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Repeated games with incomplete information and discounting

Marcin Pęski
University of Toronto

We analyze discounted repeated games with incomplete information, such that
the players’ payoffs depend only on their own type (known-own payoff case). We
describe an algorithm for finding all equilibrium payoffs in games for which there
exists an open set of belief-free equilibria of Hörner and Lovo (2009). This includes
generic games with one-sided incomplete information and a large and important
class of games with multisided incomplete information. When players become
sufficiently patient, all Bayesian Nash equilibrium payoffs can be approximated
by payoffs in sequential equilibria in which information is revealed finitely many
times. The set of equilibrium payoffs is typically larger than the set of equilibrium
payoffs in repeated games without discounting and is larger than the set of pay-
offs obtained in belief-free equilibria. The results are illustrated in bargaining and
oligopoly examples.
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1. Introduction

This paper contributes to the literature on repeated games with discounting and incom-
plete information in which players know their own payoffs. It introduces a payoff set
based on two geometric operations and establishes two results. First, all elements of
this set are (sequential) equilibrium payoff vectors when players are sufficiently patient.
Second, for a rich class of games (those in which belief-free equilibria exist, in particu-
lar, games with one-sided incomplete information), it proves that this characterization
is tight: no payoff vector outside this set can be achieved in a (Bayes) Nash equilibrium.

One of the major problems in the analysis of repeated games with incomplete in-
formation is that there is no natural candidate for the payoff set. This problem is not
present in games with complete information, where it is immediately shown that all
equilibrium payoffs must be feasible and individually rational, and the main difficulty
is to find conditions under which all feasible and individually rational payoffs can be at-
tained in subgame perfect equilibria. With incomplete information, the set of (naturally
defined) feasible and individually rational payoffs is typically too large, since not all such
payoffs can be attained (or even approximated) by equilibrium payoffs. Another can-
didate, the equilibrium payoff set obtained in the literature without discounting (Hart
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1985, Shalev 1994, and Koren 1992), is typically smaller than the set of payoffs that can
be obtained in games with discounting.

We solve the problem in a two-part argument. First, we construct a candidate equi-
librium correspondence that assigns a payoff set to each prior belief. The idea is to con-
sider payoffs in strategy profiles in which (i) there are finitely many periods in which
players reveal information (by taking partially or fully separating actions), (ii) these pe-
riods are separated by possibly long time intervals during which the types of players pool
their actions, and (iii) at each period, the continuation payoffs are individually rational.
The construction begins with a set of individually rational payoffs in profiles in which
no information is ever revealed. Next, we go through a sequence of steps that alternate
between two geometric operations: (A) for each prior, the payoff set is convexified with
the payoffs in profiles in which the players do not reveal any information, and (B) the
payoffs are convexified across different initial priors. Operation A constructs profiles in
which during the initial periods, the types of players pool their actions, and in opera-
tion B, we obtain profiles in which the types reveal some substantial information in the
first period. Operations A and B correspond to two properties of bi-martingales from the
literature on games without discounting with a key difference: because the initial play
does not matter in that literature, the analogue of operation A replaces the set of payoffs
with its convex hull, but it does not convexify it with the nonrevealing payoffs. For suf-
ficiently patient players, all the payoff vectors in the candidate equilibrium correspon-
dence can be attained by payoffs in finitely revealing equilibria: sequential equilibria in
which players’ information is revealed at most finitely many times.

Second, we show that no payoff outside the constructed set can be attained in equi-
librium. For the second part, we assume that there exists an open set of payoffs in belief-
free equilibria of Hörner and Lovo (2009): sequential equilibria in which, during the first
period of the game, all players fully reveal their information (i.e., they take fully sepa-
rating actions), and such that the players are ex post indifferent between revealing their
type truthfully or reporting any other type (i.e., they are indifferent conditional on any
type of the opponent). The payoffs in such equilibria form a multilinear cross section
(i.e., a thread) of payoffs across games with all possible initial beliefs. The assumption
is generically satisfied in games with one-sided incomplete information and in many
important examples of games with multisided incomplete information (like oligopoly
models). However, there are robust examples of games with two players and incomplete
information on both sides that do not satisfy the assumption.

Given this assumption, we show that all payoffs attained in Nash equilibria of the
repeated game can be approximated by the payoffs constructed in the first part of our
argument, i.e., by payoffs in finitely revealing equilibria. The idea is to modify the equi-
librium continuation payoffs to pull them toward the thread of payoffs in the belief-free
equilibria. We show that the continuation payoffs reach the neighborhood of the belief-
free equilibrium payoff set in finitely many periods. Once this happens, we finish the
construction with an immediate and full revelation of information. The argument is of
independent interest, as it is very simple and possibly can be applied in other related
settings (like games with types that may slowly change over time).
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At first sight, the characterization of all equilibrium payoffs through finitely reveal-
ing profiles has a simple intuition. Because the beliefs of the players are martingales,
they converge. This means that with a high probability, players stop revealing substan-
tial amounts of information after finitely many periods. Nevertheless, the result is far
from obvious. The above intuition does not lead to the proof as it leaves open the possi-
bility that after low probability histories, the continuation game requires a large amount
of information to be revealed. In fact, the intuition fails in repeated games with no dis-
counting in which there are examples of games with equilibrium payoffs that cannot be
approximated by finitely revealing profiles (see Forges 1984, 1990 and Aumann and Hart
2003).

The previous literature has not been able to describe the equilibrium set except for
very special cases. The closest to the current paper is Peski (2008), who characterized
the equilibrium payoffs in games with incomplete information only on one side and
with the informed player having only two types. The current paper generalizes Peski
(2008) to multiple types and multisided incomplete information. The characterization
of payoffs in finitely revealing equilibria is a relatively straightforward extension of Peski
(2008). The key step of the current paper, i.e., the argument that no other payoffs can be
attained in equilibrium, is entirely novel.1

The main advantage of our characterization is that the payoff set in finitely revealing
profiles can be computed. We illustrate this claim with two examples. First, we dis-
cuss a class of oligopoly games. That class includes, as a knife-edge case, a Bertrand
oligopoly with privately known production costs from Athey and Bagwell (2008). In that
paper, the authors propose mechanism design methods for analyzing repeated games
with incomplete information. They describe the equilibrium that maximizes the sum
of ex ante payoffs among all symmetric equilibria and they show that no information is
revealed in such an equilibrium. Here, we explain that there is a relation between the
mechanism design approach and equilibria in which all players fully and immediately
reveal their information. We show that in oligopoly games, all equilibrium payoffs can
be approximated by such equilibria and can be derived as solutions to a simple mecha-
nism design problem. We use the explicit description of payoffs to show that some (and,
in some cases, complete) productive efficiency can typically be obtained in the Pareto-
dominant equilibrium. In particular, we argue that the “pooling” result of Athey and
Bagwell (2008) is not robust to alternative demand specifications.

Second, we discuss a bargaining game with two players, one-sided incomplete in-
formation, and two types (normal and “strong”) of the informed player. We assume that
the game between the normal type and the uninformed player has strictly conflicting
interests (Schmidt 1993). The strong type’s payoffs are parametrized as a convex combi-
nation between the payoffs of the normal type and the payoffs of a player who is com-
mitted to playing a single action (i.e., for whom repeating a single action is a dominant

1To compare, notice that Peski (2008) uses a much more complicated differential technique that, despite
our best efforts, could not be extended beyond the two-type, one-sided case. In addition, notice that Athey
and Bagwell (2008) (see later in the Introduction) solve the second part of the argument (i.e., showing that
there are no other Nash equilibria) using a sophisticated approach from the mechanism design literature
and by making assumptions about the log concavity of the cost distribution. Their approach does not seem
to generalize well beyond the particular example they analyze.
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strategy in the repeated game). We describe the Pareto frontier of the equilibrium set as
a solution to a system of differential equations. We show that there are efficient equilib-
ria that require any arbitrarily large number of periods with the information revelation.
When the payoffs of the strong type converge to the payoffs of the committed player, all
equilibrium payoffs converge to the Stackelberg outcome of the informed player.

We compare our characterization to the literature on repeated games without dis-
counting (see Aumann and Maschler 1995). That literature typically considers the gen-
eral payoff case, in which players’ payoffs may depend on the types of their opponents.2  

Hart (1985) considers one-sided uncertainty with general payoffs and characterizes the
equilibrium payoffs as values of bi-martingales. The characterization in the general-
payoff no-discounting case is not constructive and there is no known algorithm for
finding all equilibrium payoffs in the general case. This fact is related to the existence
of games and equilibria that cannot be approximated by payoffs in the finitely reveal-
ing equilibria that we mention above. With known-own payoffs and no discounting, all
equilibrium payoffs can be obtained with strategies in which players reveal all their in-
formation in the first period (Shalev 1994 and Koren 1992). Some of the similarities and
the differences between the no-discounting and discounted cases are discussed in more
detail in Section 7.

An important difference between the discounted and no-discounting case is that
equilibria always exist in the former case, but not necessarily in the latter. However,
the assumption made in this paper (i.e., the set of belief-free payoffs has a nonempty
interior) ensures that the set of payoffs in the repeated game without discounting has
a nonempty interior. The same assumption ensures that our candidate set of payoffs is
nonempty (as it contains the set of equilibrium payoffs in games without discounting).
In general, the nonemptiness of the candidate payoff sets, as well as the characterization
of the equilibrium payoffs without the assumption, remains an open question.

Kreps and Wilson (1982a) and Milgrom and Roberts (1982) introduced a model of
reputation with one-sided incomplete information about the type of the long-run in-
formed player: strategic or commitment (“reputational”) types. This literature was ex-
tended to equal discounting and patient players in Cripps and Thomas (1997), Chan
(2000), and Cripps et al. (2005). Because in the reputational model, the highest payoff of
the commitment type is equal to his minmax payoffs, this model does not have an open
set of payoffs. However, a small perturbation of the reputational types’ payoffs may cre-
ate an open thread and restore the assumption. We can use “nearby” models to test the
predictions of the reputational literature. Our third example illustrates the robustness
of the result of Cripps et al. (2005).

One of the first papers to study repeated games with one-sided incomplete informa-
tion and equal discounting is Cripps and Thomas (2003) (see also Bergin 1989). They
look at the limit correspondence of payoffs when the probability of one of the types is

2To avoid players learning about the other players’ types from their own payoffs, the literature assumes
that the payoffs are not observed until the end of the (infinite) repeated game. This assumption is not
needed in the known-own payoffs case.
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close to 1.3 They show that the set of payoffs of the uninformed player and the high prob-
ability type is close to the folk theorem payoff set from a complete information game.
Cripps and Thomas (1997) and Chan (2000) ask similar questions within the framework
of reputation games. All these results are proven by the construction of finitely revealing
equilibria.

Hörner and Lovo (2009) study the general payoff case with multisided incomplete in-
formation and characterize the set of payoffs obtained in belief-free equilibria. Hörner
et al. (2011) describe detailed conditions for information structures in N-player games
under which belief-free equilibria exist for all payoff functions. Our main result is lim-
ited to games in which belief-free equilibria exist. However, we characterize the set of
all equilibrium payoffs and not just the set of payoffs in belief-free equilibria. In partic-
ular, even if belief-free equilibria exist, they may not capture all equilibrium payoffs or
not even all efficient equilibrium payoffs. (See examples at the end of Section 6.1 and in
Section 6.2.)

There are other related papers on repeated games with discounting but with differ-
ent kinds of incomplete information. Wiseman (2005) considers the situation in which
the payoffs are initially unknown by all players (i.e., there is no asymmetric incomplete
information) and the players learn the payoff function from observing the realization
of their payoffs over time. Fudenberg and Yamamoto (2010) and Fudenberg and Ya-
mamoto (2011) study the case where the payoffs and the monitoring structure are ini-
tially unknown and the players may start the game with private information about the
state of the world. The players learn over time by observing signals. The authors find
conditions on the informativeness of the signals that ensure that in equilibrium, players
can learn the state very quickly, and the set of equilibrium payoffs obtained in each state
is equal to the folk theorem set in the complete information game as if the players knew
the state from the beginning. In this setting, the set of payoffs is not affected by initially
incomplete information.

In the next section, we describe the model and preliminary results. In Section 3,
we describe the geometric construction of the candidate payoff set. In Section 4, we
show that each element of the payoff set can be attained in finitely revealing equilibria.
In Section 5, we show that given the existence of an open set of payoffs in belief-free
equilibria, each Nash equilibrium payoff can be approximated by a payoff in a finitely
revealing equilibrium. We illustrate the result with examples in Section 6. In Section 7,
we discuss the relation to the no-discounting literature. Section 8 concludes. Most of
the proofs are postponed until the Appendices.

2. Model

2.1 Repeated game

For each set X ⊆ Rd , we write intX , clX , and conX to denote the interior, closure,
and convexification of X , respectively. For each u ∈ Rd , each ε > 0, let B(u�ε) =
{u′ : supi |ui − u′

i|< ε} be an open ball in the sup metric.

