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Abstract

The study of matching problems typically assumes that agents pre-

cisely know their preferences over the goods to be assigned. Within

applied contexts, this assumption stands out as particularly coun-

terfactual. Parents typically do invest a large amount of time and

resources to find the best school for their children; doctors run costly

tests to establish the best kidney for a given patient. In this paper I

introduce the assumption of endogenous information acquisition into

otherwise standard house allocation problems. I find that there is a

unique ex-ante Pareto-optimal, strategy-proof and non-bossy alloca-

tion mechanism: serial dictatorship. This stands in sharp contrast to

the very large set of such mechanisms for house allocation problems

without endogenous information acquisition.
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1 Introduction

Many allocation problems of indivisible goods have to be solved without

explicit markets. For some such goods, be it school slots or kidneys, the use

of markets to determine allocations is perceived as immoral or repugnant.

In many cases markets are explicitly forbidden. A - prospering - subfield

of mechanism design asks the question how to best allocate such objects to

recipients; many mechanisms that are optimal according to a host of different

criteria have been found. These mechanisms have usually been designed

for the case of agents precisely knowing their preferences over the goods

to be assigned. However, this assumption seems counterfactual in many of

the areas in which such mechanisms are used. Parents typically invest a

significant amount of time on school choice; doctors need to run costly tests

on kidneys to figure out which would be best for a given patient.

This paper sets out to study the allocative properties of mechanisms in

conjunction with their impact on the agents’ incentives to acquire informa-

tion. To this end I modify the standard model of house allocation problems

in which a set of agents needs to be matched to a set of equally many objects,

henceforth called houses, allowing for costly information acquisition on these

houses. The goal is to characterize the set of strategy-proof, non-bossy and

Pareto-optimal mechanisms in this environment.

Over the years, various classes of such mechanisms have been identified

for the standard case of known preferences. Pycia and Unver [9] characterize

the – very large – set of all such mechanisms. Lots of room remains to

impose additional requirements to select among these mechanisms. The case

of housing problems with endogenous information acquisition differs sharply.

In that case there is a unique strategy-proof, non-bossy and ex-ante-Pareto-

optimal mechanism: serial dictatorship. The following example illustrates

the outstanding role of serial dictatorship.

Example 1 Two agents called 1 and 2 start out owning two houses, k and

g, respectively; this initial allocation only changes if both agents agree to

exchange houses.1 In an environment without endogenous learning, this

1This mechanism is Gale’s top trading cycles mechanism for two agents and two houses;

a formal definition can be found in Section 2.2.
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mechanism is strategy-proof, non-bossy and Pareto-optimal. To see that

this mechanism can be Pareto dominated when agents have a choice to learn

consider the following setup. Neither agent knows whether he values house

k at 8 or at 0: the agents’ valuations of this house are independent draws

from a distribution according to which the two possible values are equally

likely. Both agents value house g at 2. Agent 1 has to pay .8 to learn his

value of house k, learning is free for agent 2. Both agents need to announce

simultaneously whether or not they would like to swap.

Now let’s consider agent 1’s decision problem. If he does not learn the

value of house k, he prefers to keep it (expected value of 4 vs. 2, the known

value of g). If he learns the value, he prefers to swap houses if and only if he

values house k at 0. Agent 2, in turn, is willing to swap with a probability

of 1
2
.2 If agent 1 learns his value of house k, he obtains an expected utility of

1
2
×8 + 1

2
(1

2
×2 + 1

2
×0)− .8 = 3.7, with the last term reflecting agent 1’s cost

of learning. So agent 1 prefers to keep house k without learning, implying

that in equilibrium agent 2 is stuck with house g, yielding an ex-ante utility

profile of (4, 2).

The serial dictatorship with agent 1 as the first dictator ex-ante Pareto-

dominates the given mechanism. For agent 1 as the first dictator it is worth-

while to learn the value of house k and to choose it if and only if he finds

it of high value (expected utility: 1
2
× 8 + 1

2
× 2 − .8 = 4.2). So agent 2 is

matched to his ex-ante preferred house with a probability of 1
2
. The profile

of ex-ante utilities is (4.2, 3).

This example shows that some of the bedrock of matching theory starts to

crumble if one allows for endogenous information acquisition. Both mecha-

nisms described in the example, the top trading cycles mechanism and serial

dictatorship, are Pareto-optimal, strategy-proof and non-bossy in an envi-

ronment without endogenous information acquisition. Either one of these

mechanisms traces out the full set of Pareto optimal matchings when one

allows for all possible orderings of dictators or for all possible initial alloca-

tions respectively. With endogenous information acquisition, something very

different happens. In that case serial dictatorship may ex-ante Pareto domi-

2Since learning is costless agent 2 will be willing to exchange with agent 1 if and only

if he values house k at 8, which happens with probability 1
2 .
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nate Gale’s top trading cycles mechanism as shown in Example 1. The main

result of the paper significantly generalizes this observation. I show that for

any non-bossy and strategy-proof mechanism that is not a serial dictatorship

one can find a housing problem and a (path-dependent) serial dictatorship,

such that the serial dictatorship strictly ex-ante Pareto-dominates the named

mechanism in the given housing problem. Conversely, serial dictatorships are

never dominated in this way.

The essential difference between the two mechanisms in Example 1 is

that the strong incentives for learning under serial dictatorship are dampened

under top trading cycles. While agent 1’s knowledge of the value of house k

is always useful under serial dictatorship, the same knowledge is irrelevant in

half of all cases under the alternative mechanism. Serial dictatorship stands

out as the only mechanism which always combines optimal learning incentives

with optimal allocation incentives. It is well known that serial dictatorship

sets the “right” incentives for allocations: it belongs to the set of strategy-

proof, non-bossy and Pareto-optimal mechanisms. What distinguishes serial

dictatorship is that it is the only mechanism in this set which also sets the

“right” incentives for information acquisition: given that any agent knows his

exact choice-set when he decides to learn, no information is ever wastefully

acquired. The paper gives two variants of the uniqueness statement on serial

dictatorship pertaining to the case of sequential and simultaneous learning,

Theorems 1 and 2.

The set of information structures considered in this article is constrained

in two ways: first, the agents’ preferences are independent draws, implying

that agents never wish to delegate their choices to better informed agents.

Second, in line with the literature on standard housing problems, a no-

indifference condition ensures that at least some mechanisms work optimally.

With these two constraints in place we can be sure that the the sub-optimality

of mechanisms other than serial dictatorship is due to the agents’ ability to

acquire information. Serial dictatorship might outperform other mechanisms

in matching problems with indifferences or correlated preferences. Still, the

domination of serial dictatorship in the present article cannot be attributed

to such arguments as these classical “trouble-makers” have been ruled out.

The uniqueness result of the article is indeed driven by the assumption of
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endogenous information acquisition.

The compromise between the quality of information acquisition and of

allocations is one of the main themes of the growing literature on mecha-

nism design with endogenous information acquisition. Mechanisms are often

characterized in terms of an optimal trade-off between informative and al-

locative efficiency. Gerardi and Yariv [5] as well as Bergemann and Valimaki

[2] respectively illustrate this trade-off in voting and auctions environments.

This trade-off is relevant in the present paper: simple serial dictatorship is

the one mechanism under which allocative and informative efficiency coex-

ist. For any other mechanism we have to face the trade off between the two

kinds of efficiency. The optimality of sequential learning is another theme of

the literature on mechanisms with endogenous learning that is echoed in the

present paper. Gershkov and Szentes [6] as well as Smorodinsky and Tennen-

holtz [12] present voting models in which the voters’ optimal acquisition of

information is sequential. Similarly, for auctions, Compte and Jehiel [3] find

that ascending price auctions can dominate sealed bid auctions in terms of

expected welfare. In this vein the present paper shows the unique optimality

of sequential simple serial dictatorship when allowing for any sequence of

information elicitation.

In Section 2 I provide formal definitions of the housing problems and

mechanisms under study. There I define Example 2 to argue that sequential

elicitation procedures might outperform simultaneous ones in the present

context. With all the relevant terminology in hand, I state the two main

results of the article Theorems 1 and 2 in Section 3. The proof of these

two theorems revolves around three examples: Example 2, which is already

presented in Section 2, the introductory Example 1, which is revisited in

Section 4, and Example 5 which is presented in in Section 4. To extend the

arguments gleaned from these examples to the case of large housing problems,

I rely on Pycia and Unver’s [9] “trading cycles” mechanisms (Section 6). The

proof of the two results is contained in Section 7. The presentation of Pycia

and Unver’s representation and the proof are preceded by Section 5 which

sheds light on possible extensions and limits of the unique ex-ante Pareto

optimality of serial dictatorship.
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2 The Model

2.1 Agents, Houses, Values

Fix two sets of agents I = {1, · · · , n} and houses H with equally many

elements (| H |= n) and generic elements i, j ∈ N and h, d, g, k ∈ H. There

is a finite state space Ω which consists of profiles of values ω : = (ωih)h∈H,i∈I ,

where ωih is the value that agent i assigns to house h and ωi : = (ωih)h∈H is

the vector of agent i’s valuations. Denote the set of all partitions of Ω by P .

The state ω ∈ Ω is drawn from the probability distribution π, with π(ω) > 0

for all ω ∈ Ω. The prior π is common knowledge among the designer and all

agents.

A vector c : = (ci)i∈N of cost functions ci : P → R+
0 ∪ {∞} describes

the agents’ learning technologies where ci(P ) is agent i’s non-negative (and

possibly infinite) cost to learn P . Staying ignorant is free in the sense that

ci({Ω, ∅}) = 0 is assumed to hold for all i. Adopt the understanding that

ω̂ih not only denotes agent i’s value of house h in state ω̂ but also the event

{ω | ωih = ω̂ih} that agent i values house h at ω̂ih. Define ζ i as the algebra on

Ω which is generated by all events ω̂ih. It is assumed that no agent can learn

anything about any other agent’s preferences: formally ci(P ) =∞ holds for

all P 6⊂ ζ i. An agent who has acquired the partition P knows the event P (ω)

at state ω. The partition according to which agent i knows his value for each

of the houses is called P
i
.3

To ensure the comparability of the present model to standard housing

models, I impose two further assumptions: First, the agents’ preferences are

drawn independently, formally π(Ei∩Ej) = π(Ei)π(Ej) holds for all Ei ∈ ζ i
and Ej ∈ ζj. The assumption implies that agent i’ posterior value of a house

does not change if he finds out what some other agent knows. To see this

define ωih(E) as agent i’s expected value of house h when he knows event E.

