
Budget-Balance, Fairness and Minimal Manipulability∗

Tommy Andersson†, Lars Ehlers‡ and Lars-Gunnar Svensson§

July 2, 2013

Abstract

A common real-life problem is to fairly allocate a number of indivisible objects and
a fixed amount of money among a group of agents. Fairness requires that each agent
weakly prefers his consumption bundle to any other agent’s bundle. In this con-
text, fairness is incompatible with budget-balance and non-manipulability (Green
and Laffont, 1979). Our approach here is to weaken or abandon non-manipulability.
We search for the rules which are minimally manipulable among all fair and budget-
balanced rules. First, we show for a given preference profile, all fair and budget-
balanced rules are either (all) manipulable or (all) non-manipulable. Hence, mea-
sures based on counting profiles where a rule is manipulable or considering a possible
inclusion of profiles where rules are manipulable do not distinguish fair and budget-
balanced rules. Thus, a “finer” measure is needed. Our new concept compares two
rules with respect to their degree of manipulability by counting for each profile the
number of agents who can manipulate the rule. Second, we show that maximally
preferred fair allocation rules are the minimally (individually and coalitionally) ma-
nipulable fair and budget-balanced allocation rules according to our new concept.
Such rules choose allocations with the maximal number of agents for whom the util-
ity is maximized among all fair and budget-balanced allocations.
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1 Introduction

We consider the allocation of indivisible objects and a fixed amount of money among a
set of agents through a mechanism (Alkan, Demange and Gale, 1991; Svensson, 1983;
Tadenuma and Thomson, 1991). The important criterion in this literature is fairness (or
envy-freeness) meaning that each agent should like his own consumption bundle (consisting
of an object and a monetary compensation) at least as well as that of anyone else.

When analyzing this type of allocation problems, fairness is often coupled with other
properties. One such property is non-manipulability which guarantees that no agent can
gain by strategic misrepresentation. Another one is budget-balance saying that the sum
of monetary compensations should equal the fixed amount of money. A famous result
by Green and Laffont (1979) shows that there exists no allocation mechanism that is
non-manipulable, fair and budget-balanced. In this paper we will weaken or abandon non-
manipulability and offer results that facilitate the comparison of fair and budget-balanced
mechanisms according to their level of manipulability when preferences are represented by
quasi-linear utility functions.1

One way of evaluating the degree of manipulability of a mechanism (e.g. Aleskerov
and Kurbanov, 1999; Kelly, 1988, 1993; Maus, Peters and Storcken, 2007a,b) is the idea
of counting the number of preference profiles at which a given mechanism is manipulable.
A second direction (Pathak and Sönmez, 2013) relies on comparing the sets of preference
profiles on which any two mechanisms are manipulable. Previous papers have investigated
a number of different problems, including voting rules, matching mechanisms and school
choice mechanisms. However, we are not aware of any study with attention to fair and
budget-balanced rules.2

Our first main result shows for a given preference profile, all fair and budget-balanced
rules are either (all) manipulable or (all) non-manipulable. Therefore, measures based on
counting profiles where a rule is manipulable and/or considering the inclusion of profiles
where a rule is manipulable do not distinguish fair and budget-balanced allocation rules.
With respect to those measures, all fair and budget-balanced allocation rules are equally
manipulable. The above mentioned measures of minimal manipulability are “coarse” in
the sense that preference profiles are categorized as manipulable (for all fair and budget-
balanced rules) or non-manipulable (for all fair and budget-balanced rules). For this reason,
none of the existing measures are satisfactory when evaluating rules in our context.

1In the early literature (e.g. Moulin, 1980), the primary focus was on restricting the preference domain
under which a mechanism is non-manipulable.

2Subsequent to this paper Fujinaka and Wakayama (2011) and Andersson, Ehlers and Svensson (2012)
adopted a fundamentally different approach by searching for the the fair and budget-balanced allocation
rules which minimize the maximal manipulation possibilities (defined in terms of an agent’s utility gain
from manipulation) across agents.
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In resolving this problem, we introduce a new“finer”measure of minimal manipulability.
Because this measure cannot be based solely on the preference domain, a natural approach
is to compare two rules via the number of agents who can manipulate the rule at a given
preference profile. Then a rule is minimally manipulable (with respect to agents counting)
if, for each preference profile, the number of manipulating agents is smaller than or equal
to the number of manipulating agents at an arbitrary fair and budget-balanced allocation
rule. This guarantees that the minimally manipulable rule is non-manipulable whenever
there exists a non-manipulable rule. The main feature of (global) non-manipulability is
respected as much as possible in the sense that the ultimate goal of our new notion is to
have zero manipulating agents at each preference profile. Our second main result shows
that “maximally preferred” fair allocation rules are agents-counting-minimally manipulable
among all fair and budget-balanced allocation rules. Roughly, speaking those rules choose
allocations with the maximal number of agents for whom the utility is maximized among
all fair and budget-balance allocations.

We further show that any fair and budget-balanced allocation rule, which is not max-
imally preferred, is strongly more manipulable with respect to agents counting than a
maximally preferred fair allocation rule. We also show that these results are robust with
respect to coalitional manipulations. In the same vein as before, when comparing two mech-
anisms we count the number of coalitions that can manipulate at a given profile. Again,
maximally preferred fair allocation rules are least coalitionally manipulable among all fair
and budget-balanced allocation rules. Finally, when comparing two rules with respect to
inclusion of the agents who can manipulate the rule at a profile (à la Pathak and Sönmez,
2013), we show that preferred fair allocation rules are minimally manipulable among all
fair and budget-balanced allocation rules. Such rules choose for any profile an arbitrary
agent k and then select the allocations which maximize agent k’s utility among all fair and
budget-balanced allocations. Here it is possible that the same agent k is chosen for any
profile.

An alternative approach to ours is to abandon budget-balance. A complete charac-
terization of the class of fair and non-manipulable allocation rules has been provided by
Andersson and Svensson (2008), Sun and Yang (2003) and Svensson (2009). Any such
rule fixes a maximal compensation for each object, and for any profile, a “maximal” fair
allocation is chosen without exceeding the fixed compensations for any object. As a result,
the allocation rules in this class violate budget-balance. However, in many fair alloca-
tion problems, budget-balance is a necessary requirement and non-manipulability must be
abandoned. Even though this type of problem has been considered previously, by e.g.
Tadenuma and Thomson (1993), Aragones (1995), Haake, Raith and Su (2000), Klijn
(2000), Abdulkadiroğlu, Sönmez and Ünver (2004), Azacis (2008) and Velez (2011), two
issues have not been investigated. First, although it is known that each fair and budget-
balanced allocation rule is manipulable at some preference profile, a characterization of the
preference profiles where successful misrepresentations are possible was missing. Second,
there is a large class of fair and budget-balanced allocation rules but it was not known
exactly which rules are “minimally” or “least” manipulable. Our paper addresses those two
issues.
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The paper is organized as follows. In Section 2 we introduce assignment with compen-
sations and fair and budget-balanced allocation rules. In Section 3, our first main result
shows that for a given preference profile, all fair and budget-balanced rules are either (all)
manipulable or (all) non-manipulable. In Section 4 we discuss different measures of the
degree of manipulability of rules. We show that measures which compare different rules via
profiles counting or profiles inclusion cannot be used to distinguish among fair and budget-
balanced allocation rules. Then we introduce our new criterion of minimal manipulability
by counting at each profile the number of agents who can manipulate. In Section 5 we de-
fine k-preferred fair allocations. We show that k-preferred fair allocations always exist and
that all agents are indifferent between all k-preferred fair allocations. We then introduce
components and maximally preferred fair allocation rules. Our second main result shows
that maximally preferred fair allocation rules are agents-counting-minimally manipulable
among all fair and budget-balanced allocation rules. We show that the same result holds if
we compare two rules by counting the number of coalitions who can manipulate the rule at
the profile. Finally, we show when comparing rules with respect to inclusion of the set of
agents who can manipulate, preferred fair allocation rules are agents-inclusion-minimally
manipulable among all fair and budget-balanced allocation rules. All technical results and
proofs omitted in the main text are relegated to the Appendix.