3Cripps and Thomas (2003) also discuss the limit of payoff sets when the two players become infinitely
patient, but player I becomes patient much more quickly than player U . Their characterization is closely
related to Shalev and Koren’s results for the no-discounting case.
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There are I players, i = 1�2� � � � � I. In each period t ≥ 0, each player i takes an ac-
tion ai from the finite setAi4 and receives payoffs gi(ai� a−i� θi). The payoffs depend on
the actions of all players and on the privately known type θi of player i (known-payoff
case). We assume that |Ai| ≥ |�i| for each player i. Let M = maxi�a�θi |gi(a�θi)| <∞ be
the upper bound on the absolute value of the payoffs. All actions are observed.

The type of player i is chosen by Nature once and for all from the finite set �i and
revealed to player i before the first period of the repeated game. We write �−i = ×j �=i�j
to denote the set of type tuples of all players but i, and write �= ×i�i to denote the set
of type profiles. We also write �∗ =�1 ∪ · · · ∪�I to denote the disjoint union of the sets
of types for each player.

We encode the payoffs of different types of different players as a tuple v= (vi(θi))i�θi∈
R�

∗
, with the interpretation that vi(θi) is the (expected) payoff of type θi of player i. We

write vi ∈R�i to refer to the component of v that consists of payoffs of player i’s types.5

Each type θi of player i starts the game with beliefs πθi ∈ ��−i about the distribu-
tion of the types of the other players. The beliefs may differ across types, and we do
not assume that the players’ beliefs are derived from a common prior. However, we as-
sume that all types of all players agree on which types have positive or zero probability.
Precisely, from now on, we assume that each belief system π = (πθi)i�θi∈�i satisfies the
common rectangular support property: for each player j, there exists set �πj ⊆ �j such

that for each type θi of each player i, πθi(θ−i) > 0 if and only if θ−i ∈ ×j �=i�πj . We re-
fer to �πj as the π-support of player j. We say that type θj has π-positive probability if
θj ∈�πj and π-zero probability otherwise. Let	 denote the space of belief systems with

common rectangular support.6

Players discount the future with the common discount factor δ < 1. We refer to the
game with discount factor δ and initial beliefs π as �(π�δ).

For simplicity, we assume that players have access to public randomization. As is
standard practice in the literature, we omit the reference to public randomization in the
formal definition of a history.

Let Ht =At be the set of t-period histories ht = (as)
t−1
s=0. A (repeated game) strategy

of player i is a mapping σi :�i×⋃
t Ht → �Ai. For any profile σ = (σi)i of such strategies,

let

vπ�δ(σ)= (1 − δ)
∑

θ−i∈�−i

πθi(θ−i)Eσ(θi�θ−i)
∑
t

δtg(at� θi) ∈R�∗

4The results of the paper extend to the case of infinite action sets with some modifications of the defini-
tions. First, to avoid problems with updating on nonatomic, positive probability events, we assume that the
players are restricted to mixed strategies with countable supports. Second, the (σ�π)-consistent beliefs in
the sequential equilibrium must be obtained as the limits of the beliefs in the convergent nets of strategies
(σξ)ξ∈E that converge to σ . The details are available upon request.

5The convention of encoding payoffs given one’s own type follows Peski (2008) (see also the statement of
the main result in Hart 1985) and differs from some other papers in the literature. For example, Hörner and
Lovo (2009) write v ∈RI×� to denote the vector of the players’ payoffs given the realization of the entire type
profile, and not only the player’s own type. Our convention is simpler and more natural in the known-own
payoff case.

6Note that if the prior beliefs have the common rectangular support, then the posterior beliefs after
positive probability events have it as well. Thus, the rectangularity will be preserved by consistent beliefs
(see the definition below).
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denote the (normalized) expected payoff of player i type θi, where the expectation is
computed with respect to the distribution over histories induced by strategies σ and
given types (θi� θ−i). Let vπ�δ(σ) ∈R�∗

denote the (normalized) expected payoff vector.

2.2 Feasible, nonrevealing payoffs

Two sets play an important role in our characterization. The first set consists of stage-
game payoffs obtained when all types of each player pool their actions. For each action
profile a= (ai) ∈A≡ ×iAi, let g(a)= (gi(a�θi))i�θi ∈ R�∗

be the payoff vector obtained
when each type of player i plays the same action ai. Let

V = con{g(a) :a ∈A} ⊆R�∗

be the convex hull of payoff vectors g(a). We refer to V as feasible, nonrevealing (i.e.,
pooling) payoffs.

The set V is typically smaller than the set of all feasible payoffs in game �(π�δ). The
latter can be defined as the convex hull of payoff vectors vπ�δ(σ) for all strategy profiles
σ , including profiles in which players’ types do not pool their actions.

2.3 Individual rationality

The second set consists of individually rational payoffs. We follow Blackwell (1956), who
solved the problem of extending individual rationality to the incomplete information
case. Define the weighted minmax of player i: for each φ ∈R�i+ ,

mi(φ) := inf
α−i∈×j �=i�Aj

sup
αi∈�Ai

∑
θi

φθig(αi�α−i� θi)� (1)

Define the set of individually rational payoffs as

IR = {v ∈R�∗
:∀i ∀φ ∈R�i+ �φ · vi ≥mi(φ)}�

Blackwell (1956) shows that for each payoff vector v from the interior of the set IR,
for each player i, there exists a sufficiently large horizon T and a T -period strategy of
players −i that ensures that the T -period average payoff of player i type θi is smaller
than vi(θi). For the precise statement of the result in the case of games with discounting,
see Lemma 4 in Appendix B.

2.4 Equilibrium

A strategy profile σ is a (Bayesian) Nash equilibrium in game �(π�δ) for some π ∈ 	 if
for each player i type θi, strategy σi(θi) is the best response of type θi. One shows that
any payoff vector in a Nash equilibrium must belong to set IR.

A strategy profile σ is totally mixed if for each player i, type θi, history ht , and action
ai, σi(ai|ht�θi) > 0. Each totally mixed strategy profile σ , together with the initial be-
lief system π ∈	, induces a well defined belief mapping p(σ�π) :

⋃
t Ht →	 through the
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Bayes formula. (Note that the posterior beliefs always have common rectangular sup-
port: see footnote 6.) For any strategy profile σ , say that belief mapping p :

⋃
t Ht →	 is

(σ�π)-consistent if there exists a sequence of totally mixed strategy profiles σn → σ such
that p(σn�π) → p.7 If history ht has a positive probability, i.e., if for each player i,

∏
s<t

σi(a
i
s|hs�θi) > 0�

thenp(ht) does not depend on the choice of sequence σn. We use this observation with-
out any further reminder.

A strategy profile σ is a sequential equilibrium in game �(π�δ) if there exists (σ�π)-
consistent belief mapping p such that for each player i, type θi, and history ht , con-
tinuation strategy σi(ht� ·) is the best response to continuation strategy σ−i(ht� ·), given
beliefs pi(ht). A sequential equilibrium is n-revealing if for any positive probability his-
tory h, there exist at most n periods t such that p(ht) �= p(ht−1). A finitely revealing (FR)
equilibrium is a sequential equilibrium profile σ that is n-revealing for some n.

Let NEδ(π) and FRδn(π)⊆R�∗
be the sets of expected payoff vectors vπ�δ(σ) in Nash

(NE) and n-revealing equilibria σ , respectively. The sets of equilibrium payoffs typically
depend on initial beliefs. Because any equilibrium play in which information is revealed
has continuation play in a game with posterior beliefs that may differ from the prior, the
payoff sets for different beliefs are related to each other. Thus, the characterization must
simultaneously describe the entire equilibrium correspondences for all initial priors.

We are going to simplify our description of the equilibrium correspondences by fo-
cusing on the payoffs of the positive probability types (see, among others, Hart 1985 and
Aumann and Hart 2003 for an analogous approach). For any belief systemπ ∈	 and any
two payoff vectors v� v′ ∈R�∗

, write v π v′ if vi(θi)≤ v′
i(θi) for each player i type θi and

vi(θi) = v′
i(θi) for all π-positive probability types θi. In other words, vector v′ contains

exactly the same payoffs for π-positive probability types and possibly higher payoffs for
the zero-probability types. For each setX ⊆R�∗

, define

Xπ+ = {v′ :∃v ∈A s.t. vπ v′}�

For any payoff correspondence E(π), define the enhancement of E as a payoff corre-
spondence E+ such that E+(π) = (E(π))π+ for each π. If E = E+, we say that corre-
spondence E is enhanced.

2.5 Comments

Our analysis of repeated games of incomplete information is restricted to the known-
own payoffs case. One of the difficulties in extending the result to the general case is
connected with the design of punishment strategies. In the known-own payoffs case,

7In both cases, we use the “pointwise” notion of convergence, i.e., σn → σ if and only if σn(θi�h) →
σ(θi�h) for each type θi and history h. Our analysis would not be affected if instead we used the “uni-
form” convergence across many histories. (Notice that the original definition of sequential equilibrium
from Kreps and Wilson 1982b applies only to finite games and the above issue does not arise.)
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the set of i’s individually rational payoffs as well as −i’s strategy that minmaxes player i
do not depend on the beliefs of player i or the type of players −i (see Section 2.3 above
or Lemma 4 in Appendix B). This fact allows us to construct equilibria in which minmax
strategies are used without any information revelation; we need only to make sure to
choose continuation payoffs so that all types of minmaxing players have incentives to
randomize with the same probabilities among all pure strategies in the support of the
(possibly mixed) minmax strategy.

However, if player i’s payoffs depend on the information of player −i, the value of
player i minmax may depend on his beliefs about the type of player −i. It follows that
to punish player i, players −i’s strategy may depend on −i’s types. This complicates the
use of punishment in sequential equilibria.

We assume the belief systems have common rectangular support. This restriction
ensures that all players can agree with each other (and with an outside observer) on
which types have positive or zero probability. Moreover, because Bayesian updating
respects the restriction, the restriction is inherited along the equilibrium path. The dis-
tinction between the zero and positive probability types is important because their pay-
offs are analyzed differently (see the above definition of enhanced payoffs). Further-
more, without rectangular support, our notion of individual rationality is not sufficient
(see Hörner et al. 2011).

3. Payoff correspondence

In this section, we construct a set of payoffs in profiles in which (i) information is re-
vealed (i.e., types fully or partially separate) in at most finitely many periods, (ii) in all
other periods, types pool their actions, and (iii) at each period, continuation payoffs are
individually rational. The construction is inductive. We start with describing payoffs in
nonrevealing, individually rational profiles. Then we present two inductive steps that
correspond to either pooling or information revelation in the initial periods.

Payoffs in nonrevealing profiles

For each belief system π, let

F0(π)= int(IR ∩ V π+)� (2)

It is well known that correspondence F0 is equal to the payoffs in equilibria in which
no information is revealed (see Hart 1985, Koren 1992, and Shalev 1994 for Nash equi-
librium and no-discounting, and see Peski 2008 and Hörner and Lovo 2009 for the se-
quential equilibrium in the discounted case). To get some intuition, suppose that π is
a full-support belief system. Then F0(π)= int(IR ∩ V ). If such a set is nonempty, there
exists a (possibly correlated) action profile a such that g(a) ∈ F0(π). One can construct
equilibria in which a is played on the equilibrium path and deviations by a single player
are punished with (Blackwell) minmaxing.
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In some games, correspondence F0 might be empty-valued for some prior belief sys-
tems π. Such games do not have nonrevealing equilibria.8

Initially pooling actions

For each correspondence F , define correspondence AF : for each belief π, let

AF(π)= int
(
IR ∩ con(F(π)∪ V ))�

Correspondence AF contains all payoffs u that are individually rational and that can be
obtained as the convex combination u = βv + (1 − β)u′ of a (possibly, not individually
rational) nonrevealing payoff v ∈ V and payoff vector u′ ∈ F(π). If u′ is an expected pay-
off in some strategy profile, then u is a payoff in a profile in which, initially, the players’
types pool their behavior on profile a. After t periods, where δt ≈ β, players continue
with the original profile with payoffs u′.

Revelation of information

Information is revealed (possibly only partially) whenever different types play different
(possibly mixed) actions.

Let π ∈	 be the initial belief system. We represent the revelation of information in
the form of continuation lottery l = (α�u), where α= (αi) is a profile of the first-period
strategies αi :�i → �Ai, and u :A→ R�

∗
is an assignment of continuation payoffs fol-

lowing the realization of the first-period actions. Each lottery must satisfy two condi-
tions. First, we assume that if an action ai is played with positive probability by some
type (i.e., there exists θi such that αi(ai|θi) > 0), then ai is played with positive proba-
bility by some π-positive probability type. This allows us to use the Bayes formula to
compute the posterior belief system pπ�l(a) = (pπ�l�θi (a−i))i�θi following positive prob-
ability action profile a. Notice that the beliefs of player i depend only on the actions
chosen by other players. Second, we require that lottery l ensures that all types of all
players are indifferent among all positive probability actions:

Eπθi ui(ai�α−i(θ−i)� θi)=Eπθi ui(αi(θi)�α−i(θ−i)� θi)� (3)

(The payoff consequences of playing actions during one period can be ignored.) De-
fine the value of lottery l as a payoff vector vπ�l ∈ R�∗

such that for each player i and
type θi, v

π�l
i (θi) is equal to (3). Let L(π) denote the set of lotteries that satisfy the above

conditions.
The incentive condition (3) requires that all types of all players are indifferent among

all (positive probability) actions, including actions ai that type θi is not supposed to
play with positive probability, αi(ai|θi) = 0. This is stronger than a typical incentive

8For a simple example, consider a game in which player 1 has two types θ1 ∈ {0�1}, two actions a1 ∈
{0�1}, and receives payoff 1 if his action is equal to his type and 0 otherwise. Then for any prior π that
assigns positive probability to both types of player 1, the sets IR and V π+ = V are disjoint. Intuitively, in any
equilibrium, player 1 will always match his action to the state, which immediately reveals all information.
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condition, which requires only weak inequality. However, this is without loss of general-
ity: due to the enhancement property, we can always increase the continuation payoffs
of type θi after action ai to replace a weak inequality with equality.