Observe that ωih(E) = ωih(E ∩ G) holds when E ∈ ζ i and G = ∩j 6=iGj with

Gj ∈ ζj, since

ωih(E ∩G) =

∑
ωi
h⊂E

π(ωih ∩G)ωih

π(E ∩G)
=

∑
ωi
h⊂E

π(ωih)π(G)ωih

π(E)π(G)
= ωih(E),

3So P
i

is the finest partition P with the feature P ⊂ ζi, P i(ω) = ωi holds for all ω ∈ Ω.
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where the crucial equality follows from the independence of any any event ωih
and G.4 Without the assumption of independence some agents might find it

beneficial to delegate their decision, there would also be scope for signalling.

Second, to avoid the difficulties that arise in housing problems with in-

differences, I assume that any agent i who is faced with the non-strategic

problem of choosing a house from some subset S ⊂ H has a unique optimal

plan of action which consists of a partition P together with a choice function

C : Ω → S which prescribes a unique choice from S for every cell of P , so

C(ω) = C(ω′) for ω ∈ P (ω′). The condition is satisfied if ωih(E) 6= ωig(E)

holds for any h 6= g and any E that is an element of a partition P with

ci(P ) < ∞ and if for every S ⊂ H there is a unique P that maximizes∑
E∈P maxh∈S ω

i
h(E) − ci(P )5. The two assumptions of independence and

no-indifference imply that the following results are indeed driven by the novel

assumption of endogenous information acquisition. The outstanding role of

serial dictatorship cannot be attributed to an appearance of weak or corre-

lated preferences under the guise of endogenous information acquisition. The

two assumptions are discussed at length in Section 5.

The vector H = (I,H,Ω, π, c) of sets of agents and houses I and H, a

state space Ω, a probability distribution π on Ω and cost functions c which

all satisfy the assumptions discussed above constitutes a housing problem

(with endogenous information acquisition).

A matching is a bijection µ : I → H. The set of all matchings is

denoted byM. A submatching σ : Iσ → Hσ is a bijection with Iσ ⊂ I and

Hσ ⊂ H. The set of all all submatchings that are not matchings is denoted

byM. For any particular submatching σ ∈M the sets of unmatched agents

and houses are denoted by Iσ and Hσ. The house assigned to agent i under

the submatching σ is σ(i). Submatchings σ are also interpreted as sets,

where a pair (i, h) belongs to the set σ if and only if σ(i) = h under the

interpretation of σ as a function.

An outcome function f : Ω→M×Pn maps any state ω to a matching

µ[ω] ∈M and profile of information partitions (P i[ω])i∈I . Outcome functions

4Note that any E ∈ ζi can be represented as the the union of events ωih ⊂ E.
5Since P 6⊂ ζi implies ci(P ) =∞ agent i’s unique utility maximizing partition P must

be ζi-measurable
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describe the different matchings achieved and the learning undertaken at

all states ω. At ω agent i knows the event P i[ω](ω) when he acquires the

partition P i[ω] as prescribed by the outcome function f . The ex-ante utility

U i of agent i associated with a given outcome function f : Ω →M×Pn is

defined as

U i(f) =
∑
ω∈Ω

π(ω)
(
ωiµ[ω](i) − ci(P i[ω])

)
.

One outcome function f is said to (ex-ante Pareto-)dominate another

outcome function f ′ if U i(f) ≥ U i(f ′) holds for all i ∈ I and if U j(f) > U j(f ′)

holds for some j ∈ I.

2.2 Standard Housing Problems

A housing problem H = (I,H,Ω, π, c) is a standard housing problem if Ω

is a singleton. Dropping I and H and omitting π, c which are irrelevant when

Ω is a singleton, I denote a standard housing problem by ω, the profile of

preferences (that is known to occur). In a standard housing problem an agent

i has a unique optimal plan of action for every choice set S ⊂ H if and only

if his preference over any two different houses is strict (ωih 6= ωig for all h 6= g

and i). So in the subset of standard housing problems the no-indifference

condition of the present article is equivalent to the standard condition of

strict preferences. The condition of independently drawn preferences is triv-

ially satisfied in standard housing problems. The set of all standard housing

problems is denoted by Θ: = {ω | ωih 6= ωig for all h 6= g and i}. An out-

come function f : Ω → M× Pn for a standard housing problem maps the

only state ω ∈ Ω to a matching µ[ω] ∈M and the trivial partition {∅,Ω} for

every agent. Within the set of standard housing problems Θ, any outcome

for a particular problem ω can consequently be identified with the matching

µ[ω].

A (direct) mechanism is a function ϕ : Θ → M mapping profiles of

preferences ω ∈ Θ to matchings ϕ(ω) ∈ M. Such a mechanism is con-

sidered strategy-proof if the truthful revelation of preferences is a weakly

dominant strategy. A mechanism is considered non-bossy (as defined by
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Satterthwaite and Sonnenschein [10]) if an agent can only change the alloca-

tion of some other agent if he also changes his own allocation. This implies

that any misreport of preferences that does not change the agent’s own as-

signment does not change anyone else’s assignment. The mechanism ϕ is

considered Pareto-optimal if ϕ(ω) is Pareto-optimal for any ω. Pycia and

Unver [9]’s characterization of the set of all strategy-proof, non-bossy, and

Pareto-optimal mechanisms, which I present in Section 6, crucially simplifies

my proof. First, though, let me define three canonical matching mechanisms

which belong to this set.

According to a simple serial dictatorship, one agent, the first dictator,

is matched to the best house out of H according to his stated preferences.6

Next, another agent, the second dictator, is matched to his most preferred

house out of the remainder, and so forth, until all houses are matched. I

denote a simple serial dictatorship as a direct mechanism by δ : Θ → M.

The simple serial dictatorship in which agent i is the ith dictator is called δ∗.

The reason for the qualifier “simple” arises since path-dependent serial

dictatorships, denoted by γ : Θ → M, also play a role in the present

paper. This type of serial dictatorship generalizes simple serial dictatorships

insofar as that the identity of any current dictator is allowed to depend on

all preceding dictators choices.7

Gale’s top trading cycles, the third canonical mechanism8 starts out

with a matching µ called the initial endowment. Each agent points to the

agent who has been endowed with the house he likes best according to his

stated preferences. At least one cycle forms. All agents in such cycles are

assigned the houses that they point to. The procedure is repeated with the

remaining houses and agents until all houses are assigned.9

6Simple serial dictatorship has been characterized by Svensson [13].
7Path-dependent serial dictatorships where introduced by Papai [8] under the name of

sequential dictatorship.
8This mechanism was first defined by Shapley and Scarf [11], who attribute it to David

Gale.
9These three mechanisms are well defined when any agent has a unique most preferred

house in any set of houses, as is the case for any ω ∈ Θ. If we allow for indifferences the

mechanisms cede to be well-defined.
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2.3 Dynamic Direct Revelation Mechanisms

In this section I define the grand set of mechanisms considered in the present

article together with a list of canonical examples. Let me first argue that the

sequence of preference announcements matters in mechanisms with endoge-

nous information acquisition.

Example 2 Two different dynamic versions of the serial dictatorship δ∗

stand out: the designer might either simultaneously elicit the preferences

of all agents; alternatively the designer might elicit the preferences of all

agents in order of their index i – and thereby allow each agent to tailor his

information acquisition to his actual choice set. To see that this difference

matters, let Hb = (I,H,Ω, π, c) with H = {d, g, k} and three a priori identi-

cal agents. Each agent assigns value 8 or 0 (with probability 1
2
) to house d.

The values of houses g and k are known to be 5 and 2, respectively. Assume

that it costs each agent c = .1 to learn his type. If the designer simulta-

neously elicits preferences, it is worthwhile for agents 1 and 2 to learn their

type. However, if the designer elicits preferences sequentially, then agent 2

will only learn his type if agent 1 did not choose house d. The sequential

mechanism ex-ante Pareto-dominates the mechanism of simultaneous elici-

tation, as the second dictator will not spend the cost c = .1 when learning is

of no consequence to his decision.

In a dynamic (direct) mechanism the designer can fix any order of

the agents’ announcements. A rooted tree t, called a c-tree, describes the

agents’ communication to the designer. The initial node of a c-tree is labeled

with the first agent to declare a preference. The next agent to declare a

preference is allowed to depend on the declaration of the prior agent(s);

branches terminate when all agents have declared their type. The designer

can freely choose the sequencing of announcements as well as the information

sets on the c-tree t. An agent’s information set on a c-tree determines what

he knows about the preceding announcements, when it is his turn to reveal

his type to the designer. The dynamic mechanism induced by the c-tree t,

and the direct mechanism ϕ, is denoted as 〈ϕ, t〉.
Applying the dynamic mechanism 〈ϕ, t〉 to a housing problem H one ob-

tains the extensive form game 〈ϕ, t〉(H). This game starts with a chance
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node in which nature draws the state ω from π. Agents get to declare their

preferences in the order determined by the c-tree t. Any agent gets to choose

an information partition right before the node in which he declares his pref-

erence. The information sets in the extensive form game reflect the privacy

of learning as well as the revelations implied by the c-tree t. Agent i’s utility

in an end node is calculated as the difference between his value of the house

he is assigned and the learning cost he incurred on the path to the node.

Of course, in many contexts, sequential learning might be impractical.

This is the case when learning takes up much time or when there is a large

number of I therefore also study the class of mechanisms in which the designer

simultaneously elicits all preferences. Formally a mechanism 〈ϕ, ts〉 is defined

as a simultaneous (direct) mechanism where ts is the c-tree according

to which no agent knows anything about the other agents’ announcements

when he announces his own preferences.

A sequential simple serial dictatorship or 3S dictatorship is defined

as the dynamic direct revelation mechanism 〈δ, tδ〉, where tδ is the c-tree,

according to which any dictator knows the preference-announcement of all

preceding dictators when it is his turn to announce his preferences. When

considering the simple serial dictatorship δ∗ (where agent i is the ith dictator)

I let tδ
∗

= t∗. Analogously a dynamic direct revelation mechanism is a

sequential path-dependent serial dictatorship 〈γ, tγ〉 where tγ is such

that agents publicly announce their preferences in the sequence in which they

become dictators.

