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Abstract. We analyze discounted repeated games with incomplete information,
such that the players’ payoffs depend only on their own type (known-own payoff
case). We describe an algorithm for finding all equilibrium payoffs in games for
which there exists an open set of belief-free equilibria of Hörner and Lovo [2009].
This includes generic games with one-sided incomplete information and a large and
important class of games with multi-sided incomplete information. When players
become sufficiently patient, all Bayesian Nash equilibrium payoffs can be approx-
imated by payoffs in sequential equilibria in which information is revealed finitely
many times. The set of equilibrium payoffs is typically larger than the set of equi-
librium payoffs in repeated games without discounting, and larger than the set of
payoffs obtained in belief-free equilibria. The results are illustrated in bargaining
and oligopoly examples.

1. Introduction

This paper contributes to the literature on repeated games with discounting and
incomplete information, in which players know their own payoffs. It introduces a
payoff set based on two geometric operations, and establishes two results. First,
all elements of this set are (sequential) equilibrium payoff vectors when players are
sufficiently patient. Second, for a rich class of games (those in which belief-free
equilibria exist, in particular, games with one-sided incomplete information), it proves
that this characterization is tight: no payoff vector outside this set can be achieved
in a (Bayes) Nash equilibrium.
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One of the major problems in the analysis of repeated games with incomplete
information is that there is no natural candidate for the payoff set. This problem
is not present in games with complete information, where it is immediately shown
that all equilibrium payoffs must be feasible and individually rational, and the main
difficulty is to find conditions under which all feasible and individually rational payoffs
can be attained in subgame perfect equilibria. With incomplete information, the set
of (naturally defined) feasible and individually rational payoffs is typically too large,
since not all such payoffs can be attained (or even approximated) by equilibrium
payoffs. Another candidate, the equilibrium payoff set obtained in the literature
without discounting (Hart [1985], Shalev [1994], and Koren [1992]), is typically smaller
than the set of payoffs that can be obtained in games with discounting.

We solve the problem in a two-part argument. First, we construct a candidate
equilibrium correspondence that assigns a payoff set to each prior belief. The idea is
to consider payoffs in strategy profiles in which (i) there are finitely many periods in
which players reveal information (by taking partially or fully separating actions), (ii)
these periods are separated by possibly long time intervals during which the types
of players pool their actions, and (iii) at each period, the continuation payoffs are
individually rational. The construction begins with a set of individually rational
payoffs in profiles in which no information is ever revealed. Next, we go through
a sequence of steps that alternate between two geometric operations: (A) for each
prior, the payoff set is convexified with the payoffs in profiles in which the players
do not reveal any information, and (B) the payoffs are convexified across different
initial priors. Operation (A) constructs profiles in which during the initial periods,
the types of players pool their actions, and in operation (B), we obtain profiles in
which the types reveal some substantial information in the first period. Operations
(A) and (B) correspond to two properties of bi-martingales from the literature on
games without discounting with a key difference: because the initial play does not
matter in that literature, the analogue of operation (A) replaces the set of payoffs
with its convex hull, but it does not convexify it with the non-revealing payoffs.
For sufficiently patient players, all the payoff vectors in the candidate equilibrium
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correspondence can be attained by payoffs in finitely revealing equilibria: sequential
equilibria in which players’ information is revealed at most finitely many times.

Second, we show that no payoff outside the constructed set can be attained in
equilibrium. For the second part, we assume that there exists an open set of payoffs
in belief-free equilibria of Hörner and Lovo [2009]: sequential equilibria in which during
the first period of the game, all players fully reveal their information (i.e., they take
fully separating actions), and such that the players are ex post indifferent between
revealing their type truthfully or reporting any other type (i.e., they are indifferent
conditional on any type of the opponent). The payoffs in such equilibria form a multi-
linear cross section (i.e., a thread) of payoffs across games with all possible initial
beliefs. The assumption is generically satisfied in games with one-sided incomplete
information, and in many important examples of games with multi-sided incomplete
information (like oligopoly models). However, there are robust examples of games
with two players and incomplete information on both sides that do not satisfy the
assumption.

Given this assumption, we show that all payoffs attained in Nash equilibria of the
repeated game can be approximated by the payoffs constructed in the first part of
our argument, i.e., by payoffs in finitely revealing equilibria. The idea is to modify
the equilibrium continuation payoffs to pull them toward the thread of payoffs in the
belief-free equilibria. We show that the continuation payoffs reach the neighborhood
of the belief-free equilibrium payoff set in finitely many periods. Once this happens,
we finish the construction with an immediate and full revelation of information. The
argument is of independent interest, as it is very simple and possibly can be applied
in other related settings (like games with types that may slowly change over time).

At first sight, the characterization of all equilibrium payoffs through finitely reveal-
ing profiles has a simple intuition. Because the beliefs of the players are martingales,
they converge. This means that with a high probability, players stop revealing sub-
stantial amounts of information after finitely many periods. Nevertheless, the result
is far from obvious. The above intuition does not lead to the proof as it leaves open
the possibility that after low probability histories, the continuation game requires a
large amount of information to be revealed. In fact, the intuition fails in repeated



4 MARCIN PĘSKI

games with no discounting in which there are examples of games with equilibrium
payoffs that cannot be approximated by finitely revealing profiles (see Forges [1984],
Forges [1990] and Aumann and Hart [2003]).

The previous literature has not been able to describe the equilibrium set except for
very special cases. The closest to the current paper is Peski [2008], who characterized
the equilibrium payoffs in games with incomplete information only on one side, and
with the informed player having only two types. The current paper generalizes Peski
[2008] to multiple types and multi-sided incomplete information. The characterization
of payoffs in finitely revealing equilibria is a relatively straightforward extension of
Peski [2008]. The key step of the current paper, i.e., the argument that no other
payoffs can be attained in equilibrium, is entirely novel.1

The main advantage of our characterization is that the payoff set in finitely revealing
profiles can be computed. We illustrate this claim with two examples. First, we
discuss a class of oligopoly games. That class includes, as a knife-edge case, a Bertrand
oligopoly with privately known production costs from Athey and Bagwell [2008]. In
that paper, the authors propose mechanism design methods for analyzing repeated
games with incomplete information. They describe the equilibrium that maximizes
the sum of ex ante payoffs among all symmetric equilibria, and they show that no
information is revealed in such an equilibrium. Here, we explain that there is a
relation between the mechanism design approach and equilibria in which all players
fully and immediately reveal their information. We show that in oligopoly games, all
equilibrium payoffs can be approximated by such equilibria, and can be derived as
solutions to a simple mechanism design problem. We use the explicit description of
payoffs to show that some (and, in some cases, complete) productive efficiency can
typically be obtained in the Pareto-dominant equilibrium. In particular, we argue

1To compare, notice that Peski [2008] uses a much more complicated differential technique that,
despite our best efforts, could not be extended beyond the two-type, one-sided case. In addition,
notice that Athey and Bagwell [2008] (see later in the introduction) solve the second part of the
argument (i.e., showing that there are no other Nash equilibria) using a sophisticated approach from
the mechanism design literature and by making assumptions about the log-concavity of the cost
distribution. Their approach does not seem to generalize well beyond the particular example they
analyze.
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that the “pooling” result of Athey and Bagwell [2008] is not robust to alternative
demand specifications.

Second, we discuss a bargaining game with two players, one-sided incomplete infor-
mation, and two types (normal and “strong”) of the informed player. We assume that
the game between the normal type and the uninformed player has strictly conflicting
interests (Schmidt [1993]). The strong type’s payoffs are parametrized as a convex
combination between the payoffs of the normal type and the payoffs of a player who
is committed to playing a single action (i.e., for whom repeating a single action is
a dominant strategy in the repeated game). We describe the Pareto frontier of the
equilibrium set as a solution to a system of differential equations. We show that there
are efficient equilibria that require any arbitrarily large number of periods with the
information revelation. When the payoffs of the strong type converge to the payoffs
of the committed player, all equilibrium payoffs converge to the Stackelberg outcome
of the informed player.

We compare our characterization to the literature on repeated games without dis-
counting (see Aumann and Maschler [1995]). That literature typically considers the
general payoff case, in which players’ payoffs may depend on the types of their op-
ponents.2 Hart [1985] considers one-sided uncertainty with general payoffs and char-
acterizes the equilibrium payoffs as values of bi-martingales. The characterization
in the general-payoff no-discounting case is not constructive and there is no known
algorithm for finding all equilibrium payoffs in the general case. This fact is related to
the existence of games and equilibria that cannot be approximated by payoffs in the
finitely revealing equilibria that we mention above. With known-own payoffs and no
discounting, all equilibrium payoffs can be obtained with strategies in which players
reveal all their information in the first period (Shalev [1994] and Koren [1992]). Some
of the similarities and the differences between the no-discounting and discounted cases
are discussed in more detail in section 7.

2To avoid players learning about the other players’ types from their own payoffs, the literature
assumes that the payoffs are not observed until the end of the (infinite) repeated game. This
assumption is not needed in the known-own payoffs case.
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An important difference between the discounted and no-discounting case is that
equilibria always exist in the former case, but not necessarily in the latter. However,
the assumption made in this paper (i.e., the set of belief-free payoffs has a non-empty
interior) ensures that the set of payoffs in the repeated game without discounting
has a non-empty interior. The same assumption ensures that our candidate set of
payoffs is non-empty (as it contains the set of equilibrium payoffs in games without
discounting). In general, the non-emptiness of the candidate payoff sets, as well as
the characterization of the equilibrium payoffs without the assumption, remains an
open question.

Kreps and Wilson [1982a] and Milgrom and Roberts [1982] introduced a model
of reputation with one-sided incomplete information about the type of the long-run
informed player: strategic or commitment (“reputational”) types. This literature was
extended to equal discounting and patient players in Cripps and Thomas [1997], Chan
[2000], and Cripps et al. [2005]. Because in the reputational model, the highest payoff
of the commitment type is equal to his minmax payoffs, this model does not have an
open set of payoffs. However, a small perturbation of the reputational types’ payoffs
may create an open thread and restore the assumption. We can use “nearby” models
to test the predictions of the reputational literature. Our third example illustrates
the robustness of the result of Cripps et al. [2005].

One of the first papers to study repeated games with one-sided incomplete informa-
tion and equal discounting is Cripps and Thomas [2003] (see also Bergin [1989]). They
look at the limit correspondence of payoffs when the probability of one of the types is
close to 1.3 They show that the set of payoffs of the uninformed player and the high
probability type is close to the folk theorem payoff set from a complete information
game. Cripps and Thomas [1997] and Chan [2000] ask similar questions within the
framework of reputation games. All these results are proven by the construction of
finitely revealing equilibria.

3Cripps and Thomas [2003] also discuss the limit of payoff sets when the two players become infin-
itely patient, but player I becomes patient much more quickly than player U . Their characterization
is closely related to Shalev and Koren’s results for the no-discounting case.
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Hörner and Lovo [2009] study the general payoff case with multi-sided incom-
plete information and characterize the set of payoffs obtained in belief-free equilibria.
Hörner et al. [2011] describe detailed conditions for information structures in N -player
games under which belief-free equilibria exist for all payoff functions. Our main result
is limited to games in which belief-free equilibria exist. However, we characterize the
set of all equilibrium payoffs and not just the set of payoffs in belief-free equilibria.
In particular, even if belief-free equilibria exist, they may not capture all equilibrium
payoffs, or not even all efficient equilibrium payoffs. (See examples at the end of
section 6.1 and in section 6.2.)

There are other related papers on repeated games with discounting but with dif-
ferent kinds of incomplete information. Wiseman [2005] considers the situation in
which the payoffs are initially unknown by all players (i.e., there is no asymmetric
incomplete information), and the players learn the payoff function from observing the
realization of their payoffs over time. Fudenberg and Yamamoto [2010] and Fudenberg
and Yamamoto [2011] study the case where the payoffs and the monitoring structure
are initially unknown, and the players may start the game with private information
about the state of the world. The players learn over time by observing signals. The
authors find conditions on the informativeness of the signals that ensure that in equi-
librium, players can learn the state very quickly, and the set of equilibrium payoffs
obtained in each state is equal to the folk theorem set in the complete information
game as if the players knew the state from the beginning. In this setting, the set of
payoffs is not affected by initially incomplete information.

In the next section, we describe the model and preliminary results. In section 3, we
describe the geometric construction of the candidate payoff set. In section 4, we show
that each element of the payoff set can be attained in finitely revealing equilibria. In
section 5, we show that given the existence of an open set of payoffs in belief-free
equilibria, each Nash equilibrium payoff can be approximated by a payoff in a finitely
revealing equilibrium. We illustrate the result with examples in section 6. In section
7, we discuss the relation to the no-discounting literature. Section 8 concludes. Most
of the proofs are postponed untill the appendices.
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2. Model

2.1. Repeated game. For each setX ⊆ Rd, we write intX, clX, and conX to denote
the interior, closure, and convexification of X, respectively. For each u ∈ Rd, each
ε > 0, let B (u, ε) = {u′ : supi |ui − u′i| < ε} be an open ball in the "sup" metric.