For each correspondence F , define correspondence BF : for each belief π, let

BF(π)= {
vπ�l : l ∈L(π) and u(a) ∈ F(pπ�l(a)) for each positive probability a

}
�

Set BF(π) contains the values of all lotteries with prior belief π and with posteriors and
continuation payoffs that belong to correspondence F .

Candidate payoff correspondence

For any two payoff correspondences F�G⇒ R�
∗
, write F ⊆ G if F(π) ⊆ G(π) for any

belief system. The next result follows immediately from the fact that operations A and
B are monotonic: for any two correspondences, if F ⊆G, then AF ⊆AG and BF ⊆ BG.

Theorem 1. There exists the smallest correspondence F∗ such that F0 ⊆ F∗, AF∗ ⊆ F∗,
and BF∗ ⊆ F∗. Moreover, F∗ = ⋃

n F
B
n , where FA1 = AF0, and for each n ≥ 1, FBn = BFAn

and FAn+1 = AFBn .

This theorem defines correspondence F∗ as the smallest correspondence that con-
tains F0 and that is closed with respect to operations A and B. Additionally, the theo-
rem provides a method of constructing F∗ by alternating application of the two opera-
tions to initial correspondence F0. Each step has a simple geometric characterization.
In general, it is not possible to simplify the description by eliminating any of the steps
(Section 6.2 contains an example of a game and constructions for which all steps are
required).

In some games, correspondence F∗ might be empty-valued for some prior belief
systems π. Trivially, if correspondence F0(π) is nonempty, then F∗(π) is nonempty as
well. If the game has an open thread (see below), then correspondences BAF0 ⊆ F∗ (but
not necessarily F0; see the example from footnote 8) are nonempty-valued for all initial
priors.

For future reference, notice that correspondences F∗, FAn , and FBn are enhanced.
This follows from the fact that correspondence F0 is enhanced, and that operations A
and B, and taking the limit preserve the enhancement property.

4. Finitely revealing payoffs

In this section, we show that correspondence F∗ is a lower bound on the set of payoffs
obtained in finitely revealing equilibria. For each n, define the limit payoff correspon-
dences9

FRn(π)= lim inf
δ→1

FRδn(π)�

9The infimum limit lim infδ→1 FRδn(π) is defined as the set of payoff vectors v such that for each sequence

δn → 1, there exists sequence vn → v and such that vn ∈ FRδnn (π). It is the greatest lower bound on the set of
accumulation points.
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Let FR(π)= ⋃
n FRn(π) be the limit set of payoffs in finitely revealing equilibria.

Theorem 2. For each π ∈ 	, F∗(π) ⊆ FR+(π), and for each n, FBn (π) ⊆ FAn+1(π) ⊆
FR+

n (π).

The proof goes by induction on n and is found in Appendix B. In each step, we
construct finitely revealing equilibria with the required payoffs. The constructions are
relatively standard and rely on techniques from Fudenberg and Maskin (1986) that are
adapted to games with incomplete information. (See also constructions used in Cripps
and Thomas 2003 and Peski 2008.)

5. Equilibrium payoffs

In this section, we state our main assumption and show that under this assumption, all
Nash equilibrium payoffs are contained in the closure of correspondence F∗.

5.1 Open thread assumption

For each type profile θ = (θi)i ∈ �, let πθ ∈ 	 be the belief system in which all types of
player i assign probability 1 to the opponents’ profile θ−i.

A thread is an assignment u∗ :�→ R�
∗

of payoff vectors to type profiles such that
(a) for each type profile θ ∈ �, u∗(θ) is an (enhanced) payoff vector in a nonrevealing
equilibrium in a game with initial beliefs πθ,

u∗(θ) ∈ clF0(π
θ)�

and (b) for each player i, all types θi� θ′
i ∈�i, and all type profiles θ−i ∈�−i,

u∗
i (θi� θ−i)= u∗

i (θ
′
i� θ−i)�

(Here, u∗
i (θ) ∈ R�i is a vector of payoffs u∗(τi|θ) for each type τi of player i given profile

θ = (θi� θ−i) of all types of all players. The above equation is an equality between two
vectors.) We say that there exists an open thread if u∗ can be chosen so that u∗

i (θ) ∈
F0(π

θ).
A thread has a natural interpretation. Consider a direct revelation mechanism in

which players report their types, and following report θ̃, each player i type θi receives
payoff u∗

i (θi|θ̃). The first condition ensures that the payoffs can be approximated by
equilibrium payoffs in the game with “complete information” (i.e., in which all infor-
mation is revealed). The second condition ensures ex post incentive compatibility for
player i: If we were to interpret θi as a report of player i, then player i would be indiffer-
ent between reporting her type truthfully and reporting any other type regardless of the
reports of the other player.

For each open thread u∗ and each π ∈	, define u∗(π) ∈R�∗
so that for each player i

type θi,

u∗
i (θi|π)=

∑
θ−i
πθi(θ−i)u∗(θi|·� θ−i)
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(u∗(θi|·� θ−i) is equal to the θi-coordinate of the payoff vector u∗(θ′
i� θ−i) for some θ′

i; by
assumption, this value does not depend on the choice of θ′

i). It follows directly from
the definitions that u∗(π) ∈ FB1 (π) for each π. By Theorem 2, u∗(π) is a payoff vector
in a fully and immediately revealing equilibrium of the game with initial beliefs π and
sufficiently high δ. We say that u∗(π) forms a multilinear thread of equilibrium payoffs
that passes through games �(π�δ) for each π ∈	.

All games with two players and one-sided incomplete information have a thread.
This follows from the analysis of the nondiscounted games in Shalev (1994) (see also
Peski 2008). Additionally, in the case of two players, the threads are essentially equiv-
alent to payoffs in belief-free equilibria of Hörner and Lovo (2009). The existence of a
thread is a necessary condition, and the existence of an open thread is a sufficient con-
dition for the existence of such equilibria (see Appendix A).

5.2 Main result

Our main result provides a characterization of the set of equilibrium payoffs. Define the
limit payoff correspondence10

NE(π)= lim sup
δ→1

NEδ(π)�

Theorem 3. If there exists an open thread, then

cl NE+(π)= clF∗(π)�

This theorem provides a characterization of the limit set of payoffs in Nash equilibria
of repeated games with incomplete information. The theorem shows that all Nash equi-
librium payoffs for a sufficiently high discount factor can be approximated by payoffs in
finitely revealing equilibria that were constructed in Theorem 2.

The theorem extends a standard folk theorem from the repeated games with com-
plete information. (Note that the existence of the thread is trivial with complete infor-
mation and that the open thread ensures the appropriate dimensionality conditions are
satisfied.) Because finitely revealing equilibria are sequential, the theorem shows that
repeated games with incomplete information preserve a folk-theorem-like feature of
games with complete information in which all payoffs in Nash equilibria can be approx-
imated by payoffs in subgame perfect equilibria.

Together with Theorem 1, Theorem 3 provides a method for computing the set of
equilibria payoffs. We illustrate the method with examples in Section 6.

We explain below that the open thread assumption plays an important role in the
proof. We do not know whether the result holds in games that do not satisfy the
assumption.

10The supremum limit lim supδ→1 NEδ(π) is defined as the set of payoff vectors v such that there exist

sequences vn → v and δn → 1, such that vn ∈ NEδnn (π). It is the smallest upper bound on the set of accumu-
lation points.
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Figure 1.

The proof shows that any Nash equilibrium profile in game �(π�δ) with expected
payoffs v can be modified into a profile with expected payoffs that belong to F∗(π) and
that are arbitrarily close to v. The idea is to modify the original Nash profile to pull the
continuation payoffs toward the multilinear thread u∗. Once the continuation payoffs
get sufficiently close to the thread, we conclude the modified profile with one period of
full revelation of information, followed by an equilibrium of the “complete” information
game.

To get some intuition, suppose that v is a payoff in a Nash profile σ in which during
the first period, the players choose nonrevealing action profile a (i.e., all types of each
player i play the same action ai). Let v(a) be the equilibrium continuation payoffs (we
can always choose strategies in such a way so that the continuation payoff after positive
probability history is a payoff in a Nash equilibrium). Then v is a convex combination of
instantaneous payoffs g(a) and equilibrium continuation payoffs v(a), v= (1−δ)g(a)+
δv(a). See Figure 1.

Suppose that v′ is a payoff vector that is a convex combination between v and the
value of the thread u∗(π), v′ = γv + (1 − γ)u∗(π). We can find vector v′(a) (and γ′ and
δ′) such that the following equations are satisfied:

• v′ = (1 − δ′)g(a)+ δ′v′(a) is a convex combination between v′(a) and g(a). Thus,
we can interpret v′ as a payoff in a profile that starts with action a, followed by
continuation payoffs v′(a), in a game with discount factor δ′ > δ.

• v′(a)= γ′v(a)+(1−γ′)u∗(π) is a convex combination between v(a) and the thread
u∗(π).

Simple algebra shows that

γ = γ′

γ′(1 − δ)+ δ�

which implies that γ′ < γ. Thus, the relative distance between v′(a) and the thread u∗(π)
is smaller than the relative distance between v′ and the thread.

The above argument applies to situations in which no information is revealed in the
first period. If some information is revealed, we show that the relative distance of the
(modified) continuation payoffs to the value of the thread in games with new posterior
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beliefs is smaller than the relative distance of the (modified) payoffs to the thread in the
game with prior beliefs. The argument relies on the fact that the expected payoff in the
continuation lottery is a convex combination of payoff vectors

u(a)= (1 − δ)g(a)+ δv(a)

with weights on u(a) equal to the prior probability of profile a, and that the prior belief
is a convex combination of the posterior beliefs p(a)with exactly the same weights. The
multilinearity of the thread u∗ is essential for the argument (and it is the only place where
this assumption is used).

Formally, Theorem 3 follows from two inclusions

F∗(π)⊆ FR+(π)⊆ NE+(π)

and

NE+(π)⊆ clF∗(π)� (4)

The first inclusion is a consequence of Theorem 2. We need to show the other inclusion.
Suppose that u∗(π) is an open thread. Choose r > 0 so that for all type profiles θ,

B(u∗(πθ)� r)⊆ F0(π
θ)�

For each δ < 1, define γδ1 = r/(2M). (Note that γδ1 does not depend on δ.) For each n > 1,
inductively define

γδn = γδn−1

γδn−1(1 − δ)+ δ ∈ (γδn−1�1)� (5)

Notice that γδn > γ
δ
n−1 and limn→∞ γδn = 1. Inclusion (4) follows from the following result.

Lemma 1. For each n such that (1−γδn)r > (1−δ)M , for eachπ ∈	 and each v ∈ NEδ(π),

γδnv+ (1 − γδn)u∗(π)⊆ intFBn (π)�

5.3 Proof of Lemma 1

The proof of Lemma 1 goes by induction on n. First, we show the inductive claim for
n= 1. Because ‖v‖ ≤M for each v ∈ NEδ(π), we have

r

2M
v+

(
1 − r

2M

)
u∗(π) ∈ B(u∗(π)� r)⊆ FB1 (π)�

The inclusion comes from Theorem 2 and the definition of an open thread.
Next, suppose that the inductive claim holds for n− 1. Take any prior beliefs π and

Nash payoff vector v ∈ NEδ(π). Find an equilibrium profile σ that supports v. Say that
action ai is played with positive probability by player i in the first period if there exists
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π-positive probability type θi such that σi(ai|∅� θi) > 0. LetA0
i denote the set of actions

played with positive probability by i.
We assume without loss of generality that the continuation strategies are the best re-

sponses for all players and all types after all positive probability histories. (If Nash profile
σ does not have such a property, the profile can be easily modified without affecting the
initial payoffs and equilibrium conditions.)