2 Assignment with Compensations

Let N = {1, . . . , n} and M = {1, . . . ,m} denote the set of agents and objects, respectively.
The number of agents and objects are assumed to coincide, i.e. |N | = |M |.3 Each agent
i ∈ N consumes exactly one object j ∈ M together with some amount of money. A
consumption bundle is a pair (j, xj) ∈ M × R where xj is the monetary compensation
received when consuming object j. An allocation (a, x) is a list of |N | consumption bundles
where a : N →M is a mapping assigning object ai to agent i ∈ N , and where x ∈ RM (or
x : M → R) assigns the amount xj of money for the object j ∈ M . An allocation (a, x)
is feasible if ai 6= aj whenever i 6= j for i, j ∈ N , and

∑
j∈M xj ≤ 0.4 If

∑
j∈M xj = 0,

then the allocation (a, x) satisfies budget-balance. Let A denote the set of feasible and
budget-balanced allocations.

Each agent i ∈ N has preferences over consumption bundles (j, xj) which are repre-
sented by continuous utility functions ui : M × RM → R. We will write uij(x) instead of
ui(j, x) to denote the utility of agent i ∈ N when consuming object j ∈ M and receiving
compensation xj in the distribution vector x. The utility function ui is assumed to be
quasi-linear and strictly increasing (or monotonic) in money, i.e.

uij(x) = vij + xj for some vij ∈ R.
3If |N | > |M |, then we simply add |N | − |M | null objects with zero value for all agents.
4All our results remain true if the budget constraint is replaced by

∑
j∈M xj ≤ x0 for an arbitrary

constant x0 ∈ R.
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A list of utility functions u = (ui)i∈N is a preference profile. We also adopt the notational
convention of writing u = (uC , u−C) for C ⊆ N . The set of preference profiles with utility
functions having the above properties is denoted by U .

Let u ∈ U and (a, x) be a feasible allocation. Then (a, x) is efficient if there exists
no feasible allocation (b, y) such that uibi(y) ≥ uiai(x) for all i ∈ N with strict inequality
holding for some i ∈ N . Obviously, if (a, x) is efficient, then (a, x) is budget-balanced.

Throughout we focus on feasible allocations satisfying budget-balance.5 For con-
venience, in the following “allocation” stands for “feasible allocation satisfying budget-
balance”.

The important concept in this literature is fairness which corresponds to envy-freeness
(Foley, 1967). It says that each agent weakly prefers his consumption bundle to any other
agent’s bundle.

Definition 1. For a given profile u ∈ U , an allocation (a, x) is fair if uiai(x) ≥ uiaj(x) for
all i, j ∈ N . Let F (u) denote the set of fair allocations for a given profile u ∈ U .

Under fairness, for feasible allocations efficiency is equivalent to budget-balance.6

An allocation rule is a non-empty correspondence ϕ choosing for each profile u ∈ U a
non-empty set of allocations, ϕ(u) ⊆ A, such that (i) uibi(y) = uiai(x) for all i ∈ N and
all (a, x), (b, y) ∈ ϕ(u) and (ii) for all (a, x) ∈ ϕ(u) and all (b, y) ∈ A, if uibi(y) = uiai(x)
for all i ∈ N , then (b, y) ∈ ϕ(u). Hence, (i) the various allocations in the set ϕ(u) are
utility equivalent (essentially single-valuedness) and (ii) any allocation, which is utility
equivalent to an allocation in ϕ(u), belongs to ϕ(u) (Pareto-indifference). Alternatively
we may consider essentially single-valued allocation rules (which do not necessarily satisfy
(ii)) or single-valued allocation rules choosing for each profile u ∈ U a unique allocation.
All our results remain unchanged for (essentially) single-valued allocation rules.7

An allocation rule ϕ is called fair (and budget-balanced) if for any profile u ∈ U , ϕ(u) ⊆
F (u).

3 Manipulability and Non-Manipulability

Our first main result will determine the (non-)manipulation possibilities of fair allocation
rules.

Definition 2. An allocation rule ϕ is manipulable at a profile u ∈ U by an agent i ∈ N if
there exists a profile (ûi, u−i) ∈ U and two allocations (a, x) ∈ ϕ(u) and (b, y) ∈ ϕ(ûi, u−i)
such that uibi(y) > uiai(x). If the allocation rule ϕ is not manipulable by any agent at
profile u ∈ U , then ϕ is non-manipulable at profile u ∈ U .

5When budget-balance is relaxed to
∑
j∈M xj ≤ 0, then general non-manipulability results are possible,

see e.g. Andersson and Svensson (2008), Sun and Yang (2003) or Svensson (2009).
6This is due to the fact that any fair allocation must assign the objects efficiently.
7Details can be found in Andersson, Ehlers and Svensson (2010).
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Since allocation rules may choose sets of allocations, one may alternatively employ a
more conservative notion of manipulability: ϕ is strongly manipulable at a profile u ∈ U
by an agent i ∈ N if there exists a profile (ûi, u−i) ∈ U such that uibi(y) > uiai(x) for
all (a, x) ∈ ϕ(u) and all (b, y) ∈ ϕ(ûi, u−i). From Svensson (2009, Proposition 3 and its
proof) it follows that for any fair allocation rule ϕ and any profile u ∈ U , ϕ is strongly
manipulable at profile u ∈ U by i ∈ N if and only if ϕ is manipulable at profile u ∈ U by
i ∈ N .8 Hence, we may use the conservative notion of manipulability instead of ours.

It is well-known (Green and Laffont, 1979) that any fair and budget-balanced rule
ϕ is manipulable for some profile u ∈ U . Even though we are primarily interested in
manipulation by individuals, it will be interesting to formulate our main results in terms
of manipulation by coalitions. We adopt the following version of coalitional manipulability
and coalitional non-manipulability.9 As usual, a coalition is a non-empty subset of N .

Definition 3. An allocation rule ϕ is (coalitionally) manipulable at a profile u ∈ U by a
coalition C ⊆ N if there is a profile (ûC , u−C) ∈ U and two allocations (a, x) ∈ ϕ(u) and
(b, y) ∈ ϕ(ûC , u−C) such that uibi(y) > uiai(x) for all i ∈ C. If the allocation rule ϕ is not
manipulable by any coalition at profile u, then ϕ is coalitionally non-manipulable at profile
u ∈ U .

Our first main result shows that a fair and budget-balanced allocation rule is non-
manipulable at a profile if and only if all fair and budget-balanced allocation rules are
non-manipulable at this profile. Furthermore, the same equivalence holds when considering
coalitional non-manipulability instead of individual non-manipulability.

Theorem 1. Let ϕ and ψ be two arbitrary fair and budget-balanced allocation rules.
Then ϕ is (coalitionally) non-manipulable at profile u ∈ U if and only if ψ is (coalitionally)
non-manipulable at profile u ∈ U .

4 Minimal Manipulability

Fairness, budget-balance, and (global) non-manipulability are incompatible (Green and
Laffont, 1979). Our approach is to weaken or abandon non-manipulability.10 A natural
question is whether there is a “minimally (or least) manipulable” allocation rule among all
fair and budget-balanced rules. Several recent contributions11 use a notion of the degree

8Note that this equivalence does not hold in general: for instance, let �i denote agent i’s preference
where a �i b �i c for three alternatives a, b, and c. Suppose that the rule chooses b when i reports �i and
the rule chooses a and c when i reports a preference �′i (where a and c are indifferent and preferred to b).
Then the rule is manipulable at �i by agent i but the rule is not strongly manipulable at �i by agent i.

9Again, in the same vein as above, we may use a more conservative notion of coalitional manipulability
where all deviating agents are strictly better off after the deviation for any of the chosen allocations. This
would not change any of our results.

10Several papers weaken or abandon budget-balance (Sun and Yang, 2003; Andersson and Svensson,
2008; and Svensson, 2009).

11See e.g. Aleskerov and Kurbanov (1999), Kelly (1988, 1993), Maus, Peters and Storcken (2007a,b) or
Pathak and Sönmez (2013).
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of manipulability in order to compare the ease of manipulation in allocation mechanisms
that are known to be manipulable. The common feature is that these results (except for
Theorem 4 in Pathak and Sönmez, 2013) use measures for the degree of manipulability
which are based on the preference domain.

To define the various notions of minimal manipulability, given an allocation rule ϕ, let
Uϕ ⊆ U denote the subset of preference profiles at which ϕ is manipulable (by some agent).
In addition, let Pϕ(u) denote the set of agents who can manipulate the allocation rule ϕ
at profile u ∈ U .