There are I players, i = 1, 2, ..., I. In each period t ≥ 0, each player i takes an action
ai from the finite set Ai4 and receives payoffs gi (ai, a−i, θi). The payoffs depend on
the actions of all players and on the privately known type θi of player i (known-payoff
case). We assume that |Ai| ≥ |Θi| for each player i. LetM = maxi,a,θi |gi (a, θi)| <∞
be the upper bound on the absolute value of the payoffs. All actions are observed.

The type of player i is chosen by Nature once and for all from the finite set Θi

and revealed to player i before the first period of the repeated game. We write
Θ−i = ×j 6=iΘj to denote the set of type tuples of all players but i, and Θ = ×iΘi to
denote the set of type profiles. We also write Θ∗ = Θ1∪ ...∪ΘI to denote the disjoint
union of the sets of types for each player.

We encode the payoffs of different types of different players as a tuple v = (vi (θi))i,θi ∈
RΘ∗ , with the interpretation that vi (θi) is the (expected) payoff of type θi of player
i. We write vi ∈ RΘi to refer to the component of v that consists of payoffs of player
i’s types.5

Each type θi of player i starts the game with beliefs πθi ∈ ∆Θ−i about the distribu-
tion of the types of the other players. The beliefs may differ across types, and we do
not assume that the players’ beliefs are derived from a common prior. However, we

4The results of the paper extend to the case of infinite action sets with some modifications of
the definitions. First, to avoid problems with updating on non-atomic, positive probability events,
we assume that the players are restricted to mixed strategies with countable supports. Second, the
(σ, π)-consistent beliefs in the sequential equilibrium must be obtained as the limits of the beliefs in
the convergent nets of strategies (σξ)ξ∈E that converge to σ. The details are available upon request.

5The convention of encoding payoffs given one’s own type follows Peski [2008] (see also the state-
ment of the main result in Hart [1985]) and differs from some other papers in the literature. For
example, Hörner and Lovo [2009] write v ∈ RI×Θ to denote the vector of the players’ payoffs given
the realization of the entire type profile, and not only the player’s own type. Our convention is
simpler and more natural in the known-own payoff case.
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assume that all types of all players agree on which types have positive or zero prob-
ability. Precisely, from now on, we assume that each belief system π =

(
πθi
)
i,θi∈Θi

satisfies the common rectangular support property: for each player j, there exists set
Θπ
j ⊆ Θj such that for each type θi of each player i, πθi (θ−i) > 0 if and only if

θ−i ∈ ×j 6=iΘπ
j . We refer to Θπ

j as the π-support of player j. We say that type θj has
π-positive probability if θj ∈ Θπ

j , and π-zero probability otherwise. Let Π denote the
space of belief systems with common rectangular support.6

Players discount the future with the common discount factor δ < 1. We refer to
the game with discount factor δ and initial beliefs π as Γ (π, δ) .

For simplicity, we assume that players have access to public randomization. As is
standard practice in the literature, we omit the reference to public randomization in
the formal definition of a history.

Let Ht = At be the set of t-period histories ht = (as)t−1
s=0 . A (repeated game)

strategy of player i is a mapping σi : Θi ×
⋃
tHt → ∆Ai. For any profile σ = (σi)i of

such strategies, let

vπ,δ (σ) = (1− δ)
∑

θ−i∈Θ−i
πθi (θ−i)Eσ(θi,θ−i)

∑
t
δtg (at, θi) ∈ RΘ∗

denote the (normalized) expected payoff of player i type θi, where the expectation
is computed with respect to the distribution over histories induced by strategies σ
and given types (θi, θ−i). Let vπ,δ (σ) ∈ RΘ∗ denote the (normalized) expected payoff
vector.

2.2. Feasible, non-revealing payoffs. Two sets play an important role in our char-
acterization. The first set consists of stage-game payoffs obtained when all types of
each player pool their actions. For each action profile a = (ai) ∈ A ≡ ×iAi, let
g (a) = (gi (a, θi))i,θi ∈ R

Θ∗ be the payoff vector obtained when each type of player i
plays the same action ai. Let

V = con {g (a) : a ∈ A} ⊆ RΘ∗

6Note that if the prior beliefs have the common rectangular support, then the posterior beliefs
after positive probability events have it as well. Thus, the rectangularity will be preserved by
consistent beliefs (see the definition below).
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be the convex hull of payoff vectors g (a). We refer to V as feasible, non-revealing
(i.e., pooling) payoffs.

The set V is typically smaller than the set of all feasible payoffs in game Γ (π, δ).
The latter can be defined as the convex hull of payoff vectors vπ,δ (σ) for all strategy
profiles σ, including profiles in which players’ types do not pool their actions.

2.3. Individual rationality. The second set consists of individually rational payoffs.
We follow Blackwell [1956], who solved the problem of extending individual rationality
to the incomplete information case. Define the weighted minmax of player i: for each
φ ∈ RΘi

+

mi (φ) := inf
α−i∈×j 6=i∆Aj

sup
αi∈∆Ai

∑
θi
φθig (αi, α−i, θi) . (2.1)

Define the set of individually rational payoffs as

IR =
{
v ∈ RΘ∗ : ∀i∀φ ∈ RΘi

+ , φ · vi ≥ mi (φ)
}
.

Blackwell [1956] shows that for each payoff vector v from the interior of the set IR,
for each player i, there exists a sufficiently large horizon T and a T -period strategy
of players −i that ensures that the T -period average payoff of player i type θi is
smaller than vi (θi). For the precise statement of the result in the case of games with
discounting, see Lemma 4 in Appendix B.

2.4. Equilibrium. A strategy profile σ is a (Bayesian) Nash equilibrium in game
Γ (π, δ) for some π ∈ Π if for each player i type θi, strategy σi (θi) is the best response
of type θi. One shows that any payoff vector in a Nash equilibrium must belong to
set IR.

A strategy profile σ is totally mixed if for each player i, type θi, history ht, action
ai, σi (ai|ht, θi) > 0. Each totally mixed strategy profile σ, together with the initial
belief system π ∈ Π, induces a well-defined belief mapping p(σ,π) : ⋃tHt → Π through
the Bayes formula. (Note that the posterior beliefs always have common rectangular
support: see Footnote 6.) For any strategy profile σ, say that belief mapping p :⋃
tHt → Π is (σ, π)−consistent, if there exists a sequence of totally mixed strategy

profiles σn → σ such that p(σn,π) → p.7 If history ht has a positive probability, i.e., if
7In both cases, we use the “pointwise” notion of convergence, i.e., σn → σ if and only if σn (θi, h)→

σ (θi, h) for each type θi and history h. Our analysis would not be affected if instead we used the
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for each player i, ∏
s<t

σi
(
ais|hs, θi

)
> 0,

then p (ht) does not depend on the choice of sequence σn. We use this observation
without any further reminder.

A strategy profile σ is a sequential equilibrium in game Γ (π, δ) if there exists (σ, π)-
consistent belief mapping p such that for each player i type θi, history ht, continuation
strategy σi (ht, .) is the best response to continuation strategy σ−i (ht, .), given beliefs
pi (ht). A sequential equilibrium is n-revealing if for any positive probability history
h, there exists at most n periods t such that p (ht) 6= p (ht−1) . A finitely revealing
equilibrium is a sequential equilibrium profile σ that is n-revealing for some n.

Let NEδ (π) , FRδ
n (π) ⊆ RΘ∗ be the sets of expected payoff vectors vπ,δ (σ) in

Nash, and n-revealing equilibria σ, respectively. The sets of equilibrium payoffs typ-
ically depend on initial beliefs. Because any equilibrium play in which information
is revealed has continuation play in a game with posterior beliefs that may differ
from the prior, the payoff sets for different beliefs are related to each other. Thus, the
characterization must simultaneously describe the entire equilibrium correspondences
for all initial priors.

We are going to simplify our description of the equilibrium correspondences by
focusing on the payoffs of the positive probability types (see, among others, Hart
[1985] and Aumann and Hart [2003] for an analogous approach). For any belief
system π ∈ Π, any two payoff vectors v, v′ ∈ RΘ∗ , write v �π v′ if vi (θi) ≤ v′i (θi) for
each player i type θi and vi (θi) = v′i (θi) for all π-positive probability types θi. In other
words, vector v′ contains exactly the same payoffs for π-positive probability types and
possibly higher payoffs for the zero-probability types. For each set X ⊆ RΘ∗ , define

Xπ+ = {v′ : ∃v ∈ A st. v �π v′} .

For any payoff correspondence E (π), define the enhancement of E as a payoff cor-
respondence E+ such that E+ (π) = (E (π))π+ for each π. If E = E+, we say that
correspondence E is enhanced.
“uniform” convergence across many histories. (Notice that the original definition of sequential
equilibrium from Kreps and Wilson [1982b] applies only to finite games and the above issue does
not arise.)
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2.5. Comments. Our analysis of repeated games of incomplete information is re-
stricted to the known-own payoffs case. One of the difficulties in extending the result
to the general case is connected with the design of punishment strategies. In the
known-own payoffs case, the set of i’s individually rational payoffs, as well as −i’s
strategy that minmaxes player i, does not depend on the beliefs of player i or the type
of players −i (see section 2.3 above or Lemma 4 in Appendix B). This fact allows us
to construct equilibria in which minmax strategies are used without any information
revelation; we need only to make sure to choose continuation payoffs so that all types
of minmaxing players have incentives to randomize with the same probabilities among
all pure strategies in the support of the (possibly mixed) minmax strategy.

However, if player i’s payoffs depend on the information of player −i, the value of
player i minmax may depend on his beliefs about the type of player −i. It follows that
to punish player i, players −i’s strategy may depend on −i’s types. This complicates
the use of punishment in sequential equilibria.

We assume the belief systems have common rectangular support. This restriction
ensures that all players can agree with each other (and with an outside observer) on
which types have positive or zero probability. Moreover, because Bayesian updat-
ing respects the restriction, the restriction is inherited along the equilibrium path.
The distinction between the zero and positive probability types is important because
their payoffs are analyzed differently (see the above definition of enhanced payoffs).
Furthermore, without rectangular support, our notion of individual rationality is not
sufficient (see Hörner et al. [2011]).

3. Payoff correspondence

In this section, we construct a set of payoffs in profiles in which (i) information is
revealed (i.e., types fully or partially separate) in at most finitely many periods, (ii) in
all other periods, types pool their actions, and (iii) at each period, continuation payoffs
are individually rational. The construction is inductive. We start with describing
payoffs in non-revealing, individually rational profiles. Then we present two inductive
steps that correspond to either pooling or information revelation in the initial periods.
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Payoffs in non-revealing profiles. For each belief system π, let

F0 (π) = int
(
IR ∩ V π+

)
. (3.1)

It is well known that correspondence F0 is equal to the payoffs in equilibria in which
no information is revealed (see Hart [1985], Koren [1992], and Shalev [1994] for Nash
equilibrium and no-discounting, and Peski [2008], and Hörner and Lovo [2009] for
the sequential equilibrium in the discounted case). To get some intuition, suppose
that π is a full-support belief system. Then, F0 (π) = int (IR ∩ V ) . If such a set
is non-empty, there exists a (possibly correlated) action profile a such that g (a) ∈
F0 (π) . One can construct equilibria in which a is played on the equilibrium path and
deviations by a single player are punished with (Blackwell) minmaxing.

In some games, correspondence F0 might be empty-valued for some prior belief
systems π. Such games do not have non-revealing equilibria.8

Initially pooling actions. For each correspondence F , define correspondence AF :
for each belief π, let

AF (π) = int (IR ∩ con (F (π) ∪ V )) .

Correspondence AF contains all payoffs u that are individually rational and that
can be obtained as the convex combination u = βv + (1− β)u′ of a (possibly, not
individually rational) non-revealing payoff v ∈ V and payoff vector u′ ∈ F (π). If u′

is an expected payoff in some strategy profile, then u is a payoff in a profile in which,
initially, the players’ types pool their behavior on profile a. After t periods, where
δt ≈ β, players continue with the original profile with payoffs u′.
Revelation of information. Information is revealed (possibly only partially) when-

ever different types play different (possibly mixed) actions.

8For a simple example, consider a game, in which player 1 has two types θ1 ∈ {0, 1}, two actions
a1 ∈ {0, 1}, and receives payoff 1 if his action is equal to his type and 0 otherwise. Then for any
prior π that assigns positive probability to both types of player 1, the sets IR and V π+ = V are
disjoint. Intuitively, in any equilibrium, player 1 will always match his action to the state, which
immediately reveals all information.
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Let π ∈ Π be the initial belief system. We represent the revelation of information
in the form of continuation lottery l = (α, u), where α = (αi) is a profile of the first-
period strategies αi : Θi → ∆Ai , and u : A→ RΘ∗ is an assignment of continuation
payoffs following the realization of the first-period actions. Each lottery must satisfy
two conditions. First, we assume that if an action ai is played with positive probabil-
ity by some type (i.e., there exists θi such that αi (ai|θi) > 0), then ai is played with
positive probability by some π-positive probability type. This allows us to use the
Bayes formula to compute the posterior belief system pπ,l (a) =

(
pπ,l,θi (a−i)

)
i,θi

fol-
lowing positive probability action profile a. Notice that the beliefs of player i depend
only on the actions chosen by other players. Second, we require that lottery l ensures
that all types of all players are indifferent among all positive probability actions:

Eπθiui (ai, α−i (θ−i) , θi) = Eπθiui (αi (θi) , α−i (θ−i) , θi) . (3.2)

(The payoff consequences of playing actions during one period can be ignored.) Define
the value of lottery l as a payoff vector vπ,l ∈ RΘ∗ such that for each player i and
type θi, vπ,li (θi) is equal to (3.2). Let L (π) denote the set of lotteries that satisfy the
above conditions.