2.4 Equilibria and Implementation

A (mixed) strategy profile in 〈ϕ, t〉(H) is considered an equilibrium if it is

a perfect Bayesian equilibrium and if agents truthfully announce their types

in the sense that any agent i reveals his (true) ex post preferences ωi to the

designer. In the standard case there exists at most one equilibrium. In that

case each agent knows his ranking ωi, the question is just whether telling it

is a best reply. My next example demonstrates, that matching mechanisms

with endogenous information acquisition might have multiple equilibria.

Example 3 Consider a housing problem H = (I,H,Ω, π, c) as follows: n =
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2, H = {k, g} and Ω has 4 equiprobable states. Agent 1’s valuation of house

k might either be 8 or 0; he is sure to value house g at 3. Conversely, agent

2’s valuation of house g might either be 8 or 0; he is sure to value house

k at 3. It costs each agent .1 to find out his preference. Let ϕ be Gale’s

top trading cycles mechanism where agent 1 starts out owning house k. The

game 〈ϕ, ts〉(H) (in which both agents need to announce their rankings si-

multaneously) has two equilibria. According to the first, neither agent learns

anything and always points to the house he was endowed with. According

to the other, both agents learn their true values and point to the house they

find to be of higher value. Note that in either one of these equilibria the

agents tell the truth.

Every strategy profile in the game 〈ϕ, t〉(H) is associated with an outcome

function f : Ω→M×Pn in the sense that the matching µ[ω] and the set of

partitions (P i[ω])i∈I) (so f(ω) = (µ[ω], (P i[ω])i∈I)) obtain at state ω when

agents follow the strategy profile. A mechanism 〈ϕ, t〉 is said to implement

a vector of ex-ante utilities (U1(f); · · · ;Un(f)) in the housing problem H
if 〈ϕ, t〉(H) has an equilibrium strategy profile that is associated with the

outcome function f . If all utility vectors implemented by 〈ϕ, t〉(H) domi-

nate all utility vectors implemented by a different dynamic direct revelation

mechanism 〈ϕ′, t′〉 in H, then 〈ϕ, t〉 is said to (ex-ante Pareto-)dominate

〈ϕ′, t′〉 at H, which is denoted by 〈ϕ, t〉(H) �∗ 〈ϕ′, t′〉(H). I say that a mech-

anism 〈ϕ, t〉 is (ex-ante) Pareto-optimal in a set of mechanisms, if this set

contains no alternative mechanism 〈ϕ′, t′〉 such that 〈ϕ′, t′〉(H) �∗ 〈ϕ, t〉(H)

holds for some housing problems H.

Note that the set of Pareto optimal mechanisms might be empty. This is

the case if for every 〈ϕ, t〉 there exists an alternative mechanism 〈ϕ′, t′〉 and a

housing problem H such that 〈ϕ′, t′〉(H) �∗ 〈ϕ, t〉(H). Restricted to the set

of standard housing problems Θ the present notion of a Pareto optimal mech-

anism coincides with the standard notion given in Section 2.2. To see this

consider a direct mechanism ϕ : Θ→M which is Pareto optimal according

to the notion just defined.10 This implies that there is not alternative mech-

anism ϕ′ and no housing problem ω such that the matching ϕ′(ω) Pareto

10I omit t here, which does not matter given that no agent can learn in a standard

problem.
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dominates the matching ϕ(ω). But ϕ′ might be any mechanism, including a

constant one that maps all ω to the same matching µ. So ϕ is Pareto optimal

according to the notion defined here if and only if there exists no profile of

preferences ω such that ϕ(ω) is dominated by some matching µ. In sum ϕ

satisfies the standard definition of a Pareto optimal mechanism.

3 The Uniqueness of Serial Dictatorship

It is the goal of this article to characterize all strategy-proof and non-bossy

mechanisms ϕ with c-trees t such that the dynamic direct revelation mech-

anism 〈ϕ, t〉 is ex-ante Pareto-optimal. The next two theorems show that

simple serial dictatorship is the only such mechanism - whether one allows

for all dynamic direct revelation mechanisms or only for the simultaneous

ones.

Theorem 1 A mechanism 〈ϕ◦, t◦〉 is Pareto optimal in the set of all mech-

anisms 〈ϕ, t〉 with ϕ non-bossy and strategy proof if and only if 〈ϕ◦, t◦〉 is a

3S dictatorship.

A very similar observation holds when one restricts attention to the set

of simultaneous matching mechanisms.

Theorem 2 A simultaneous mechanism 〈ϕ◦, ts〉 is Pareto optimal in the set

of all simultaneous mechanisms 〈ϕ, ts〉 with ϕ non-bossy and strategy proof if

and only if ϕ◦ is a simple serial dictatorship.

Serial dictatorships have another outstanding welfare property: any mech-

anism that is not a simple serial dictatorship is dominated by a path-dependent

serial dictatorship in some housing problem. Since this observation holds for

dynamic as well as simultaneous mechanisms, I state only one remark cover-

ing both cases.

Remark 1 Fix any mechanism in the set of dynamic [simultaneous], strat-

egy proof, non-bossy direct revelation mechanisms which is not a 3S [simul-

taneous simple serial] dictatorship. There exists a housing problem in which
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this mechanism is dominated by a dynamic [simultaneous] path-dependent

serial dictatorship.

So for any strategy proof and non-bossy ϕ which is not a simple serial

dictatorship and any c-tree t there exist a path-dependent serial dictatorships

γ, γ′ and housing problems H,H′ such that 〈γ, tγ〉 dominates 〈ϕ, t〉 at H
and 〈γ′, ts〉 dominates 〈ϕ, ts〉 at H′. In the Appendix I show that Remark

1 cannot be strengthened by replacing path-dependent with simple serial

dictatorships. The next section contains two examples with n ≤ 3 which do

not just illustrate the two theorems, they serve as the backbone of the proof.

4 Housing Problems With At Most 3 Agents

With just two agents there is only one strategy-proof and Pareto-optimal

mechanism other than serial dictatorship: Gale’s top trading cycles mecha-

nism. Let us revisit Example 1 to see that the “only if” part of Theorems 1

and 2 as well as Remark 1 hold for n = 2:

Example 4 Let n = 2, H = {g, k}. Fix 〈ϕ, t〉 with ϕ Gale’s top trading

cycles mechanism in which agents 1 and 2 start out owning house k and g,

respectively. According to t, at least one agent, say agent 1, has to declare

his preferences before knowing the preference of the other. Reconsider the

housing problem defined in Example 1, which can now be defined succinctly

as Ha = (I,H,Ω, π, c) with n = 2, H = {k, g}, π(ωik = 8) = π(ωik = 0) = 1
2

and π(ωig = 2) = 1 for i = 1, 2, c1(P
1
) = .8 and c2(P

2
) = 0. As argued in the

introduction, agent 1’s costs outweigh his benefit of learning; since agent 1

ex-ante prefers house k there is no exchange in equilibrium, yielding the ex-

ante utility profile (4, 2). Conversely, if agent 1 is the first dictator, learning

is worthwhile for him; in this case, agent 2 has a chance to obtain his ex-ante

preferred house g, the ex-ante utility profile implemented by 〈δ∗, t∗〉(H) is

(4.2; 3).

There was only one reference to the sequence of announcements: accord-

ing to t, (at least) one agent has to announce his preferences before knowing

the preferences of the other. As this holds for simultaneous and sequential
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versions of the mechanism and as the outcome of serial dictatorship depends

on only one announcement when there are just two agents, the above shows

the “only if” part of Theorems 1 and 2 for n = 2. Since any simple serial

dictatorship is a path-dependent one, Example 4 also proves Remark 1 for

the case that n = 2.

To see that the “if” part of Theorem 1 holds when n = 2, I fix an

arbitrary housing problem H with H = {g, k}. I first show that agent 1

(weakly) prefers any equilibrium of 〈δ∗, t∗〉(H) to any equilibrium of any

other mechanism 〈ϕ, t〉(H). As the first dictator agent 1’s obtains the utility

U∗ : = max
P⊂ζ1

(∑
E∈P

π(E) max
h∈{g,k}

ω1
h(E)− c1(P )

)
≥ max{ω1

g(Ω), ω1
k(Ω)}

where the lower bound represents the utility of not learning and then choosing

the ex-ante preferred house.

Now fix an arbitrary strategy for agent 2 in 〈ϕ, t〉(H). Observe that

this strategy might determine whether agent 1 gets to choose from {g, k} or

whether he is matched to g or k. Abusing notation, I denote the event that

agent 1 gets to choose from S given agent 2’s fixed equilibrium strategy by

S as well. Any such event must be an element of ζ2, given that these are the

only events on which agent 2 can condition his strategy.11 Agent 2’s strategy

implies a distribution over agent 1’s choice sets S ∈
{
{g, k}, {g}, {k}

}
which

is denoted by ρ.

Since the agents’ preferences are independently drawn the expected value

that agent 1 assigns to any house does not vary with his knowledge of

any event in ζ2. Under 〈ϕ, t〉 agent 1 might have to declare (and there-

fore learn) his preferences before he knows whether he has any choice (S =

{g, k}) or not (S = {g} or {k}). Since agent 1’s utility can only increase

when he may condition his choice to learn on the event S, the expression

ρ({g, k})U∗ + ρ({g})ω1
g(Ω) + ρ({k})ω1

k(Ω) ≤ U∗ yields an upper bound on

agent 1’s expected utility in 〈ϕ, t〉(H) for the fixed strategy of agent 2.

Consequently, for 〈ϕ, t〉(H) to have an equilibrium that Pareto dominates

the equilibria of 〈δ∗, t∗〉(H), agent 1 must obtain the utility U∗ under the

equilibrium of 〈ϕ, t〉(H). However the no-indifference condition implies that

11It was assumed that c2(P ) =∞ for P 6⊂ ζ2.
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maxP⊂ζ1
∑

E∈P π(E) maxh∈{g,k} ω
1
h(E) − c1(P ) is uniquely maximized by a

partition P ∗ and a function µ[·](1) : Ω → {g, k} which maps every state

ω to a house µ[ω](1) for agent 1. This uniqueness implies that agent 1’s

matches must also be described by µ[·](1) for agent 1 to obtain U∗ under the

equilibrium of 〈ϕ, t〉(H). Since there are only two agents there is no leeway

with respect to agent 2’s matches. For agent 1 to obtain utility U∗ in 〈ϕ, t〉(H)

agent 2 must - in every state ω - be matched with the house µ[ω](2) ∈
{g, k} that is not µ[ω](1). Since the function µ[·](2) also describes agent 2’s

matches under the equilibrium of 〈δ∗, t∗〉(H), we can conclude that 〈ϕ, t〉(H)

cannot have an equilibrium that Pareto dominates the unique equilibrium of

〈δ∗, t∗〉(H).