In Definitions 4-7, we make weak comparisons of two rules and“more”stands for“weakly
more” (like “preferred” stands for “weakly preferred”).

Definition 4 (Profiles counting). Let ϕ and ψ be two allocation rules.

(a) ϕ is profiles-counting-more manipulable than ψ if |Uϕ| ≥ |Uψ|; and

(b) ϕ and ψ are profiles-counting-equally manipulable if |Uϕ| = |Uψ|.

Note that any two rules can be compared regarding their manipulability with respect
to profiles counting. The following partial comparison has been proposed by Pathak and
Sönmez (2013).

Definition 5 (Profiles inclusion). Let ϕ and ψ be two allocation rules.

(a) ϕ is profiles-inclusion-more manipulable than ψ if Uϕ ⊇ Uψ; and

(b) ϕ and ψ are profiles-inclusion-equally manipulable if Uϕ = Uψ.

Note that if ϕ is profiles-inclusion-more manipulable than ψ, then ϕ is profiles-counting-
more manipulable than ψ. However, neither of these measures can be used to distinguish
fair and budget-balanced allocation rules with respect to their degree of manipulability.

Proposition 1. Let ϕ and ψ be two fair and budget-balanced allocation rules. Then (i)
ϕ and ψ are profiles-counting-equally manipulable, and (ii) ϕ and ψ are profiles-inclusion-
equally manipulable.

Proof. By Theorem 1, both Uϕ = Uψ and |Uϕ| = |Uψ|, which yields the desired conclusion.

Since all fair and budget-balanced rules are equally manipulable if the measure is based
only on the cardinality and/or set inclusions of subsets in the preference domain, a “finer”
notion is needed. Note that an equivalent way of stating (global) non-manipulability (or
“strategy-proofness”) is the following. Allocation rule ϕ is (globally) non-manipulable if

|Pϕ(u)| = 0 for all u ∈ U . (1)

Given the fact that (1) never can be satisfied for fair and budget-balanced rules and the
above insights, it is natural to search for rules where |Pϕ(u)| is minimized for each profile
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u ∈ U . This guarantees that the rule is non-manipulable whenever a non-manipulable
rule exists for a specific profile, and that the core idea of (global) non-manipulability is
respected as much as possible.

Definition 6 (Agents counting). Let ϕ and ψ be two allocation rules. Then ϕ is agents-
counting-more manipulable than ψ if |Pϕ(u)| ≥ |Pψ(u)| for all u ∈ U .

The corresponding notion with respect to inclusion was introduced by Pathak and
Sönmez (2013).

Definition 7 (Agents inclusion). Let ϕ and ψ be two allocation rules. Then ϕ is agents-
inclusion-more manipulable than ψ if Pϕ(u) ⊇ Pψ(u) for all u ∈ U .

While it is clear that these measures are partial comparisons of allocation rules, the
following shows the relations among the various measures of the degree of manipulability.
For any two allocation rules ϕ and ψ, we have:12

ϕ is agents-inclusion-more manipulable than ψ

⇒ ϕ is agents-counting-more manipulable than ψ

⇒ ϕ is profiles-inclusion-more manipulable than ψ

⇒ ϕ is profiles-counting-more manipulable than ψ.

The relations between the different concepts are general and do not depend on our specific
model.

Note that Definitions 4-7 (weakly) compare two rules with respect to their manipula-
bility. Naturally, any of these concepts would strongly compare two rules ϕ and ψ, if ϕ
is comparable to ψ but ψ is not comparable to ϕ. In other words, under a strong com-
parison in Definition 4(a) requires a strict inequality for some profile, in Definition 5(a) a
strict inclusion for some profile, in Definition 6 a strict inequality for some profile, and in
Definition 7 a strict inclusion for some profile. Actually, as the careful reader may check,
Pathak and Sönmez (2013)’s second concept makes (only) a strong comparison in the vein
of Definition 7 but requires in addition Uϕ ) Uψ. Of course, again by Theorem 1, in this
sense no two fair and budget-balanced rules would be strongly comparable.

5 Agent k−preferred Allocation Rules

The concept of agent k-preferred allocations will play an important role. At these alloca-
tions, agent k’s utility is maximized among all fair and budget-balanced allocations.

Definition 8. Let k ∈ N and u ∈ U . Allocation (a, x) ∈ F (u) is agent k−preferred if it
maximizes the utility of agent k in F (u), i.e. ukak(x) ≥ ukbk(y) for all (b, y) ∈ F (u). Let
ψk(u) ⊆ F (u) denote the set of all fair and budget-balanced allocations which are agent
k−preferred at profile u.

12In showing Uϕ ⊇ Uψ for the second implication, note that for any u ∈ Uϕ we have 0 = |Pϕ(u)| ≥
|Pψ(u)| ≥ 0. Thus, both |Pψ(u)| = 0 and u ∈ Uψ.
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Thus, at an agent k−preferred allocation, agent k’s utility is maximized among all
fair and budget-balanced allocations. Our next result establishes (i) the existence of a
k-preferred (fair and budget-balanced) allocation for all k ∈ N and all u ∈ U and (ii) ψk

is an allocation rule, i.e., that for any profile all agents are indifferent between all agent
k-preferred fair allocations. The allocation rule ψk will be called the agent k−preferred fair
allocation rule, henceforth.

Theorem 2. Let k ∈ N .

(i) For each profile u ∈ U , there exists an agent k−preferred allocation in F (u), i.e.
ψk(u) 6= ∅.

(ii) ψk is an allocation rule.

The corollary below will follow from the proof of Theorem 1.

Corollary 1. (i) ψk cannot be manipulated by agent k at any profile u ∈ U .

(ii) For any two distinct agents i, j ∈ N , there exists no fair and budget-balanced allo-
cation rule ϕ such that neither i nor j can manipulate ϕ at any profile u ∈ U .

Corollary 1 has the same flavor as the corresponding results in two-sided matching
(with men and women): (i) for any agent there exists a stable matching rule which is not
manipulable by this agent at any profile; and (ii) there is no stable matching rule which
cannot be manipulated by at least one man and at least one woman (Ma, 1995).

We next introduce a more demanding notion, namely components. A component is a
set of agents such that there exist fair and budget-balanced allocations which are preferred
for all agents in the component and there is no superset of the component having the same
property.

Given G ⊆ N and u ∈ U , let ψG(u) = ∩k∈Gψk(u).

Definition 9. Let u ∈ U and G ⊆ N . The set G is a component at u if ψG(u) 6= ∅
and there exists no G ( G′ ⊆ N such that ψG

′
(u) 6= ∅. Let G(u) denote the set of all

components at u.

The next result states an important characteristic of components, namely that if agent
k belongs to a component G, then all agent k−preferred allocations are also preferred for
all agents belonging to G.

Lemma 1. Let u ∈ U . If k ∈ G ∈ G(u), then ψk(u) = ψG(u).

By Lemma 1, G(u) induces a partition of N because for any G′, G′′ ∈ G(u) with k ∈
G′ ∩ G′′ we have ψk(u) = ψG

′
(u) = ψG

′′
(u) and G′ ∪ G′′ ∈ G(u) (and hence, G′ = G′′).

Thus, for any k ∈ N there exists a unique G ∈ G(u) with k ∈ G.
In determining the least manipulable fair and budget-balanced allocation rules, for agent

k−preferred fair allocation rules, not only the preference profile, but also the selection of
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k ∈ N may influence the manipulability possibilities. In the search for the agents-counting-
minimally manipulable fair and budget-balanced allocation rules, it is important to select
the right k ∈ N for any given profile u ∈ U . For this reason, the selection of agent k
will be endogenously determined by the profile u ∈ U . The general idea is first to select a
component with maximal cardinality, and then some agent k belonging to this component
and finally the set of agent k−preferred fair allocations.