The incentive condition (3.2) requires that all types of all players are indifferent
among all (positive probability) actions, including actions ai that type θi is not sup-
posed to play with positive probability, αi (ai|θi) = 0. This is stronger than a typical
incentive condition, which requires only weak inequality. However, this is without
loss of generality: due to the enhancement property, we can always increase the con-
tinuation payoffs of type θi after action ai to replace a weak inequality with equality.

For each correspondence F , define correspondence BF : for each belief π, let

BF (π) =
{
vπ,l : l ∈ L (π) and u (a) ∈ F

(
pπ,l (a)

)
for each pos. prob. a

}
.

Set BF (π) contains the values of all lotteries with prior belief π and with posteriors
and continuation payoffs that belong to correspondence F .

Candidate payoff correspondence. For any two payoff correspondences F,G ⇒

RΘ∗ , write F ⊆ G if F (π) ⊆ G(π) for any belief system. The next result follows
immediately from the fact that operations A and B are monotonic: for any two
correspondences, if F ⊆ G, then AF ⊆ AG and BF ⊆ BG.
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Theorem 1. There exists the smallest correspondence F ∗ such that F0 ⊆ F ∗, AF ∗ ⊆
F ∗, and BF ∗ ⊆ F ∗. Moreover, F ∗ = ⋃

n F
B
n , where FA

1 = AF0, and for each n ≥ 1,
FB
n = BFA

n and FA
n+1 = AFB

n .

The Theorem defines correspondence F ∗ as the smallest correspondence that con-
tains F0 and that is closed with respect to operations A and B. Additionally, the
Theorem provides a method of constructing F ∗ by alternating application of the two
operations to initial correspondence F0. Each step has a simple geometric character-
ization. In general, it is not possible to simplify the description by eliminating any
of the steps (section 6.2 contains an example of a game and constructions for which
all steps are required).

In some games, correspondence F ∗ might be empty-valued for some prior belief
systems π. Trivially, if correspondence F0 (π) is non-empty, then F ∗ (π) is not empty
as well. If the game has an open thread (see below), then correspondences BAF0 ⊆ F ∗

(but not necessarily F0; see the example from footnote 8) are non-empty valued for
all initial priors.

For future reference, notice that correspondences F ∗, FA
n , and FB

n are enhanced.
This follows from the fact that correspondence F0 is enhanced, and that operations
A, B, and taking the limit preserve the enhancement property.

4. Finitely revealing payoffs

In this section, we show that correspondence F ∗ is a lower bound on the set of
payoffs obtained in finitely revealing equilibria. For each n, define the limit payoff
correspondences9

FRn (π) = lim inf
δ→1

FRδ
n (π) .

Let FR (π) = ⋃
n FRn (π) be the limit set of payoffs in finitely revealing equilibria.

Theorem 2. For each π ∈ Π, F ∗ (π) ⊆ FR+ (π) and for each n, FB
n (π) ⊆ FA

n+1 (π) ⊆
FR+

n (π).
9The infimum limit lim infδ→1 FR

δ
n (π) is defined as the set of payoff vectors v such that for each

sequence δn → 1, there exists sequence vn → v and such that vn ∈ FRδn
n (π) . It is the greatest lower

bound on the set of accumulation points.
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The proof goes by induction on n and is found in Appendix B. In each step, we
construct finitely revealing equilibria with the required payoffs. The constructions are
relatively standard and rely on techniques from Fudenberg and Maskin [1986] that
are adapted to games with incomplete information. (See also constructions used in
Cripps and Thomas [2003] and Peski [2008].)

5. Equilibrium payoffs

In this section, we state our main assumption and show that under this assumption,
all Nash equilibrium payoffs are contained in the closure of correspondence F ∗.

5.1. Open thread assumption. For each type profile θ = (θi)i ∈ Θ, let πθ ∈ Π be
the belief system in which all types of player i assign probability one to the opponents’
profile θ−i.

A thread is an assignment u∗ : Θ→ RΘ∗ of payoff vectors to type profiles such that
(a) for each type profile θ ∈ Θ, u∗ (θ) is an (enhanced) payoff vector in a non-revealing
equilibrium in a game with initial beliefs πθ,

u∗ (θ) ∈ clF0
(
πθ
)
,

and (b) for each player i, all types θi, θ′i ∈ Θi, and all type profiles θ−i ∈ Θ−i,

u∗i (θi, θ−i) = u∗i (θ′i, θ−i) .

(Here, u∗i (θ) ∈ RΘi is a vector of payoffs u∗ (τi|θ) for each type τi of player i given
profile θ = (θi, θ−i) of all types of all players. The above equation is an equality
between two vectors.) We say that there exists an open thread if u∗ can be chosen so
that u∗i (θ) ∈ F0

(
πθ
)
.

A thread has a natural interpretation. Consider a direct revelation mechanism in
which players report their types, and following report θ̃, each player i type θi receives
payoff u∗i

(
θi|θ̃

)
. The first condition ensures that the payoffs can be approximated

by equilibrium payoffs in the game with “complete information” (i.e., in which all
information is revealed). The second condition ensures ex post incentive compatibility
for player i: If we were to interpret θi as a report of player i, then player i would
be indifferent between reporting her type truthfully and reporting any other type
regardless of the reports of the other player.
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For each open thread u∗, each π ∈ Π, define u∗ (π) ∈ RΘ∗ so that for each player i
type θi,

u∗i (θi|π) =
∑

θ−i
πθi (θ−i)u∗ (θi|., θ−i) ,

(u∗ (θi|., θ−i) is equal to θi-coordinate of the payoff vector u∗ (θ′i, θ−i) for some θ′i;
by assumption, this value does not depend on the choice of θ′i). It follows directly
from the definitions that u∗ (π) ∈ FB

1 (π) for each π. By Theorem 2, u∗ (π) is a payoff
vector in a fully and immediately revealing equilibrium of the game with initial beliefs
π and sufficiently high δ. We say that u∗ (π) forms a multi-linear thread of equilibrium
payoffs that passes through games Γ (π, δ) for each π ∈ Π.

All games with two players and one-sided incomplete information have a thread.
This follows from the analysis of the non-discounted games in Shalev [1994] (see
also Peski [2008]). Additionally, in the case of two players, the threads are essentially
equivalent to payoffs in belief-free equilibria of Hörner and Lovo [2009]. The existence
of a thread is a necessary condition, and of an open thread is a sufficient condition
for the existence of such equilibria (see Appendix A).

5.2. Main result. Our main result provides a characterization of the set of equilib-
rium payoffs. Define the limit payoff correspondence10

NE (π) = lim sup
δ→1

NEδ (π) .

Theorem 3. If there exists an open thread, then

clNE+ (π) = clF ∗ (π) .

The Theorem provides a characterization of the limit set of payoffs in Nash equi-
libria of repeated games with incomplete information. The Theorem shows that all
Nash equilibrium payoffs for a sufficiently high discount factor can be approximated
by payoffs in finitely revealing equilibria that were constructed in Theorem 2.

The Theorem extends a standard folk theorem from the repeated games with com-
plete information. (Note that the existence of the thread is trivial with complete

10The supremum limit lim supδ→1NE
δ (π) is defined as the set of payoff vectors v such that there

exist sequences vn → v and δn → 1, such that vn ∈ NEδn
n (π) . It is the smallest upper bound on

the set of accumulation points.
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information, and that the open thread ensures the appropriate dimensionality condi-
tions are satisfied.) Because finitely revealing equilibria are sequential, the Theorem
shows that repeated games with incomplete information preserve a folk-theorem-like
feature of games with complete information in which all payoffs in Nash equilibria
can be approximated by payoffs in subgame perfect equilibria.

Together with Theorem 1, Theorem 3 provides a method for computing the set of
equilibria payoffs. We illustrate the method with examples in section 6.

We explain below that the open thread assumption plays an important role in the
proof. We do not know whether the result holds in games that do not satisfy the
assumption.

The proof shows that any Nash equilibrium profile in game Γ (π, δ) with expected
payoffs v can be modified into a profile with expected payoffs that belong to F ∗ (π)
and that are arbitrarily close to v. The idea is to modify the original Nash profile to
pull the continuation payoffs toward the multi-linear thread u∗. Once the continuation
payoffs get sufficiently close to the thread, we conclude the modified profile with one
period of full revelation of information, followed by an equilibrium of the “complete”
information game.

To get some intuition, suppose that v is a payoff in a Nash profile σ in which during
the first period the players choose non-revealing action profile a (i.e., all types of each
player i play the same action ai). Let v (a) be the equilibrium continuation payoffs
(we can always choose strategies in such a way so that the continuation payoff after
positive probability history is a payoff in a Nash equilibrium). Then v is a convex
combination of instantaneous payoffs g (a) and equilibrium continuation payoffs v (a),
v = (1− δ) g (a) + δv (a). See Figure 5.1.

Suppose that v′ is a payoff vector that is a convex combination between v and the
value of the thread u∗ (π), v′ = γv + (1− γ)u∗ (π). We can find vector v′ (a) (and γ′

and δ′) such that

• v′ = (1− δ′) g (a) + δ′v′ (a) is a convex combination between v′ (a) and g (a).
Thus, we can interpret v′ as a payoff in a profile that starts with action a,
followed by continuation payoffs v′ (a), in a game with discount factor δ′ > δ.
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Figure 5.1

• v′ (a) = γ′v (a)+(1− γ′)u∗ (π) is a convex combination between v (a) and the
thread u∗ (π).

Simple algebra shows that

γ = γ′

γ′ (1− δ) + δ

which implies that γ′ < γ. Thus, the relative distance between v′ (a) and the thread
u∗ (π) is smaller than the relative distance between v′ and the thread.

The above argument applies to situations in which no information is revealed in the
first period. If some information is revealed, we show that the relative distance of the
(modified) continuation payoffs to the value of the thread in games with new posterior
beliefs is smaller than the relative distance of the (modified) payoffs to the thread in
the game with prior beliefs. The argument relies on the fact that the expected payoff
in the continuation lottery is a convex combination of payoff vectors

u (a) = (1− δ) g (a) + δv (a)

with weights on u (a) equal to the prior probability of profile a, and that the prior
belief is a convex combination of the posterior beliefs p (a) with exactly the same
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weights. The multi-linearity of the thread u∗ is essential for the argument (and it is
the only place where this assumption is used).

Formally, Theorem 3 follows from two inclusions

F ∗ (π) ⊆ FR+ (π) ⊆ NE+ (π) (5.1)

and
NE+ (π) ⊆ clF ∗ (π) . (5.2)

The first inclusion is a consequence of Theorem 2. We need to show the other inclu-
sion.

Suppose that u∗ (π) is an open thread. Choose r > 0 so that for all type profiles θ,

B
(
u∗
(
πθ
)
, r
)
⊆ F 0

(
πθ
)
.

For each δ < 1, define γδ1 = r
2M . (Note that γδ1 does not depend on δ.) For each

n > 1, inductively define

γδn = γδn−1
γδn−1 (1− δ) + δ

∈
(
γδn−1, 1

)
. (5.3)

Notice that γδn > γδn−1 and limn→∞ γ
δ
n = 1. Inclusion (5.2) follows from the following

result.

Lemma 1. For each n such that
(
1− γδn

)
r > (1− δ)M, for each π ∈ Π, each

v ∈ NEδ (π) ,
γδnv +

(
1− γδn

)
u∗ (π) ⊆ intFB

n (π) .

5.3. Proof of Lemma 1. The proof of Lemma 1 goes by induction on n. First, we
show the inductive claim for n = 1. Because ‖v‖ ≤M for each v ∈ NEδ (π) , we have

r

2Mv +
(

1− r

2M

)
u∗ (π) ∈ B (u∗ (π) , r) ⊆ FB

1 (π) .

The inclusion comes from Theorem 2 and the definition of an open thread.
Next, suppose that the inductive claim holds for n − 1. Take any prior beliefs π

and Nash payoff vector v ∈ NEδ (π) . Find an equilibrium profile σ that supports v.
Say that action ai is played with positive probability by player i in the first period if
there exists π-positive probability type θi such that σi (ai|∅, θi) > 0. Let A0

i denote
the set of actions played with positive probability by i.
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We assume without loss of generality that the continuation strategies are the best
responses for all players and all types after all positive probability histories. (If Nash
profile σ does not have such a property, the profile can be easily modified without
affecting the initial payoffs and equilibrium conditions.)

Non-revealing payoffs. For each positive probability action profile a ∈ A0 := ×iA0
i ,

each type θi, let

v (a) =
(
v
p(a)
i (σ (a, .) ; θi)

)
i,θi
∈ RΘ∗

be the vector of continuation payoffs after a. Because a occurs with positive probabil-
ity, v (a) is a Nash equilibrium payoff in game Γ (p (a) , δ) . By the inductive assump-
tion,

γδn−1v (a) +
(
1− γδn−1

)
u∗ (p (a)) ∈ intFB

n−1 (p (a)) .