Nonrevealing payoffs

For each positive probability action profile a ∈A0 := ×iA
0
i , each type θi, let

v(a)= (vp(a)i (σ(a� ·);θi))i�θi ∈R�
∗

be the vector of continuation payoffs after a. Because a occurs with positive probability,
v(a) is a Nash equilibrium payoff in game �(p(a)�δ). By the inductive assumption,

γδn−1v(a)+ (1 − γδn−1)u
∗(p(a)) ∈ intFBn−1(p(a))�

Define

u(a)= (1 − δ)g(a)+ δv(a)�
Using (5), we get

γδnu(a)+ (1 − γδn)u∗(p(a))

= γδn[δv(a)+ (1 − δ)g(a)] + (1 − γδn)u∗(p(a))

= (1 − (1 − δ)γδn)
[
γδn−1v(a)+ (1 − γδn−1)u

∗(p(a))
] + (1 − δ)γδng(a) (6)

∈ int con
(
FBn−1(p(a))∪ V )

�

Because v(a) is a payoff in a Nash equilibrium, v(a) ∈ IR. Because (1−δ)M ≤ (1−γδn−1)r,
it must be that

γδn[δv(a)+ (1 − δ)g(a)] + (1 − γδn)u∗(p(a)) ∈ int IR� (7)

Then (6) and (7) imply that for each positive probability a,

γδnu(a)+ (1 − γδn)u∗(p(a)) ∈ FAn (p(a))� (8)

5.4 Revelation of information

For each π-positive probability type θi, let

αi(θi)= σi(∅� θi) ∈ �A0
i �

For each π-zero probability type θi, let

αi(θi) ∈ arg max
ai∈A0

i

u(ai�α−i)�



Theoretical Economics 9 (2014) Repeated games with incomplete information 667

Because profile σ is a Nash equilibrium and because of the choice of αi(θi), for all
types θi, all positive probability actions ai,

Eπθi ui(ai�α−i(θ−i)� θi)≤Eπθi ui(αi(θi)�α−i(θ−i)� θi)�

The inequality turns into equality for all actions ai that are played with positive probabil-
ity by type θi. We can replace the inequality with equality for all actions ai by enhancing
the continuation payoffs u(θi|a) of types θi that do not play action ai in strategy αi (i.e.,
αi(ai|θi) = 0). Because correspondence FAn is enhanced (see the remark at the end of
Section 3), (8) holds for the enhanced continuation payoffs.

The above implies that the continuation lottery l= (α�u) satisfies (3) and belongs to
the set L(π) (we use the same symbol u to denote the enhanced continuation payoffs).
Consider lottery l′ = (α�γδnu(·)+ (1−γδn)u∗(p(·))). The properties of the thread u∗ imply
that for each positive probability ai ∈Ai and all types θi, θ−i,

EπθiEα−i(θ−i)u
∗(θi|p(ai�a−i))

=
∑

θ−i�a−i�θ′
−i

πθi(θ−i)α−i(a−i;θ−i)pθi(θ′
−i|ai�a−i)u∗

i (θi|·� θ′
−i)

(9)
=

∑
θ′

−i

πθi(θ′
−i)u

∗
i (θi|·� θ′

−i)

= u∗
i (θi|π)�

In particular, the first line of (9) does not depend on positive probability action ai. To-
gether with the fact that lottery l ∈L(π), the above implies that lottery l′ satisfies (3) for
each type θi.

The value of lottery l′ is equal to

vπ�l
′ = γδnvπ�l + (1 − γδn)u∗(π)�

where vπ�li is the value of lottery l. Then (8) implies that

γδnv
π�l + (1 − γδn)u∗(π)= vπ�l′ ∈ intFBn (π)�

Notice that

vπ�li (θi) = vi(θi) for π-positive probability θi

v
π�l
i (θi) ≤ vi(θi)= vπ�δi (σ;θi) for π-zero probability θi�

The latter follows from the fact that action αi(θi) is not necessarily the best response
action of zero-probability type θi. Because correspondence FBn is enhanced,

γδnv+ (1 − γδn)u∗(π) ∈ FBn (π)�

This ends the proof.
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5.5 Quality of approximation

The proof of Theorem 3 leads to the following bounds on the quality of the approxima-
tion of the Nash equilibrium set by n-revealing sets FBn . Recall thatM is an upper bound
on the absolute value of the payoffs and r > 0 is the size of the open thread.

Corollary 1. LetA= max{2M/r�2}. For each v ∈ NEδ(π), each ε > (1 −δ)A, and either
n≥ �(2 log 2A)/(ε(1 − δ))� or n≥ 1/(1 − δ)2,

(1 − ε)v+ εu∗(π) ∈ FBn (π)�
Proof. We show first that for each δ≥ 1

2 and each ε > 0, if n≥ �(log 2A)/(ε(1 − δ))� + 1,

then γδn ≥ 1 − ε. If not, then γδ1 ≤ · · · ≤ γδn ≤ 1 − ε and

γδn ≥ 1
δ+ (1 − δ)(1 − ε)γ

δ
n−1 = 1

1 − (1 − δ)εγ
δ
n ≥

(
1

1 − (1 − δ)ε
)n−1 1

2A
�

where the last inequality follows from the definition of γδ1 = r/(2M). Because

− log(1 − ε(1 − δ))≥ ε(1 − δ)�
we have a contradiction:

γδn ≥ e(n−1)ε(1−δ) 1
2A

≥ 1> 1 − ε�

Fix v ∈ NEδ(π). Take any ε > (1 − δ)A. By Lemma 1 and the convexity of set FBn (π),
γv + (1 − γ)u∗(π) ∈ FBn (π) for each n ≥ �(log 2A)/(ε(1 − δ))� + 1 and any γ ≤ γδn such
that 1 − γ ≤ 1 − (1 − δ)A. Letting γ = 1 − ε establishes the first result.

For the second result, take ε= (1 − δ)A, and observe that for A≥ 2, (log 2A)/A≤ 1.
The result follows from the first part. �

6. Examples

Theorem 1 describes an algorithm for finding all the finitely revealing payoffs. In this
section, we illustrate the algorithm with two examples. Our first goal is to illustrate that
the algorithm is tractable. Additionally, we want to clarify the relationships between
different refinements of Nash equilibria.

In the first example, we show that in a wide class of oligopoly games, all Nash equi-
librium payoffs can be obtained in 1-revealing equilibria. At the same time, the set of
1-revealing equilibria can be strictly larger than the set of belief-free equilibria. In fact,
we construct an oligopoly game in which the first-best payoffs can be obtained in a 1-
revealing equilibrium, but not in a belief-free equilibrium.

In the second example, a bargaining game with one-sided incomplete information,
the set of equilibrium payoffs is substantially larger than 1-revealing payoffs. In fact,
the equilibria that yield the maximal payoff for the uninformed party typically involve
a large number of revelation periods. Although all n-revealing equilibria are needed to
completely describe the set of payoffs, we are able to derive an explicit description of the
payoff set using a solution to a certain differential equation.
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6.1 Oligopoly

We describe an abstract model of competition that encompasses, as special cases, text-
book examples of Bertrand and Cournot competitions with undifferentiated products
and incomplete information about the costs. We keep the notation from the general
model of a repeated game. There are I firms on the same market. We make two sets of
assumptions. The first assumption says that each payoff vector can be replicated by a
scheme in which each firm spends a fraction of the period as a single firm on the market,
while the other firms are inactive. To state it formally, let Mi ⊆R�i be the convex hull of
the set of payoff vectors attainable by firm i if firm i was the only firm on the market.
We refer to Mi as the set of monopoly payoffs. We assume that Mi is compact, that it
contains the zero-payoff vector 0i ∈Mi, and that the intersection of Mi with the set of
strictly positive payoff vectors has a nonempty interior.

We assume that each payoff vector in the game between the firms is a convex com-
bination of monopoly-inactive payoffs: for each v ∈ V , there exist monopoly payoff
mi ∈ Mi and market share βi ≥ 0 for each player i such that

∑
i βi ≤ 1 and the vector

of payoffs of player i is equal to vi = βimi.
Second, we assume that the set of individually rational payoffs is equal to the set

of vectors with nonnegative coordinates, IR = {v :vi(θi)≥ 0 for each i and θi}. Any game
with payoffs that satisfy the above two assumptions is called an oligopoly game. The
assumptions imply that the set

{
(β1m1� � � � �βImI) :∀iβi > 0�

∑
βi = 1�mi ∈Mi� and ∀θimi(θi) > 0

}

is open and nonempty. It is easy to see that the above set is contained in the set of
nonrevealing payoffs F0(π) for each π. Thus, each oligopoly game has a nonempty and
open set of nonrevealing equilibrium payoffs and, in particular, each such game has an
open thread.

If we interpret θi as the cost parameter and interpret actions as quantities or prices,
then the above assumptions are satisfied in various oligopoly models.

Example 1. The firms play a Cournot oligopoly. The firms choose quantities qi ≥ 0.11

The payoff of firm iwith cost type θi is equal to qi(P(
∑
qj)−θi), where P(·) is an inverse

demand function. Let

Mi = con
{
(q(P(q)− θi))θi :q≥ 0

} ⊆R�i

be the set of monopoly payoffs of firm i. Then given strategy profile (q1� � � � � qI), the pay-
off of each firm i is equal to the fraction qi/

∑
qj of the monopoly payoff obtained from

producing quantity
∑
qj . By choosing quantity 0, each firm can ensure that its payoff

is not smaller than 0. Moreover, if limq→∞ P(q) < inf�i, then by choosing a sufficiently
large quantity, firm −i can ensure that the profits of firm i are not higher than 0.

11In this and the next example, we allow the firms to choose from infinitely many actions. See footnote 4
for a discussion on how the basic model must be extended.
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It is easy to check that if function P is differentiable and sup�i < P(0) <∞, then set
Mi is compact, that it contains the zero-payoff vector 0i ∈Mi, and that the intersection
ofMi with the set of strictly positive payoff vectors has a nonempty interior. ♦

Example 2. Another model is a Bertrand oligopoly with demandD(·). The firms choose
prices pi. The payoff of each firm i is equal toD(pi)(pi−θi) if the firm i’s price is strictly
lower than the price of its competitors, is equal to (1/k)D(pi)(pi − θi) if k − 1 other
firms choose the lowest price, and is equal to 0 otherwise. The two assumptions of the
oligopoly games are satisfied if, for instance, functionD is differentiable. ♦

Theorem 4. For each oligopoly game and each belief system π ∈	,

cl NE+(π)= clFB1 (π)�

Moreover, for each payoff vector v, v ∈ clFB1 (π) if and only if for each type profile θ =
(θi� θ−i) and each firm i, there exist monopoly payoffsmθii ∈Mi and market shares βθi ≥ 0
such that

∑
i β

θ
i ≤ 1 and the following conditions hold:

(1) Individual rationality: mθii (θi)≥ 0 for each player i and type θi.

(2) Incentive compatibility: for all θi� θ′
i,

v(θi)≥
(∑
θ−i
πθi(θ−i)β

(θ′
i�θ−i)

i

)
m
θ′
i
i (θi)�

The proof can be found in Appendix C. This theorem provides a characterization
of the set of equilibrium payoffs. In particular, any equilibrium payoff v can be approxi-
mated by a payoff in a profile in which firms immediately reveal their costs and if θ is the
true type profile, then player i’s payoff is equal to βθi m

θi
i (θi). The first condition ensures

that individual rationality is satisfied ex post, and the second condition ensures that
firms have interim incentives to reveal their types truthfully (although the incentives are
not necessarily ex post).

The above characterization allows us to address questions of productive efficiency
in the equilibria of the repeated oligopoly.

“Pooling” result of Athey and Bagwell (2008) As an application, we perform a test of the
robustness of the “pooling” result from Athey and Bagwell (2008). Athey and Bagwell
(2008) analyze a Bertrand model from Example 2 with

D(p)=
{

1 if p≤ r
0 if p> r

for some reservation price r > 0. They show that for a sufficiently large discount factor
and given the log-concave distribution of cost types, in the (ex ante) optimal symmetric
equilibrium, all players choose the same price and receive the same market share re-
gardless of their (privately known) costs. In other words, one can sustain the best payoff
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in equilibrium in which no player ever reveals any information. There is no contradic-
tion between Athey and Bagwell’s (2008) result and Theorem 4.12 First, their characteri-
zation of optimal equilibrium is tight for all sufficiently high δ < 1, whereas ours simply
says that any equilibrium payoff can be approximated by fully revealing payoffs. In fact,
one can construct equilibria in which players fully reveal their costs in the first period
and then proceed to ignore the revealed information. Because revealing information is
costly for discount factors strictly smaller than 1, it should be avoided in the optimal
equilibrium of Athey and Bagwell (2008).

Nevertheless, the pooling claim is not robust to modifications of the demand. Define
the monopoly payoff vector that maximizes the payoffs of type θi among all monopoly
payoffs of player i:

m∗
θi

= arg max
m∈Mi

m(θi)�

In Athey and Bagwell (2008), the optimal monopoly price is equal to r and does not de-
pend on the player’s type. In general Cournot or Bertrand models, if the demand func-
tion is differentiable, then the optimal monopoly action depends on the cost type.

Corollary 2. Suppose that the monopoly actions m∗
θi

are not identical for all types of
player i. Then for any π that assigns positive probability to all types and for all sufficiently
high δ < 1, there is no Pareto-optimal equilibrium in which players’ behavior does not
depend on type.

Proof. Suppose that v is an efficient payoff in a profile in which, on the equilibrium
path, the players’ behavior does not depend on the type. Then there exists βi ≥ 0 and
mi ∈Mi such that

∑
i βi ≤ 1, and vi = βimi.

