said to be consistent for an economy E
if, for every t ∈ T, (i) zt is Ft-measurable, (ii) the marginal probability distribution of st+1

conditional on (z0� � � � � zt) is ν-a.s. given by P(·|st), and (iii) the vector θ−1 in state zt+1 is
ν-a.s. equal to θ in state zt .

For a given consistent process {zt}t∈T, a policy {x̃i�t � θ̃i�t}t∈T on (�� B��ν) is budget
feasible if (x̃i�t � θ̃i�t) is Ft-measurable and ν-a.s. satisfies (1)–(4), for every t ∈ T. For a
given consistent {zt}t∈T, a budget-feasible policy {x̃i�t � θ̃i�t}t∈T is individually optimal if
there is no other budget-feasible policy {x′

i�t � θ
′
i�t}t∈T such that Ui(x′

i) > Ui(x̃i).

Definition 1. A competitive equilibrium is a consistent stochastic process {zt}t∈T with
the properties that (i) the policy {xi�t � θi�t}t∈T is individually optimal for all i ∈ I and
(ii) the feasibility constraints (6) and (7) hold ν-almost surely for all t ∈ T.

Remark 3. There is an initial condition (ŝ� θ̂−1) ∈ S × R
IJ associated with the period-

zero element of each equilibrium process. Some papers set this condition in the de-
scription of the economy. In recursive environments, the initial condition is part of the
equilibrium definition.

Remark 4. Take a consistent process {zt}t∈T. Since preferences have a time-separable
discounted expected utility representation, a plan {x̃i�t � θ̃i�t}t∈T is individually optimal
for {zt}t∈T if and only if {x̃i�t � θ̃i�t}∞t=τ is individually optimal for {zt}∞t=τ, for every τ ≥ 1.

2.2 A uniform debt ceiling that never binds

The feasibility condition (6) implies that equilibrium consumption vectors lie ν-a.s. in
Ki ≡ {xi ∈ RL+ : max(xi) ≤ x̄}, where

x̄ ≡ max
(l�s)∈L×S

2
(∑

i∈I

ei�l�s +
∑
j∈Jb

Aj�l�s

)
> 0�

Agents are not restricted to choose consumption levels in Ki, but they do so in equilib-
rium. This feature is used throughout the paper.

The assumptions on utility functions and endowments guarantee the existence
of a uniform lower bound on impatience, in the sense of Magill and Quinzii (1994),
Hernández and Santos (1996), and Levine and Zame (1996). Formally, there is a ρ ∈ (0�1)
such that

ui(xi�0 + (1�0� � � � �0))+E

[∑
t≥1

βt
iui(ρxi�t)

∣∣∣F0

]
>Ui(xi) (8)

for any i ∈ I and any RL+-valued process xi ≡ {xi�t}∞t=0 on (�� B��ν) that is ν-a.s. uniformly
bounded by x̄. For the remainder of the paper, fix a ρ ∈ (0�1) satisfying condition (8).
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Lemma 1. In any competitive equilibrium, the values of individual portfolios are ν-a.s.
uniformly bounded by

− I

1 − ρ
≤ q · θi ≤ 1

1 − ρ
� (9)

Proof. The proof is adapted from Magill and Quinzii (1994, p. 873). The second in-
equality holds in equilibrium. If q · θi > 1/(1 − ρ) with positive probability, then agent
i would be willing to modify the current-period portfolio to ρθi, and the consumption
and asset holdings in all future nodes to ρ(xi�+τ� θi�+τ), where τ ≥ 1. This modification
is budget feasible and it frees (1 − ρ)q · θi > 1 units of account. This is enough to pur-
chase one unit of good 1 in the present (recall that p1 = 1). It follows from (8) that this
modification would be desired by agent i, contradicting the individual optimality of the
original equilibrium process.

To derive the first inequality in (9), notice from (7) that
∑

i∈I q ·θi = qb ·1 ≥ 0 ν-almost
surely. Thus, the second inequality in (9) implies

q · θi ≥ −
∑
ı̂ �=i

q · θı̂ ≥ − I

1 − ρ
(ν-a.s.)�

�

The debt limit −I/(1 − ρ) does not depend on the previous-period portfolios or
equilibrium future prices. An explicit debt ceiling greater than I/(1 − ρ) never binds
in any competitive equilibrium. Hereafter fix M > I/(1 − ρ).