Define

u (a) = (1− δ) g (a) + δv (a) .

Using (5.3), we get

γδnu (a) +
(
1− γδn

)
u∗ (p (a))

=γδn [δv (a) + (1− δ) g (a)] +
(
1− γδn

)
u∗ (p (a)) (5.4)

=
(
1− (1− δ) γδn

) [
γδn−1v (a) +

(
1− γδn−1

)
u∗ (p (a))

]
+ (1− δ) γδng (a) (5.5)

∈intcon
(
FB
n−1 (p (a)) ∪ V

)
.

Because v (a) is a payoff in a Nash equilibrium, v (a) ∈ IR. Because (1− δ)M ≤(
1− γδn−1

)
r, it must be that

γδn [δv (a) + (1− δ) g (a)] +
(
1− γδn

)
u∗ (p (a)) ∈ intIR. (5.6)

Then (5.5) and (5.6) imply that for each positive probability a,

γδnu (a) +
(
1− γδn

)
u∗ (p (a)) ∈ FA

n (p (a)) . (5.7)

Revelation of information. For each π-positive probability type θi, let

αi (θi) = σi (∅, θi) ∈ ∆A0
i .



22 MARCIN PĘSKI

For each π-zero probability type θi, let

αi (θi) ∈ arg max
ai∈A0

i

u (ai, α−i) .

Because profile σ is a Nash equilibrium and because of the choice of αi (θi), for all
types θi, all positive probability actions ai,

Eπθiui (ai, α−i (θ−i) , θi) ≤ Eπθiui (αi (θi) , α−i (θ−i) , θi) .

The inequality turns into equality for all actions ai that are played with positive
probability by type θi. We can replace the inequality with equality for all actions ai
by enhancing the continuation payoffs u (θi|a) of types θi that do not play action ai
in strategy αi (i.e., αi (ai|θi) = 0). Because correspondence FA

n is enhanced (see the
remark at the end of section 3), (5.7) holds for the enhanced continuation payoffs.

The above implies that the continuation lottery l = (α, u) satisfies (3.2) and belongs
to the set L (π) (we use the same symbol u to denote the enhanced continuation
payoffs). Consider lottery l′ =

(
α, γδnu (.) +

(
1− γδn

)
u∗ (p (.))

)
. The properties of the

thread u∗ imply that for each positive probability ai ∈ Ai, all types θi, θ−i,

EπθiEα−i(θ−i)u
∗ (θi|p (ai, a−i))

=
∑

θ−i,a−i,θ′−i
πθi (θ−i)α−i (a−i; θ−i) pθi

(
θ′−i|ai, a−i

)
u∗i
(
θi|., θ′−i

)
(5.8)

=
∑

θ′−i
πθi

(
θ′−i
)
u∗i
(
θi|., θ′−i

)
= u∗i (θi|π) .

In particular, the first line of (5.8) does not depend on positive probability action ai.
Together with the fact that lottery l ∈ L (π), the above implies that lottery l′ satisfies
(3.2) for each type θi.

The value of lottery l′ is equal to

vπ,l
′ = γδnv

π,l +
(
1− γδn

)
u∗ (π) ,

where vπ,li is the value of lottery l. Then (5.7) implies that

γδnv
π,l +

(
1− γδn

)
u∗ (π) = vπ,l

′ ∈ intFB
n (π) .
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Notice that

vπ,li (θi) = vi (θi) for π-positive probability θi,

vπ,li (θi) ≤ vi (θi) = vπ,δi (σ; θi) for π-zero probability θi.

The latter follows from the fact that action αi (θi) is not necessarily the best response
action of zero probability type θi. Because correspondence FB

n is enhanced,

γδnv +
(
1− γδn

)
u∗ (π) ∈ FB

n (π) .

This ends the proof.

5.4. Quality of approximation. The proof of Theorem 3 leads to the following
bounds on the quality of the approximation of the Nash equilibrium set by n-revealing
sets FB

n . Recall that M is an upper bound on the absolute value of the payoffs and
r > 0 is the size of the open thread.

Corollary 1. Let A = max
{

2M
r
, 2
}
. For each v ∈ NEδ (π) , each ε > (1− δ)A, and

either n ≥
⌈

2 log 2A
ε(1−δ)

⌉
, or n ≥ 1

(1−δ)2 ,

(1− ε) v + εu∗ (π) ∈ FB
n (π) .

Proof. We show first that for each δ ≥ 1
2 and each ε > 0, if n ≥

⌈
log 2A
ε(1−δ)

⌉
+ 1, then

γδn ≥ 1− ε. If not, then γδ1 ≤ .... ≤ γδn ≤ 1− ε, and

γδn ≥
1

δ + (1− δ) (1− ε)γ
δ
n−1 = 1

1− (1− δ) εγ
δ
n ≥

(
1

1− (1− δ) ε

)n−1 1
2A,

where the last inequality follows from the definition of γδ1 = r
2M . Because

− log (1− ε (1− δ)) ≥ ε (1− δ) ,

we have a contradiction:

γδn ≥ e(n−1)ε(1−δ) 1
2A ≥ 1 > 1− ε.

Fix v ∈ NEδ (π) . Take any ε > (1− δ)A. By Lemma 1 and the convexity of set
FB
n (π), γv+ (1− γ)u∗ (π) ∈ FB

n (π) b for each n ≥
⌈

log 2A
ε(1−δ)

⌉
+ 1 and any γ ≤ γδn such

that 1− γ ≤ 1− (1− δ)A. Letting γ = 1− ε establishes the first result.
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For the second result, take ε = (1− δ)A, and observe that for A ≥ 2, log 2A
A
≤ 1.

The result follows from the first part. �

6. Examples

Theorem 1 describes an algorithm for finding all the finitely revealing payoffs.
In this section, we illustrate the algorithm with two examples. Our first goal is
to illustrate that the algorithm is tractable. Additionally, we want to clarify the
relationships between different refinements of Nash equilibria.

In the first example, we show that in a wide class of oligopoly games, all Nash
equilibrium payoffs can be obtained in 1-revealing equilibria. At the same time, the
set of 1-revealing equilibria can be strictly larger than the set of belief-free equilibria.
In fact, we construct an oligopoly game in which the first-best payoffs can be obtained
in a 1-revealing equilibrium, but not in a belief-free equilibrium.

In the second example, a bargaining game with one-sided incomplete information,
the set of equilibrium payoffs is substantially larger than 1-revealing payoffs. In fact,
the equilibria that yield the maximal payoff for the uninformed party typically involve
a large number of revelation periods. Although all n-revealing equilibria are needed
to completely describe the set of payoffs, we are able to derive an explicit description
of the payoff set using a solution to a certain differential equation.

6.1. Oligopoly. We describe an abstract model of competition that encompasses, as
special cases, textbook examples of Bertrand and Cournot competitions with undiffer-
entiated products and incomplete information about the costs. We keep the notation
from the general model of a repeated game. There are I firms on the same market.
We make two sets of assumptions. The first assumption says that each payoff vector
can be replicated by a scheme in which each firm spends a fraction of the period as a
single firm on the market, while the other firms are inactive. To state it formally, let
Mi ⊆ RΘi be the convex hull of the set of payoff vectors attainable by firm i if firm i

was the only firm on the market. We refer to Mi as the set of monopoly payoffs. We
assume that Mi is compact, that it contains the zero-payoff vector 0i ∈Mi, and that
the intersection of Mi with the set of strictly positive payoff vectors has a non-empty
interior.
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We assume that each payoff vector in the game between the firms is a convex
combination of monopoly-inactive payoffs: for each v ∈ V, there exist monopoly
payoff mi ∈ Mi and market share βi ≥ 0 for each player i, such that ∑i βi ≤ 1, and
the vector of payoffs of player i is equal to vi = βimi.

Second, we assume that the set of individually rational payoffs is equal to the set of
vectors with non-negative coordinates, IR = {v : vi (θi) ≥ 0 for each iand θi}. Any
game with payoffs that satisfy the above two assumptions is called an oligopoly game.
The assumptions imply that the set{

(β1m1, ..., βImI) : ∀iβi > 0,
∑

βi = 1,mi ∈Mi, and ∀θimi (θi) > 0
}

is open and non-empty. It is easy to see that the above set is contained in the set of
non-revealing payoffs F0 (π) for each π. Thus, each oligopoly game has a non-empty
and open set of non-revealing equilibrium payoffs, and in particular, each such game
has an open thread.

If we interpret θi as the cost parameter, and actions as quantities or prices, then
the above assumptions are satisfied in various oligopoly models.

Example 1. The firms play a Cournot oligopoly. The firms choose quantities qi ≥ 0.11

The payoff of firm i with cost type θi is equal to qi(P (∑ qj)− θi) where P (.) is an
inverse demand function. Let

Mi = con
{

(q(P (q)− θi))θi : q ≥ 0
}
⊆ RΘi

be the set of monopoly payoffs of firm i. Then given strategy profile (q1, ..., qI), the
payoff of each firm i is equal to the fraction qi∑

qj
of the monopoly payoff obtained

from producing quantity ∑ qj. By choosing quantity 0, each firm can ensure that its
payoff is not smaller than 0.Moreover, if limq →∞ P (q) < inf Θi, then by choosing a
sufficiently large quantity, firm −i can ensure that the profits of firm i are not higher
than 0.
It is easy to check that if function P is differentiable and sup Θi < P (0) < ∞,
then set Mi is compact, that it contains the zero-payoff vector 0i ∈ Mi, and that

11In this and the next example, we allow the firms to choose from infinitely many actions. See
footnote 4 for a discussion on how the basic model must be extended.
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the intersection of Mi with the set of strictly positive payoff vectors has a nonempty
interior.

Example 2. Another model is a Bertrand oligopoly with demand D (.). The firms
choose prices pi. The payoff of each firm i is equal to D (pi) (pi − θi) if the firm i’s
price is strictly lower than the price of its competitors, 1

k
D (pi) (pi − θi) , if k−1 other

firms choose the lowest price, and 0 otherwise. The two assumptions of the oligopoly
games are satisfied if, for instance, function D is differentiable.

Theorem 4. For each oligopoly game, each belief system π ∈ Π,

clNE+ (π) = clFB
1 (π) .

Moreover, for each payoff vector v, v ∈ clFB
1 (π) if and only if for each type profile

θ = (θi, θ−i) , each firm i, there exist monopoly payoffs mθi
i ∈ Mi and market shares

βθi ≥ 0, such that ∑i β
θ
i ≤ 1 and the following conditions hold:

(1) Individual rationality: mθi
i (θi) ≥ 0 for each player i and type θi,

(2) Incentive compatibility: for all θi, θ′i,

v (θi) ≥
(∑

θ−i
πθi (θ−i) β

(θ′i,θ−i)
i

)
m
θ′i
i (θi) .

The proof can be found in Appendix C. The Theorem provides a characterization
of the set of equilibrium payoffs. In particular, any equilibrium payoff v can be
approximated by a payoff in a profile in which firms immediately reveal their costs
and if θ is the true type profile, then player i’s payoff is equal to βθimθi

i (θi). The
first condition ensures that individual rationality is satisfied ex post, and the second
condition ensures that firms have interim incentives to reveal their types truthfully
(although the incentives are not necessarily ex post).

The above characterization allows us to address questions of productive efficiency
in the equilibria of the repeated oligopoly.

“Pooling” result of Athey and Bagwell [2008]. As an application, we perform a test
of the robustness of the “pooling” result from Athey and Bagwell [2008]. Athey and
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Bagwell [2008] analyze a Bertrand model from example 2 with

D (p) =

1, if p ≤ r,

0, if p > r,

for some reservation price r > 0. They show that for a sufficiently large discount
factor, and given the log-concave distribution of cost types, in the (ex ante) optimal
symmetric equilibrium, all players choose the same price and receive the same market
share regardless of their (privately known) costs. In other words, one can sustain the
best payoff in equilibrium in which no player ever reveals any information. There is
no contradiction between Athey and Bagwell [2008]’s result and Theorem 4.12 First,
their characterization of optimal equilibrium is tight for all sufficiently high δ < 1,
whereas ours simply says that any equilibrium payoff can be approximated by fully
revealing payoffs. In fact, one can construct equilibria in which players fully reveal
their costs in the first period and then proceed to ignore the revealed information.
Because revealing information is costly for discount factors strictly smaller than 1, it
should be avoided in the optimal equilibrium of Athey and Bagwell [2008].

Nevertheless, the “pooling” claim is not robust to modifications of the demand.
Define the monopoly payoff vector that maximizes the payoffs of type θi among all
monopoly payoffs of player i:

m∗θi = arg max
m∈Mi

m (θi) .

In Athey and Bagwell [2008], the optimal monopoly price is equal to r and does not
depend on the player’s type. In general Cournot or Bertrand models, if the demand
function is differentiable, then the optimal monopoly action depends on the cost type.