Let
Ḡ(u) = {G ∈ G(u) : |G| ≥ |G′| for all G′ ∈ G(u)}

denote the set of components with maximal cardinality. Let

Ḡ(u) = ∪G∈Ḡ(u)G

denote the union of all components with maximal cardinality.
A (component) selection is a function κ : U → N . The preferred fair allocation rule φκ

based on κ : U → N is defined as follows: for all u ∈ U , φκ(u) = ψκ(u)(u). In other words, a
preferred fair allocation rule selects for each u an agent κ(u) and chooses all κ(u)-preferred
fair allocations. Note that (i) by Theorem 2, φκ is a well-defined allocation rule and (ii) by
Lemma 1 equivalently κ chooses for all u ∈ U the component G ∈ G(u) such that κ(u) ∈ G
(and φκ(u) = ψG(u)). Furthermore, we will say that an allocation rule ϕ is a preferred fair
allocation rule if there exists a selection κ such that for all u ∈ U we have ϕ(u) = φκ(u).

A maximally preferred fair allocation rule chooses for each profile (i) an component G
with maximal cardinality, (ii) some agent k belonging to G, and (iii) all agent k-preferred
fair allocations. Note that different ks may be selected for different profiles. A maximal
(component) selection is a function κ : U → N such that for all u ∈ U we have κ(u) ∈ Ḡ(u).
The maximally preferred fair allocation rule φκ is the preferred fair allocation rule based
on κ. Again by Lemma 1, equivalently κ chooses for all u ∈ U a component (with maximal
cardinality) G ∈ Ḡ(u) such that κ(u) ∈ G. Furthermore, we will say that an allocation rule
ϕ is a maximally preferred fair allocation rule if there exists a maximal selection κ such
that for all u ∈ U we have ϕ(u) = φκ(u). Note that the function κ is a systematic selection
from Ḡ(u). The meaning of “systematic selection” is that there is a well defined rule for
selecting k. This rule can be arbitrary and all our results hold independently of this rule.
For example, the rule could be based on a randomized selection from Ḡ(u) or simply the
k with the lowest or highest index in Ḡ(u).

Our second main result establishes that maximally preferred fair allocation rules are
agents-counting-minimally manipulable among all fair and budget-balanced allocation
rules. Here a rule ϕ is agents-counting-minimally manipulable among all fair and budget-
balanced allocation rules, if for any fair and budget-balanced allocation rule ϕ′, ϕ′ is agents-
counting-more manipulable than ϕ.

Theorem 3. Let ϕ be an arbitrary fair and budget-balanced allocation rule. Then ϕ
is agents-counting-minimally manipulable among all fair and budget-balanced allocation
rules if and only if ϕ is a maximally preferred fair allocation rule.

By Theorem 3, any fair and budget-balanced allocation rules can be compared to a max-
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imally preferred fair allocation rule via agents-counting-manipulability, and any fair and
budget-balanced allocation rule, which is not maximally preferred fair, is strongly agents-
counting-more manipulable (with a strict inequality for some profile in Definition 6) than
any maximally preferred fair allocation rule. Note that except for degenerate preference
profiles where N is the unique component, the set of fair and budget-balanced allocations
is a continuum. Thus, any rule, which chooses for some non-degenerate preference profile
an allocation which is not preferred, is strongly agents-counting-more manipulable than
any maximally preferred fair allocation rule. Hence, the comparison is often strict.

In checking the robustness of Theorem 3 we consider the degree of coalitional manip-
ulability. Using the same arguments as above, by Theorem 1 it is in general impossible
to define a fair and budget-balanced rule to be less coalitionally manipulable than some
other fair and budget-balanced rule if the measure is based only on the cardinality and/or
set inclusions of subsets in the preference domain. Let Qϕ(u) denote the coalitions C ⊆ N
that can manipulate the allocation rule ϕ at profile u ∈ U . We adopt the following notion.

Definition 10. Let ϕ and ψ be two allocation rules. Then ϕ is coalitions-counting-more
manipulable than ψ if |Qϕ(u)| ≥ |Qψ(u)| for all u ∈ U .

The following result states that maximally preferred fair allocation rules are coalitions-
counting-minimally manipulable among all fair and budget-balanced allocation rules. This
can be seen as an extension of Theorem 3 from minimal individual manipulability to
minimal coalitional manipulability, i.e., that Theorem 3 is robust with respect to coalitional
manipulations.

Theorem 4. Let ϕ be an arbitrary fair and budget-balanced allocation rule. Then ϕ is
coalitions-counting-minimally manipulable among all fair and budget-balanced allocation
rules if and only if ϕ is a maximally preferred fair allocation rule.

Finally we will establish that preferred fair allocation rules are agents-inclusion-
minimally manipulable among all fair and budget-balanced allocation rules.13 We show
that any fair and budget-balanced allocation rule is agents-inclusion-more manipulable
than some preferred fair allocation rule. Here a rule ϕ is agents-inclusion-minimally ma-
nipulable among all fair and budget-balanced allocation rules if there exists no fair and
budget-balanced allocation rule ϕ′ 6= ϕ such that ϕ is agents-inclusion-more manipulable
than ϕ′.

Theorem 5. Let ϕ be an arbitrary fair and budget-balanced allocation rule. Then ϕ
is agents-inclusion-minimally manipulable among all fair and budget-balanced allocation
rules if and only if ϕ is a preferred fair allocation rule.

Similar as above for agents-counting-minimal manipulability, Theorem 5 is robust with
respect to coalitional manipulability (by considering inclusions of the set of coalitions which
can manipulate the rule at a profile).

13The careful reader may note that Theorem 5 is the only new result which is not included in Andersson,
Ehlers and Svensson (2010).
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By Theorem 5, any fair and budget-balanced allocation rule, which is not preferred fair,
is strongly agents-inclusion-more manipulable (with a strict inclusion for some profile in
Definition 7) than some preferred fair allocation rule. A direct consequence of Theorem 5 is
that for any k ∈ N , the agent k-preferred fair allocation rule is agents-inclusion-minimally
manipulable among all fair and budget-balanced allocation rules.

Corollary 2. Let k ∈ N . Then ψk is agents-inclusion-minimally manipulable.

Obviously, by Corollary 1, for distinct k, i ∈ N , ψk and ψi cannot be compared with
respect to agent-inclusion-more manipulability (because for all u ∈ U , k /∈ Pψk(u) and
i /∈ Pψi(u)).

APPENDIX.

The following are two well-known properties of fair allocations (see e.g. Svensson,
2009): first, if two allocations are fair at a given profile, then one may interchange both the
assignment of objects and the monetary distribution without losing fairness. Obviously,
this result holds for fair allocations satisfying budget-balance.

Lemma 2. Suppose that allocations (a, x) and (b, y) are fair at profile u ∈ U . Then
allocations (a, y) and (b, x) are also fair at profile u ∈ U .

Second, for fair allocation rules, a unique distribution of money is chosen for any given
preference profile.14

Lemma 3. Let ϕ be a fair allocation rule and u ∈ U . If (a, x), (b, y) ∈ ϕ(u), then x = y.

Proof. Since (a, x), (b, y) ∈ ϕ(u), we have uiai(x) = uibi(y) for all i ∈ N . By fairness,
uiai(x) ≥ uibi(x). Thus, uibi(y) ≥ uibi(x) and ybi ≥ xbi . Similarly, we obtain xbi ≥ ybi .
Hence, x = y, the desired conclusion.

We proceed as follows. First, showing our main results requires a structural analysis
with respect to indifferences at fair and budget-balanced allocations. We show that for any
agent k and any fair and budget-balanced allocation, agent k’s utility is maximized among
all fair and budget-balanced allocations if and only if the allocation is agent k-linked: any
agent can be linked to agent k through a sequence of agents (an indifference chain) whereby
any agent in this sequence is indifferent between his consumption bundle and the bundle
received by the next agent in the sequence.

An indifference component at an allocation is a set of agents such that any two agents
can be linked through an indifference chain in this set at this allocation. We show that for
a given profile, indifference components are invariant among all fair and budget-balanced
allocations, i.e. if G is an indifference component at a fair and budget-balanced allocation,
then G is an indifference component at all fair and budget-balanced allocations. Therefore,

14To make the presentation self-contained, we include the proof of Lemma 3 (which follows for instance
from Lemma 3 in Alkan, Demange and Gale, 1991).
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if a fair and budget-balanced allocation is agent k-linked and k belongs to the indifference
component G, then this allocation is agent i-linked for all agents i belonging to G (and the
utility of agent i is maximized among all fair and budget-balanced allocations). Therefore,
the set of indifference components and the set of components coincide. In Lemma 5 we
show that indifference components are related to “isolated groups” (Definition 14 below) in
the following way at fair allocations: if N−G is an isolated group with maximal cardinality
at a fair allocation, then G is an indifference component.