2.3 Uniform bounds on portfolios and prices

Let us now define bounds for portfolios and prices associated with any equilibrium
process.

Lemma 2. Prices are ν-a.s. uniformly bounded in any competitive equilibrium.

Proof. Recall that ui is increasing in good 1, and ∂ui(xi) is upper hemicontinuous,
nonempty, and compact valued at every xi in RL+. Therefore, (i) there is a positive upper
bound δmax > 0 for the set of feasible marginal utilities {max(di) :di ∈ ∂ui(xi) for some
(i�xi) ∈ I × Ki} and (ii) there is a positive lower bound δ1�min > 0 for the set of feasible
marginal utilities with respect to good 1 {proj1(di) :di ∈ ∂ui(xi) for some (i�xi) ∈ I ×Ki},
where proj1(·) is the projection of a vector into its first entry.

It can be shown that max(p) is ν-a.s. uniformly bounded by δmax/δ1�min in any com-
petitive equilibrium process. The feasibility condition (6) implies that, for each good
l, there is at least one agent consuming strictly positive amounts of it. Concavity of ui
implies that if pl > δmax/δ1�min with positive probability, this agent would prefer to re-
duce the consumption of good l and increase the consumption of good 1 in these nodes
at the rate of pl > δmax/δ1�min units of good 1 per unit of good l. This modification in
the consumption plan is budget feasible since p1 = 1, which contradicts the individual
optimality of the equilibrium process.
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The second step constructs an upper bound for qa. Define amax ≡ max{aj�s ∈
R+ : (j� s) ∈ Ja × S} and e1�min ≡ min{ei�1�s ∈ R+ : (i� s) ∈ I × S}. In any equilibrium pro-
cess, one must ν-a.s. have max(qa) ≤ amax/((1 − ρ)e1�min). To prove this, suppose there
is an asset j ∈ Ja such that qaj > amax/((1 − ρ)e1�min) with positive probability. Notice
from (7) that there is always some agent i with q · θi ≥ 0. Take this agent, modify the
current-period portfolio to ρθi, and modify the consumption and asset holdings in all
future nodes to ρ(xi�+τ� θi�+τ), where τ ≥ 1. The vector (xi�ρθi) ν-a.s. satisfies the bud-
get inequalities (1)–(4). Moreover, this modification frees the income (1 − ρ)p+τ · ei�s+τ

in each future node (i.e., when τ ≥ 1). The extra income in the next-period nodes
(i.e., when τ = 1) allows agent i to rebalance the modified portfolio ρθi by selling
min((1 − ρ)e1�min/amax�M/qj) units of asset j. Since q · θi ≥ 0, the debt constraint (3) still
holds after this transaction. Moreover, since M > I/(1 − ρ) > 1, this allows one to con-
sume an additional unit of good 1 in the present (i.e., when τ = 0). It then follows from
(8) that this contradicts the individual optimality of the original equilibrium process.

Third, take the second inequality in (9) to obtain q · ∑
i∈I θi ≤ I/(1 − ρ) ν-almost

surely. It follows from (7) that q · (0�1�0) = ∑
j∈Jb q

b
j ≤ I/(1 − ρ) ν-almost surely. Since

qb ∈ RJb+ , this inequality defines a uniform upper bound for the prices of infinite-lived
assets.

From the previous steps, equilibrium (p�qa�qb) lies ν-a.s. in a compact set, say �′ ⊂
R
L+Ja+Jb+ . When Jc > 0, the payoff of each complex asset is ν-a.s. uniformly bounded

by rmax ≡ max{rj�s(p�qa�qb) : (j� s�p�qa�qb) ∈ Jc × S ×�′}. This maximum is well defined
since rj�s is continuous and Jc × S ×�′ is nonempty and compact. Therefore, the second
step of this proof can be replicated to show that max(qc) is ν-a.s. uniformly bounded by
max(rmax/((1 − ρ)e1�min)�1/((1 − ρ)min(θ̄c))).5 �

Lemma 3. Individual portfolios are ν-a.s. uniformly bounded in any competitive
equilibrium.