Corollary 2. Suppose that the monopoly actions m∗θi are not identical for all types of
player i. Then for any π that assigns positive probability to all types, for all sufficiently

12There are other differences between Athey and Bagwell [2008]’s model and ours. For example,
their demand specification does not lead to a nonempty interior, and our result does not apply.
However, it applies to “nearby” models in which the demand below price r is not completely inelastic.
In addition, Athey and Bagwell [2008] work with the continuum-type model, whereas in this paper,
we assume that there are only finitely many types. These differences do not seem to be important
for this discussion.
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high δ < 1, there is no Pareto-optimal equilibrium in which players’ behavior does not
depend on type.

Proof. Suppose that v is an efficient payoff in a profile in which, on the equilibrium
path, the players’ behavior does not depend on the type. Then there exists βi ≥ 0
and mi ∈Mi such that ∑i βi ≤ 1, and vi = βimi.

For each player, construct a payoff vector m∗i such that for each type θi, m∗i (θi) =
max

{
m∗θi (θi) ,mi (θi)

}
≥ mi (θi), with some inequalities strict. Define payoff vector

v∗ such that player i payoffs are equal to v∗i = βim
∗
i . The mechanism-design charac-

terization implies that v∗ ∈ FB
1 (π). Because v∗ (θi) ≥ v (θi), with some inequalities

strict, this contradicts the fact that vector v is efficient. �

Belief-free vs. fully and immediately revealing equilibria. In the above character-
ization of equilibrium payoffs, firms have interim incentives to reveal their private
information (i.e., before they learn the true types of the other player). Next, we
show with an example that we cannot improve the incentives to hold ex post (i.e.,
conditionally on each of the type of the other player). In particular, we show that
there exist efficient repeated equilibria that are fully and immediately revealing but
that are not belief-free.

Consider a symmetric Cournot model with two players and two cost types for each
player, Θ = {h, l}, where h > l > 0. Let mq ∈ RΘ be the monopoly payoff vector
from quantity q and let qθ = arg maxqmq (θ) be the optimal monopoly quantity of
type θ. The monopoly profits are maximized by the firm with low costs and quantity
ql. We assume that the optimum is strict:

mql (l) > mqh (l) ,mql (h) . (6.1)

Additionally, we assume that the payoff of the high cost type from quantity ql is
strictly positive, but much smaller than the maximum payoff attainable by this type:

mqh (h) > 6mql (h) > 0. (6.2)

We are interested in strategies that maximize the ex ante expected sum of the
payoffs of both firms. Because of (6.1), the first best for interior beliefs is attained if
and only if there is complete productive efficiency:
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(u, f1, f2) W eak Tough
W eak 2, 2, 2x 0, 4, 1 + 3x
Tough 4, 0, 0 −2,−2, 1− 3x

Table 1. Payoffs in bargaining game.

• if both firm types are equal to θ, one of the firms is inactive, and the other
one produces quantity qθ. In a symmetric equilibrium, the two allocations are
chosen with equal probability,
• if firm i has low costs and firm −i has high costs, firm i is active, and it
produces quantity ql, and firm −i is inactive (and produces 0).

We claim that the first best allocation cannot be attained in a belief-free equilibrium.
Indeed, notice at least one firm i must expect strictly positive profits in a state in
which both firms report l (in symmetric allocation, both firms must receive strictly
positive profiles). Because firm i receives zero profits if it reports l and the other firm
reports h, type h of firm i does not have ex post incentives to reveal its true type if
the other firm has low costs.

However, if πi (h) = 1
2 for both players i, then (6.2) implies that the first best profile

satisfies ex ante incentive compatibility. In particular, the first best expected payoff
can be attained in a repeated game equilibrium in which both types are revealed
immediately and then the play approximates the efficient allocation.

6.2. Labor union-firm bargaining. Consider the following class of games parametrized
with x ∈ [0, 1]. There are two players, a labor union (U) and a firm (F ). The firm
can be either a normal type, θF = 1, or a strong type, θF = 2. Each player chooses
between two actions, W eak and Tough. The payoffs are given in Table 1.

• When x = 1, the payoffs of the normal and strong types of the firm are
equal, and the firm and the union play a multi-period bargaining model with
complete information.
• When x = 0, the union U and the normal type have payoffs as in the complete
information game. The strong type has a (repeated-game) dominant action
to play T in every period. This is an example of a model of reputation with
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equal discount factors for two players. The complete information game has
strictly conflicting interest (Schmidt [1993]): the normal type has a commit-
ment action T such that the union’s best reply gives the union its minmax
payoff of 0. Cripps et al. [2005] show a reputational result for this class of
games: for any p < 1, and for δ high enough, all Nash equilibrium payoffs of
the union and the normal type are close to (4, 0).
• For intermediate x, the payoff of the strong type is a convex combination
between the normal type and the completely strong type of the reputation
case x = 0. The techniques of Cripps et al. [2005] do not apply. (In fact, as
we show, the reputational result does not hold). On the other hand, the game
has an open thread assumption, and we can use Theorem 3 to compute the
set of equilibrium payoffs.

The goal of this section is to describe an “upper,” Pareto-optimal, part of the equi-
librium set (the “lower” part can be described in an analogous way). To simplify
the exposition, we assume that x < 1

5 . We begin with developing geometric intuition
about the set of equilibria. A more formal description follows.

Intuition. We use π ∈ [0, 1] to denote the probability of the normal type. Because
the minmax strategy of each player is T , the set of individually rational payoffs is
equal to t

IR = {(u, f1, f2) : u ≥ 0, f1 ≥ 0, f2 ≥ 1− 3x} .

To represent the payoff sets graphically, we focus here on the payoffs of player U
and the normal type of player F , given that the strong type of player F receives her
minmax payoff. Figure 6.1a describes the payoffs of player U and the normal type
of player F in the “complete information” games in which the type of player F is
known with probability 1. (Precisely, it is the projection of the payoff set on the
two-dimensional plane). The large triangle describes the sets of payoffs when π = 1.
It is equal to the set of payoffs at the intersection of the convex hull of feasible and
individually rational payoffs in a standard complete information game between player
U and the normal type of F . The small filled triangle is the set of payoffs when π = 0,
i.e., when player U believes that she faces the strong type of player F . In such a case,
player U expects player F to play T sufficiently often so that the strong type of player
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(a) Non-revealing payoffs (b) Belief-free payoffs, π = 1
2 .

(c) 1-revealing payoffs, π = 1
2 . (d) 2-revealing payoffs, π = 3

4 .

Figure 6.1. Finitely equilibrium payoffs in the union-firm bargaining.

F receives payoff at least equal to her minmax. The only feasible payoffs that are
individually rational for player U and at the same time consistent with the strong type
minmax are obtained when player U plays W sufficiently often. In equilibrium, the
normal type of player F best responds by mimicking the behavior of the strong type
and playing (often) action T. The set of equilibrium payoffs when π = 0 converges
to (4, 0) when x→ 0. The small red triangle is also equal to the set of non-revealing
payoffs F0 (π) (see formula (3.1)) for each π ∈ (0, 1). Notice also that for each π,
F0 (π) = AF0 (π).
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Figure 6.1b shows payoffs A in an immediately and fully revealing equilibrium in
a game with initial prior π = 1

2 . Suppose that in the first period, each type of
player F reveals herself to player U by choosing one of two different actions. The
continuation payoffs are equal to A1 if player F reveals herself to be the normal type
and A2 otherwise. The continuation payoffs Ai to the sets from Figure 6.1a, hence,
they can be supported by continuation equilibrium strategies. Because the payoffs of
the normal type are equal in both cases, she is indifferent between revealing herself
truthfully and mimicking the strong type. (A more careful analysis shows that the
continuation payoffs of the strong type are equal to 1− 3x in both cases.) Thus, the
expected payoff A = πA1 + (1− π)A2 can be supported in an equilibrium.

The cross-hatched polygon on Figure 6.1b is equal to the set of all payoffs obtained
by immediate full revelation, followed by a play of non-revealing equilibrium, FB

1 (π) =
BAF0 (π) for π = 1

2 . Due to the characterization by Shalev [1994], it is equal to the
set of all equilibrium payoffs in the repeated game without discounting. Moreover, it
is also equal to the set of belief-free equilibria of Hörner and Lovo [2009].

Next, we consider 1-revealing equilibrium payoffs which cannot be obtained in
immediately and fully revealing equilibria, and hence do not belong to the belief-free
or no-discounting payoff sets. Consider a profile in which both players play action T
for some number of periods and then continue with a profile with payoffs in a set from
Figure 6.1b. The set of payoffs in such profiles is equal to the convex hull of payoffs
from Figure 6.1b and point (−2,−2). Its subset that consists only of individually
rational payoffs is equal to FA

2

(
1
2

)
= AFB

1

(
1
2

)
and it is shown as the cross-hatched

area on Figure 6.1c.
Figure 6.1d shows the set of equilibrium payoffs obtained in a class of 2-revealing

equilibria of the game with initial prior π = 3
4 . In these equilibria, first, players

play action profile (T, T ) for number of periods. Next, there is one period of partial
information revelation: the normal type randomizes with equal probability between
W and T and the strong type plays action T . If actionW is observed, the play moves
to a continuation equilibrium in the game with prior π = 1; otherwise, the game
moves to one of the equilibria with payoffs in Figure 6.1c.
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Figure 6.2. Payoffs of the firm’s types

The above constructions can be repeated any number of times. At each step,
the set of payoffs grows larger. In the limit, we obtain the set of all finitely revealing
equilibrium payoffs, and as a consequence of our main result, the set of all equilibrium
payoffs. Below, we show that the limit has a tractable, closed-form description as a
solution to a certain differential equation.

Notation. To describe the payoff sets, we need some notation. We write f =
(f1, f2) ∈ R2 to denote the payoffs of the two types of player F, and v = (u, f) ∈ R3

to denote the vector of the payoffs of both players. For any fa 6= f b, let I
(
fa, f b

)
be the interval on a two-dimensional plane that connects fa and f b. For any non-co-
linear va, vb, vc ∈ R3, for each f ∈ R2, let Hva,vb,vc (f) be the unique value such that(
Hva,vb,vc (f) , f

)
belongs to the unique affine hyperplane that passes through points

vx, x = a, b, c.

Figure 6.2 illustrates the payoffs of the firm’s types. We find f ∗ = (f ∗1 , 1− 3x) such
that f ∗ ∈ I (gF (W,T ) , gF (W,W )). Find f̂ =

(
0, f̂2

)
such that f ∈ I (gF (W,T ) , gF (T, T )) .

Finally, we find f ∗∗ = (f ∗∗1 , 1− 3x) so that Hg(T,W ),g(T,W ),g(T,T ) (f ∗∗) = 0.
Define sets A,B′, B′′ ⊆ R2,

A =con {f ∗∗, f ∗, gF (W,T )} ,

B′ =con {f ∗∗, (0, 1− 3x) , gF (W,T )} ,

B′′ =con
{
f̂ , (0, 1− 3x) , gF (W,T )

}
.

Sets A,B′, and B′′ are illustrated in Figure 6.2.
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For each f ∈ B′, choose j′ (f) ∈ [0, f ∗∗] so that f belongs to the interval I (gF (W,T ) , (j′ (f) , 1− 3x)) .
Similarly, for each f ∈ B′′, choose j′′ (f) ∈

[
1− 3x, f̂

]
so that f belongs to the interval

I (gF (W,T ) , (0, j′′ (f))) .
We say that function uπ describes the upper surface of equilibria if for each f,

uπ (f) = sup {u : (u, f) ∈ F ∗ (π)}

(we take uπ (f) = −∞, if the right-hand side set is empty).
Complete information payoffs. Using Theorem 5, we can describe the “upper”

surface of the payoffs in the complete information case π ∈ {0, 1} . Let

u1 (f) =

4− f1, ∃f ′ ∈ A ∪B′ ∪B′′ st. f ′ �1 f,

−∞, otherwise.

u0 (f) =

min
{
Hg(T,W ),g(T,T ),g(W,T ) (f) , 4− 4

1+3xf2
}
, ∃f ′ ∈ A st. f ′ �0 f,

−∞, otherwise.

Finitely revealing payoffs. We use our characterization to construct the upper
surfaces of the equilibrium sets. First, we construct a sequence of payoff vectors vn
that belong to a finitely revealing set in the game with initial belief pn = n

N
, where

N < ∞. Next, we take N → ∞ and show that the constructed path of equilibria
converges to the solution of a certain differential equation.

First, consider the game with initial belief p0 = 0. Let j0 = f ∗∗. Due to the
above description of the upper surfaces in the complete information case, v0 =
(0, j0, 1− 3x) ∈ F ∗ (0) .

Next, consider the game with initial beliefs p1. Vector

v′ = 1− p1

1− p0
(0, j0, 1− 3x) + p1 − p0

1− p0

(
u1 (j0, 1− 3x) , j0, 1− 3x

)
is equal to the value of the p1-incentive-compatible lottery in which the firm’s normal
type gets revealed with probability p1−p0

1−p0
, upon which the players’ continuation payoffs

are equal to (u1 (j0, 1− 3x) , j0, 1− 3x) . If the normal type is not revealed, the labor
union updates its belief to p0, and the play continues with payoffs (0, j0, 1− 3x).
Because of stage B of the construction of the finitely revealing set (Lemma 6), v′ ∈
F ∗ (p1) .
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Further, construct a profile in which players play actions (T, T ) for fraction α ∈
(0, 1) of time, and then continue with a profile that leads to payoffs v′. The payoffs
in such a profile are equal to

v1 = αg (T, T ) + (1− α) v′.