Second, for any fair and budget-balanced allocation rule and any preference profile, we
characterize the set of agents and the set of coalitions who can profitably manipulate the
rule at this profile: (i) if a group G is isolated at a chosen allocation, then any coalition
contained in G can manipulate the rule at this profile; and (ii) if the rule chooses k-linked
fair allocations at this profile, then no coalition containing agent k can manipulate the rule
at this profile. The (non-)manipulability results Theorem 1 and Corollary 1 follow then
easily.

Third, we show our minimal manipulability results Theorem 3, Theorem 4, and Theo-
rem 5.

A Agent k−linked Allocations

It is well established that the possibility for agents to manipulate a fair allocation rule
depends on the structure of the indifference relations at the allocation(s) chosen by the
rule.15 Below we introduce the concepts of indifference chains and agent k−linked (fair)
allocations.

Definition 11. Let (a, x) ∈ A.

(i) For any i, j ∈ N , we write i→(a,x) j if uiai(x) = uiaj(x).

(ii) An indifference chain at allocation (a, x) consists of a tuple of distinct agents g =
(i0, i1, ..., ik) such that i0 →(a,x) i1 →(a,x) · · · →(a,x) ik.

Note that i→(a,x) j means that agent i is indifferent between his consumption bundle
and agent j’s consumption bundle, and agent i is directly linked via indifference to agent
j at allocation (a, x). An indifference chain at an allocation is simply a sequence of agents
such that any agent in the sequence is indifferent between his bundle and the bundle of
the agent following him in the sequence. Indifference chains indirectly link agents via
indifference in a sequence of directly linked agents.

The following concept of agent k-linked allocations will be useful.

15See for example, Andersson and Svensson (2008), Andersson, Svensson and Yang (2010) or Mishra
and Talman (2010) for theoretical results, and Sankaran (1994) or Mishra and Parkes (2010) for efficient
procedures to calculate allocations with the maximal number of indifference relations. Similar observations
have previously also been made by e.g. Dubey (1982) and Svensson (1991) where the “tightness” of the
market is demonstrated to have a significant impact on manipulation possibilities.
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Definition 12. Let (a, x) ∈ A.

(i) Agent i ∈ N is linked to agent k ∈ N at allocation (a, x) if there exists an indifference
chain (i0, ..., it) at allocation (a, x) with i = i0 and it = k.

(ii) Allocation (a, x) is agent k−linked if each agent i ∈ N is linked to agent k ∈ N .

Thus, at an agent k−linked allocation, each agent is linked to agent k ∈ N through
some indifference chain. The following is a slightly stronger result than Theorem 2 whereby
we also show that a fair and budget-balanced allocation is agent k-preferred if and only if
it is agent k-linked.

Theorem 6. Let k ∈ N .

(i) For each profile u ∈ U , there exists an agent k−preferred allocation in F (u), i.e.
ψk(u) 6= ∅. Moreover, for any allocation (a, x) ∈ F (u), (a, x) ∈ ψk(u) ⇔ (a, x) is
agent k-linked.

(ii) ψk is an allocation rule.

Proof. Let k ∈ N and u ∈ U . First, we show (i). Note that agent k-preferred allocations
exist in F (u) since F (u) is compact. Thus, ψk(u) 6= ∅.

Let (a, x) ∈ ψk(u). We show that (a, x) is agent k−linked. By contradiction, suppose
that (a, x) is not k−linked, i.e., that there is an agent l ∈ N which is not linked to agent
k. Let

G = {i ∈ N : i is linked to k at (a, x)} ∪ {k}.

Because k ∈ G and l ∈ N−G, bothG andN−G are non-empty. Moreover, by construction,
uiai(x) > uiaj(x) if i ∈ N−G and j ∈ G. From the Perturbation Lemma in Alkan, Demange
and Gale (1991) it then follows that there exists another allocation (b, y) ∈ F (u) such that
yai > xai for all i ∈ G.16 Then by fairness and monotonicity in money, we have

uibi(y) ≥ uiai(y) = viai + yai > viai + xai = uiai(x) for all i ∈ G.

Because k ∈ G, it follows that ukbk(y) > ukak(x), which contradicts the fact that (a, x) max-
imizes k’s utility in F (u). Hence, any agent k−preferred fair allocation is agent k−linked.

Next we show (ii) and that any agent k-linked allocation maximizes agent k’s utility in
F (u).17 It suffices to show that if (a, x), (b, y) ∈ F (u) are agent k−linked, then uiai(x) =
uibi(y) for all i ∈ N . By the first part of the proof for (i), any agent k−preferred allocation
is agent k−linked. Thus, we may suppose without loss of generality that (b, y) ∈ ψk(u).

We first demonstrate the analogue of Lemma 3 for agent k-linked fair allocations: if
(a, x), (b, y) ∈ F (u) are agent k−linked, then x = y. To see this, note that (a, y) is also

16Because preferences are quasi-linear, this can be simply done by infinitesimally increasing equally the
compensations of {ai : i ∈ G} and infinitesimally decreasing equally the compensations of {ai : i ∈ N −G}
(while preserving budget-balance).

17Again, to make the presentation self-contained, we include the proof (which follows Theorem 6 in
Alkan, Demange and Gale, 1991).
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fair by Lemma 2. First, we show that (a, y) is agent k−linked if (b, y) is agent k−linked.
Fairness implies

uiai(y) = uibi(y) for all i ∈ N. (2)

Since (b, y) is maximizes the utility of agent k in F (u), (2) implies that (a, y) also maximizes
the utility of agent k in F (u). Thus, by the first part of the proof for (i), (a, y) is agent
k−linked. Hence, without loss of generality we may assume a = b.

Suppose that the fair allocations (a, x) and (a, y) are agent k−linked but x 6= y. Then
by budget-balance and x 6= y, there must be two non-empty groups of agents:

A = {i ∈ N : xai > yai},
B = {i ∈ N : xai ≤ yai}.

Note that for all i ∈ A and all j ∈ B, uiai(x) > uiai(y) ≥ uiaj(y) ≥ uiaj(x). Hence, no
agent in A can be linked to any agent in B at allocation (a, x). Because (a, x) is agent
k−linked, we must have k ∈ A. Let j ∈ B and i ∈ A. By fairness and monotonicity in
money,

ujaj(y) ≥ ujaj(x) ≥ ujai(x) > ujai(y).

Thus, at allocation (a, y) no agent in B can be linked to any agent in A. Hence, by k ∈ A,
allocation (a, y) cannot be agent k−linked which contradicts our assumption.

Let (a, x), (b, y) be agent k−linked and i ∈ N . By the above, we have x = y. Obviously,
if ai = bi, then uiai(x) = uibi(y). If ai 6= bi, then by fairness both uiai(x) ≥ uibi(x) and
uiai(y) ≤ uibi(y). Hence, by x = y, we have uiai(x) = uibi(y), the desired conclusion.

Theorem 6 implies that (i) the set of agent k−linked fair allocations and the set of
agent k−preferred fair allocations coincide and (ii) all agents are indifferent between all
fair allocations which maximize agent k’s utility in F (u).

We next introduce a more demanding notion of indifference structures, namely indif-
ference components. In each indifference component any two agents are linked through an
indifference chain in this component and there is no superset of this component where any
two agents are linked.

Definition 13. Let (a, x) ∈ A. An indifference component at allocation (a, x) is a non-
empty set G ⊆ N such that for all i, k ∈ G there exists an indifference chain at (a, x) in
G, say g = (i0, ..., ik) with {i0, . . . , ik} ⊆ G, such that i = i0 and ik = k, and there exists
no G′ ) G satisfying the previous property at allocation (a, x).

The next result states an important characteristic of indifference components, namely
that if there are two allocations that are fair and budget-balanced at some profile u ∈ U
and if there is an indifference component at one of these allocations, then the very same
indifference component must be present at the other allocation. In other words, indifference
components at fair and budget-balanced allocations only depend on the preference profile
u ∈ U because they are invariant with respect to the selected fair and budget-balanced
allocation.
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Lemma 4. Suppose that allocations (a, x) and (b, y) are fair and budget-balanced at profile
u ∈ U . If G is an indifference component at allocation (a, x), then G is an indifference
component at allocation (b, y).