Proof. The short-sale constraints (1) and (2) restrict equilibrium portfolios of infinite-
lived and complex securities. For every i ∈ I, the following inequalities hold ν-almost
surely: −θ̄b ≤ θbi ≤ 1 + Iθ̄b and −θ̄c ≤ θci ≤ Iθ̄c . Let us then adapt the argument used in
Magill and Quinzii (1994, p. 873) to derive equilibrium bounds for θai .

The budget inequality (4) holds with equality (ν-a.s.), since ui is increasing in its first
entry. Define

H(s�θb−1� θ
c
−1�x�p�q

a�qb)

≡ p · (xi − ei�s)−
∑
j∈Jb

(p ·Aj�s + qbj )θ
b
i�j�−1 −

∑
j∈Jc

rj�s(p�q
a�qb)θci�j�−1�

and notice from (4), (5), and (9) that

H(·)− I

1 − ρ
≤ as · θai�−1 ≤H(·)+ 1

1 − ρ
(ν-a.s.)� (10)

5The short-sale constraint (2) is nonbinding after individual i’s portfolio is scaled down to ρθi . When
adapting the argument used in the second step, agent i is able to sell min((1 − ρ)e1�min/rmax�M/qj� (1−ρ)θ̄cj )

units of each asset j ∈ Jc .
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where as ≡ (a1�s� � � � � aJa�s) and as · θai�−1 = ∑
j∈Ja aj�sθ

a
i�j�−1.

There is H̄ > 0 such that −H̄ ≤ H(·) ≤ H̄ ν-almost surely. This is thanks to the
following facts: (i) S is finite; (ii) (θb−1� θ

c
−1�x�p�q

a�qb) is ν-a.s. uniformly bounded;
(iii) rj�s(p�qa�qb) is continuous. Since (10) holds in every period, each entry of the S × 1
vector [as · θai ]s∈S is ν-a.s. uniformly bounded from below by −H̄ − I/(1 − ρ) and from
above by H̄ + 1/(1 − ρ).

The S×Ja matrix represented by [as]s∈S has full column rank, since these payoffs are
linearly independent. For each y ∈ RS , define θai (y) as the unique solution for the linear
system

[as · θai ]s∈S = y�

The function θai (y) is continuous in y and can be explicitly derived through Cramer’s
formula. Therefore, by taking y in [−H̄ − I/(1 − ρ)� H̄ + 1/(1 − ρ)]S , one can find upper
and lower bounds for θai .6 �

3. Ergodic Markov equilibrium

The equilibrium analysis follows the structure formulated in Duffie et al. (1994), where
the main elements are the state space Z and the expectations correspondence g. Each
state variable z ≡ (s�θ−1�x�θ�p�q) describes the current endogenous and exogenous
variables and is a sufficient statistic for the future evolution of the model.

Recall from Section 2.2 that equilibrium consumption levels lie ν-a.s. in a compact
set K ≡ K1 × · · · × KI . Lemma 2 states that equilibrium prices lie ν-a.s. in a compact
set, say � ⊂ R

L+J+ . Moreover, it follows from Lemma 3 that there is a compact set �i ⊂
RJ such that, in equilibrium, individual portfolio choices lie ν-a.s. in its interior. Take
� ≡ �1 × · · · × �I and let �− be a copy of �. One can then restrict z to take values in
a nonempty state space Z that embeds these equilibrium properties and the economy’s
feasibility constraints, namely,

Z ≡ {z ∈ S ×�− ×K ×�×� : (6)–(7)}�
Markov equilibria is represented by transition probabilities over subsets of Z. For

any arbitrary subset Z ⊂ Z, let BZ be the Borel σ-algebra over Z and let PZ be the set
of probability measures on (Z� BZ). Any transition � :Z → PZ can be represented in
the form (x+1� θ+1�p+1� q+1) = f (s+1�η+1� z), where f is a Borel measurable function
and η+1 follows an independent and identically distributed (i.i.d.) uniform distribution
in [0�1].7 Thus, Markov transitions can be used to define stochastic processes in the
original information structure (�� B��ν� {Ft}t∈T).