For each player, construct a payoff vector m∗
i such that for each type θi, m∗

i (θi) =
max{m∗

θi
(θi)�mi(θi)} ≥mi(θi) with some inequalities strict. Define payoff vector v∗ such

that player i payoffs are equal to v∗
i = βim

∗
i . The mechanism-design characterization

implies that v∗ ∈ FB1 (π). Because v∗(θi) ≥ v(θi), with some inequalities strict, this con-
tradicts the fact that vector v is efficient. �

Belief-free versus fully and immediately revealing equilibria In the above characteriza-
tion of equilibrium payoffs, firms have interim incentives to reveal their private infor-
mation (i.e., before they learn the true type of the other player). Next, we show with
an example that we cannot improve the incentives to hold ex post (i.e., conditionally
on each of the type of the other player). In particular, we show that there exist efficient
repeated equilibria that are fully and immediately revealing but that are not belief-free.

Consider a symmetric Cournot model with two players and two cost types for each
player, � = {h� l}, where h > l > 0. Let mq ∈ R� be the monopoly payoff vector from

12There are other differences between Athey and Bagwell’s (2008) model and ours. For example, their
demand specification does not lead to a nonempty interior, and our result does not apply. However, it
applies to “nearby” models in which the demand below price r is not completely inelastic. In addition,
Athey and Bagwell (2008) work with the continuum-type model, whereas in this paper, we assume that
there are only finitely many types. These differences do not seem to be important for this discussion.
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quantity q and let qθ = arg maxq m
q(θ) be the optimal monopoly quantity of type θ. The

monopoly profits are maximized by the firm with low costs and quantity ql. We assume
that the optimum is strict:

mql(l) >mqh(l)�mql (h)� (10)

Additionally, we assume that the payoff of the high cost type from quantity ql is strictly
positive, but much smaller than the maximum payoff attainable by this type:

mqh(h) > 6mql(h) > 0� (11)

We are interested in strategies that maximize the ex ante expected sum of the payoffs
of both firms. Because of (10), the first best for interior beliefs is attained if and only if
there is complete productive efficiency:

• If both firm types are equal to θ, one of the firms is inactive and the other one
produces quantity qθ. In a symmetric equilibrium, the two allocations are chosen
with equal probability.

• If firm i has low costs and firm −i has high costs, firm i is active and it produces
quantity ql, and firm −i is inactive (and produces 0).

We claim that the first-best allocation cannot be attained in a belief-free equilibrium.
Indeed, notice that at least one firm i must expect strictly positive profits in a state in
which both firms report l (in symmetric allocation, both firms must receive strictly posi-
tive profiles). Because firm i receives zero profits if it reports l and the other firm reports
h, type h of firm i does not have ex post incentives to reveal its true type if the other firm
has low costs.

However, if πi(h) = 1
2 for both players i, then (11) implies that the first-best profile

satisfies ex ante incentive compatibility. In particular, the first-best expected payoff can
be attained in a repeated-game equilibrium in which both types are revealed immedi-
ately and then the play approximates the efficient allocation.

6.2 Labor union–firm bargaining

Consider the following class of games parametrized with x ∈ [0�1]. There are two players,
a labor union (U) and a firm (F). The firm can be either a normal type, θF = 1, or a strong
type, θF = 2. Each player chooses between two actions, W eak and Tough. The payoffs
are given in Table 1.

• When x= 1, the payoffs of the normal and strong types of the firm are equal, and
the firm and the union play a multiperiod bargaining model with complete infor-
mation.

• When x = 0, the union U and the normal type have payoffs as in the complete
information game. The strong type has a (repeated-game) dominant action to play
T in every period. This is an example of a model of reputation with equal discount
factors for two players. The complete information game has strictly conflicting
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(u� f1� f2) W eak Tough

W eak 2�2�2x 0�4�1 + 3x
Tough 4�0�0 −2�−2�1 − 3x

Table 1. Payoffs in bargaining game.

interest (Schmidt 1993): the normal type has a commitment action T such that
the union’s best reply gives the union its minmax payoff of 0. Cripps et al. (2005)
show a reputational result for this class of games: for any p < 1 and for δ high
enough, all Nash equilibrium payoffs of the union and the normal type are close
to (4�0).

• For intermediate x, the payoff of the strong type is a convex combination between
the normal type and the completely strong type of the reputation case x= 0. The
techniques of Cripps et al. (2005) do not apply. (In fact, as we show, the repu-
tational result does not hold.) On the other hand, the game has an open thread
assumption, and we can use Theorem 3 to compute the set of equilibrium payoffs.

The goal of this section is to describe an “upper,” Pareto-optimal, part of the equilibrium
set (the “lower” part can be described in an analogous way). To simplify the exposition,
we assume that x < 1

5 . We begin with developing geometric intuition about the set of
equilibria. A more formal description follows.

Intuition We use π ∈ [0�1] to denote the probability of the normal type. Because the
minmax strategy of each player is T , the set of individually rational payoffs is equal to

IR = {(u� f1� f2) :u≥ 0� f1 ≥ 0� f2 ≥ 1 − 3x}�

To represent the payoff sets graphically, we focus here on the payoffs of playerU and
the normal type of player F , given that the strong type of player F receives her minmax
payoff. Figure 2(a) describes the payoffs of player U and the normal type of player F in
the “complete information” games in which the type of player F is known with probabil-
ity 1. (Precisely, it is the projection of the payoff set on the two-dimensional plane.) The
large triangle describes the sets of payoffs when π = 1. It is equal to the set of payoffs
at the intersection of the convex hull of feasible and individually rational payoffs in a
standard complete information game between player U and the normal type of F . The
small filled triangle is the set of payoffs when π = 0, i.e., when playerU believes that she
faces the strong type of player F . In such a case, player U expects player F to play T
sufficiently often so that the strong type of player F receives payoff at least equal to her
minmax. The only feasible payoffs that are individually rational for player U and at the
same time consistent with the strong-type minmax are obtained when playerU playsW
sufficiently often. In equilibrium, the normal type of player F best responds by mimick-
ing the behavior of the strong type and playing (often) action T . The set of equilibrium
payoffs when π = 0 converges to (4�0) when x→ 0. The small dark shaded triangle is
also equal to the set of nonrevealing payoffs F0(π) (see formula (2)) for each π ∈ (0�1).
Notice also that for each π, F0(π)= AF0(π).
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Figure 2. Finitely equilibrium payoffs in the union–firm bargaining.

Figure 2(b) shows payoffs A in an immediately and fully revealing equilibrium in a
game with initial prior π = 1

2 . Suppose that in the first period, each type of player F
reveals herself to player U by choosing one of two different actions. The continuation
payoffs are equal toA1 if player F reveals herself to be the normal type and are equal to
A2 otherwise. The continuation payoffs Ai to the sets from Figure 2(a), hence, they can
be supported by continuation equilibrium strategies. Because the payoffs of the normal
type are equal in both cases, she is indifferent between revealing herself truthfully and
mimicking the strong type. (A more careful analysis shows that the continuation payoffs
of the strong type are equal to 1 − 3x in both cases.) Thus, the expected payoff A =
πA1 + (1 −π)A2 can be supported in an equilibrium.

The cross-hatched polygon on Figure 2(b) is equal to the set of all payoffs obtained
by immediate full revelation, followed by a play of nonrevealing equilibrium, FB1 (π) =
BAF0(π) for π = 1

2 . Due to the characterization by Shalev (1994), it is equal to the set
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of all equilibrium payoffs in the repeated game without discounting. Moreover, it is also
equal to the set of belief-free equilibria of Hörner and Lovo (2009).

Next, we consider 1-revealing equilibrium payoffs that cannot be obtained in im-
mediately and fully revealing equilibria, and hence do not belong to the belief-free or
no-discounting payoff sets. Consider a profile in which both players play action T for
some number of periods and then continue with a profile with payoffs in a set from Fig-
ure 2(b). The set of payoffs in such profiles is equal to the convex hull of payoffs from
Figure 2(b) and point (−2�−2). Its subset that consists only of individually rational pay-
offs is equal to FA2 (

1
2)= AFB1 (

1
2) and it is shown as the cross-hatched area on Figure 2(c).

Figure 2(d) shows the set of equilibrium payoffs obtained in a class of 2-revealing
equilibria of the game with initial prior π = 3

4 . In these equilibria, first, players play
action profile (T�T) for a number of periods. Next, there is one period of partial infor-
mation revelation: the normal type randomizes between W and T , and the strong type
plays action T . If action W is observed, the play moves to a continuation equilibrium
in the game with prior π = 1; otherwise, the game moves to one of the equilibria with
payoffs in Figure 2(c).

The above constructions can be repeated any number of times. At each step, the set
of payoffs grows larger. In the limit, we obtain the set of all finitely revealing equilibrium
payoffs and, as a consequence of our main result, the set of all equilibrium payoffs. Be-
low, we show that the limit has a tractable, closed-form description as a solution to a
certain differential equation.

Notation To describe the payoff sets, we need some notation. We write f = (f1� f2) ∈R2

to denote the payoffs of the two types of player F and write v= (u� f ) ∈R3 to denote the
vector of the payoffs of both players. For any f a �= f b, let I(f a� f b) be the interval on a
two-dimensional plane that connects f a and f b. For any noncolinear va� vb� vc ∈ R3, for
each f ∈R2, letHva�vb�vc (f ) be the unique value such that (Hva�vb�vc (f )� f ) belongs to the
unique affine hyperplane that passes through points vx, x= a�b� c.

Figure 3 illustrates the payoffs of the firm’s types. We find f ∗ = (f ∗
1 �1 − 3x) such

that f ∗ ∈ I(gF(W �T)�gF(W �W )). Find f̂ = (0� f̂2) such that f ∈ I(gF(W �T)�gF(T�T)).
Finally, we find f ∗∗ = (f ∗∗

1 �1 − 3x) so thatHg(T�W )�g(T�W )�g(T�T)(f ∗∗)= 0.
Define setsA�B′�B′′ ⊆R2:

A = con{f ∗∗� f ∗� gF(W �T)}
B′ = con{f ∗∗� (0�1 − 3x)�gF(W �T)}
B′′ = con{f̂ � (0�1 − 3x)�gF(W �T)}�

SetsA, B′, and B′′ are illustrated in Figure 3.
For each f ∈ B′, choose j′(f ) ∈ [0� f ∗∗] so that f belongs to the interval I(gF(W �T)�

(j′(f )�1 − 3x)). Similarly, for each f ∈ B′′, choose j′′(f ) ∈ [1 − 3x� f̂ ] so that f belongs to
the interval I(gF(W �T)� (0� j′′(f ))).

We say that function uπ describes the upper surface of equilibria if for each f ,

uπ(f )= sup{u : (u� f ) ∈ F∗(π)}
(we take uπ(f )= −∞ if the right-hand side set is empty).
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Figure 3. Payoffs of the firm’s types.

Complete information payoffs Using Theorem 5, we can describe the “upper” surface
of the payoffs in the complete information case π ∈ {0�1}. Let

u1(f ) =
{

4 − f1� ∃f ′ ∈A∪B′ ∪B′′ s.t. f ′ 1 f

−∞� otherwise

u0(f ) =
⎧⎨
⎩min

{
Hg(T�W )�g(T�T)�g(W �T)(f )�4 − 4

1 + 3x
f2

}
� ∃f ′ ∈A s.t. f ′ 0 f

−∞� otherwise.

Finitely revealing payoffs We use our characterization to construct the upper surfaces
of the equilibrium sets. First, we construct a sequence of payoff vectors vn that belong to
a finitely revealing set in the game with initial belief pn = n/N , where N <∞. Next, we
take N → ∞ and show that the constructed path of equilibria converges to the solution
of a certain differential equation.

First, consider the game with initial belief p0 = 0. Let j0 = f ∗∗. Due to the above
description of the upper surfaces in the complete information case, v0 = (0� j0�1 − 3x) ∈
F∗(0).

Next, consider the game with initial beliefs p1. Vector

v′ = 1 −p1

1 −p0
(0� j0�1 − 3x)+ p1 −p0

1 −p0
(u1(j0�1 − 3x)� j0�1 − 3x)

is equal to the value of the p1-incentive-compatible lottery in which the firm’s normal
type gets revealed with probability (p1 −p0)/(1 −p0), upon which the players’ continu-
ation payoffs are equal to (u1(j0�1−3x)� j0�1−3x). If the normal type is not revealed, the
labor union updates its belief top0 and the play continues with payoffs (0� j0�1−3x). Be-
cause of stage B of the construction of the finitely revealing set (Lemma 6), v′ ∈ F∗(p1).