Proof. By Lemma 2, we know that (a, y) is fair. First we show that the indifference
component G is present at (a, y).

Because G is an indifference component at (a, x), G consists of indifference chains g =
(i0, i1, . . . , ik) such that ik →(a,x) i0. Thus, we have i0 →(a,x) i1 →(a,x) · · · →(a,x) ik →(a,x) i0.
We show i0 →(a,y) i1 →(a,y) · · · →(a,y) ik →(a,y) i0.

For any i ∈ N , let ∆ai = yai − xai . To obtain a contradiction, suppose that we do
not have i0 →(a,y) i1 →(a,y) · · · →(a,y) ik →(a,y) i0, say ui0ai0 (x) = ui0ai1 (x) but ui0ai0 (y) >
ui0ai1 (y). Thus, ∆ai0

> ∆ai1
. Now, fairness is respected among the agents in G at allocation

(a, y) only if

∆aij
≥ ∆aij+1

for all j ∈ {0, ..., k − 1}, (3)

∆aik
≥ ∆ai0

. (4)

From (3) and ∆ai0
> ∆ai1

, we obtain ∆ai0
> ∆aik

. Hence, (4) is not satisfied. Thus,
allocation (a, y) cannot be fair, which contradicts our assumption. Hence, i0 →(a,y) i1 →(a,y)

· · · →(a,y) ik →(a,y) i0. Note that there exists no G′ ) G such that G′ is an indifference
component at (a, y) because otherwise, using the previous arguments, any two agents
in G′ are connected through some indifference chain at (a, x) in G′ which contradicts the
definition of G being an indifference component at (a, x). Thus, the indifference component
G is present at (a, y).

Next, we show that G must be also an indifference component at (b, y). Fairness implies

uiai(y) = uibi(y) for all i ∈ N. (5)

Let j, k ∈ G and suppose that j →(a,y) k. If ak = bk, then by (5), j →(b,y) k. Let ak 6= bk
and l1 ∈ N be such that al1 = bk. Obviously, (5) implies k →(a,y) l1. More generally,
let l1, . . . , lt be such that alr = blr−1 with r = 2, . . . , t and ak = blt . Note that such a
“cycle” exists because |N | = |M |. Now obviously we have k →(a,y) l1, lr →(a,y) lr+1 for all
r = 1, . . . , t− 1, and lt →(a,y) k. Since k ∈ G and G is an indifference component at (a, y),
we must have {l1, . . . , lt} ⊆ G.

Now by (5), we have ujbj(y) = ujaj(y) = ujak(y) = ujblt (y) which implies j →(b,y) lt.
Note that by construction, we also have l1 →(b,y) k and lr →(b,y) lr−1 for all r = 2, . . . , t.
This means that j and k are connected through the indifference chain j →(b,y) lt →(b,y)

lt−1 →(b,y) · · · →(b,y) l1 →(b,y) k in G under (b, y) (if ak 6= bk). If ak = bk, then j →(b,y) k.
Because this is true for any j, k ∈ G such that j →(a,y) k, it also follows that any two
agents belonging to G must be connected through an indifference chain in G at (b, y).
Furthermore, there can be no G′ ) G satisfying this property under (b, y) because by the
same argument G′ would also satisfy this property under (a, x), which would contradict
the definition of an indifference component.
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Lemma 4 implies that the set of components and the set of indifference components are
identical, i.e.

G(u) = {G ⊆ N : G is an indifference component at all (a, x) ∈ F (u)}.

Furthermore, Lemma 1 follows directly from Lemma 4 and Theorem 6: Given u ∈ U and
k ∈ N , by Lemma 4, there is a unique indifference component G such that k ∈ G. Then
for all i ∈ G, by definition of an indifference component, any allocation (a, x) ∈ ψk(u) is
agent i-linked. Thus, by Theorem 6, (a, x) ∈ ψi(u). Interchanging the roles of i and k, we
now obtain ψk(u) = ψi(u) for all i ∈ G, and ψk(u) = ψG(u).

The existence of indifference components is closely related to the presence of isolated
groups (or coalitions): a group of agents C ( N is isolated if no agent outside this group
can be linked to any agent in C.

Definition 14. A group of agents C ( N is isolated at allocation (a, x) if i 6→(a,x) j for
all i ∈ N − C and all j ∈ C.

The following relates isolated groups and indifference components.

Lemma 5. Let ϕ be a fair and budget-balanced allocation rule, u ∈ U and (a, x) ∈ ϕ(u).
If N − G is the (possibly empty) isolated group with maximal cardinality at allocation
(a, x), then G is an indifference component at allocation (a, x).

Proof. We first show that all i, j ∈ G can be linked via an indifference chain in G. Suppose
not, i.e. there exist i, j ∈ G such that i cannot be linked to j via some indifference chain
G. Let

H = {k ∈ G : k can be linked to j via some indifference chain in G}.

Since i ∈ G − H, we have G − H 6= ∅. Because no agent in G − H can be linked to any
agent in H, by construction, it follows that (N − G) ∪ H ( N (by i ∈ G − H), the set
(N −G) ∪H is isolated and |(N −G) ∪H| > |N −G|, which contradicts the assumption
that N −G is the isolated group with maximal cardinality at allocation (a, x) ∈ ϕ(u).

Now, the proof follows directly because the group N −G is isolated at allocation (a, x),
i.e., i 6→(a,x) j for all i ∈ G and all j ∈ N −G. Consequently, there is no G′ ) G such that
G′ is an indifference component by Definition 13.

B Manipulability and Non-Manipulability

Below we determine the (non-)manipulation possibilities of fair allocation rules. The first
result describes the relation between isolated groups and the possibility to manipulate ϕ at
a specific profile. We show that any coalition contained in an isolated group can manipulate
the fair and budget-balanced allocation rule.18

18Note that Beviá (2010)’s results do not allow for single-valued allocation rules whereas all our results
hold any single-valued allocation rule (and Beviá’s Theorem 2.1 does not have any implication for Lemma
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Lemma 6. Let ϕ be a fair and budget-balanced allocation rule, u ∈ U and (a, x) ∈ ϕ(u).
If the non-empty group G ( N is isolated at allocation (a, x), then each coalition C ⊆ G
can manipulate ϕ at profile u ∈ U .

Proof. Let (a, x) ∈ ϕ(u), and suppose that G ( N is a non-empty isolated coalition,
i.e., that both i 6→(a,x) j and uiai(x) > uiaj(x) for all i ∈ N − G and all j ∈ G. Now
simultaneously all compensations for objects ai (i ∈ G) can be increased by the same
amount and all compensations for objects aj (j ∈ N − G) can be decreased by the same
amount without losing budget-balance and fairness. Hence, there is a number τ > 0 and
(a, y) ∈ F (u) such that uiai(y) > uiai(x) + τ for all i ∈ G (and yai > xai + τ for all i ∈ G).
Fix 0 < ε < τ and define for any i ∈ G the function ûi as follows: for all j ∈ M and all
x′ ∈ RM , let

ûij(x
′) = (−yj + εij) + x′j, (6)

where εij = 0 if j 6= ai and εiai = ε > 0. Note that v̂ij = −yj + εij. Let C ⊆ G and
ûC = (ûi)i∈C . By construction of ûC , we have (a, y) ∈ F (ûC , u−C).19

Let (b, z) ∈ ϕ(ûC , u−C). We first show bi = ai for all i ∈ C. Let δj = zj − yj for all
j ∈M . Without loss of generality, order M such that δj ≥ δj+1 for all j = 1, . . . , |M | − 1.

If z = y, then by fairness, ûibi(y) = ûiai(y) for all i ∈ C. Since for all i ∈ C, ûiai(y) = ε
and ûij(y) = 0 for j 6= ai, we obtain bi = ai for all i ∈ C.

If z 6= y, then by budget-balance of both (b, z) and (a, y), δ1 > 0 and δn < 0. Let (jl)l
be a subsequence of (1, . . . , n) such that jl < jl+1, δjl > δjl+1

and δj = δjl if jl ≤ j < jl+1.
Let Sl = {i ∈ N : jl ≤ ai < jl+1}. Then for i ∈ Sl:

uiai(z) = uiai(y) + δai ≥ uibi(y) + δai > uibi(y) + δbi = uibi(z) if bi ≥ jl+1 and i ∈ N − C,
ûiai(z) = zai − yai + ε = δai + ε > δbi = ûibi(z) if bi ≥ jl+1 and i ∈ C.