The second main element of the analysis is the expectations correspondence g :Z →
PZ defined as follows. For each current state z ∈ Z, let g(z) be a (possibly empty) set
of probability measures over the next-period state variable z+1 such that conditions (a)
and (b) are satisfied.

6This reasoning does not apply for the other securities because the rank of their payoff matrix depends
on endogenous prices.

7Since S is finite, this follows from Lemma 3.22 in Kallenberg (2001, p. 56).
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(a) The set g(z) is empty unless the variables in z are such that inequalities (1)–(3)
hold and condition (4) is satisfied with equality for every agent i in I.

(b) A measure π ∈ g(z) if and only if

(b.1) there is a function h :S → �− × K × � × � such that the support of π is the
graph of h

(b.2) the marginal of π on S is P(·|s)
(b.3) the marginal of π on �− degenerates to θ

(b.4) the next-period states {zs+1 : s+1 ∈ S} in the support of π are such that

(b.4.1) the budget-constraint inequalities (1)–(3) hold and condition (4) is
satisfied with equality, for every agent i ∈ I

(b.4.2) for each i ∈ I, there exist (di�λi) ∈ ∂ui(xi) × R+ and (di�s+1�λi�s+1) ∈
∂ui(xi�s+1)× R+, for every s+1 ∈ S, such that the following conditions
hold:

λipl ≥ di�l

with equality if xi�l > 0, for each l ∈ L;

λi�s+1pl�s+1 ≥ βidi�l�s+1P(s+1|s)
with equality if xi�l�s+1 > 0, for each (l� s+1) ∈ L × S;

λiq
a
j =

∑
s+1∈S

λi�s+1p1�s+1aj�s+1

for each j ∈ Ja ≡ {1� � � � � Ja};

λiq
b
j ≥

∑
s+1∈S

λi�s+1(ps+1 ·Aj�s+1 + qbj�s+1
)

with equality if θbi�j >−θ̄bj , for each j ∈ Jb ≡ {Ja + 1� � � � � Jb}; and

λiq
c
j ≥

∑
s+1∈S

λi�s+1rj�s+1(ps+1� q
a
s+1

� qbs+1
)

with equality if θci�j >−θ̄cj , for each j ∈ Jc ≡ {Ja + Jb + 1� � � � � Jc}.

Condition (a) states that g(z) is empty for states z that are not consistent with budget
feasibility. The requirement that (4) holds with equality—found in condition (a) and
also in (b.4.1)—accounts for the complementary slackness condition associated with
this restriction in the individual optimization problem.

Condition (b) defines which measures are included in g(z) when this set is not
empty.8 First, conditions (b.1) and (b.2) require that all measures in g(z) have a finite

8The set g(z) will still be empty if no measure satisfies those conditions.
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support with S mass points and that their marginal probabilities on S are identical to
the exogenous-shock probability. As a consequence, any transition selected from g is
spotless. Condition (b.3) requires all measures in g(z) to be consistent with the law of
motion for asset holdings. Finally, (b.4) requires that the choices embedded in (z�π)

satisfy the next-period budget constraints and are dynamically optimal.9

Let us now define and prove the existence of the first Markov equilibrium concept
used in this paper.

Definition 2 (Stationary Markov equilibrium). A stationary Markov equilibrium for an
economy E is a pair (Z��), where Z is a Borel measurable subset of Z and � :Z → PZ is
a transitional probability such that �z ∈ g(z), for every z in Z.

A stationary Markov equilibrium consists of a set of states and a law of motion such
that the current realization of z determines the future stochastic equilibrium path. This
concept encompasses the competitive notion of equilibrium, since conditions (a) and
(b) in the definition of g imply that any stationary Markov Z-valued process {zt}∞t=0 with
transition � is consistent and individually optimal. Moreover, given conditions (b.1) and
(b.2), any stationary Markov equilibrium for g is spotless.

Lemma 4. The correspondence g(z) has a closed graph.