Further, construct a profile in which players play actions (T�T) for fraction α ∈ (0�1)
of time and then continue with a profile that leads to payoffs v′. The payoffs in such a
profile are equal to

v1 = αg(T�T)+ (1 − α)v′�
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We choose α so that the payoff of the labor union in vector v is equal to 0. Then by stage
A (Lemma 7), v1 = (0� j1�1 − 3x) ∈ F∗(p1), where

j1 = (p1 −p0)u
1(j0�1 − 3x)

1 −p0

(
2 + p1 −p0

1 −p0
u1(j0�1 − 3x)

)−1

(2 + j0)�

Using the same argument, we show that if vn = (0� jn�1 − 3x) ∈ F∗(pn) and jn is not
too close to 0, then vn+1 = (0� jn+1�1 − 3x) ∈ F∗(pn+1), where

jn+1 = jn + (pn+1 −pn)u1(jn�1 − 3x)
1 −pn

(
2 + pn+1 −pn

1 −pn u1(jn�1 − 3x)
)−1

(2 + jn)�

After some algebraic transformations, we obtain

pn+1 −pn
jn+1 − jn =

2 + pn+1−pn
1−pn u1(jn�1 − 3x)

2 + jn
1 −pn

u1(jn�1 − 3x)
�

By taking limitN → ∞, the above equation converges to the differential equation

dp

dj
= − 2

2 + j
1 −p(j)

u1(j�1 − 3x)
� (12)

(The minus comes from the fact that pn+1 −pn = −1/N .)
Suppose that p′ : [0� f ∗∗] → [0�1] is a solution to (12) such that p′(f ∗∗) = 0. Choose

π∗ so that p′(0)= π∗. The above analysis implies that for each π ≤ π∗, each j ∈ [0� f ∗∗],

(0� j�1 − 3x) ∈ F∗(p′(j))�

Because set F∗(p′(j)) is convex and contains vector g(W �T), it must be that (0� f ) ∈
F∗(p′(j′(f ))) for each f ∈ B′.

Similar equations can be derived for the elements of set B′′. Let p′′ : [1 − 3x� f̂ ] →
[0�1] be a solution to the following differential equation: p′′(1 − 3x)= π∗ and

dp′′

dj
= − 4/3

f̂ − j
1 −p′′(j)
u1(0� j)

�

Then for each f ∈ B′′, we have (0� f ) ∈ F∗(p′′(j′′(f ))).

Proposition 1. The following functions describe the upper surfaces of equilibria:

• If π ≤ π∗, let

uπ(f )=

⎧⎪⎪⎨
⎪⎪⎩

πu1(f )+ (1 −π)u0(f )� f ∈A
π −p′(j′(f ))
1 −p′(j′(f ))

u1(f )� f ∈ B′ and π ≥ p′(j′(f ))

−∞� otherwise.
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• If π >π∗, let

uπ(f )=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

πu1(f )+ (1 −π)u0(f )� f ∈A
π −p′(j′(f ))
1 −p′(j′(f ))

u1(f )� f ∈ B′ and π ≥ p′(j′(f ))

π −p′′(j′′(f ))
1 −p′′(j′′(f ))

u1(f )� f ∈ B′′ and π ≥ p′′(j′′(f ))

−∞� otherwise.

Proof. The above discussion shows that (uπ(f )� f ) ∈ F∗(π) for each f ∈ R2 such that
uπ(f ) >−∞. We are left with showing that for each u > uπ(f ), (u� f ) /∈ F∗(π).

Define correspondence F(π) ⊇ {(u� f ) :u ≤ uπ(f )} for each π. We will show that
none of the operations described in Section 3 adds any payoffs to correspondence F .

First, notice that F(π)= IR ∩ con{V ∪ F(π)}.
Second, we are going to show that each π-incentive-compatible lottery with con-

tinuation payoffs in the correspondence F(·) has its value in set F(π). Indeed, sup-
pose that l = (α�ψ) is such a lottery with value v = (u� f ) and continuation payoffs
ψ(a) = (u(a)� f (a)) after positive probability actions a of the firm. Then f (a) ≤ f with
equality if action a is played with positive probability by the two types of the firm. More-
over, if action a is played with positive probability by only one type, we can use the
description of the upper surfaces in the “complete information” games to show that
up(a)(f )≥ up(a)(f (a)).

Consider lottery l′ = (α�ψ′), where ψ′(a) = (up(a)� f ) for all actions a. Then the de-
scription of the upper surface uπ implies that

u≤
∑
a

p(a)up(a) ≤ uπ(f )�

which, in turn, implies that (u� f ) ∈ F(π). �

Equilibrium behavior One can use the above analysis to (approximately) predict the
dynamics along the equilibria that support payoffs on the upper surfaces. As an exam-
ple, we describe the equilibrium behavior that induces (approximately) payoff vector
(0� f1�1−3x) in the game with initial beliefs p′(f1) for some f1 ∈ [0� f ∗∗]. This profile can
be described in three phases.

• In the revelation phase, the labor union and the strong type of playerF playTough.
The normal type of F plays Tough with a probability that is close to 1, and with a
small probability, the normal type playsW eak. The phase ends either because the
normal type reveals herself playing W eak or because the posterior probability of
the normal type becomes equal to 0 (i.e., the strong type is revealed). In the former
case, the players continue with the “normal-type” phase; in the latter, the players
continue with the “strong-type” phase. The continuation payoff of the normal
type f1 throughout the revelation phase gradually increases with the decreasing
posterior probability p′(f1) of the normal type. The rate with which the normal
type choosesW eak is chosen so that the continuation payoff of the labor union is
equal to 0 at each moment of the revelation phase.
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(u1�u2� f1� f2) W eak Tough

W eak 2�2x�2�2x 0�0�4�1 + 3x
Tough 4�1 + 3x�0�0 −2�1 − 3x�−2�1 − 3x

Table 2. Payoffs in the bargaining game.

• In the normal-type phase, players play the complete-information game equilib-
rium with payoffs equal to (u1(p′(f1))� f1�1 − 3x), where f1 is the expected contin-
uation payoff of the normal type at the moment of revelation.

• In the strong-type phase, players play the equilibrium of the complete-information
game with payoffs (0� f ∗∗�1 − 3x).

In a similar way, we can describe strategy profiles that induce any other payoff on the
upper surface.

6.3 Labor union–firm bargaining with two-sided incomplete information

For the sake of completeness, we find it worthy to point out that a version of the above
model with two-sided incomplete information does not have to have a thread (examples
of games with known-own payoffs and no belief-free equilibria are known in the liter-
ature; see Koren 1992 and Hörner and Lovo 2009). Suppose that there are two types of
each player and the payoffs are as given in Table 2.

Lemma 2. Suppose that x < 3
100 . Then the labor union–firm bargaining game with two-

sided incomplete information does not have a thread.

The proof of Lemma 2 can be found in Appendix D.

7. Comparison with the no-discounting case

We compare our characterization of payoffs with the characterization from Hart (1985)
in the case of no discounting. Hart (1985) considers the general payoffs case and he as-
sumes that there are two players, uninformed U (with one type) and informed I. Let �I
be the finite set of the types of the informed player and let ��I be the simplex of beliefs
of the uninformed player. Then the correspondence of the Nash equilibrium payoffs can
be characterized as the set of initial values (vU�0� vI�0�p0) ∈ R× R�I × ��I of a class of
bi-martingales, i.e., stochastic processes that satisfy the following three properties:

• For all odd t, pt = pt+1 and E(vU�t+1� vI�t+1|Ft)= (vU�t� vI�t).
• For all even t, vI�t = vI�t+1 and E(vU�t+1�pt+1|Ft )= (vU�t�pt).
• The limit payoff (vU�∞� vI�∞) = limt→∞(vU�t� vI�t) is a payoff in a repeated game

with initial prior p∞ = limt→∞pt and in which no further substantial information
is revealed. In the known-own payoff case, the set of such payoffs is equal to F0(p)

defined in (2).
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The second and the third properties are equivalent to, respectively, the revelation of in-
formation (operation B) and the no-revealing payoffs F0 from our characterization.

The first property convexifies the set of payoffs obtained in the previous steps.
(Recall that Hart does not assume public randomization and, instead, uses Aumann–
Maschler’s jointly controlled lotteries.) It corresponds to operation A from our char-
acterization with a key difference: in the discounted case, the payoffs are additionally
convexified with the set of feasible and nonrevealing payoffs V . To compare the first
property of bi-martingales and operation A side by side, let EN :��I ⇒ R×R�I denote
the equilibrium payoff correspondence in the undiscounted cases. Then Hart’s charac-
terization implies that for each p ∈ ��I ,

EN(p)= con(EN(p))= con(EN(p)∪ (V ∩ IR))�

The second equality comes from the fact that V ∩ IR ⊆ F0(p)⊆ EN(p). Because for any
set E,

con(E ∪ (V ∩ IR))⊆ con(E ∪ V )∩ IR

and the inclusion is typically strict, the set of payoffs in the no-discounting case is in-
cluded and it is typically smaller than the set of payoffs in the discounted case (for ex-
ample, see Section 6.2 and the discussion of Figure 2).

In the known-own payoffs case, Shalev (1994) provides a much simpler characteri-
zation of no-discounting equilibrium payoffs. For eachp ∈ ��I ,EN(p) is equal to payoff
vectors (vU�vI) such that (vU�vI) ∈ IR, and for each type θ ∈�I of the informed player,
there exists vθ ∈ V so that

vU =
∑
θ

p(θ)vθU�

and for each θ�θ′ ∈�I ,

vI(θ)= vθI (θ)≥ vθ′
I (θ)�

All such payoffs can be obtained by immediate and full revelation of the informed
player’s type θ, followed by the equilibrium play of a profile that corresponds to pay-
off vector vθ. It is easy to show that the set of such payoffs is equal to FB1 (p) (see Cripps
and Thomas 2003) or the set of payoffs obtained in belief-free equilibria (see Hörner
and Lovo 2009). Note that the latter is true because Shalev (1994) is limited to the one-
sided case. In particular, FB1 (p) is always weakly included in the set of payoffs attained
in the equilibria with discounting, and the inclusion is strict in games in which there
exist nontrivial n-revealing equilibria for n > 1.

There is another important difference between Hart’s characterization and our re-
sult. In the general payoff case, there are games with Nash payoffs that cannot be ap-
proximated by equilibria with a finite and bounded number of revelations. (Forges 1984,
1990; see also the “four frogs” example of Aumann and Hart 2003. Mathematically, the
result follows from the fact that the di-span of a set might be strictly larger than its di-
convex hull (Aumann and Hart 1986).) More importantly, the bi-martingale characteri-
zation is not constructive and no known algorithm exists that allows one to find all the
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payoffs in the general case. In our case, we show that all equilibrium payoffs can be
approximated by payoffs in equilibria with a bounded number of rounds of revelations,
and the characterization is constructive.

The reason for the difference is not clear. On one hand, the characterization from
Shalev (1994) shows that only one round of revelation is necessary in the no-discounting
case with known-own payoffs. This would suggest that, at least in the one-sided case,
the difference is due to the known-own payoffs assumption. On the other hand, we do
not know whether one can find a version of the “four frogs” example with known-own
payoffs and multisided incomplete information. (As far as we know, the characterization
of payoffs in such a case remains an open problem.)

8. Conclusions

This paper provides a characterization of the equilibrium payoffs in repeated games
with incomplete information, with discounting, known-own payoffs, and permanent
types. We assume that there exists an open multilinear thread of payoffs in equilibria
during which in the first period of the game, players fully reveal their information (i.e.,
all types of each player take separating actions) and such that the players are ex post in-
different between revealing their type truthfully or reporting any other type (i.e., they are
indifferent conditionally on any type of the opponent). The assumption is generically
satisfied in games with one-sided incomplete information as well as some important
examples of games with multisided incomplete information.

The characterization says that all Nash equilibrium payoffs can be approximated by
payoffs in finitely revealing equilibria. The characterization leads to an algorithm for
finding the equilibrium set through a sequence of geometric operations. This algorithm
can be implemented numerically. In examples, we show that the characterization can
be used to find the exact description of the equilibrium sets analytically. The character-
ization cannot be further simplified. Table 3 contains relations between different kinds
of equilibria in repeated games with incomplete information and discounting. The in-
clusion A � B means that for all games, the set of payoffs A is weakly included in B
and that there is an example of a game such that the inclusion is strict (specifically, the
oligopoly game from the last part of Section 6.1 is an example for the strictness of the
second inclusion and the bargaining game from Section 6.2 is an example for all the
other inclusions).

Further work is required to build tools that allow for analytical description in general
games. For instance, the equilibrium set in the bargaining problem from Section 6.2 is
described as a solution to a certain ordinary differential equation. This method can be
easily generalized to other games with one-sided uncertainty and two types. We suspect
that differential equations play an important role in more general settings (with more
types or with multisided uncertainty), but we do not know how to do it.

Other questions are left unanswered by this paper. Most importantly, we would like
to know whether a similar characterization holds for games in which an open thread
assumption is not satisfied (see an example at the end of Section 6.2 or Hörner and Lovo
2009). Our current methods do not allow us to form a hypothesis one way or the other.
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nonrevealing equilibrium payoffs
� belief-free equilibrium payoffs
� fully and immediately revealing equilibrium payoffs
� n-revealing equilibria for 1< n<∞
� all finitely revealing payoffs
= all Nash equilibrium payoffs
� feasible and individually rational payoffs

Table 3. Relations between different kinds of equilibria.

It would be interesting to check whether the current analysis extends in some way to the
case of persistent types.13 We leave these questions for future research.