The “if” part of Theorem 2 follows form the same arguments as the

announcement of a single agent (the first dictator) determines the outcome of

a serial dictatorship with just two agents, so 〈δ∗, t∗〉 and 〈δ∗, ts〉 are identical

for n = 2. The treatment of the case that n = 2 already contains most core

arguments of the proof for any n. However, when n = 2 all serial dictatorships

are simple. Therefore some example with n > 2 is in order to preview the

arguments pertaining to path-dependent serial dictatorships. In the next

example I show that with three agents path-dependent serial dictatorships

can be dominated by other path-dependent serial dictatorships.

Example 5 Take n = 3 and H = {g, k, d}. Consider the sequential path-

dependent serial dictatorship 〈γ, tγ〉 with agent 1 as the first dictator. If he

chooses g, then agent 2 gets to choose from {k, d}; otherwise, agent 3 becomes

the next dictator. Define the housing problem Hc, such that agent 1’s utility

vector for the three houses is either (2, 1, 0) or (0, 2, 1) - each with probability
1
2
.12 Agent 1 faces a cost of .1 to learn his type. The utility vectors of agent

2 and 3 are known to be ω2 = (10, 2, 0) and ω3 = (2, 10, 0), respectively.

The unique equilibrium of 〈γ, tγ〉(Hc) yields the vector (1.9; 1; 1) of expected

utilities to agents 1,2 and 3.

Now consider the alternative sequential path-dependent serial dictator-

ship 〈γ′, tγ′〉 which also starts with agent 1 as the first dictator, but then

12Note that the a correlation of values of houses does not conflict with the indepen-

dence assumption which only requires that the preferences of different agents are drawn

independently.
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continues with 3 as the next dictator if agent 1 chooses g, and agent 2 other-

wise. The vector of ex-ante utilities implemented by 〈γ′, tγ′〉(Hc) is (1.9; 5; 5).

The crucial difference between 〈γ, tγ〉(Hc) and 〈γ′, tγ′〉(Hc) is that under the

latter agents 2 and 3 get to choose from sets where they face a utility dif-

ferential of 10. Conversely under 〈γ, tγ〉(Hc) agents 2 and 3 get to choose

only in situations of relatively minor relevance: when either one is called to

choose he faces a utility differential of just two.

Since there is only one agent in Hc who has any information to acquire,

the timing of announcements does not matter in Example 5; the equilibrium

sets of the games 〈ϕ, t〉(Hc) and 〈ϕ, ts〉(Hc) are identical for any t. Any path-

dependent serial dictatorship with just three agents that is not a simple serial

dictatorship is – up to renaming – identical to γ. In sum, the example shows

the “only if” part of Theorems 1 and 2 as well as Remark 1 are true when

one only considers the case of path-dependent serial dictatorships and n = 3.

5 Limitations and Extensions

The “if” part of Theorem 1 states that 3S-dictatorship is Pareto optimal.

The “only if” part together with Remark 1 state that for each mechanism

〈ϕ, t〉 that is not a 3S-dictatorship there exists a housing problem H and a

path-dependent serial dictatorship, such that the latter dominates 〈ϕ, t〉 at

the housing problem H. So the “if” part could be strengthened by showing

that it holds for a yet larger domain of housing problems than the one defined

in Section 2. Conversely the “only if” part (together with Remark 1) could

be strengthened by showing that it holds on a sub-domain. Here I show that

one can not enlarge the domain by much and have the “if” part continue to

hold. On the other hand the “only if” part also holds on a much smaller

domain.

The domain of housing problems could be enlarged by dropping the con-

dition of no-indifference or of independently drawn preferences or by allow-

ing for there to be differently many houses and agents. Dropping the no-

indifference condition is problematic since serial dictatorships cede to be

well-defined when we allow for indifferences: the truthful revelation of pref-

erences need not imply unique choices from sets of houses. To circumvent
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this problem I modify the notion of (path-dependent and simple) serial dic-

tatorship in housing problems with indifferences. Letting m be the number

of some dictator’s most preferred houses in the set of houses from which

he is entitled to choose, I require that this dictator faces a probability of
1
m

to be matched to any one of these m houses. Without indifferences this

notion of serial dictatorship reduces to the standard notion. The following

example13 shows that 3S dictatorship can be dominated when we drop the

no-indifference condition.

Example 6 Consider a housing problem H = (I,H,Ω, π, c) with n = 2 and

H = {k, g}. Let Ω have 4 equiprobable states where each agent’s utility

schedule might either be (1, 2) or (2, 1). Agent 1’s cost of learning his own

preference is 3, agent 2’s is 0. As the first dictator agent 1 optimally stays

ignorant, assigns a value of 1.5 to each house, and consequently obtains

either one of the two houses with probability 1
2
. Facing a probability 1

2
to be

matched to either house, agent 2 also obtains a utility of 1.5. On the other

hand agent 2 as the first dictator chooses the house which gives him a utility

of 2, implying a utility vector of (1.5; 2). So the serial dictatorship with agent

2 moving first dominates the serial dictatorship with agent 1 moving first.

Example 6 shows that serial dictatorship may be dominated by another

mechanism in housing problems in which agents are indifferent between

choices. Agent 1 does not have a unique optimal plan of action for the choice

set H; not learning and choosing k, not learning and choosing g, as well as

any mixture thereof are all optimal. To see that very similar issues arise in

the standard model with indifferences consider a variation of Example 6, in

which agent 1 and 2’s utility schedules are known to be (1.5, 1.5) and (1, 2),

respectively. The serial dictatorship with agent 2 as the first dictator yields

a utility vector of (1.5; 2) and therefore Pareto dominates the other serial

dictatorship which yields a utility vector of (1.5; 1.5), given that agent 1 as

the first dictator is equally likely to be matched to either one of the two -

indifferent - houses.

Ehlers [4] showed that the set of Pareto optimal, strategy proof and

non-bossy mechanisms is empty when the domain of preference profiles in-

13I would like to thank one of the referees for this example.
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cludes indifferences. So we certainly need to impose some condition of no-

indifference on housing problems with endogenous information acquisition

for such mechanisms to exist. Applied to standard housing problems this

no-indifference condition has to imply that preferences over different houses

are strict.

The no-indifference condition defined in Section 5 is not the only one

that satisfies the requirement just mentioned: the strictness of preferences in

standard housing problems is also ensured if no agent is indifferent between

any two houses according to any ω in the support of π . However, Example 6

shows that this alternative condition does not suffice for the existence of a ex-

ante Pareto optimal, strategy proof and non-bossy mechanism.14 The same

example furthermore shows that the alternative condition does not imply

the no-indifference condition I impose. To see that the converse implication

does not hold either, modify the housing problem defined in Example 4 such

that agent 1 is with a small probability indifferent between the two houses,

with the complementary probability his preferences are determined as in the

description of Example 4. Assume furthermore that the acquisition of any

partition according to which agent 1 learns whether he is indifferent or not has

infinite cost. Keep all other aspects of Example 4 fixed. The no-indifference

condition defined in Section 5 holds since agents 1 and 2 each have unique

optimal plans when faced with the choice between house g and k.

Finally observe that, in parallel to the standard case, the no-indifference

condition holds generically. It is violated if an agent who learned some par-

tition at a cost below infinity is ex post indifferent between two houses or

if an agent is indifferent between learning two different partitions when he

faces the problem to choose a house from some set S. Mathematically if

14By Theorem 1 we know that for any mechanism 〈ϕ, t〉 that is not a 3S dictatorship

we can find a housing problem and a mechanism 〈ϕ′, t′〉 such that 〈ϕ, t〉 is dominated by

〈ϕ′, t′〉 at the given housing problem. Now fix any 3S dictatorship 〈δ, tδ〉 and allow for

indifferences. Following Example 6 we can then construct a housing problem H and an

alternative 3S dictatorship 〈δ′, tδ′〉 that dominates 〈δ, tδ〉 at H.
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we consider Rν to be the parameter space15, then the parameters at which

indifferences obtain are defined by a finite set of linear equalities, and thus

form a set of Lebesgue measure 0.

To see that the Pareto optimality of serial dictatorship also fails when we

allow for correlated preferences consider the following example16:

Example 7 Consider a housing problem H = (I,H,Ω, π, c) with n = 2,

H = {g, k}, Ω consisting of two equiprobable states ω̃ and ω̂ with ω̃1 =

(2, 0) = ω̂2, ω̂1 = (0, 4) = ω̃2 and c1(P
1
) = 0.1 and c2(P

2
) = ∞. So agent

1 prefers house g whenever agent 2 prefers house k and vice versa, moreover

while learning is cheap for agent 1 it is prohibitive for agent 2. Agent 2

therefore always likes to cede the choice to agent 1. At the given housing

problem with correlated preferences the serial dictatorship with 2 as the first

dictator is Pareto dominated by the serial dictatorship with agent 1 as the

first dictator (the respective vectors of ex-ante utilities are (2; 2) for the first

kind of serial dictatorship and (2.9; 3) for the second).

There is yet a further problem in environments with correlated prefer-

ences: even simple serial dictatorships need not have truthtelling equilibria

for all c-trees t.17 In sum we can say that the “if” part of Theorem 1 (and

2) fails if we drop the conditions of no-indifference and/or of independence.

While it might be possible to relax these conditions somewhat the search for

the maximal domain of housing problems for which 3S-dictatorship is ex-ante

Pareto optimal goes beyond the scope of this paper. Let me just say that

the case of | I |6=| H | can easily be accommodated. If there are less agents

than houses the proof of the optimality of 3S dictatorship (and the analogous

simultaneous case) goes through unchanged. If there are more agents than

houses we can only allow for some trivial changes: any optimal mechanism

15For a fixed number of states in the space Ω the following parameters need to be

determined to describe an housing problem: a value ωih ∈ R for each agent, each house

and each state, a probability vector π ∈ ∆|Ω| on the state space, a finite set of cost values

ci(P i) ∈ R ∪ {∞}, assigning a cost for every partition P i ⊂ ζi on Ω for every agent i.
16I would like to thank one of the referees for this example.
17An example is available on request.
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has to start out as a serial dictatorship. Once all (real) houses have been

assigned and only dummy-houses remain, we can use any mechanism.