Proof. Take two convergent sequences {zn}∞n=0 → z and {πn}∞n=0 → π such that zn ∈ Z

and πn ∈ g(zn) for all n. Let us show that π ∈ g(z) by noticing the following facts. First,
inequalities (1)–(3) hold and condition (4) is satisfied with equality for every agent i and
every element zn of the sequence {zn}∞n=0. These properties are preserved in the limit
and then condition (a) holds for z.

Second, for every n, there is hn :S →�− ×K×�×� such that the support of πn is the
graph of hn. Entries in the image of hn are bounded. Therefore, there is h ≡ limn→∞ hn

such that the support of π is the graph of h; i.e., π satisfies condition (b.1).
The marginal of πn on S is P(·|s) and the marginal of πn on �− degenerates to θn.

Then the limit probability π also satisfies conditions (b.2) and (b.3). Moreover, the con-
ditions listed in (b.4) are preserved in the limit—since ∂ui is upper hemicontinuous,
nonempty, and compact valued on RL+—and then hold for (z�π)≡ lim(zn�πn). �

Proposition 1. There exists a (spotless) stationary Markov equilibrium (Z��) for any
economy E such that M > I/(1 − ρ).

Proof. The proof has two steps. First, define a T -horizon equilibrium to be a compet-
itive equilibrium for an economy in which time is restricted to lie in {0� � � � �T } ⊂ T. It
can be shown that there exists a spotless T -horizon equilibrium for a given set of ini-
tial portfolios and any finite T > 0. Appendix formalizes and proves this statement. The

9Dynamic optimality follows from the Kuhn–Tucker sufficient conditions for finite-dimensional non-
smooth optimization problems—see Balder (2010)—coupled with standard arguments in dynamic
programming.
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proof relies on standard arguments but is presented because complex securities—whose
payoffs depend on the prices of other assets—are not usual in the general equilibrium
literature.

One must notice from Appendix that the states derived from any T -horizon equilib-
rium process lie in the compact set Z for every T > 0. To conclude this proof, one must
find a closed subset of Z that is self-justified for g; see Duffie et al. (1994, Proposition 1.1,
p. 748). Formally, a self-justified set is a nonempty Borel measurable subset Z ⊂ Z such
that g(z) ∩ PZ is nonempty for all z ∈ Z. It can be derived by following the steps used
to prove Theorem 1.2 in Duffie et al. (1994). Since that proof is constructive, it is worth
presenting a version here.

Define Z0 ≡ Z and Zn ≡ {z ∈ Zn−1 :∃π ∈ g(z) with supA⊂Zn−1
π(A) = 1} for every in-

teger n > 0, where supA⊂Zn−1
π(A) is the supremum of π taken over Borel measurable

subsets of Zn−1. Notice that Zn ⊂ Zn−1. Moreover, Zn is nonempty for all n ≥ 0. (To
see this, take n > 0 and consider the period-0 states of every n-horizon equilibrium pro-
cess. Clearly, conditions (a)–(b.3) in the definition of g hold for these states. Notice that
Ja ≥ 1, condition (3) never binds, and qa is strictly positive in all nonterminal nodes.10

The Slater condition is then satisfied and the Kuhn–Tucker conditions in (b.4) neces-
sarily hold for these period-0 states.11 To conclude the nonemptiness argument, notice
that any period-1 state of an n-horizon equilibrium process lies in Zn−1.12)

Now, let Z̄n be the closure of Zn and let Z ≡ ⋂∞
n=0 Z̄n. Notice that Z is nonempty and

compact since it is the intersection of a nested sequence of nonempty compact sets.
One can then find a measure π ∈ g(z) for each z ∈ Z. Take a sequence {zn}∞n=0 → z such
that zn ∈Zn. For each n, take πn ∈ g(zn) such that supA⊂Zn−1

π(A) = 1 (which is possible
since zn ∈ Zn). Since πn ∈ PZ̄n−1

and {PZ̄n
}∞n=0 is a descending sequence of compact sets

with intersection PZ , there is a measure π ≡ limπn that lies in PZ . This limit measure π

must lie in g(z) since, according to Lemma 4, this correspondence has a closed graph. �

It is important to associate a stationary Markov equilibrium transition with an in-
variant ergodic measure μ. This pair defines a new equilibrium concept with the prop-
erty that if the initial state is drawn with distribution μ, the distribution of future realiza-
tions of the system is also μ. This is the analogue of the deterministic notion of a steady
state and it is also the key property behind consistency results in financial time series.