Appendix A: Threads and belief-free equilibria with two players

Hörner and Lovo (2009) give two necessary conditions for the existence of belief-free
equilibria in the case of two players. We restate the conditions in our notation and in
the known-payoff case. For each probability distribution α ∈ �A, let g(α) ∈ V be the
expectation of payoff vectors g(a) taken with respect to α. Take a pair of vectors vi ∈
R�1×�2 for each player i= 1�2.

• Vectors v1 and v2 satisfy individual rationality if for each player i and each type
θ−i, the payoffs of player i types are individually rational: ∀φ ∈ Rdi+ , φ · v·�θ−i

i ≥
mi(φ), wheremi(φ) is the value of the φ-weighted minmax defined in (1).

• Vectors v1 and v2 satisfy incentive compatibility if for each type profile (θ1� θ2),
there exists αθ1�θ2 ∈ �A such that for each type profile (θ1� θ2), player i, and type θ′

i,

v
θi�θ−i
i = gi(αθi�θ−i |θi)≥ gi(αθ′

i�θ−i |θi)�
The next result shows that the threads are essentially equivalent to the payoff vectors
that are individually rational and incentive-compatible.

Lemma 3. Suppose that u∗ :�1 × �2 → R�
∗

is a thread. Let v1 and v2 be a pair of vec-
tors vi ∈ R�1×�2 such that vθi�θ−i

i = u∗(θi� θ−i|θi) for each player i. Then v1 and v2 satisfy
individual rationality and incentive compatibility.

Conversely, suppose that a pair of vectors v1 and v2 satisfies individual rationality and
incentive compatibility. For each player i types θi� θ′

i ∈�i, and θ−i ∈�−i, let

u∗(θ′
i� θ−i|θi)= vθi�θ−i

i �

Then u∗ is a thread.

Proof. Part I. Suppose that u∗ is a thread. By the definition of sets NE(θ1� θ2) from The-

orem 5, there exist probability distributions α
θ∗

1�θ
∗
2

θi�θ−i ∈ �A such that for each type profile

13Athey and Bagwell (2008) introduce a model of persistent types. Escobar and Toikka (2013) prove a folk
theorem for limit δ→ 1 and fixed rates of transitions. One can consider an alternative limit δ→ 1 when the
probability of transitions scales with 1 − δ.
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(θ∗
1� θ

∗
2) and for each θi, θ−i,

u∗(θi|θ∗
1� θ

∗
2)= gi(αθ

∗
1�θ

∗
2

θi�θ
∗
−i

|θi)�

and for each player i and all types θi, θ′
i,

gi(α
θ∗

1�θ
∗
2

θi�θ
∗
−i

|θi)≥ gi(αθ
∗
1�θ

∗
2

θ′
i�θ

∗
−i

|θi)�

Define

v
θ1�θ2
i = u∗(θi� θ−i|θi)�

Because u∗ is a thread, for each player i, type θ−i, and each type θ′
i,

v
θi�θ−i
i = u∗(θ′

i� θ−i|θi)�

Because u∗(θ′
i� θ−i) ∈ IR, the payoffs of types of player i in the vector u∗(θ′

i� θ−i) are indi-
vidually rational. This shows that vectors (v1� v2) satisfy individual rationality.

Next, we show that (v1� v2) satisfies incentive compatibility. For each type profile
(θ1� θ2), define

α∗
θ1�θ2

= αθ1�θ2
θ1�θ2

∈ �A�
Then

v
θ1�θ2
i = g(α∗

θ1�θ2
|θi)

and

v
θ1�θ2
i = g(α∗

θ1�θ2
|θi)= g(αθ1�θ2

θ1�θ2
|θi)= u∗(θi|θ1� θ2)= u∗(θi|θ′

1� θ2)

= g(α
θ′

1�θ2
θ1�θ2

|θi)≥ g(αθ
′
1�θ2

θ′
1�θ2

|θi)= gi(α∗
θ′
i�θ−i |θi)�

Part II. Suppose that the pair of vectors vi ∈ R�1×�2 satisfies individual rationality and
incentive compatibility. Let αθ1�θ2 ∈ �A be as in the definition of incentive compatibility.
For each profile (θ1� θ2) and each player i type θ′

i, define

u∗(θ1� θ2|θ′
i)= vθ

′
i�θ−i
i = gi(αθ′

i�θ−i |θ′
i)�

Then for each profile (θ∗
1� θ

∗
2), the vector of the payoffs of player i types, u∗

i (·|θ∗
1� θ

∗
2) =

v
·�θ−i
i , is individually rational. Thus, u∗(θ∗

1� θ
∗
2) ∈ IR. Moreover, for each profile (θ∗

1� θ
∗
2)

and any two types θi, θ′
i,

u∗(θ∗
1� θ

∗
2|θi)= gi(αθi�θ∗

−i |θi)≥ gi(αθ′
i�θ

∗
−i |θi)�

This shows that u∗(θ∗
1� θ

∗
2) ∈ NE(θ∗

1� θ
∗
2). �
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Appendix B: Proof of Theorem 2

The proof of Theorem 2 follows from Lemmas 5, 6, and 7 below. We begin with the
preliminary result.

Lemma 4. For each ε > 0, there exist δε < 1 and mε <∞ such that for each player i, each
m≥mε, and each v such that B(v�ε)⊆ IR, there exist m-period strategies of players j �= i,
μi�v�m�εj :

⋃
s<mε(Ai)

s−1 → �Aj , such that for any sequence âi = (ai0� � � � � a
i
mε−1) of actions

of player i, each type θi, and each δ≥ δε, the following inequality is satisfied:

Mv�m�ε�δ
i (âi;θi) := 1 − δ

1 − δm
m−1∑
s=0

δsEgi(a
i
s�μ

i�v�m�ε
−i (ai0� � � � � a

i
s−1);θi)

≤ vi(θi)�

Here, the expectation is taken over actions induced by strategies μi�v�m�ε−i .

Proof. The lemma is a discounted version of the Blackwell approachability argument
(Blackwell 1956) (see also Peski 2008 or Hörner and Lovo 2009 for games with discount-
ing). The proof follows the same line and an observation that when δ → 1, the dis-
counted payoff criterion in a game with finitely many periods converges to the average
payoff criterion. �

Lemma 5. For each π ∈	,

F0(π)⊆ FR+
0 (π)�

We omit the formal proof because this result is well known (see Hart 1985, Koren
1992, and Shalev 1994 for the Nash equilibrium and no-discounting; see Peski 2008 and
Hörner and Lovo 2009 for the sequential equilibrium in the discounted case).

Lemma 6. If FBn−1(π)⊆ FR+
n−1(π), then FAn (π)⊆ FR+

n−1(π).

Proof. Take any v∗ ∈ FAn (π) = int IR ∩ con{intFBn−1(π) ∪ V }. Find α∗ ∈ (0�1), g∗ ∈ V ,
and u∗ ∈ con intFBn−1(π) such that v∗ = α∗g∗ + (1 − α∗)u∗. Assume that there exists a
pure action profile a∗ such that g(a∗)= g∗. The assumption is without loss of generality
due to public correlation.

Find a sequence of tδ such that δtδ → 1 − α∗ as δ→ 1. We are going to compute the
payoffs in a profile in which players play action profile a∗ during the initial tδ periods
and then receive continuation payoffs u chosen so that v∗ = (1 −δtδ)g∗ +δtδu. Any devi-
ation by player i during period t triggers a punishment phase in which player i is initially
minmaxed using the strategy from Lemma 4 and then the players continue with a strat-
egy profile with payoffs vi(â) that depend on the realized actions during the minmaxing.
The continuation payoffs vi(â) are chosen so that all players are indifferent among all ac-
tions during the minmaxing phase and the overall payoff from the punishment of player
i phase is equal to vi�t

δ−t = (1 − δtδ−t )g∗ + δtδ−tui∗. We choose u and ui∗ so that they are
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sufficiently close to u∗ and such that for sufficiently high δ < 1, there exists continuation
(n−1)-revealing equilibria σu�δ and σu

i∗�δ with payoffs, respectively, vπ�δ(σu�δ)π u and
vπ�δ(σu

i∗�δ)π ui∗. Moreover, we need to choose ui∗so that no player has incentives not
to deviate.

Let k∗ = 100/(1 − α∗) and find ε > 0 so thatB(u∗�2kε)⊆ con intFBn−1(π). Using com-
pactness, one can show that for sufficiently high δ, for each u ∈ B(u∗�kε), there exists a
strategy profile σu�δ that induces payoff vπ�δ(σ) π u and such that σu�δ is a (n − 1)-
revealing equilibrium of game �(π�δ). (It might be necessary to use public randomiza-
tion if u∗ /∈ intFBn−1(π).)

For each player i, find ui∗ ∈ B(u∗�kε) so that

ui∗(θi) ≤ u∗(θi)− 2ε
1 − α∗ for each θi

(B.1)
ui∗(θj) ≥ u∗(θj) for each type θj of player j �= i�

For each t ≤ tδ and each player i, let vi�t = (1 − δt)g∗ + δtui∗. Because of (B.1), for suffi-
ciently high δ and each player j �= i,

vi�t(θj)≥ vj�t(θj)+ 2ε� (B.2)

Find mε and δε from Lemma 4. Assume that m ≥mε and the discount factor δ ≥ δε
are high enough so that (1 − δm)M < ε and (1 − δm)ε > 2(1 − δ)M .

Let μi�t�∗j = μ
i�vi�t−ε�m�ε
j be the minmax strategies of players j �= i from Lemma 4.

Let Mt�∗
i (âi) be the associated payoff vector of player i playing action sequence âi =

(ai0� � � � � a
i
m−1). For each sequence of actions âi of player i and â−i of players −i, define

â= (âi� â−i) and payoff vector vi(a) so that for each type θi of player i,

(1 − δm)Mt�∗
i (âi;θi)+ δmvi(â;θi)= vi�t(θi)�

and for each type θj of player j �= i,

(1 − δ)
m−1∑
s=0

δsgj(a
i
s� a

−i
s ;θj)+ δmvi(â� θj)= vi�t(θj)�

Notice that becauseMt�∗
i (ai;θi)≤ vi�t(θi)− ε for each type θi of player i,

vi(â� θi)≥ vi�t(θi)+ (1 − δm)ε > vi�t(θi)+ 2M(1 − δ)�

Moreover, due to (B.2), for each type θi of player j �= i,

vi(â� θj)≥ vi�t(θj)− (1 − δm)M > vi�t(θj)− ε > vj�t(θj)+ 2M(1 − δ)�

We are going to construct strategy profile σ . There are two types of regimes:

• Normal(v� t) for each t ≤ tδ and v so that (a) there exists u ∈ B(u∗�kε) such that
v= (1−δt)g∗ +δtu, and (b) v(θi)≥ vi�t(θi)+2M(1−δ) for each player i and type θi.



686 Marcin Pęski Theoretical Economics 9 (2014)

Players play action profile a∗ for t periods s = 0�1� � � � � t − 1. If there is no devia-
tion, players continue with strategy profile σu�δ. Simultaneous deviations of two
or more players are ignored. A deviation by single player i in period s initiates
regime Punishment(i� t − s).

• Punishment(i� t). The regime lasts m periods. Players −i play strategies μi�t�∗−i .
Player i randomizes uniformly across all action sequences (ai0� � � � � a

i
m−1). In par-

ticular, the strategies of each player do not depend on their types. After m peri-
ods, regime Normal(vi(â)� t) is initiated, where â are the actions played during the
regime.

The profile starts in regime Normal(v∗� tδ).
We compute the payoffs and verify the incentives in the above profile. Initially, we

make a preliminary (and perhaps incorrect) assumption that the payoffs in the profiles
that end phase Normal((1 − δt)g∗ + δtu� t) are equal to u (instead of vπ�δ(σu�δ) π u).
Then the expected payoff in the beginning of regime Normal(v� t) is equal to v and
the expected payoff in the beginning of regime Punishment(i� t) is equal to vi�t . Any
one-shot deviation during the Normal(v� t) period leads to a payoff not higher than
(1 − δ)M + δvi�t . If v(θi) ≥ vi�t(θi)+ 2M(1 − δ), the deviation is not profitable. In each
period of the Punishment(i� t) regime, all players are indifferent among all actions. In
particular, they do not have one-shot profitable deviations. Thus, the expected payoff
from profile σ under the preliminary assumption is equal to v∗.

Because our preliminary assumption is possibly incorrect, the above argument may
not correctly reflect the incentives faced by the players. On one hand, the preliminary
assumption does not affect the payoffs of the π-positive probability types. Thus, the be-
havior prescribed by strategy profile σ is the best response for all such types, given that
all positive probability types of the other players follow σ . On the other hand, the behav-
ior prescribed by profile σ may not be the best response for theπ-zero probability types.
We can modify profile σ so that all the zero-probability types choose the best responses,
given the assumption that all (the positive probability types of) other players follow σ .
(Notice that this modification does not change the incentives for the positive probability
types.) Because the preliminary assumption may artificially increase the continuation
payoffs of the π-zero probability type θi, the true expected best response payoffs of this
type cannot be higher than v∗(θi). Thus, the true expected payoff from profile σ is equal
to v∗∗ π v∗.