Without stating a result on the minimal domain on which the “only if”

part of Theorems 1 and 2 and Remark 1 are valid, let me argue that these

results also hold on a much smaller domain of housing problems. To this end

restrict the domain of housing problems with the following two additional

conditions. Firstly, any house has at most two different values for each agent,

so ωih ∈ {ωih, ωih} holds for all i, h and all ω ∈ Ω. Secondly, for each agent i

there is at most one nontrivial partition P̃ i 6= {∅,Ω} such that ci(P̃ i) < ∞.

So there does not need to be much uncertainty in the housing problem: it

suffices for each agent i to know that house h is either of some high value

ωih or some low value ωih. Moreover just one informational choice per agent,

either learn P̃ i or remain ignorant ({Ω, ∅}), is sufficient. Since these two

additional restrictions are satisfied by all examples used to prove the “only

if” part of Theorem 1 and 2 as well as Remark 1, these results are also valid

for the restricted domain.

6 The Trading Cycles Mechanism

The set of all strategy-proof, non-bossy, and ex-ante Pareto-optimal direct

revelation mechanisms ϕ has been characterized by Pycia and Unver [9] as

the set of trading cycles mechanisms. In trading cycles mechanisms, just

like in Gale’s top trading cycles mechanism, there is an initial allocation

of all houses to the agents, and assignments are then determined through

trade in cycles. Trading cycles mechanisms generalize Gale’s top trading

cycles mechanism in two ways: First of all, agents can own more than one

house before they leave with their assignment. Once an owner of multiple

houses leaves the mechanism his as of yet unmatched houses are passed on

to the remaining agents via a fixed inheritance rule.18 Secondly, there are

two types of control rights in trading cycles mechanisms. In addition to

ownership which is defined as in Gale’s top trading cycles mechanism, there

is a new form of control called “brokerage”. A broker can exchange the house

18This first difference between Gale’s top trading cycles and the trading cycles mecha-

nism already appears in Papai [7].
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he controls for a different house; however, he may not himself appropriate

the house.

Formally, any trading cycles mechanism ψc,b following Pycia and Un-

ver [9] is defined through a control rights structure (c, b). Such a struc-

ture assigns control rights for any submatching: (c, b) = {(cσ, bσ) | Hσ →
Iσ × (ow, br)}σ∈M with cσ(h) the agent controlling house h and bσ(h) the

type of control at submatching σ (br for brokerage, and ow for ownership).

A control rights structure (c, b) is considered consistent if it satisfies the

following requirements R1-R6, which I take word by word from Pycia and

Unver [9]:

Within-round requirements. Consider any σ ∈M :

(R1) There is at most one brokered house at σ.

(R2) If i is the only unmatched agent at σ, then i owns all unmatched houses

at σ.

(R3) If agent i brokers a house at σ, then i does not own any houses at σ.

Across-round requirements. Consider any submatchings σ, σ′, such that

|σ′| = |σ|+1 and σ ⊂ σ′ ∈M, and any agent i ∈ Iσ′ and any house h ∈ Hσ′ :

(R4) If i owns h at σ then i owns h at σ′.

(R5) Assume that at least two agents from Iσ′ own houses at σ. If i brokers

house h at σ then i brokers h at σ′.

(R6) Assume that at σ agent i controls h and agent i′ ∈ Iσ controls h′ ∈ Hσ.

Then, i′ owns h at σ ∪{(i, h′)}, and if, in addition, i′ brokers h′ at σ but not

at σ′ and i′ ∈ Iσ′ , then i owns h′ at σ′.

The following algorithm establishes the outcome ψc,b(ω) of the trading

cycles mechanism ψc,b at ω, via a finite sequence of rounds r = 1, 2, · · · .
The submatching of agents and houses matched before round r is denoted

by σr−1, with σ0 = ∅. In round r each house h ∈ Hσr−1 points to the agent

who controls it at σr−1. If there exists a broker at σr−1, then he points to

his most preferred house among the ones owned at σr−1. All other agents

point to their most preferred house in Hσr−1 . There exists at least one cycle

of agents and houses pointing to each other. Each agent in each such trading

cycle is matched with the house he is pointing to. The union of σr−1 and
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the newly matched agent-house pairs defines σr. If σr is a matching, the

mechanism terminates.

A submatching σ is reached under [ψc,b, ω] if there exists a round r of

the trading cycles process such that σ = σr; a submatching is reachable

under ψc,b if it is reached under [ψc,b(ω)] for some ω.19 Any submatching σ

that is reached under [ψc,b, ω] must satisfy σ ⊂ ψc,b(ω).

Pycia and Unver [9] show that a direct revelation mechanism ϕ is strategy-

proof, non-bossy and Pareto-optimal if and only if there exists a consistent

control rights structure (c, b) such that ϕ = ψc,b. A discussion of the trad-

ing cycles mechanism goes beyond of the scope of the present paper and

can be found in their paper. The canonical mechanisms introduced at the

end of Section 2.2 can now be represented as special cases of trading cy-

cles mechanisms. Path-dependent serial dictatorships require that for each

reachable σ there exists an iσ such that cσ(h) = iσ for all h ∈ Hσ, simple

serial dictatorships are special cases of path-dependent serial dictatorships

with iσ = iσ′ if | σ |=| σ′ |; a control rights structure (c, b) defines Gale’s

top trading cycles mechanism ψc,b if there exists a matching µ such that

(c∅, b∅)(h) = (µ−1(h), ow) for all h ∈ H.

7 Proofs

To prove that 3S dictatorship cannot be ex-ante Pareto-dominated (“if” part

of Theorem 1) suppose the 3S dictatorhip 〈δ∗, t∗〉 was dominated by some

〈ϕ, t〉 at some housing problem H. Under 〈δ∗, t∗〉(H) agent 1 obtains the

ex-ante utility20

max
P⊂ζ1

(∑
E∈P

π(E) max
h∈H

ωih(E)− c1(P )
)
.

Pick an equilibrium of 〈ϕ, t〉(H) and fix the strategies of agents {2, · · · , n}
19Consider the serial dictatorship δ∗ as an example. Any submatching (1, h) is reachable

under δ∗ since agent 1 as the first dictator is free to appropriate any house. No submatching

(2, h) is reachable since 2 can only be matched under δ∗ once agent 1 has been matched.

Next (1, h∗) is reached under δ∗(ω) if any only ω1
h∗ > ω1

h for all h ∈ H \ {h∗}.
20Note that agent 1 here maximizes over all partitions P ∈ P that are subsets of ζ1.

This is without loss of generality since c1(P ) =∞ holds for any partition P with P 6⊂ ζ1.
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to the ones prescribed by that equilibrium. Agent 1’s problem then consists

in announcing preferences which determine choices from a set {H1, · · · , HL}
of choice sets that are possible according to all other agents’ strategies. The

strategies of agents 2, · · · , n imply a distribution ρ on {H1, · · · , HL}. Let

H l not only denote a choice set for agent 1 but also the event that agent 1

gets to choose from H l. Since the strategies of agents 2 through n determine

the set H l that agent 1 gets to choose from and since any agent i can only

condition his strategy on events in ζ i, any event H l can be represented as

∩ni=2E
l
i for some events El

i ∈ ζ i for all i = 2, · · · , n.

Agent 1 may have to announce (and learn) his preferences before he knows

which choice set he is facing. Since agent 1’s utility can only increase as he

gets to choose a separate information partition for every choice set H l agent

1’s ex-ante utility in the fixed equilibrium of 〈ϕ, t〉(H) cannot be higher than

L∑
l=1

ρ(H l) max
P⊂ζ1

(∑
E∈P

π(E | H l) max
h∈Hl

ω1
h(E ∩H l)− c1(P )

)
=

L∑
l=1

ρ(H l) max
P⊂ζ1

(∑
E∈P

π(E) max
h∈Hl

ω1
h(E)− c1(P )

)
≤

max
P⊂ζ1

(∑
E∈P

π(E) max
h∈H

ω1
h(E)− c1(P )

)
.

The equality holds since all agents’ preferences are drawn independently

which in turn implies that ω1
h(E) = ω1

h(E ∩ H l) holds for all h ∈ H and

all 1 ≤ l ≤ L. The inequality holds since the maximum in some set S ⊂ R
cannot be smaller the maximum in any subset of S. So we can conclude that

agent 1’s utility in the fixed equilibrium of 〈ϕ, t〉(H) is no higher than his

utility as the first dictator.

Due to the no-indifference condition agent 1’s optimal choices as the first

dictator imply a unique match for him for every state ω. These matches can

be described by the function µ[·](1) : Ω → H. For agent 1 to be at least

as well off under the equilibrium of 〈ϕ, t〉(H) as under 〈δ∗, t∗〉(H), the house

that agent 1 is matched with under the equilibrium of 〈ϕ, t〉(H) must also be

described by µ[·](1).

Fixing a house h∗ that agent 1 chooses for some state ω as the first

dictator, compare agent 2’s utility in the event E : = {ω | µ[ω](1) = h∗}
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under serial dictatorship and under the equilibrium of 〈ϕ, t〉(H). Since agent

1 can only base his decision on a partition P ⊂ ζ1, the event E that agent

1 picks h∗ is an element of ζ1. The independence assumption implies that

knowing this event E has no impact on the assessment of any event that is

relevant for the other agents’ decisions, formally π(ωih | E) = π(ωih) holds for

all i ∈ {2, · · · , n} and all h ∈ H. Under serial dictatorship agent 2 gets to

choose from the set H \ {h∗}. He (weakly) prefers this choice to any other

mechanism that matches the houses H \ {h∗} to the agents {2, · · · , n}. This

preference follows the same arguments given for agent 1’s preference to be

the first dictator. Since h∗ was chosen arbitrarily these observations hold for

any possible choice by agent 1 as the first dictator.

We can conclude that conditioning on agent 1 being at least as well off as

the first dictator in 〈ϕ, t〉(H) agent 2 cannot be made any better off under

〈ϕ, t〉(H) than under 〈δ∗, t∗〉(H). The claim then follows by an inductive

application of these arguments to all consecutive dictators. The “if” part of

Theorem 2 can be shown using a minor modification of the above arguments.