Thus, by fairness, for all l, i ∈ Sl implies jl ≤ bi < jl+1. Moreover, for i ∈ C, ûiai(z) =
δai + ε > δbi = ûibi(z) if bi 6= ai and bi ≥ jl. Hence, by fairness, bi = ai for all i ∈ C.

It remains to prove that uibi(z) > uiai(x) for all i ∈ C, i.e., ϕ is manipulable at u
by coalition C. From the above, we have ai = bi for all i ∈ C. Since ϕ is fair, we have
(b, z) ∈ F (ûC , u−C). Now we have for all i ∈ C with bi 6= 1,

ûibi(z) = ûiai(z) = ziai − yiai + ε ≥ zi1 − yi1 = ûi1(z). (7)

Because δj = zj − yj, it follows from the above condition that δbi ≥ δ1 − ε for i ∈ C with
bi 6= 1. Note that this inequality holds trivially if bi = 1 because ε > 0. Now this fact, the
definition of δj and our choice of 0 < ε < τ , δ1 ≥ 0 and ai = bi for all i ∈ C, yield for all

6.
19Note that for all i ∈ C, ûiai(y) = ε and ûij(y) = 0 for j 6= ai.
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i ∈ C

uiai(x) < uiai(y)− τ
= uibi(y)− τ
= vibi + zbi − (zbi − ybi)− τ
= uibi(z)− δbi − τ
≤ uibi(z)− δ1 − (τ − ε),
< uibi(z),

where the first inequality follows from uiai(y) > uiai(x) + τ , the first equality from ai = bi
for i ∈ C, the second inequality from −δbi ≤ −(δ1− ε), and the last inequality from δ1 ≥ 0
and τ > ε. Hence, uiai(x) < uibi(z) for all i ∈ C, which is the desired conclusion.

The second result shows that the agent k−preferred fair allocation rule cannot be
manipulated by any coalition containing agent k. The intuition is as follows. If agent k
can successfully manipulate the allocation rule, then by fairness agent k must be assigned a
consumption bundle where the monetary compensation increases. Since each agent is linked
to agent k, then each agent must be assigned a consumption bundle where the monetary
compensation increases, because if this is not the case then fairness is violated at the new
allocation. But then the budget must be exceeded. Hence, agent k cannot manipulate. The
same intuition holds for any fair allocation rule choosing agent k-preferred fair allocations
for some profile.

Lemma 7. Let ϕ be a fair and budget-balanced allocation rule, k ∈ N and u ∈ U . If
ϕ(u) ⊆ ψk(u), then no coalition C ⊆ N containing agent k can manipulate ϕ at profile
u ∈ U .

Proof. Let C ⊆ N be such that k ∈ C. Suppose that ϕ is manipulable at profile u ∈ U by
coalition C. Then there is a profile (ûC , u−C) ∈ U and two allocations (a, x) ∈ ϕ(u) and
(b, y) ∈ ϕ(ûC , u−C) such that uibi(y) > uiai(x) for all i ∈ C. Note that ϕ(u) ⊆ ψk(u) and
(a, x) ∈ ψk(u). Thus, by Theorem 6, (a, x) is agent k−linked.

By fairness, uiai(x) ≥ uibi(x) for all i ∈ C. Hence, for all i ∈ C, uibi(y) > uibi(x) and
ybi > xbi . Because (b, y) satisfies budget-balance, we must have C ( N . We distinguish
two cases.

First, suppose {bi : i ∈ C} = {ai : i ∈ C}. Since k ∈ C and (a, x) is an agent k−linked
fair allocation, there exists i ∈ N − C and j ∈ C such that i →(a,x) j. By j ∈ C and
{bi : i ∈ C} = {ai : i ∈ C}, we have yaj > xaj . Now uiai(x) = uiaj(x), fairness, and
monotonicity in money imply

uibi(y) ≥ uiaj(y) > uiaj(x) = uiai(x) ≥ uibi(x).

Hence, ybi > xbi . Let C1 = C ∪ {i ∈ N : i →(a,x) j for some j ∈ C}. Thus, we have
ybi > xbi for all i ∈ C1 (and C ( C1).
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Second, suppose {bi : i ∈ C} 6= {ai : i ∈ C}. Let i ∈ N − C be such that ai ∈ {bi : i ∈
C}. Then yai > xai , fairness, and monotonicity in money imply

uibi(y) ≥ uiai(y) > uiai(x) ≥ uibi(x).

Hence, ybi > xbi . Let C1 = C ∪ {i ∈ N − C : ai ∈ {bi : i ∈ C}}. Thus, we have ybi > xbi
for all i ∈ C1 (and C ( C1).

Using the same arguments it follows for any l that (i) if {bi : i ∈ C l} = {ai : i ∈ C l},
then for each i ∈ N such that i →(a,x) j for some j ∈ C l, we have ybi > xbi . Let
C l+1 = C l ∪ {i ∈ N : i →(a,x) j for some j ∈ C l}; and (ii) if {bi : i ∈ C l} 6= {ai : i ∈ C l},
then for each i ∈ N − C l such that ai ∈ {bi : i ∈ C l}, we have ybi > xbi . Let C l+1 =
C l ∪ {i ∈ N − C l : ai ∈ {bi : i ∈ C l}}.

Because N is finite and (a, x) is agent k−linked, for some t we obtain Ct = N and
ybi > xbi for all i ∈ Ct, which is contradiction to budget-balance of (b, y). Hence, C cannot
manipulate ϕ at profile u ∈ U .

The following theorem identifies all preference profiles u ∈ U at which any fair and
budget-balanced allocation rule is (coalitionally) non-manipulable.

Theorem 7. A fair and budget-balanced allocation rule ϕ is (coalitionally) non-
manipulable at profile u ∈ U if and only if N is the unique indifference component at
profile u ∈ U (i.e., G(u) = {N}).

Proof. The “only if” part follows directly from Lemma 6 since there always is an isolated
group unless N is the unique indifference component by Lemma 5. To prove the “if” part,
note that if N is the unique indifference component, any (a, x) ∈ F (u) is agent i-linked for
any i ∈ N by Lemma 4. Since ϕ(u) ⊆ F (u), Lemma 7 implies that no coalition containing
i ∈ N can manipulate ϕ at profile u ∈ U . Hence, ϕ is both non-manipulable at profile
u ∈ U and coalitionally non-manipulable at profile u ∈ U .

Lemma 4 and Theorem 7 imply our first main result Theorem 1: a fair and budget-
balanced allocation rule is non-manipulable at a profile if and only if all fair and budget-
balanced allocation rules are non-manipulable at this profile. Furthermore, the same
equivalence holds when considering coalitional non-manipulability instead of individual
non-manipulability.

Theorem 1. Let ϕ and ψ be two arbitrary fair and budget-balanced allocation rules.
Then ϕ is (coalitionally) non-manipulable at profile u ∈ U if and only if ψ is (coalitionally)
non-manipulable at profile u ∈ U .

Proof. Follows directly from Lemma 4 and Theorem 7.

Note that for any i ∈ N , there is a unique (indifference) component G ∈ G(u) such that
i ∈ G (where G = {i} is possible), i.e., any agent is included in exactly one indifference
component at any profile u ∈ U . Given this observation, we determine for any profile
the precise number of agents and coalitions who can manipulate the agent k-linked fair
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allocation rule. Specifically, we demonstrate that ψk can be manipulated by less than 50%
of all coalitions at any profile.

Theorem 8. Let k ∈ N and u ∈ U .

(i) If k ∈ S ∈ G(u), then ψk is manipulable by exactly |N | − |S| agents and exactly
2|N |−|S| − 1 coalitions at profile u ∈ U .

(ii) ψk is manipulable by less than 50% of all coalitions at any profile u ∈ U .

Proof. To prove (i), note that since S is an indifference component, for all i ∈ S and all
(a, x) ∈ ψk(u), allocation (a, x) is agent i-linked. Thus, by Theorem 6, (a, x) ∈ ψi(u) and
ψk(u) = ψi(u). From Lemma 7 it then follows that no coalition containing agent i ∈ S can
manipulate ψk at profile u ∈ U . Thus, at most 2|N |−|S|− 1 coalitions can manipulate ψk at
profile u ∈ U . Lemma 6 guarantees that this bound is tight, i.e., that exactly 2|N |−|S| − 1
coalitions can manipulate ψk at profile u ∈ U . Because there are exactly |N | − |S| non-
empty singleton coalitions in the class of coalitions that can gain by manipulation, it follows
that exactly |N | − |S| agents can manipulate ψk at profile u ∈ U .