Finally, because the strategies prescribe the same (possibly mixed) actions for all
π-positive probability types of each player, the beliefs do not get updated before (n−1)-
revealing profile σu is started. �

Lemma 7. If FAn (π)⊆ F+
n−1(π), then FBn (π)⊆ F+

n−1(π).

Proof. Take any v ∈ FBn (π) and find ε > 0 and an incentive-compatible lottery l= (α�u)
such that v = vπ�l and B(u(a)�2ε) ⊆ intFAn (p

π�l(a)) for each positive probability ac-
tion profile a. We can assume without loss of generality that all actions have positive
probability.
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Using the compactness argument (and possibly public randomization), we can show
that there exists δ0 such that for all δ≥ δ0, each a, and each u′ ∈ B(u(a)� ε), there exists a
strategy profile that induces payoff u′ and that is a (n−1)-revealing equilibrium of game
�(pπ�l(a� )�δ).

For each action profile, let uδ(a)= (1/δ)u(a)− (1 − δ)g(a) ∈ B(u(a)� ε). For each a,
find n-revealing equilibrium profile σa that induces uδ(a).

Let σ be a strategy profile in which in the first period, players play according to α and
continue with σ(a) after first-period history a. Then σ is a (n− 1)-revealing equilibrium
for sufficiently high δ with expected payoff v. �

Appendix C: Proof of Theorem 4

In this appendix, we assume that the game has the structure described in Section 6.1. In
particular,

int IR = {v ∈R�∗
:vi(θi) > 0 for each type θi}

and there exist setsMi ⊆R�i such that 0i ∈Mi and the set

intV = int con
{⋃
i

Mi × {0−i}
}

is not empty. These assumptions imply that the oligopoly games have an open thread.
We begin with a convenient characterization of set FB1 (π).

Lemma 8. Let v ∈ R�∗
be a payoff vector. Then v ∈ FB1 (π) if and only if for each player i,

there exist mappings βi :�→ [0�1] and mi :�i →Mi such that
∑
i β

θ
i ≤ 1 and the follow-

ing conditions hold:

(1) Individual rationality: vi(θi) > 0 for each player i and type θi, and mθii (θi) > 0 for
each player i and π-positive probability type θi.

(2) Incentive compatibility: for all θi, θ′
i,

v(θi)≥mθ
′
i
i (θi)

∑
θ−i
πθi(θ−i)β

(θ′
i�θ−i)

i �

with the equality if type θi has π-positive probability and θ′
i = θi.

In particular, set FB1 (π) is convex.

Proof. If v satisfies the above two conditions, then one can easily construct an appro-
priate lottery to show that v ∈ FB1 . We show the other direction. Take some v ∈ FB1 (π)
and find π-incentive-compatible lottery l0 = (α0�u0)with value v and such that for each
action profile a, either beliefs p(a) are degenerate on the type tuple θ and

u0(a) ∈ FA1 (πθ)= F0(π
θ)�
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or the beliefs p(a) are nondegenerate and

u0(a) ∈ FA1 (p(a))= int IR ∩ intV �

Because int IR ∩ intV ⊆ FB0 (π
θ), we can assume that u0(a) ∈ FB0 (πθ) for each a played

with positive probability by types θ in strategy profile α0.
For each π-positive probability type profile θ and action profile a played by positive

probability by types in θ, we can find u1(a) ∈ intV such that u1(a) πθ u0(a). Because
payoffs u0(a) are strictly individually rational, we have

max{0�u1(θ′
i|a)} ≤ u0(θ′

i|a) for each type θ′
i�

Define allocation u :�→ intV so that for each type profile θ (not necessarily positive
probability),

uθ =
∑
a

(∏
i

α0
i (ai|θi)

)
u1(a)�

For each type profile θ and player i, find βθi ≥ 0 and m̂θi ∈Mi so that
∑
i β

θ
i ≤ 1 and uθi =

βθi m̂
θ
i . Finally, for each type θi, define

m
θi
i =

∑
θ−i π

θi(θ−i)u
(θi�θ−i)
i∑

θ−i π
θi(θ−i)β

(θi�θ−i)
i

=
∑
θ−i π

θi(θ−i)β
(θi�θ−i)
i m̂

(θi�θ−i)
i∑

θ−i π
θi(θ−i)β

(θi�θ−i)
i

�

Notice thatmθii is a convex combination of elements ofMi; hencemθii ∈Mi.
We check that β andm satisfy the thesis of the lemma. For each π-positive probabil-

ity type profile θ= (θi� θ−i), each player i, and each action profile a= (ai� a−i) such that
ai is played with positive probability by type θi, u1(θi|a) = u0(θi|a) > 0. It follows that
m
θi
i (θi) > 0 is a convex combination of strictly positive values.

Further, because lottery l0 is π-incentive compatible, for each action ai,

v(θi)≥
∑
θ−i
πθi(θ−i)u0

i (θi|ai�α0
−i(θ−i))

with equality when action ai is played with positive probability by type θi, i.e.,
α0
i (ai|θi) > 0. It follows that for π-positive probability type θi,

v(θi) =
∑
θ−i
πθi(θ−i)u0(θi|αi(θi)�α−i(θ−i))

=
∑
θ−i
πθi(θ−i)u1(θi|α0

i (θi)�α
0
−i(θ−i))

=
∑
θ−i
πθi(θ−i)uθ(θi|α0

i (θi)�α
0
−i(θ−i))

=
∑
θ−i
πθi(θ−i)β(θi�θ−i)m̂(θi�θ−i)

i (θi)

=
∑
θ−i
πθi(θ−i)β(θi�θ−i)mθii (θi)�
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and for all types θi, θ′
i,

v(θi) ≥
∑
θ−i
πθi(θ−i)Eα0(θ′

i�θ−i)u
0
i (θi|a)

≥
∑
θ−i
πθi(θ−i)Eα0(θ′

i�θ−i)u
1
i (θi|a)

≥
∑

πθi(θ−i)Eα0(θ′
i�θ−i)u

1
i (θi|α0

i (θ
′
i)�α

0
−i(θ−i))

≥mθ
′
i
i (θi)

(∑
θ−i
πθi(θ−i)β

(θ′
i�θ−i)

i

)
�

The last claim follows from the characterization. �

Take any individually rational vector v∗ of payoffs that are individually rational for
all positive π-probability types of all players and that can be obtained by a play of non-
revealing actions followed by a payoff vector from stage 1B, v∗ = γg+ (1 − γ)v′ for some
g ∈ V and v′ ∈ FB1 (π). The next lemma shows that there exists a corresponding fully re-
vealing payoff v, with the same payoffs as v∗ for the positive probability types and not
smaller, and individually rational payoffs for the zero-probability types. The idea is to
delay the play of nonrevealing actions after the revelation. We need to be careful so that
the expected payoffs and the incentives to reveal information truthfully are not affected,
and that the continuation payoffs after the revelation are individually rational.

Lemma 9. For each π ∈	, FA2 (π)= FB1 (π).

Proof. Take v∗ ∈ int(IR ∩ con(FB1 (π)∪ V )). Find γi ≥ 0 andm∗
i ∈Mi, and u∗ ∈ FB1 (π) so

that
∑
i γi ≤ 1 and for each player i,

v∗
i (θi)= γim∗

i (θi)+
(

1 −
∑
i

γi

)
u∗(θi)�

with equality for π-positive probability types θi. Using Lemma 8, find βθi ≥ 0 and mθii ∈
Mi for each player type tuple θ so that

∑
i β

θ
i ≤ 1 andmθii ≥ 0 for each θ= (θi� θ−i), and

v∗
i (θi) = γim

∗
i (θi)+

(∑
θ−i
πθi(θ−i)β

(θ′
i�θ−i)

i

)
m
θ′
i
i (θi)

≥ γim
∗
i (θi)+

(∑
θ−i
πθi(θ−i)β

(θ′
i�θ−i)

i

)
m
θ′
i
i (θi)

with the equality if type θi has π-positive probability and θ′
i = θi.

For each player i and type profile θ= (θi� θ−i), let

β̂θi = γi +
(

1 −
∑
i

γi

)
βθi �
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For all π-positive probability types θi, let

m̂
θi
i =

γim
∗
i + (1 − ∑

i γi)
∑
θ′

−i
πθi(θ−i)β

(θi�θ
′
−i)

i m
θi
i

γi + (1 − ∑
i γi)

∑
θ′

−i
πθi(θ−i)β

(θi�θ
′
−i)

i

�

For all π-zero probability types θi, let m̂θii = 0i. For each player i type θi, define

v(θi) =
∑
θ−i
πθi(θ−i)β̂

(θi�θ−i)
i m̂

θi
i (θi) for π-positive probability θi

v(θi) = v∗
i (θi) for π-zero probability θi�

Simple calculations show that v= v∗.
We check that assignments β̂i and m̂θi satisfy the conditions of Lemma 8 for v. In-

deed, vi(θi) > 0 and m̂θii ∈Mi because m̂θii = 0i or m̂θii is a convex combination of ele-
ments ofMi. Moreover, for each tuple θ,

∑
i

(
γi +

(
1 −

∑
i

γi

)
βθi

)
=

∑
i

γi +
(

1 −
∑
i

γi

)∑
i

βθi

≤
∑
i

γi +
(

1 −
∑
i

γi

)
≤ 1�

The individual rationality holds because, in the first case, m̂θii (θi) is equal to v∗(θi)
multiplied by a positive factor, and, in the second case, m̂θi (θi)= 0.

We check the incentive compatibility: for all types π-positive probability type θi and
all types θ′

i,

v(θi) =
∑
θ−i
πθi(θ−i)β̂

(θi�θ−i)
i m̂

θi
i (θi)

= γim
∗
i +

(
1 −

∑
i

γi

)∑
θ′

−i

πθi(θ−i)β
(θi�θ

′
−i)

i m
θi
i (θi)

≥ γim
∗
i +

(
1 −

∑
i

γi

)(∑
θ′

−i

πθi(θ−i)β
(θ′
i�θ

′
−i)

i

)
m
θ′
i
i (θi)

=
(∑
θ−i
πθi(θ−i)β̂

(θ′
i�θ−i)

i

)
m̂
θ′
i
i (θi)�

where the first inequality follows from the choice of β. The incentive compatibility in
case of π-zero probability types θi is trivial. It follows that v ∈ FB1 (π). �

We can conclude the proof of Theorem 4. The proof is an application of the char-
acterization of the set of equilibrium payoffs from Theorem 3. It is enough to show
that FA2 (π) = FB1 (π) and FB2 (π) = FB1 (π). The first claim follows from Lemma 9. The
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second claim follows from the first and the fact that the composition of an incentive-
compatible lottery with an incentive-compatible and fully revealing lottery can be re-
placed by a single incentive-compatible lottery with the same value and outcomes that
are convex combinations of the outcomes in the original lotteries. The characterization
of equilibrium payoffs comes from Lemma 8.

Appendix D: Proof of Lemma 2

On the contrary, suppose that u∗(π) is the thread. Let uns = u∗(π(normal1�strong2)) be the
thread Nash equilibrium payoff vector, given that the first player is revealed to be normal
and the second player is revealed to be strong. Because the equilibrium payoffs must be
individually rational, it must be that

uns1 (normal1)≥ 0 and uns2 (strong2)≥ 1 − 3x�

By Theorem 5, there exists α ∈ �A such that

uns1 (normal1) = 2αWW + 4αTW − 2αTT ≥ 0
(D.1)

uns2 (strong2) = 2xαWW + (1 + 3x)αW T + (1 − 3x)αTT ≥ 1 − 3x

and

uns2 (normal2)≥ 2αWW + 4αW T − 2αTT �

The next result shows that uns2 (normal2) > 2.

Lemma 10. Suppose that x ≤ 3
100 . Then 2αWW + 4αW T − 2αTT > 2 for each α ∈ �A that

satisfies inequalities (D.1).

Proof. The first inequality in (D.1) implies that

αTT ≤ 2
3 − 1

3αWW − 2
3αW T �

Substituting into the second inequality, we obtain

2xαWW + (1 + 3x)αW T ≥ (1 − 3x)
(

1
3 + 1

3αWW + 2
3αW T

)

or, after some algebra,

αW T ≥ 1 − 3x
1 + 15x

+ 1 − 9x
1 + 15x

αWW �

It follows that

2αWW + 4αW T − 2αTT ≥ 8
3αWW + 16

3 αW T − 4
3

≥
(

8
3 + 16

3
1 − 9x
1 + 15x

)
αWW + 16

3
1 − 3x

1 + 15x
− 4

3 > 2�

where the last inequality holds for all αWW ≥ 0 and all x < 3
100 . �
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A symmetric argument shows that usn1 (normal1) > 2, where usn is the thread equilib-
rium payoff vector if the first player is strong and the second player is normal. Because
players must be ex post indifferent about revealing their type truthfully, we have

unn2 (normal2) = uns2 (normal2) > 2

unn1 (normal1) = usn1 (normal1) > 2�

where unn is the thread payoff vector if both players are revealed to be normal.
On the other hand, the sum of the payoffs of the normal types, given any action

profile, is never higher than 4. This implies that for any equilibrium payoff vector u ∈
NE(normal1�normal2), u1(normal1) + u2(normal2) ≤ 4. The contradiction shows that
u∗ cannot be a thread.
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