I postpone this proof to the Appendix.

The proof of the “only if” part of Theorem 1 together with Remark 1

starts with the observation that for any mechanisms 〈ϕ◦, t◦〉 to be Pareto op-

timal in the sets of dynamic mechanisms, the direct revelation mechanism ϕ◦

must itself be Pareto optimal. Otherwise 〈ϕ◦, t◦〉 is dominated by some con-

stant mechanism at some standard housing problem ω. Pycia and Unver’s [9]

characterization then implies that ϕ◦ can be represented as a trading cycles

mechanism ψc,b. I subdivide the set of dynamic direct mechanisms 〈ψc,b, t〉
that are not 3S dictatorships into three categories: I) ψc,b is not a path-

dependent serial dictatorship, II) ψc,b is a path-dependent serial dictatorship

without being a simple serial dictatorship, III) ψc,b is a simple serial dictator-

ship δ, but t is not equal to tδ. Lemmas 1, 3, and 4 then show that the “only

if” part of Theorem 1 holds restricted to mechanisms belonging to category

I), II), and III) respectively. All proofs can be found in the Appendix.

Lemma 1 Fix any trading cycles mechanism ψc,b that is not a path-dependent

serial dictatorship and any c-tree t. There exists a housing problem HA and

a simple serial dictatorship δ such that 〈ψc,b, t〉 is dominated by 〈δ, tδ〉 at HA.
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The proof of this Lemma for the case of n = 2 is contained in Example

1, that demonstrates the domination of Gale’s top trading cycles by a serial

dictatorship in some housing problems with two agents. To extend this idea

of proof to Lemma 1 (for any n), situations similar to Gale’s top trading cycles

with just two agents need to be identified in any trading cycles mechanism

ψc,b, that is not a path dependent serial dictatorship. Lemma 2 shows that

any such ψc,b has at least two owners at some reachable submatching.

Lemma 2 In any trading cycles mechanism ψc,b that is not a path-dependent

serial dictatorship exists a reachable submatching σ∗ and two houses g, k such

that cσ∗(g) 6= cσ∗(k) and bσ∗(g) = bσ∗(k) = ow.

The preceding Lemma allows me to prove Lemma 1 by embedding Ex-

ample 1 into a housing problem with n > 3 agents. Fix any ψc,b that is not

a path dependent serial dictatorship, by Lemma 2 ψc,b must have a reach-

able submatching σ∗ with two owners, say 1 and 2 who respectively own two

houses, say g and k. Restricted to agents 1 and 2 and houses g and k, let

HA be identical to the problem defined in Example 1. The preferences of all

other agents are known and σ∗ is reached in all equilibria of 〈ψc,b, t〉(HA).

Once σ∗ is reached we face a housing problem that is strategically identical

to Example 1; consequently the mechanism 〈ψc,b, t〉 is dominated by a 3S dic-

tatorship at HA. The next two Lemmas state the “only if” part of Theorem

1 and Remark 1 for the categories II) and III).

Lemma 3 Fix any path-dependent serial dictatorship γ that is not a serial

dictatorship and any c-tree t. There exists a housing problem HC and a path-

dependent serial dictatorship γ′ such that 〈γ, t〉 is dominated by 〈γ′, tγ′〉 at

HC.

Lemma 4 Fix a serial dictatorship δ together with a c-tree t 6= tδ. There

exists a housing problem HB such that the sequential serial dictatorship 〈δ, t〉
is dominated by the 3S dictatorship 〈δ, tδ〉 at HB.

Lemmas 3 and 4 were proven by Examples 5 and 2, respectively, for the

case of n = 3. The proof of these Lemmas for larger n consists in embedding

these examples into housing problems with n houses and agents. Jointly
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Lemmas 2 through 4 constitute the proof of the “only if” part of Theorem

1 and the relevant portion of Remark 1: they show that for any conceivable

deviation from 3S dictatorship there exists a housing problem such that some

path-dependent serial dictatorship dominates that mechanism at this housing

problem.

Some tweaking of the preceding proof suffices to show the “only if” part

of Theorem 2 (and the relevant portion of Remark 1). The reason is that the

sequentiality of announcements neither matters for the arguments brought

forward with respect to Examples 4 and 5, nor for their embedding in larger

housing problems. The housing problems H chosen to prove Lemmas 1 and

3 are defined such that at most one agent learns in any of the equilibria that

are relevant for the proofs. But any equilibrium of a game 〈ϕ, t〉(H) in which

at most one agent learns is an equilibrium of the game 〈ϕ, ts〉(H), implying

that some minor translation work is needed to make the proof of Theorem 1

applicable to Theorem 2; the details can be found in the Appendix.

8 Conclusion

If one allows for endogenous information acquisition in housing problems,

simple serial dictatorships stand out from the large set of strategy-proof, non-

bossy and Pareto-optimal mechanisms. Whether one looks at mechanisms

that dynamically elicit preferences or only at the subset of mechanisms in

which preferences are elicited simultaneously: simple serial dictatorships are

the only ex-ante Pareto-optimal mechanisms.

Within the set of strategy-proof and non-bossy mechanisms, serial dicta-

torships are unique in the sense that they always provide optimal learning

incentives. In a 3S dictatorship each agent knows his choice set when it is his

turn to learn and choose. Agents can therefore perfectly tailor their learn-

ing to fit the questions at stake. Example 1 shows that this is not the case

for Gale’s top trading cycles mechanism with just two agents: in this case

one agent, say agent 1, needs to decide what to learn when he only knows

the distribution over his possible choice sets. That example was constructed

such that this agent avoids learning and therefore refuses any exchange. In

addition, agent 2 would rather award agent 1 dictator rights, to get agent
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1 to learn, than to keep the house he is initially endowed with. The main

argument of the proof was that any strategy-proof, non-bossy and Pareto-

optimal direct choice mechanism that is not a serial dictatorship in a sense

embeds Gale’s top trading cycles mechanism with just two agents.

Abdulkadiroglu and Sonmez [1] show that serial dictatorship with the

order of dictators randomly drawn from a uniform distribution is equivalent

to Gale’s top trading cycles mechanism with the endowment drawn from a

uniform distribution. To see that this equivalence result does not hold for the

case of endogenous information acquisition, reconsider the housing problem

Ha defined and discussed in Example 1. Suppose each agent is assigned

each of the roles (first or second dictator, and owner of g or k, respectively)

with probability 1
2
. The agents get to know the role they are assigned before

they decide wether to acquire information about the houses. The expected

utility profiles for the two different serial dictatorships are (3, 5) and (4.2, 3),

whereas for Gale’s top trading cycles mechanism they are (3, 5) and (4, 2).

So, the vector of expected utilities for serial dictatorship with a random

order of dictators and for Gale’s top trading cycles mechanism with random

endowments are 1
2
(3; 5)+ 1

2
(4.2; 3) = (3.6; 4) and 1

2
(3; 5)+ 1

2
(4; 2) = (3.5; 3.5).

We can conclude that randomization of serial dictatorship Pareto dominates

the randomization of Gale’s top trading cycles in the present example.

There is another question relating to random matching mechanisms: could

sequential serial dictatorships be replaced by random matching mechanisms

in Remark 1? Example 5 suggests that this is not possible. Recall the ar-

guments brought forward to show that agent 1 would have to be the first

dictator in any mechanism that dominates the path-dependent serial dicta-

torship of Example 5. Applying the same arguments to the present case we

obtain that agent 1 would have to obtain the same matches as he does as

the first dictator in any dominating random matching mechanism. So the

randomization can only concern agents 2 and 3. But it is preferable that

agents 2 and 3 are not randomly assigned to choose from the set that re-

mains after agent 1 appropriated a house. For each agent there is one set

in which his choice matters much too him (high utility differential between

the remaining houses) and another set in which his choice matters less (low

utility differential between the remaining houses).
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It could also be interesting to study ex-ante Pareto optimality without the

assumption of endogenous learning. This study could be couched in a version

of the model considered here with ci(P ) = 0 for any partition P containing

only elements E ∈ ζ i, meaning that agents face no cost of learning their own

types. Observe that the cost of learning in Example 5 played no role, so

the argument that any path-dependent serial dictatorship is dominated by

another path-dependent serial dictatorship for some housing problem H also

applies to this special case.

Example 5 can be re-interpreted as an illustration of conflict between

bossiness and ex-ante Pareto optimality. To see this, change the mechanism

γ defined in that example to a very similar type of bossy serial dictatorship

in which the identity of the second dictator does not depend on whether

agent 1 chooses house g or k, but rather on whether he ranks house d at

the bottom or not. Say agent 2 becomes the second dictator if and only

if agent 1 ranks house d at the bottom. This is a bossy mechanism, since

agent 1’s assignment does not change when announcing either (2, 1, 0) or

(2, 0, 1). However, the assignments to the following two dictators will vary

with agent 1’s announcement if their preferences are aligned. Now observe

that for Hc the housing problem given in Example 5 this bossy mechanism is

essentially identical to the path-dependent serial dictatorship defined there:

Hc is defined such that agent 1 chooses house g if and only if he ranks house

d lowest. Consequently, for Hc the given form of bossy serial dictatorship is

dominated by the alternative path-dependent serial dictatorship γ′ defined in

the same example. This is but one example, it is not known whether ex-ante

Pareto optimality generally conflicts with bossiness.

Finally let me say that a relaxation of the restrictions I imposed on the

domain of housing problems might lead to a wealth of interesting results on

matching with endogenous information acquisition. One stylized fact about

matching mechanisms used in practice is that they often do not allow the

participants to submit complete rankings, instead they only permit short

lists of a few top choices. Maybe such mechanisms fare better than classical

matching mechanisms in housing problems in which agents are indifferent

over all “ex-ante unknown” objects. So a theory of matching with endoge-

nous information acquisition and ex-ante indifference could explain why such
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mechanisms are so common in practical applications. Alternatively, a theory

of matching problems under endogenous information acquisition with corre-

lated values could serve to analyze (and possibly optimize) the institutions

through which agents share information before submitting their preferences

to matching mechanisms.