Definition 3 (Invariant ergodic measure). An invariant ergodic probability measure
for a transition (Z��) is a measure μ ∈ PZ such that (i) μ(A) ≡ ∫

Z �z(A)dμ(z) for any
measurable set A ⊂ Z and (ii) either μ(A) = 1 or μ(A) = 0 for any measurable set A ⊂Z

such that �z ∈ P A for μ-almost every z ∈ A.

10Recall that numeraire assets pay in units of good 1 and preferences are monotonically increasing in
this good.

11See Balder (2010) for the Kuhn–Tucker necessary conditions for finite-dimensional nonsmooth opti-
mization problems.

12This is immediate for n = 1, and it holds for n > 1 because the period-1 states of every n-horizon equi-
librium process also satisfy conditions (a) and (b).
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Definition 4 (Ergodic Markov equilibrium). An ergodic Markov equilibrium for E is a
stationary Markov equilibrium (Z��) with an invariant ergodic measure μ ∈ PZ .

Proposition 2. There exists a (conditionally spotless) ergodic Markov equilibrium
(Z���μ) for any economy E such that M > I/(1 − ρ).

Proof. Let Z be a compact self-justified set for g (see the proof of Proposition 1). Define
the expectations correspondence G :Z → PZ as the closure of the convex hull of g(z) ∩

PZ . The result follows then from Corollary 1.1 (p. 751) and Proposition 1.3 (p. 757) in
Duffie et al. (1994). �

The term “conditionally spotless” deserves an explanation. According to Corol-
lary 1.1 in Duffie et al. (1994, p. 751), ergodicity can be obtained when the expectations
correspondence is convex valued. The correspondence g is not convex valued. By tak-
ing G as the closure of the convex hull of g, one allows randomizations over spotless
equilibrium transitions. As argued before, any transition � :Z → PZ can be written as
(x+1� θ+1�p+1� q+1) = f (s+1�η+1� z), where f is a Borel measurable function and η+1

follows an i.i.d. uniform distribution in [0�1]. The variable η+1 is interpreted as the
sunspot. In our case, the budget restrictions and individual optimality conditions hold
for each realization of η+1. This is as if agents observed the sunspot variable η+1 before
making their decisions in each node. Thus, the ergodic Markov equilibrium is spotless
conditional on the realization of η+1.

4. Concluding remarks

Individual initial debts cannot be arbitrary in economies with short sales; otherwise, the
set of budget-feasible allocations might be empty. Lemma 5 in Appendix shows the ex-
istence of a T -horizon equilibrium for a set of initial portfolios in which agents are born
with no debt. If financial trades occur in equilibrium, there will be alternative portfo-
lio vectors that can be drawn in the initial state for each given equilibrium process. In
fact, for a given stationary equilibrium (Z��), any state drawn from Z can be an initial
condition. The only particularity to be noticed is that the set of possible initial condi-
tions depends on the stochastic process describing the equilibrium prices. The choice
θ̂i�−1 = (0�1/I�0) is the simplest available for computation. However, just as in Duffie
et al. (1994), there is no guarantee that an ergodic equilibrium process converges to its
invariant ergodic measure μ unless the process is initially drawn from μ.

Another important issue to be addressed is whether the assumptions on marginal
utilities can be relaxed. Recursive models usually assume that the Bernoulli utility (and
marginal utility) functions are unbounded from below. In many models, this assump-
tion guarantees that the equilibrium consumption process is uniformly bounded away
from zero. This implies that the supergradient correspondence is upper hemicontin-
uous, nonempty, and compact valued in the subset of the consumption set where the
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equilibrium process lies. This is then used to guarantee the closed graph property of the
expectations correspondence.13

However, this logic is not valid in environments with short sales and without de-
fault. According to Beker and Chattopadhyay (2010), individual consumption may get
arbitrarily close to zero in this context, even when the Bernoulli utility functions are
unbounded.