We choose α so that the payoff of the labor union in vector v is equal to 0. Then by
stage A (Lemma 7), v1 = (0, j1, 1− 3x) ∈ F ∗ (p1) , where

j1 = (p1 − p0)u1 (j0, 1− 3x)
1− p0

(
2 + p1 − p0

1− p0
u1 (j0, 1− 3x)

)−1

(2 + j0) .

Using the same argument, we show that if vn = (0, jn, 1− 3x) ∈ F ∗ (pn), and jn is
not too close to 0, then vn+1 = (0, jn+1, 1− 3x) ∈ F ∗ (pn+1) ,where

jn+1 = jn + (pn+1 − pn)u1 (jn, 1− 3x)
1− pn

(
2 + pn+1 − pn

1− pn
u1 (jn, 1− 3x)

)−1

(2 + jn) .

After some algebraic transformations, we obtain

pn+1 − pn
jn+1 − jn

=
2 + pn+1−pn

1−pn u1 (jn, 1− 3x)
2 + jn

1− pn
u1 (jn, 1− 3x) .

By taking limit N →∞, the above equation converges to the differential equation
dp

dj
= − 2

2 + j

1− p (j)
u1 (j, 1− 3x) . (6.3)

(The minus comes from the fact that pn+1 − pn = − 1
N
.)

Suppose that p′ : [0, f ∗∗] → [0, 1] is a solution to (6.3) such that p′ (f ∗∗) = 0.
Choose π∗ so that p′ (0) = π∗. The above analysis implies that for each π ≤ π∗, each
j ∈ [0, f ∗∗],

(0, j, 1− 3x) ∈ F ∗ (p′ (j)) .

Because set F ∗ (p′ (j)) is convex and it contains vector g (W,T ), it must be that
(0, f) ∈ F ∗ (p′ (j′ (f))) for each f ∈ B′.

Similar equations can be derived for the elements of set B′′. Let p′′ :
[
1− 3x, f̂

]
→

[0, 1] be a solution to the following differential equation: p′′ (1− 3x) = π∗, and
dp′′

dj
= − 4/3

f̂ − j
1− p′′ (j)
u1 (0, j) . (6.4)

Then for each f ∈ B′′, we have (0, f) ∈ F ∗ (p′′ (j′′ (f))) .
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Proposition 1. The following functions describe the upper surfaces of equilibria:

• if π ≤ π∗, let

uπ (f) =


πu1 (f) + (1− π)u0 (f) , f ∈ A,
π−p′(j′(f))
1−p′(j′(f))u

1 (f) , f ∈ B′ and π ≥ p′ (j′ (f)) ,

−∞, otherwise.

• if π > π∗, let

uπ (f) =



πu1 (f) + (1− π)u0 (f) , f ∈ A,
π−p′(j′(f))
1−p′(j′(f))u

1 (f) , f ∈ B′ and π ≥ p′ (j′ (f))
π−p′′(j′′(f))
1−p′′(j′′(f))u

1 (f) , f ∈ B′′ and π ≥ p′′ (j′′ (f))

−∞, otherwise.

Proof. The above discussion shows that (uπ (f) , f) ∈ F ∗ (π) for each f ∈ R2 such
that uπ (f) > −∞.We are left with showing that for each u > uπ (f), (u, f) /∈ F ∗ (π) .

Define correspondence F (π) ⊇ {(u, f) : u ≤ uπ (f)} for each π. We will show that
none of the operations described in section 3 adds any payoffs to correspondence F.

First, notice that F (π) = IR ∩ con {V ∪ F (π)}.
Second, we are going to show that each π-incentive-compatible lottery with contin-

uation payoffs in the correspondence F (.) has its value in set F (π) . Indeed, suppose
that l = (α, ψ) is such a lottery with value v = (u, f) and continuation payoffs
ψ (a) = (u (a) , f (a)) after positive probability actions a of the firm. Then f (a) ≤ f

with equality if action a is played with positive probability by the two types of the
firm. Moreover, if action a is played with positive probability by only one type, we
can use the description of the upper surfaces in the “complete information” games to
show that up(a) (f) ≥ up(a) (f (a)).

Consider lottery l′ = (α, ψ′), where ψ′ (a) =
(
up(a), f

)
for all actions a. Then the

description of the upper surface uπ implies that

u ≤
∑
a

p (a)up(a) ≤ uπ (f) ,

which, in turn, implies that (u, f) ∈ F (π) . �
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Equilibrium behavior. One can use the above analysis to (approximately) predict
the dynamics along the equilibria that support payoffs on the upper surfaces. As an
example, we describe the equilibrium behavior that induces (approximately) payoff
vector (0, f1, 1− 3x) in the game with initial beliefs p′ (f1) for some f1 ∈ [0, f ∗∗] . This
profile can be described in three phases.

• In the revelation phase, the labor union and the strong type of player F
play Tough. The normal type of F plays Tough with a probability that is
close to 1, and with a small probability, the normal type plays W eak. The
phase ends either because the normal type reveals herself playing W eak, or
because the posterior probability of the normal type becomes equal to 0 (i.e,
the strong type is revealed). In the former case, the players continue with
the “normal type” phase; in the latter, the players continue with the “strong
type” phase. The continuation payoff of the normal type f1 throughout the
revelation phase gradually increases with the decreasing posterior probability
p′ (f1) of the normal type. The rate with which the normal type choosesW eak
is chosen so that the continuation payoff of the labor union is equal to 0 at
each moment of the revelation phase.
• In the “normal type” phase, players play the “complete information” game
equilibrium with payoffs equal to (u1 (p′ (f1)) , f1, 1− 3x), where f1 is the ex-
pected continuation payoff of the normal type at the moment of revelation.
• In the “strong type” phase, players play the equilibrium of the “complete
information” game with payoffs (0, f ∗∗, 1− 3x) .

In a similar way, we can describe strategy profiles that induce any other payoff on
the upper surface.

6.3. Labor union-firm bargaining with two-sided incomplete information.
For the sake of completeness, we find it worthy to point out that a version of the
above model with two-sided incomplete information does not have to have a thread
(examples of games with known-own payoffs and no belief-free equilibria are known
in the literature - see Koren [1992] and Hörner and Lovo [2009]). Suppose that there
are two types of each player, and the payoffs are given in Table 2.
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(u1, u2, f1, f2) W eak Tough
W eak 2, 2x, 2, 2x 0, 0, 4, 1 + 3x
Tough 4, 1 + 3x, 0, 0 −2, 1− 3x,−2, 1− 3x

Table 2. Payoffs in bargaining game.

Lemma 2. Suppose that x < 3
100 . Then the labor union-firm bargaining game with

two-sided incomplete information does not have a thread.

The proof of Lemma 2 can be found in Appendix D.

7. Comparison with no-discounting case

We compare our characterization of payoffs with the characterization from Hart
[1985] in the case of no-discounting. Hart [1985] considers the general payoffs case and
he assumes that there are two players, uninformed U (with one type) and informed I.
Let ΘI be the finite set of the types of the informed player, and let ∆ΘI be the simplex
of beliefs of the uninformed player. Then the correspondence of the Nash equilibrium
payoffs can be characterized as the set of initial values (vU,0, vI,0, p0) ∈ R×RΘI ×∆ΘI

of a class of bi-martingales, i.e., stochastic processes that satisfy the following three
properties:

• for all odd t, pt = pt+1 and E (vU,t+1, vI,t+1|Ft) = (vU,t, vI,t),
• for all even t, vI,t = vI,t+1 and E (vU,t+1, pt+1|Ft) = (vU,t, pt),
• the limit payoff (vU,∞, vI,∞) = limt→∞ (vU,t, vI,t) is a payoff in a repeated
game with initial prior p∞ = limt→∞ pt and in which no further substantial
information is revealed. In the known-own payoff case, the set of such payoffs
is equal to F0 (p) defined in (3.1).

The second and the third properties are equivalent to, respectively, the revelation of
information (operation B) and the no-revealing payoffs F0, from our characterization.

The first property convexifies the set of payoffs obtained in the previous steps.
(Recall that Hart does not assume public randomization and, instead, uses Aumann-
Maschler’s jointly controlled lotteries.) It corresponds to operation A from our char-
acterization with a key difference: in the discounted case, the payoffs are additionally
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convexified with the set of feasible and non-revealing payoffs V . To compare the first
property of bi-martingales and operation A side by side, let EN : ∆ΘI ⇒ R × RΘI

denote the equilibrium payoff correspondence in the undiscounted cases. Then Hart’s
characterization implies that for each p ∈ ∆ΘI ,

EN (p) = con (EN (p)) = con (EN (p) ∪ (V ∩ IR)) .

The second equality comes from the fact that V ∩ IR ⊆ F 0 (p) ⊆ EN (p). Because
for any set E,

con (E ∪ (V ∩ IR)) ⊆ con (E ∪ V ) ∩ IR,

and the inclusion is typically strict, the set of payoffs in the no-discounting case is
included, and it is typically smaller than the set of payoffs in the discounted case (for
example, see section 6.2 and the discussion of Figure 6.1).

In the known-own payoffs case, Shalev [1994] provides a much simpler character-
ization of no-discounting equilibrium payoffs. For each p ∈ ∆ΘI , EN (p) is equal
to payoff vectors (vU , vI) such that (vU , vI)∈ IR, and for each type θ ∈ ΘI of the
informed player, there exists vθ ∈ V so that

vU =
∑
θ

p (θ) vθU ,

and for each θ, θ′ ∈ ΘI ,
vI (θ) = vθI (θ) ≥ vθ

′

I (θ) .

All such payoffs can be obtained by immediate and full revelation of the informed
player’s type θ, followed by the equilibrium play of a profile that corresponds to payoff
vector vθ. It is easy to show that the set of such payoffs is equal to FB

1 (p) (see Cripps
and Thomas [2003]), or the set of payoffs obtained in belief-free equilibria (see Hörner
and Lovo [2009]. Note that that the latter is true because Shalev [1994] is limited
to the one-sided case. In particular, FB

1 (p) is always weakly included in the set of
payoffs attained in the equilibria with discounting, and the inclusion is strict in games
in which there exist non-trivial n-revealing equilibria for n > 1.

There is another important difference between Hart’s characterization and our re-
sult. In the general payoff case, there are games with Nash payoffs that cannot be
approximated by equilibria with a finite and bounded number of revelations (Forges
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[1984], Forges [1990]; see also the “four frogs” example of Aumann and Hart [2003].
Mathematically, the result follows from the fact that the di-span of a set might be
strictly larger than its di-convex hull Aumann and Hart [1986].) More importantly,
the bi-martingale characterization is not constructive, and no known algorithm exists
that allows one to find all the payoffs in the general case. In our case, we show that
all equilibrium payoffs can be approximated by payoffs in equilibria with a bounded
number of rounds of revelations, and the characterization is constructive.

The reason for the difference is not clear. On one hand, the characterization
from Shalev [1994] shows that only one round of revelation is necessary in the no-
discounting case with known-own payoffs. This would suggest that, at least in the
one-sided case, the difference is due to the known-own payoffs assumption. On the
other hand, we do not know whether one can find a version of the “four frogs” exam-
ple with known-own payoffs and multi-sided incomplete information. (As far as we
know, the characterization of payoffs in such a case remains an open problem.)

8. Conclusions

This paper provides a characterization of the equilibrium payoffs in repeated games
with incomplete information, with discounting, known-own payoffs, and permanent
types. We assume that there exists an open multi-linear thread of payoffs in equilibria
during which in the first period of the game, players fully reveal their information
(i.e., all types of each player take separating actions), and such that the players are
ex post indifferent between revealing their type truthfully or reporting any other type
(i.e., they are indifferent conditionally on any type of the opponent). The assumption
is generically satisfied in games with one-sided incomplete information, as well as
some important examples of games with multi-sided incomplete information.

The characterization says that all Nash equilibrium payoffs can be approximated
by payoffs in finitely revealing equilibria. The characterization leads to an algorithm
for finding the equilibrium set through a sequence of geometric operations. This
algorithm can be implemented numerically. In examples, we show the characteriza-
tion can be used to find the exact description of the equilibrium sets analytically.
The characterization cannot be further simplified. Table 3 contains relations between
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non-revealing equilibrium payoffs

( belief-free equilibrium payoffs

( fully and immediately revealing equilibrium payoffs

( n-revealing equilibria for 1 < n <∞

(all finitely revealing payoffs

=all Nash equilibrium payoffs

( feasible and individually rational payoffs.

Table 3. Relations between different kinds of equilibria.

different kinds of equilibria in repeated games with incomplete information and dis-
counting. The inclusion “A ( B” means that for all games, the set of payoffs A is
weakly included in B and that there is an example of a game such that the inclusion
is strict (specifically, oligopoly game from the last part of section 6.1 is an example
for the strictness of the second inclusion, and the bargaining game from section 6.2
is an example for all the other inclusions).