9 Appendix

Some further definitions and preliminary observations on trading cycles mech-

anisms are needed for the upcoming proofs. For any fixed a trading cycles

mechanism ψc,b and a submatching σ∗ the mechanism ψc
′,b′ defined through

c′σ = cσ∗∪σ and b′σ = bσ∗∪σ for all submtachings σ with Iσ ⊂ Iσ∗ andHσ ⊂ Hσ∗

is called the submechanism of ψc,b at σ∗. This mechanism matches the

agents in Iσ∗ to the houses in Hσ∗ . It is routine to check that a submecha-

nism of a trading cycles mechanism is itself a trading cycles mechanism.

Pycia and Unver’s [9] theorem states that any Pareto optimal, strategy

proof and non-bossy mechanism ϕ can be represented as a trading cycles

mechanism ψc,b. This representation is not unique: the requirement that any

(c, b) specifies control rights for all submatchingsM whereas only the reach-

able submatchings matter for the determination of matchings ψc,b(ω). In that

vein, any (c, b) with (cσ, bσ)(h) = (i, ow) for all σ with Iσ = {1, 2, · · · , i− 1}
defines the serial dictatorship ψc,b = δ∗, no matter how we specify (cσ, bσ)

for any other σ (say for example σ = (2, h)). There are yet more types of

multiple representations as shown in the following Lemma:

Lemma 5 Take any control rights structure (c, b) and define an alternative

control rights structure (c∗, b∗) as follows. If there exists a house g ∈ Hσ

and an agent i∗ ∈ Hσ such that bσ(g) = br and (cσ, bσ)(h) = (i∗, ow) for all

h ∈ Hσ \ {g} then let (c∗σ, b
∗
σ)(h) = (i∗, ow) for all h ∈ Hσ, otherwise let

(cσ, bσ) = (c∗σ, b
∗
σ). The control rights structures (c, b) and (c∗, b∗) describe

the same matching mechanism: ψc,b = ψc
∗,b∗.

Proof First observe that c∗, b∗ satisfies Pycia and Unver’s [9] (R1)-(R6), so

ψc
∗,b∗ is indeed a trading cycles mechanism. To see that ψc,b(ω) = ψc

∗,b∗(ω)
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holds for all states, fix an arbitrary ω. I show by induction that any sub-

matching σ which reached under [ψc,b, ω] must also be reached under [ψc
∗,b∗ , ω].

Of course, ∅ is reached under both. Assume that σ∗ is reached under [ψc,b, ω]

as well as under [ψc
∗,b∗ , ω]. If (cσ∗ , bσ∗) = (c∗σ∗ , b

∗
σ∗) then both mechanisms

prescribe the same ownership at σ∗, and both reach the same σ′. So suppose

we had (cσ∗ , bσ∗) 6= (c∗σ∗ , b
∗
σ∗) and let σ′ be the next submatching reached

after σ∗ in [ψc,b, ω]. Since (cσ∗ , bσ∗) 6= (c∗σ∗ , b
∗
σ∗) there is exactly one owner,

say i∗ and one broker, say j at σ∗ under ψc,b, let g be the brokered house.

So we either have σ′ = σ∗ ∪ {(i∗, h)} or σ′ = σ∗ ∪ {(i∗, g), (j, h)} for some

h ∈ Hσ∗ \ {g}.
In either case agent i∗ is matched with his most preferred house in Hσ∗ .

As the owner of all these houses under (c∗, b∗) at σ∗ agent i∗ appropriates

the same house, meaning that σ′ is reached after σ∗ under [ψc
∗,b∗ , ω] in the

first case. In the second case Pycia and Unver’s [9] (R6) implies that agent

j becomes the sole owner of all houses at σ∗ ∪ {(i∗, g)}. The fact that j

points to h at σ∗ under [ψc,b, ω] implies that j prefers h to all other houses in

Hσ∗ \{g}, meaning that he chooses h at σ∗∪{(i∗, g)}. So also in this last case

σ′ is reached under [ψc
∗,b∗ , ω]. Since ψc,b(ω) is reached under [ψc,b, ω] it must

also be reached under [ψc
∗,b∗ , ω]. Since any mechanism reaches exactly one

matching for a fixed profile of preferences, we can conclude that ψc,b(ω) =

ψc
∗,b∗(ω) holds as desired. �

The proof of Lemma 2 follows immediately from this Lemma:

Proof of Lemma 2: Take any control rights structure (c, b) such that

there is never more than one owner at any given σ. Define (c∗, b∗) as in

Lemma 5 so that ψc,b = ψc
∗,b∗ . The assumption that there is never more

than one owner at any given σ implies that ψc
∗,b∗ is a path-dependent serial

dictatorship. �

Proof of Lemma 1: Lemma 2 implies that the set of reachable sub-

matchings σ such that cσ(h) 6= cσ(d) with bσ(h) = bσ(d) = ow for some

h, d ∈ Hσ is non-empty. Let σ∗ be minimal in this set. Assume w.l.o.g that

(cσ∗ , bσ∗)(k) = (1, ow) and (cσ∗ , bσ∗)(g) = (2, ow) for houses k, g ∈ Hσ∗ , that

there exists a sole owner iσ = cσ(Hσ) at any reachable σ ( σ∗, and that
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that 1 has to announce his preferences before he learns the announcement of

agent 2 according to the c-tree t.

Define the housing problem HA as follows. Fix a submatching σ′ such

that Iσ′ = Iσ∗ \ {1, 2} and Hσ′ = Hσ∗ \ {k, g}. The preferences of all agents

i 6∈ {1, 2} are known. For agents i ∈ Iσ∗ ωiσ∗(i) = 1 ≥ ωih holds for all h ∈ H;

for agents i ∈ Iσ′ ωik > ωig > ωiσ′(i) = 1 > ωih holds for all h ∈ H \{g, k, σ′(i)}.
The values 0 > ωih that agents i = 1, 2 assign to houses h other than g and

k are known. Restricted to agents 1,2 and houses k, g, the housing problem

HA is identical to the housing problem Ha as defined in Example 4.

No agent learns in the unique equilibrium of 〈ψc,b, t〉(HA). To see this I

show first that the matching µ with σ∗ ⊂ µ, σ′ ⊂ µ, µ(1) = k and µ(2) = g is

obtained when all agents reveal their ex-ante preferences. Since ωiσ∗(i) = 1 ≥
ωih holds for all h ∈ H and all i ∈ Iσ∗ and since σ∗ is reachable, it must be

reached.21 Once σ∗ is reached, agents 1 and 2 are endowed with house k and

g respectively. At σ∗ all remaining agents prefer k to all remaining houses

implying that the submatching σ∗∪{(1, k)} is reached next. By by continuity,

Pycia and Unver’s [9] (R4), agent 2 continues to own house g at σ∗∪{(1, k)}.
Moreover, at σ∗ ∪ {(1, k)} all remaining agents prefer g to all remaining

houses implying that the submatching σ∗ ∪ {(1, k), (2, g)} is reached next.

The Pareto optimality of the submechanism of ψc,b at σ∗ ∪ {(1, k), (2, g)},
together with the fact that σ′ is the unique Pareto optimal submatching of

the agents Iσ′ to the houses Hσ′ , implies that all remaining agents (the agents

in Iσ′) are matched in accordance with µ.

Consider any agent i ∈ Iσ∗ , fix the strategies of all other agents in Iσ∗ to

truthtelling and fix the strategies of the agents in Iσ∗ arbitrarily. To see that

telling the truth is a best reply for agent i, observe that the submatching σ∗

is reached if i tells the truth and all other agents follow the fixed strategy

profile. So if agent i tells the truth he obtains house σ∗(i), his most preferred

house among all houses in H. In sum, truthtelling is a best response for all

agents in Iσ∗ no matter what we assume about the strategies of the agents in

21For σ∗ to be reachable one agent i∅ ∈ Iσ∗ must be the initial dictator. Since this

initial agent prefers σ∗(i∅) to all other houses, he appropriates σ∗(i∅). The reachability of

σ∗ then requires that at the submatching {(i∅, σ∗(i∅))} an agent i ∈ Iσ∗ \ {i∅} turns into

the next dictator. The fact that σ∗ is reached follows by induction.
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Iσ∗ . Given that no i ∈ Iσ∗ has the choice to learn, the submatching σ∗ must

be reached in any equilibrium of 〈ψc,b, t〉(HA).

Next consider the submechanism of ψc,b at σ∗. The strategic situation

faced by agents 1 and 2 in that submechanism is nearly identical to the

one they face in the top trading cycles mechanism constructed in Example

4, the only difference is that they have some additional strategies in the

present mechanism: pointing to houses other than g or k. However, all these

additional strategies are dominated for any outcome of learning given that

according to HA ωik, ω
i
g > ωih holds for i = 1, 2, all h ∈ H \ {g, k}, and all

ω ∈ Ω. The fact that not learning is the unique equilibrium in Example

4, implies that conditioning on all agents in Iσ∗ telling the truth, agents 1

and 2 best respond by not learning and truthfully revealing their ex-ante

preferences, so the submatching σ∗ ∪ {(1, k), (2, g)} must be reached in any

equilibrium.

The submechanism of ψc,b at σ∗∪{(1, k), (2, g)} is a trading cycles mech-

anism and therefore strategy proof. This implies that the truthful revelation

of their known preferences a is best reply for any agent in Iσ′ , given that the

agents in Iσ′ follow the best reply strategies described so far. In sum we can

conclude that not learning and telling the truth is the unique equilibrium of

〈ψc,b, t〉(HA). So the profile of ex-ante utilities implemented by 〈ψc,b, t〉 in

HA is (4; 2; 1; · · · ; 1).

Now consider the serial dictatorship 〈δ∗, t∗〉(HA). Since agents 1 and 2

are the first two dictators under δ∗ and since they prefer houses k and g to

all other houses in any state ω, their equilibrium behavior is the same as

in the serial dictatorship discussed in Example 4. The submechanism after

the assignment of 1 and 2 is a serial dictatorship which matches each of the

remaining agents i with µ(i), since each i of these agents prefers µ(i) to all

remaining houses. So the unique profile of expected utilities implemented by

〈δ∗, t∗〉(HA) is (4.2; 3; 1; · · · ; 1), which Pareto-dominates the unique outcome

of 〈ψc,b, t〉(HA). �

Proof of Lemma 3: Fix a path-dependent serial dictatorship γ̃ = ψc,b

that is not a simple serial dictatorship. Let σ∗ be a minimal reachable sub-

matching in ψc,b such that the dictator at the following submatching de-
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pends on the choice of the current dictator. Formally assume that there

exist g, k, d ∈ Hσ∗ such that cσ∗(h) = 1 for all h ∈ Hσ∗ , cσ̃(h) = 2 for

all h ∈ H σ̃ where σ̃ = σ∗ ∪ {(1, g)} and cσ̂(h) = 3 for all h ∈ H σ̂ where

σ̂ = σ∗ ∪ {(1, k)}.22

Define the housing problem HC as follows. Fix a submatching σ′ such

that σ∗ ⊂ σ′, Iσ′ = I \ {1, 2, 3}, and Hσ′ = H \ {g, k, d}. The preferences of

all agents i 6= 1, 2, 3 are known with ωiσ′(i) = 1 ≥ ωih holding for all h ∈ H.