In fact, ergodicity is not always achievable in recursive economies with short sales
and unbounded marginal utilities. Blume and Easley (2006) analyze an environment
with a single consumption good, heterogeneous agents, and uniformly bounded aggre-
gated endowment. They show that in any Pareto optimal allocation, the consumption of
the agent with the highest discount factor asymptotically converges to the aggregate en-
dowment, while the consumption of each other agent asymptotically converges to zero
(see Lemma 1′, p. 951, in that paper).

Consider the case in our basic framework where L = 1, β1 > max(β2� � � � �βI), and
Ja = S (complete markets). The first welfare theorem implies that in any ergodic Markov
equilibrium (Z���μ), the invariant ergodic measure μ must reproduce the asymptotic
features of the Pareto optimal allocation. This implies that the marginal of μ on the con-
sumption entries of the less-patient agents (i > 1) must degenerate to zero. However,
zero consumption can be avoided by this agent, since M > I/(1 − ρ) and the debt con-
straint (3) never binds for z ∈ Z. Therefore, this allocation is not individually optimal
when marginal utilities are unbounded around zero consumption levels and no ergodic
Markov equilibrium exists in this case.

Appendix: T -horizon equilibrium

A T -horizon economy is a version of the original economy in which time is restricted
to lie in {0�1� � � � �T } ⊂ T. All concepts from the original economy extend directly by
replacing the set T by {0�1� � � � �T }.

A Z-valued stochastic process {zt}Tt=0 is said to be spotless if zt is measurable with re-
spect to theσ-algebra generated by (s0(ω)� � � � � st(ω)) for every t ∈ {0�1� � � � �T }. Since S is
finite, any T -horizon spotless process can be written as an N-dimensional vector, where
N ≥ 2 is the number of possible history of shocks �t = (s0� � � � � st) for t ≤ T .14 Then a
spotless T -horizon competitive equilibrium can be expressed by a vector (x�θ�p�q) ∈
RILN+ × RIJN × R

(L+J)N
+ such that (xi�θi) is individually optimal, for every agent i, and

the feasibility constraints (6) and (7) are attained in every node (t��t).

Lemma 5. There exists a spotless T -horizon competitive equilibrium for any economy E
such that M > I/(1 − ρ).

13This reasoning was used by Duffie et al. (1994) in a scenario with a single consumption good and
without short sales. The same argument is valid in economies with multiple commodities and uniformly
bounded aggregate endowments; see Braido (2008) for an analysis in a multigood economy with short sales
and default.

14By fixing an initial shock s0 = ŝ and taking T ≥ 1, one has N = (ST+1 − 1)/(S − 1) when S > 1 and has
N = T + 1 when S = 1.
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Proof. Fix an arbitrary initial shock s0 = ŝ ∈ S and an initial portfolio such that
(θ̂a−1� θ̂

c
−1) = (0�0) and min(θ̂b−1) ≥ 0 subject to

∑
i∈I θ̂

b
i�−1 = 1. Take �, K = K1 × · · · ×KI

and �= �1 ×· · ·×�I as defined in Section 3. Let agent i’s truncated budget set be given
by

Bi(p�q) = {(xi�θi) ∈ KN
i ×�N

i : (1)–(4)�∀(t��t)}�
Define the correspondence � :KN × �N × �N → KN × �N × �N to be such that

(x′�θ′�p′�q′) ∈�(x�θ�p�q) if and only if

(x′
i�θ

′
i) ∈ arg max

(x̃i�θ̃i)∈Bi(p�q)

E

[
T∑
t=0

βt
iui(x̃i�t��t )

∣∣∣F0

]
� ∀i ∈ I (11)

and

(p′�q′) ∈ arg max
(p̃�q̃)∈�N

∑
t��t

{
p̃t��t ·

[∑
i∈I

(xi�t��t − ei�t��t )−
∑
j∈Jb

Aj�s

]