Further work is required to build tools that allow for analytical description in
general games. For instance, the equilibrium set in the bargaining problem from
section 6.2 is described as a solution to a certain ordinary differential equation. This
method can be easily generalized to other games with one-sided uncertainty and two
types. We suspect that differential equations play an important role in more general
settings (with more types or with multi-sided uncertainty), but we do not know how
to do it.

Other questions are left unanswered by this paper. Most importantly, we would
like to know whether a similar characterization holds for games in which an open
thread assumption is not satisfied (see an example at the end of section 6.2 or Hörner
and Lovo [2009]). Our current methods do not allow us to form a hypothesis one way
or the other. It would be interesting to check whether the current analysis extends
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in some way to the case of persistent types.13 We leave these questions for future
research.
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Appendix A. Threads and belief-free equilibria with two players

Hörner and Lovo [2009] give two necessary conditions for the existence of belief-free
equilibria in the case of two players. We restate the conditions in our notation and
in the known-payoff case. For each probability distribution α ∈ ∆A, let g (α) ∈ V be
the expectation of payoff vectors g (a) taken with respect to α. Take a pair of vectors
vi ∈ RΘ1×Θ2 for each player i = 1, 2.

• Vectors v1 and v2 satisfy Individual Rationality if for each player i, each type
θ−i, the payoffs of player i types are individually rational: ∀φ ∈ Rdi

+ , φ ·v
.,θ−i
i ≥

mi (φ) , where mi (φ) is the value of the φ-weighted minmax defined in (2.1).
• Vectors v1 and v2 satisfy Incentive Compatibility if for each type profile (θ1, θ2) ,
there exists αθ1,θ2 ∈ ∆A such that for each type profile (θ1, θ2) , player i, type
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θ′i,
v
θi,θ−i
i = gi

(
αθi,θ−i|θi

)
≥ gi

(
αθ′i,θ−i |θi

)
.

The next result shows that the threads are essentially equivalent to the payoff vectors
that are Individually Rational and Incentive-Compatible.

Lemma 3. Suppose that u∗ : Θ1 ×Θ2 → RΘ∗ is a thread. Let v1 and v2 be a pair of
vectors vi ∈ RΘ1×Θ2 such that vθi,θ−ii = u∗ (θi, θ−i|θi) for each player i. Then v1 and
v2 satisfy Individual Rationality and Incentive Compatibility.
Conversely, suppose that a pair of vectors v1 and v2 satisfies Individual Rationality
and Incentive Compatibility. For each player i types θi, θ′i ∈ Θi, and θ−i ∈ Θ−i, let

u∗ (θ′i, θ−i|θi) = v
θi,θ−i
i .

Then u∗ is a thread.

Proof. Part I. Suppose that u∗ is a thread. By the definition of sets NE (θ1, θ2) from
Theorem 5, there exist probability distributions αθ

∗
1 ,θ
∗
2

θi,θ−i
∈ ∆A such that for each type

profile (θ∗1, θ∗2) , and for each θi, θ−i,

u∗ (θi|θ∗1, θ∗2) = gi
(
α
θ∗1 ,θ

∗
2

θi,θ∗−i
|θi
)
,

and for each player i and all types θi, θ′i,

gi
(
α
θ∗1 ,θ

∗
2

θi,θ∗−i
|θi
)
≥ gi

(
α
θ∗1 ,θ

∗
2

θ′i,θ
∗
−i
|θi
)
.

Define
vθ1,θ2
i = u∗ (θi, θ−i|θi) .

Because u∗ is a thread, for each player i, type θ−i, each type θ′i

v
θi,θ−i
i = u∗ (θ′i, θ−i|θi) .

Because u∗ (θ′i, θ−i) ∈ IR, the payoffs of types of player i in the vector u∗ (θ′i, θ−i) are
individually rational. This shows that vectors (v1, v2) satisfy Individual Rationality.

Next, we show that (v1, v2) satisfies Incentive Compatibility. For each type profile
(θ1, θ2) , define

α∗θ1,θ2 = αθ1,θ2
θ1,θ2 ∈ ∆A.



46 MARCIN PĘSKI

Then
vθ1,θ2
i = g

(
α∗θ1,θ2|θi

)
,

and

vθ1,θ2
i = g

(
α∗θ1,θ2|θi

)
= g

(
αθ1,θ2
θ1,θ2 |θi

)
= u∗ (θi|θ1, θ2) = u∗ (θi|θ′1, θ2)

= g
(
α
θ′1,θ2
θ1,θ2 |θi

)
≥ g

(
α
θ′1,θ2
θ′1,θ2
|θi
)

= gi
(
α∗θ′i,θ−i |θi

)
.

Part II. Suppose that the pair of vectors vi ∈ RΘ1×Θ2 satisfies Individual Rationality
and Incentive Compatibility. Let αθ1,θ2 ∈ ∆A be as in the definition of Incentive
Compatibility. For each profile (θ1, θ2) , each player i type θ′i, define

u∗ (θ1, θ2|θ′i) = v
θ′i,θ−i
i = gi

(
αθ′i,θ−i |θ

′
i

)
.

Then for each profile (θ∗1, θ∗2) , the vector of the payoffs of player i types, u∗i (.|θ∗1, θ∗2) =
v
.,θ−i
i , is individually rational. Thus, u∗ (θ∗1, θ∗2) ∈ IR. Moreover, for each profile

(θ∗1, θ∗2) , and any two types θi, θ′i,

u∗ (θ∗1, θ∗2|θi) = gi
(
αθi,θ∗−i |θi

)
≥ gi

(
αθ′i,θ∗−i |θi

)
.

This shows that u∗ (θ∗1, θ∗2) ∈ NE (θ∗1, θ∗2) . �

Appendix B. Proof of Theorem 2

The proof of Theorem 2 follows from Lemmas 5, 6, and 7 below. We begin with
the preliminary result.

Lemma 4. For each ε > 0, there exist δε < 1 and mε < ∞ such that for each
player i, each m ≥ mε, and each v such that B (v, ε) ⊆ IR, there exist m-period
strategies of players j 6= i, µi,v,m,εj : ⋃s<mε (Ai)s−1 → ∆Aj such that for any sequence
âi =

(
ai0, ..., a

i
mε−1

)
of actions of player i, each type θi, each δ ≥ δε, the following

inequality is satisfied:

M v,m,ε,δ
i

(
âi; θi

)
:= 1− δ

1− δm
∑m−1

s=0 δsEgi
(
ais, µ

i,v,m,ε
−i

(
ai0, ..., a

i
s−1

)
; θi
)

≤ vi (θi) .

Here, the expectation is taken over actions induced by strategies µi,v,m,ε−i .
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Proof. The Lemma is a discounted version of the Blackwell approachability argument
(Blackwell [1956]) (see also Peski [2008] or Hörner and Lovo [2009] for games with
discounting). The proof follows the same line and an observation that when δ → 1,
the discounted payoff criterion in a game with finitely many periods converges to the
average payoff criterion. �

Lemma 5. For each π ∈ Π,

F 0 (π) ⊆ FR+
0 (π) .

We omit the formal proof, because this result is well-known (see Hart [1985], Koren
[1992], and Shalev [1994] for the Nash equilibrium and no-discounting, and Peski
[2008], and Hörner and Lovo [2009] for the sequential equilibrium in the discounted
case).

Lemma 6. If FB
n−1 (π) ⊆ FR+

n−1 (π) , then FA
n (π) ⊆ FR+

n−1 (π) .

Proof. Take any v∗ ∈ FA
n (π) = intIR ∩ con

{
intFB

n−1 (π) ∪ V
}
. Find α∗ ∈ (0, 1),

g∗ ∈ V , and u∗ ∈ conintFB
n−1 (π) such that v∗ = α∗g∗ + (1− α∗)u∗. Assume that

there exists a pure action profile a∗ such that g (a∗) = g∗. The assumption is without
loss of generality due to public correlation.

Find a sequence of tδ such that δtδ → 1−α∗ as δ → 1. We are going to compute the
payoffs in a profile in which players play action profile a∗ during the initial tδ periods,
and then receive continuation payoffs u chosen so that v∗ =

(
1− δtδ

)
g∗ + δt

δ
u. Any

deviation by player i during period t triggers a punishment phase in which player i is
initially minimaxed using the strategy from Lemma 4, and then the players continue
with a strategy profile with payoffs vi (â) that depend on the realized actions during
the minmaxing. The continuation payoffs vi (â) are chosen so that all players are
indifferent among all actions during the minmaxing phase and the overall payoff from
the punishment of player i phase is equal to vi,tδ−t =

(
1− δtδ−t

)
g∗ + δt

δ−tui∗. We
choose u and ui∗ so that they are sufficiently close to u∗ and such that for sufficiently
high δ < 1, there exists continuation (n− 1)-revealing equilibria σu,δ and σui∗,δ with
payoffs, respectively, vπ,δ

(
σu,δ,

)
�π u and vπ,δ

(
σu

i∗,δ,
)
�π ui∗. Moreover, we need

to choose ui∗so that no player has incentives not to deviate.
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Let k∗ = 100
1−α∗ and find ε > 0 so that B (u∗, 2kε) ⊆ conintFB

n−1 (π). Using com-
pactness, one can show that for sufficiently high δ, for each u ∈ B (u∗, kε), there
exists a strategy profile σu,δ that induces payoff vπ,δ (σ) �π u and such that σu,δ is a
(n− 1)-revealing equilibrium of game Γ (π, δ). (It might be necessary to use public
randomization if u∗ /∈ intFB

n−1 (π).)
For each player i, find ui∗ ∈ B (u∗, kε) so that

ui∗ (θi) ≤ u∗ (θi)−
2ε

1− α∗ for each θi, and (B.1)

ui∗ (θj) ≥ u∗ (θj) for each type θj of player j 6= i.

For each t ≤ tδ and each player i, let vi,t = (1− δt) g∗ + δtui∗. Because of (B.1), for
sufficiently high δ, and each player j 6= i,

vi,t (θj) ≥ vj,t (θj) + 2ε. (B.2)

Find mε and δε from Lemma 4. Assume that m ≥ mε and the discount factor
δ ≥ δε are high enough so that (1− δm)M < ε, and (1− δm) ε > 2 (1− δ)M .

Let µi,t,∗j = µi,v
i,t−ε,m,ε

j be the minmax strategies of players j 6= i from Lemma
4. Let M t,∗

i (âi) be the associated payoff vector of player i playing action sequence
âi =

(
ai0, ...., a

i
m−1

)
. For each sequence of actions âi of player i and â−i of players −i,

define â = (âi, â−i) and payoff vector vi (a) so that for each type θi of player i,

(1− δm)M t,∗
i

(
âi; θi

)
+ δmvi (â; θi) = vi,t (θi) ,

and for each type θj of player j 6= i,

(1− δ)
∑m−1

s=0 δsgj
(
ais, a

−i
s ; θj

)
+ δmvi (â, θj) = vi,t (θj) .

Notice that because M t,∗
i (ai; θi) ≤ vi,t (θi)− ε for each type θi of player i,

vi (â, θi) ≥ vi,t (θi) + (1− δm) ε > vi,t (θi) + 2M (1− δ) .

Moreover, due to (B.2), for each type θi of player j 6= i,

vi (â, θj) ≥ vi,t (θj)− (1− δm)M > vi,t (θj)− ε > vj,t (θj) + 2M (1− δ) .

We are going to construct strategy profile σ. There are two types of regimes:
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• Normal(v, t) for each t ≤ tδ and v so that (a) there exists u ∈ B (u∗, kε) such
that v = (1− δt) g∗+δtu, and (b) v (θi) ≥ vi,t (θi)+2M (1− δ) for each player
i and type θi. Players play action profile a∗ for t periods s = 0, 1, ...., t− 1. If
there is no deviation, players continue with strategy profile σu,δ. Simultaneous
deviations of two or more players are ignored. A deviation by single player i
in period s initiates regime Punishment(i, t− s).
• Punishment(i, t): The regime lastsm periods. Players −i play strategies µi,t,∗−i .
Player i randomizes uniformly across all action sequences

(
ai0, ..., a

i
m−1

)
. In

particular, the strategies of each player do not depend on their types. After m
periods, regime Normal(vi (â) , t) is initiated, where â are the actions played
during the regime.

The profile starts in regime Normal
(
v∗, tδ

)
.

We compute the payoffs and verify the incentives in the above profile. Initially, we
make a preliminary (and perhaps incorrect) assumption that the payoffs in the profiles
that end phase Normal((1− δt) g∗ + δtu, t) are equal to u (instead of vπ,δ

(
σu,δ

)
�π u).

Then the expected payoff in the beginning of regime Normal(v, t) is equal to v and
the expected payoff in the beginning of regime Punishment(i, t) is equal to vi,t. Any
one-shot deviation during the Normal(v, t) period leads to a payoff not higher than
(1− δ)M + δvi,t. If v (θi) ≥ vi,t (θi) + 2M (1− δ), the deviation is not profitable.
In each period of the Punishment(i, t) regime, all players are indifferent among all
actions. In particular, they do not have one-shot profitable deviations. Thus, the
expected payoff from profile σ under the preliminary assumption is equal to v∗.