The values 0 > ωih that agents i = 1, 2, 3 assign to houses h other than g, k

and d are known. Restricted to agents 1,2,3 and houses g, k, d, the housing

problem HC is identical to the housing problem Hc as defined in Example 5.

The proof that the truth-telling strategy profile according to which agent

1 learns is the only equilibrium is nearly identical to its counterpart for

the preceding Lemma. All agents but agent 1 know their preferences and

therefore have a unique truthtelling strategy. Following the arguments in

the preceding proof all agents in Iσ∗ best respond by telling the truth, σ∗

must be reached in any equilibrium of 〈γ̃, t〉(HC). At σ∗ agent 1 becomes

the dictator. His choice problem is nearly identical to that in 〈γ, tγ〉(Hc):

in addition to {g, k, d} (his choice set in 〈γ, tγ〉(Hc)) there might be some

more houses in Hσ∗ ; however agent 1 strictly prefers g, k and d to any of

these additional houses for any state ω ∈ Ω. So agent 1’s optimal behavior

in 〈γ̃, t〉(HC) is implied by his optimal behavior in 〈γ, tγ〉(Hc) in Example 5:

agent 1 is better off learning his preferences than not. The preferences of all

remaining agents are known, truth-telling is therefore a best reply for them

in the submechanism following agent 1’s choice. The ex-ante utilities of the

agents are (1.9; 1; · · · ; 1).

Just as in that Example 5, it would be a Pareto improvement for agents

2 and 3 to “switch”. So the alternative path-dependent serial dictatorship

〈γ̃′, tγ̃′〉 where γ̃ and γ̃′ are identical except that agents 2 and 3 switch roles,

formally γ̃′ = ψc
′,b′ with cσ(h) = 2⇒ c′σ(h) = 3, cσ(h) = 3⇒ c′σ(h) = 2, and

cσ(h) 6∈ {2, 3} ⇒ cσ(h) = c′σ(h) for all σ, h, ex-ante Pareto-dominates the

given mechanism 〈γ̃, t〉 at the housing problem HC , the game 〈γ̃′, tγ̃′〉(HC)

22I omit the definition of the second component bσ since in a path-dependent serial

dictatorship we have that bσ(h) = ow for all reachable σ. Since agents 2 and 3 have a

choice there must be at least one house other than g and k.
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yields the expected utilities (1.9; 5, 5.1; · · · ; 1) to all players. �

Proof of Lemma 4: Consider the set of all reachable submatchings σ

for which t prescribes that the agents in Iσ announce their preferences in

the order in which they become dictators. Let σ∗ be maximal in this set.

This implies that if the first Iσ∗ agents’ declarations lead to the submatching

σ∗, then t prescribes that some agent i who is not the dictator at σ∗, must

according to t reveal his preference before learning the announcement of

cσ∗(Hσ∗), the dictator at σ∗. Assume that i = 2 and 1 = cσ∗(Hσ∗). Since

both 1 and 2 need to declare their preferences, their choices must be followed

by at least one more agent, say 3. Define the housing problem HB like HC in

the preceding proof with the one exception that restricted to agents 1,2,3 and

houses k, g, d, the housing problem HB is identical to the housing problem

Hb as defined in Example 2.

Given the parallel setup of the preceding and the current mechanism,

truthtelling is a best reply for all agents in Iσ′ in 〈δ, t〉(HB). This implies

that σ∗ must be reached in any equilibrium of 〈δ, t〉(HB). The problem faced

by agents 1, 2 and 3 at σ∗ is nearly identical to that in Example 2, the

only difference being the availability of some inferior houses Hσ∗ \ {g, k, d}.
Agents 1 and 2 will therefore both learn their value of house d in the unique

equilibrium of 〈δ, t〉(HB).

To see that 〈δ∗, t∗〉 dominates 〈δ, t〉 at HB observe that - just as in Exam-

ple 2 - agent 2 will only acquire information in 〈δ∗, t∗〉(HB) when it is relevant

to his decision. So agent 2 will only become informed when agent 1 does not

choose house d. The equilibria of 〈δ, t〉(HB) and 〈δ∗, t∗〉(HB) induce identical

the mappings from states ω to matchings µ. The equilibrium outcome func-

tions differ only in one respect: there are some states ω under which agent

2 acquires information in the unique equilibrium of 〈δ, t〉(HB) but does not

do so in the unique equilibrium of 〈δ∗, t∗〉(HB). So all agents but agent 2

obtain the same ex-ante utility in the respective equilibria of 〈δ, t〉(HB) and

〈δ∗, t∗〉(HB). The 3S dictatoship 〈δ∗, t∗〉 Pareto dominates 〈δ, t〉 at HB since

agent 2’s expected cost of information acquisition is lower in the equilibrium

of the former. �
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Proof of Theorem 2 and the “simultaneous” part of Remark 1:

This proof consists in a few amendments of the proof of Theorem 1. The

solution concept, which requires that all agents’ ex post preferences lead to

unique choices of houses from sets remains well-defined: by assumption any

(possible) ex post preferences of any agent strictly rank any two different

houses. However simple serial dictatorship might not have a unique equilib-

rium when all agents are forced to learn simultaneously. Some agents might

have multiple optimal partitions - given all other agents’ learning choices. To

show that 〈δ∗, ts〉 cannot be dominated by any 〈ϕ, ts〉 at any housing problem

H, I show that a selected equilibrium of 〈δ∗, ts〉(H) cannot be dominated by

any of the equilibria of 〈ϕ, ts〉(H).

This equilibrium is selected as follows. Let i be the first dictator who

strictly prefers some equilibrium of 〈δ∗, ts〉(H) to another. Discard all equi-

libria that are inferior according to i’s preference.23 If only one equilibrium

survives terminate the process, if not use the preferences of the next dictator

who strictly ranks any two of the remaining equilibria to reduce the set yet

further. Continue this process until only a single equilibrium survives or until

all agents are indifferent between all surviving equilibria. The application of

the proof of the “if” part of Theorem 1 to the selected equilibrium yields the

desired result: simultaneous simple serial dictatorship is Pareto optimal in

the set of all simultaneous matching mechanisms.

The proof of “only if” part of Theorem 2 starts with Lemma 2, according

to which any trading cycles mechanism ψc,b that is not a path-dependent

serial dictatorship must have at least two owners at some reachable sub-

matching σ. Now fix any 〈ψc,b, ts〉 such that ψc,b is not a path-dependent

serial dictatorship and define HA as in the proof of in Lemma 1. Since only

one agent learns in the unique equilibrium of 〈δ∗, t∗〉(HA), this strategy profile

is also the unique equilibrium of 〈δ∗, ts〉(HA). This together with the obser-

vation that 〈δ∗, t∗〉 dominates 〈ψc,b, ts〉 at HA implies that 〈δ∗, ts〉 dominates

〈ψc,b, ts〉 atHA. The proof of Lemma 3 which shows that any path-dependent

but not simple serial dictatorship is dominated by a 3S dictatorship at some

housing problem directly applies to the simultaneous case. The reason is

23This first dictator i cannot be agent 1, since the no-indifference condition implies that

he has a unique optimal plan of choice from the set H.
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that only one agent has the choice to learn in HC , the housing problem con-

structed to prove Lemma 3, so 〈ψc,b, t〉(HC) = 〈ψc,b, ts〉(HC) holds for all

mechanisms 〈ψc,b, t〉. In sum, we have that for any ψc,b not a simple serial

dictatorship there exists a housing problem H and a path-dependent serial

dictatorship γ such that 〈ψc,b, ts〉 is dominated by 〈γ, ts〉 at H, proving the

“only if” part of Theorem 2 as well as the part of Remark 1 that pertains to

simultaneous mechanisms. �

Let me finally reconsider the strengthening of Remark 1 to the claim that

the dominating mechanism can always be a simple serial dictatorship. To this

end suppose that the path-dependent serial dictatorship 〈γ, tγ〉 as defined in

the Example 5 was dominated by a 3S-dictatorship 〈δ, tδ〉 in some housing

problem H. Following the arguments in the proof that serial dictatorship

cannot be dominated (Section 7) agent 1 would have to be the first dictator

under δ to keep his utility at least as high as under γ.24

Now consider the case with agent 2 as the second dictator under δ. In

set {k, d} agent 2 will choose just as he does under 〈γ, tγ〉. If he replicates

the outcome of 〈γ, tγ〉(H) for the other two choice sets {g, k} and {g, d},
then 〈δ, tδ〉(H) leads to exactly the same matchings as 〈γ, tγ〉(H) and can

therefore not be dominating. So agent 2’s choices in these two sets must

lead to different matchings. Agent 3 would consequently sometimes obtain

a house he would not have chosen. Given that the agents’ preferences are

independently drawn, agent 3 would be made worse off. The alternative

3S-dictatorship with agent 3 as the second dictator can be ruled out mutatis

mutandis. In sum, there is no housing problem such that the path-dependent

serial dictatorship 〈γ, tγ〉 is dominated by a simple serial dictatorship 〈δ, tδ〉 at

that housing problem. Remark 1 cannot be strengthened in the conjectured

way in the case of dynamic mechanisms. The same applies to the case of

simultaneous mechanisms given that all of the above arguments continue to

hold if we replace tγ and tδ by ts throughout the preceding paragraph.

24Actually if the housing problem was such that agent 1’s most preferred house in all

possible states is the other two agents’ least preferred house in all states, agent 1 could

also be made the second or third dictator. But in that case the serial dictatorship with

agent 1 as the first dictator keeping the order between the other two fixed yields the same

outcome in the housing problem.
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