To prove (ii), note that |S| ≥ 1. Because 2|N |−|S| ≤ 2|N |−1 for any |S| ≥ 1, it follows
from (i) that ψk can be manipulated at profile u ∈ U by at most 2|N |−1−1 coalitions. Since
there are 2|N |− 1 non-empty coalitions of N and 2|N |− 1 = 2(2|N |−1− 1) + 1, less than 50%
of all coalitions can manipulate ψk at profile u ∈ U .

Therefore, if the agent k−preferred fair allocation rule is adopted, then in order to
calculate the exact number of manipulating agents and coalitions at a given profile, one
only needs to know the number of agents that are included in the (indifference) component
containing agent k. Because indifference components are invariant with respect to the
chosen fair allocation (Lemma 4) it is sufficient to find an arbitrary agent k-linked fair
allocation at the given preference profile to find the exact number of manipulating agents
and coalitions. This task can be achieved, for example by using the algorithm in Klijn
(2000). Because this algorithm is polynomially bounded, this is not even computationally
hard. An algorithm (inspired by Klijn, 2000) for calculating agent k−linked fair allocations
is provided in Andersson, Ehlers and Svensson (2010).

The corollary below follows from the above results.

Corollary 1.

(i) ψk cannot be manipulated by agent k at any profile u ∈ U .

(ii) For any two distinct agents i, j ∈ N , there exists no fair and budget-balanced allo-
cation rule ϕ such that neither i nor j can manipulate ϕ at any profile u ∈ U .

Note that Lemma 7 implies that the agent k-linked fair allocation rule cannot be ma-
nipulated by any coalition containing k at any profile. In particular, the agent k-linked fair
allocation rule is not manipulable by agent k at any profile u ∈ U , which is the first part
of Corollary 1. The second part of Corollary 1 is easy to verify and left to the reader.
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Remark 1. In a paper subsequent to this, Fujinaka and Wakayama (2011) similar results as
ours regarding individual manipulation (possibilities): (a) Proposition 1 and Proposition 2
in Fujinaka and Wakayama (2011) are identical with Theorem 6, (b) Theorem 2 of Fujinaka
and Wakayama (2011) is equivalent to (restricting attention to individual manipulation)
Theorem 7 (using Theorem 6), and (c) Corollary 2 of Fujinaka and Wakayama (2011) is
equivalent to Corollary 1 (using Lemma 6). There are two important differences between
our paper and Fujinaka and Wakayama (2011): on the one hand we allow for multi-valued
allocation rules whereas they only consider single-valued allocation rules; on the other
hand we consider only quasi-linear utility functions whereas they consider general utility
functions satisfying (i) monotonicity in money, i.e. for any x, y ∈ RM , if xj > yj, then
uij(x) > uij(y) and (ii) no infinite desirability in terms of money, i.e. for any j, k ∈M and
any x ∈ RM , there exists y ∈ RM such that uij(x) = uik(y).

C Minimal Manipulability

Theorem 3 follows from the result below.

Theorem 9. Let ϕ be an arbitrary fair and budget-balanced allocation rule and let φκ be
a maximally preferred fair allocation rule. Then:

(i) ϕ is agents-counting-more manipulable than φκ; and

(ii) if φκ is agents-counting-more manipulable than ϕ, then ϕ is a maximally preferred
fair allocation rule.

Proof. First, we show (i). Let u ∈ U . Suppose that (a, x) ∈ ϕ(u) and (b, y) ∈ φκ(u), and
let N − G be a (possibly empty) isolated group with maximal cardinality at allocation
(a, x) ∈ ϕ(u). Then G is an indifference component at allocations (a, x) and (b, y) by
Lemmas 4 and 5.

Note first that all agents in the isolated coalition N −G can manipulate ϕ by Lemma
6. Consequently, at least |N −G| agents can manipulate ϕ. Hence, to conclude the proof
for (i) we need to show that at most |N −G| agents can manipulate φκ.

Suppose that κ(u) belongs to the indifference component Ĝ ⊆ Ḡ(u), and note that
|Ĝ| ≥ |G| by construction of φκ. Since φκ(u) = ψk(u) for all k ∈ Ĝ, it now follows from
Lemma 7 that no agent k ∈ Ĝ can manipulate φκ at profile u ∈ U . Thus, at most |N − Ĝ|
agents can manipulate φκ. The conclusion of (i) then follows directly from the observation
that |Ĝ| ≥ |G| implies |N − Ĝ| ≤ |N −G|.

For (ii), note that then we have to have |N − G| ≤ |N − Ĝ| and |G| ≥ |Ĝ|. Then
G ⊆ Ḡ(u). Since u ∈ U was arbitrary, now ϕ is a maximally preferred fair allocation
rule.

Theorem 4 follows from the result below.

Theorem 10. Let ϕ be a fair and budget-balanced allocation rule and φκ be a maximally
preferred fair allocation rule. Then:
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(i) ϕ is coalitions-counting-more manipulable than φκ; and

(ii) if φκ is coalitions-counting-more manipulable than ϕ, then ϕ is a maximally preferred
fair allocation rule.

Proof. First, we show (i). Let u ∈ U . Suppose that (a, x) ∈ ϕ(u) and (b, y) ∈ φκ(u), and
let N − G be the (possibly empty) isolated group with maximal cardinality at allocation
(a, x) ∈ ϕ(u). Then G is an indifference component at allocations (a, x) and (b, y) by
Lemmas 4 and 5.

Note first that all coalitions in the isolated group N −G can manipulate ϕ by Lemma
6. Consequently, at least 2|N−G| − 1 coalitions can manipulate ϕ. Hence, to conclude the
proof we need to show that at most 2|N−G|− 1 coalitions can manipulate φκ. Suppose now
that κ(u) belongs to the indifference component Ĝ ⊆ Ḡ(u), and note that |Ĝ| ≥ |G| by
construction of φκ. It now follows from Lemma 7 and the construction of φκ that at most
2|N−Ĝ| − 1 coalitions can manipulate φκ. The conclusion of (i) then follows directly from

the observation that |Ĝ| ≥ |G| implies 2|N−Ĝ| − 1 ≤ 2|N−G| − 1.

For (ii), note that then we have to have 2|N−Ĝ| − 1 ≥ 2|N−G| − 1 and |G| ≥ |Ĝ|. Then
G ⊆ Ḡ(u). Since u ∈ U was arbitrary, now ϕ is a maximally preferred fair allocation
rule.

Theorem 5 follows from the result below.

Theorem 11. Let ϕ be an arbitrary fair and budget-balanced allocation rule. Then:

(i) there exists a selection κ : U → N such that ϕ is agents-inclusion-more manipulable
than φκ; and

(ii) if φκ is agents-inclusion-more manipulable than ϕ, then ϕ = φκ.

Proof. We construct κ : U → N as follows: for all u ∈ U , if for some k ∈ N , ϕ(u) = ψk(u),
then we set κ(u) = k, and otherwise κ(u) can be arbitrary.

First, we show (i). Let u ∈ U . If for all k ∈ N , ϕ(u) 6⊆ ψk(u), then any agent i ∈ N
belongs to an isolated group. Now by Lemma 6, Pϕ(u) = N . Since φκ(u) ⊆ ψκ(u)(u), now
by Lemma 7, P φκ(u) ⊆ N − {κ(u)}. Hence, Pϕ(u) ⊇ P φκ(u).

If for some k ∈ N , ϕ(u) = ψk(u), then by construction of κ, we also have φκ(u) = ψk(u).
But now we have Pϕ(u) ⊇ P φκ(u).

Hence, for all u ∈ U , Pϕ(u) ⊇ P φκ(u), and ϕ is agents-inclusion-more manipulable than
φκ, the desired conclusion for (i).

For (ii), note that then we have to have P φκ(u) ⊇ Pϕ(u). Then for k = κ(u), we have
φκ(u) = ψk(u) and, by k /∈ P φκ(u), ϕ(u) = ψk(u), the desired conclusion.
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