+ q̃t��t ·
[∑
i∈I

θi�t��t − (0�1�0)
]}

�

(12)

The correspondence � is upper hemicontinuous, nonempty, compact, and convex
valued. The first three properties follow from Berge’s theorem of the maximum since:
(i) condition (11) defines a maximization problem in which the objective function is
continuous, and the budget correspondence Bi :�N → KN

i ×�N
i is nonempty, compact

valued, and continuous on �N ,15 and (ii) condition (12) defines a linear optimization
problem over a nonempty compact set. Moreover, � is convex valued since (i) the objec-
tive function in (11) is concave and Bi is a convex-valued correspondence,16 and (ii) the
objective function in (12) is linear and �N is convex.

It follows from Kakutani’s fixed-point theorem that there exists some vector (x∗∗�θ∗∗�
p∗�q∗) ∈ �(x∗∗�θ∗∗�p∗�q∗). Since ui is increasing in good 1, condition (11) implies that
the budget equation (4) holds with equality at the fixed point. One can then modify the
fixed-point allocation and portfolio as follows, to make markets clear in all nodes.

Take the initial note (0��0) and recall that �0 = ŝ and
∑

i∈I θ̂−1 = (0�1�0). This
implies

p∗
0��0

·
[∑
i∈I

(x∗∗
i�0��0

− ei�ŝ)−
∑
j∈Jb

Aj�ŝ

]
+ q∗

0��0
·
[∑
i∈I

θ∗∗
i�0��0

− (0�1�0)
]

= 0�

Since (x∗∗�θ∗∗�p∗�q∗) satisfies condition (12), one must have γx�0��0 ≡ ∑
i∈I(x

∗∗
i�0��0

−
ei�ŝ) − ∑

j∈Jb Aj�ŝ ≤ 0 and γθ�0��0 ≡ ∑
i∈I θ

∗∗
i�0��0

≤ (0�1�0), where these inequalities can
only be strict in entries associated with a corresponding zero price. Let us then modify

15The correspondence Bi is lower hemicontinuous thanks to θ̂ being nonnegative and ps ·ei�s ≥ 1ei�1�s > 0
for all i and s.

16Although rj�s(·) need not be linear, Bi(p�q) is a convex set for each given (p�q).
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the fixed-point allocation and portfolio in this node as

x∗
i�0��0

=
{
x∗∗
i�0��0

− γx�0��0 for i = 1

x∗∗
i�0��0

for i �= 1

and

θ∗
i�0��0

=
{
θ∗∗
i�0��0

− γθ�0��0 for i = 1

θ∗∗
i�0��0

for i �= 1�

Since ui is increasing in good 1, the price of an asset is only zero when the value
of its payoff is also zero in all subsequent nodes. Therefore, Ws(θ

∗∗
i�0��0

�p∗
1�1

� q∗
�1

) =
Ws(θ

∗
i�0��0

�p∗
1��1

� q∗
1��1

) for all �1 = (ŝ� s1). Moreover, by construction,
∑

i∈I θ̂0��0 =
(0�1�0). One can then replace θ∗∗

i�0��0
by θ∗

i�0��0
and repeat the procedure described in

the previous paragraph for all subsequent nodes (1��1). By using this algorithm period
by period, it can be shown that (x∗�θ∗) satisfies the feasibility conditions (6) and (7) for
all (t��t).

It follows from (11) that (x∗∗�θ∗∗) is individually optimal on the truncated budget set
Bi(p∗�q∗). Since Ui is continuous and concave, max(x∗∗

i ) < x̄, and θ∗∗
i lies in the interior

of �N , then (x∗∗
i �θ∗∗

i ) also maximizes Ui on the untruncated budget set {(xi�θi) ∈ RLN+ ×
RJN : (1)–(4), ∀(t��t)}, evaluated at prices (p∗�q∗). To conclude the proof, notice that
(x∗�θ∗) also maximizes Ui on the untruncated budget set, since this vector differs from
(x∗∗�θ∗∗) only by positive amounts added in entries associated with a corresponding
zero price. Thus, (x∗�θ∗�p∗�q∗) is a spotless T -horizon competitive equilibrium for E . �
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