Because our preliminary assumption is possibly incorrect, the above argument may
not correctly reflect the incentives faced by the players. On one hand, the preliminary
assumption does not affect the payoffs of the π-positive probability types. Thus, the
behavior prescribed by strategy profile σ is the best response for all such types, given
that all positive probability types of the other players follow σ. On the other hand,
the behavior prescribed by profile σ may not be the best response for the π-zero
probability types. We can modify profile σ so that all the zero-probability types
choose the best responses, given the assumption that all (the positive probability
types of) other players follow σ. (Notice that this modification does not change the
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incentives for the positive probability types.) Because the preliminary assumption
may artificially increase the continuation payoffs of the π-zero probability type θi,
the true expected best response payoffs of this type cannot be higher than v∗ (θi).
Thus, the true expected payoff from profile σ is equal to v∗∗ �π v∗.

Finally, because the strategies prescribe the same (possibly mixed) actions for all
π-positive probability types of each player, the beliefs do not get updated before
(n− 1)-revealing profile σu is started. �

Lemma 7. If FA
n (π) ⊆ F+

n−1 (π) , then FB
n (π) ⊆ F+

n−1 (π) .

Proof. Take any v ∈ FB
n (π) and find ε > 0 and an incentive-compatible lottery

l = (α, u) such that v = vπ,l and B (u (a) , 2ε) ⊆ intFA
n

(
pπ,l (a)

)
for each positive

probability action profile a. We can assume w.l.o.g. that all actions have positive
probability.

Using the compactness argument (and possibly public randomization), we can show
that there exists δ0 such that for all δ ≥ δ0, each a, and each u′ ∈ B (u (a) , ε),
there exists a strategy profile that induces payoff u′ and that is a (n− 1)-revealing
equilibrium of game Γ

(
pπ,l (a, ) , δ

)
.

For each action profile, let uδ (a) = 1
δ
u (a) − (1− δ) g (a) ∈ B (u (a) , ε) . For each

a, find n-revealing equilibrium profile σa that induces uδ (a).
Let σ be a strategy profile in which in the first period, players play according to

α, and continue with σ (a) after first period history a. Then σ is a (n− 1)-revealing
equilibrium for sufficiently high δ with expected payoff v. �

Appendix C. Proof of Theorem 4

In this appendix, we assume that the game has the structure described in section
6.1. In particular,

intIR =
{
v ∈ RΘ∗ : vi (θi) > 0 for each type θi

}
,

and there exist sets Mi ⊆ RΘi such that 0i ∈Mi and the set

intV = intcon
{⋃

i

Mi × {0−i}
}

is not empty. These assumptions imply that the oligopoly games have an open thread.
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We begin with a convenient characterization of set FB
1 (π).

Lemma 8. Let v ∈ RΘ∗ be a payoff vector. Then v ∈ FB
1 (π) if and only if for each

player i, there exist mappings βi : Θ → [0, 1] and mi : Θi → Mi such that ∑i β
θ
i ≤ 1

and the following conditions hold:

(1) Individual rationality: vi (θi) > 0 for each player i and type θi, and mθi
i (θi) > 0

for each player i and π-positive probability type θi,
(2) Incentive compatibility: for all θi, θ′i,

v (θi) ≥m
θ′i
i (θi)

∑
θ−i

πθi (θ−i) β
(θ′i,θ−i)
i ,

with the equality if type θi has π-positive probability and θ′i = θi.

In particular, set FB
1 (π) is convex.

Proof. If v satisfies the above two conditions, then one can easily construct an ap-
propriate lottery to show that v ∈ FB

1 . We show the other direction. Take some
v ∈ FB

1 (π) and find π-incentive-compatible lottery l0 = (α0, u0) with value v and
such that for each action profile a, either beliefs p (a) are degenerate on the type
tuple θ and

u0 (a) ∈ FA
1

(
πθ
)

= F 0
(
πθ
)
,

or the beliefs p (a) are non-degenerate, and

u0 (a) ∈ FA
1 (p (a)) = intIR ∩ intV.

Because intIR ∩ intV ⊆ FB
0

(
πθ
)
, we can assume that u0 (a) ∈ FB

0

(
πθ
)
for each a

played with positive probability by types θ in strategy profile α0.
For each π-positive probability type profile θ and action profile a played by positive

probability by types in θ, we can find u1 (a) ∈ intV such that u1 (a) �πθ u0 (a).
Because payoffs u0 (a) are strictly individually rational, we have

max
{

0, u1 (θ′i|a)
}
≤ u0 (θ′i|a) for each type θ′i.

Define allocation u : Θ → intV so that for each type profile θ (not necessarily
positive probability),

uθ =
∑
a

(∏
i

α0
i (ai|θi)

)
u1 (a) .
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For each type profile θ, player i, find βθi ≥ 0 and m̂θ
i ∈ Mi so that ∑i β

θ
i ≤ 1 and

uθi = βθi m̂
θ
i . Finally, for each type θi, define

mθi
i =

∑
θ−i π

θi (θ−i)u(θi,θ−i)
i∑

θ−i π
θi (θ−i) β(θi,θ−i)

i

=
∑
θ−i π

θi (θ−i) β(θi,θ−i)
i m̂

(θi,θ−i)
i∑

θ−i π
θi (θ−i) β(θi,θ−i)

i

.

Notice that mθi
i is a convex combination of elements of Mi; hence mθi

i ∈Mi.
We check that β and m satisfy the thesis of the Lemma. For each π-positive

probability type profile θ = (θi, θ−i), each player i and each action profile a = (ai, a−i)
such that ai is played with positive probability by type θi, u1 (θi|a) = u0 (θi|a) > 0.
It follows that mθi

i (θi) > 0 is a convex combination of strictly positive values.
Further, because lottery l0 is π-incentive compatible, for each action ai,

v (θi) ≥
∑

θ−i
πθi (θ−i)u0

i

(
θi|ai, α0

−i (θ−i)
)

with equality when action ai is played with positive probability by type θi, i.e.,
α0
i (ai|θi) > 0. It follows that for π-positive probability type θi

v (θi) =
∑

θ−i
πθi (θ−i)u0 (θi|αi (θi) , α−i (θ−i))

=
∑

θ−i
πθi (θ−i)u1

(
θi|α0

i (θi) , α0
−i (θ−i)

)
=
∑

θ−i
πθi (θ−i)uθ

(
θi|α0

i (θi) , α0
−i (θ−i)

)
=
∑

θ−i
πθi (θ−i) β(θi,θ−i)m̂

(θi,θ−i)
i (θi)

=
∑

θ−i
πθi (θ−i) β(θi,θ−i)mθi

i (θi)

and for all types θi, θ′i,

v (θi) ≥
∑

θ−i
πθi (θ−i)Eα0(θ′i,θ−i)u

0
i (θi|a)

≥
∑

θ−i
πθi (θ−i)Eα0(θ′i,θ−i)u

1
i (θi|a)

≥
∑

πθi (θ−i)Eα0(θ′i,θ−i)u
1
i

(
θi|α0

i (θ′i) , α0
−i (θ−i)

)
≥ m

θ′i
i (θi)

(∑
θ−i

πθi (θ−i) β
(θ′i,θ−i)
i

)
.

The last claim follows from the characterization. �
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Take any individually rational vector v∗ of payoffs that are individually rational for
all positive π-probability types of all players and that can be obtained by a play of non-
revealing actions followed by a payoff vector from stage 1B, v∗ = γg + (1− γ) v′ for
some g ∈ V and v′ ∈ FB

1 (π). The next Lemma shows that there exists a correspond-
ing fully revealing payoff v, with the same payoffs as v∗ for the positive probability
types and not smaller, and individually rational payoffs for the zero-probability types.
The idea is to delay the play of non-revealing actions after the revelation. We need
to be careful so that the expected payoffs and the incentives to reveal information
truthfully are not affected and that the continuation payoffs after the revelation are
individually rational.

Lemma 9. For each π ∈ Π, FA
2 (π) = FB

1 (π).

Proof. Take v∗ ∈ int
(
IR ∩ con

(
FB

1 (π) ∪ V
))

. Find γi ≥ 0 and m∗i ∈ Mi, and
u∗ ∈ FB

1 (π) so that ∑i γi ≤ 1 and for each player i,

v∗i (θi) = γim
∗
i (θi) +

(
1−

∑
i

γi

)
u∗ (θi) ,

with equality for π-positive probability types θi. Using Lemma 8, find βθi ≥ 0 and
mθi
i ∈ Mi for each player type tuple θ so that ∑i β

θ
i ≤ 1 and mθi

i ≥ 0 for each
θ = (θi, θ−i), and

v∗i (θi) = γim
∗
i (θi) +

(∑
θ−i

πθi (θ−i) β
(θ′i,θ−i)
i

)
m
θ′i
i (θi)

≥ γim
∗
i (θi) +

(∑
θ−i

πθi (θ−i) β
(θ′i,θ−i)
i

)
m
θ′i
i (θi)

with the equality if type θi has π-positive probability and θ′i = θi.
For each player i and type profile θ = (θi, θ−i), let

β̂θi = γi +
(

1−
∑
i

γi

)
βθi .

For all π-positive probability types θi, let

m̂θi
i =

γim
∗
i + (1−∑i γi)

∑
θ′−i

πθi (θ−i) β
(θi,θ′−i)
i mθi

i

γi + (1−∑i γi)
∑
θ′−i

πθi (θ−i) β
(θi,θ′−i)
i

.
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For all π-zero probability types θi, let m̂θi
i = 0i. For each player i type θi, define

v (θi) =
∑

θ−i
πθi (θ−i) β̂(θi,θ−i)

i m̂θi
i (θi) for π-positive prob. θi

v (θi) = v∗i (θi) for π-zero prob. θi.

Simple calculations show that v = v∗.
We check that assignments β̂i and m̂θ

i satisfy the conditions of Lemma 8 for v.
Indeed, vi (θi) > 0 and m̂θi

i ∈Mi because m̂θi
i = 0i or m̂θi

i is a convex combination of
elements of Mi. Moreover, for each tuple θ,

∑
i

(
γi +

(
1−

∑
i

γi

)
βθi

)
=
∑
i

γi +
(

1−
∑
i

γi

)∑
i

βθi

≤
∑
i

γi +
(

1−
∑
i

γi

)
≤ 1.

The individual rationality holds because, in the first case, m̂θi
i (θi) is equal to v∗ (θi)

multiplied by a positive factor, and in the second case, m̂θ
i (θi) = 0.

We check the incentive compatibility: for all types π-positive probability type θi
and all types θ′i ,

v (θi) =
∑

θ−i
πθi (θ−i) β̂(θi,θ−i)

i m̂θi
i (θi)

=γim∗i +
(

1−
∑
i

γi

)∑
θ′−i

πθi (θ−i) β
(θi,θ′−i)
i mθi

i (θi)

≥γim∗i +
(

1−
∑
i

γi

)(∑
θ′−i

πθi (θ−i) β
(θ′i,θ′−i)
i

)
m
θ′i
i (θi)

=
(∑

θ−i
πθi (θ−i) β̂

(θ′i,θ−i)
i

)
m̂
θ′i
i (θi) .

where the first inequality follows from the choice of β. The incentive compatibility in
case of π-zero probability types θi is trivial. It follows that v ∈ FB

1 (π). �

We can conclude the proof of Theorem 4. The proof is an application of the
characterization of the set of equilibrium payoffs from Theorem 3. It is enough to
show that FA

2 (π) = FB
1 (π) and FB

2 (π) = FB
1 (π). The first claim follows from

Lemma 9. The second claim follows from the first and the fact that the composition
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of an incentive-compatible lottery with an incentive-compatible and fully revealing
lottery can be replaced by a single incentive-compatible lottery with the same value
and outcomes that are convex combinations of the outcomes in the original lotteries.
The characterization of equilibrium payoffs comes from Lemma 8.

Appendix D. Proof of Lemma 2

On the contrary, suppose that u∗ (π) is the thread. Let uns = u∗
(
π(normal1, strong2)

)
be the thread Nash equilibrium payoff vector, given that the first player is revealed
to be normal and the second player is revealed to be strong. Because the equilibrium
payoffs must be individually rational, it must be that

uns1 (normal1) ≥ 0 and uns2 (strong2) ≥ 1− 3x.

By Theorem 5, there exists α ∈ ∆A such that

uns1 (normal1) = 2αWW + 4αTW − 2αTT ≥ 0, (D.1)

uns2 (strong2) = 2xαWW + (1 + 3x)αWT + (1− 3x)αTT ≥ 1− 3x,

and
uns2 (normal2) ≥ 2αWW + 4αWT − 2αTT .

The next result shows that uns2 (normal2) > 2.

Lemma 10. Suppose that x ≤ 3
100 . Then 2αWW +4αWT −2αTT > 2 for each α ∈ ∆A

that satisfies inequalities (D.1).

Proof. The first inequality in (D.1) implies that

αTT ≤
2
3 −

1
3αWW −

2
3αWT .

Substituting into the second inequality, we obtain

2xαWW + (1 + 3x)αWT ≥ (1− 3x)
(1

3 + 1
3αWW + 2

3αWT

)
,

or, after some algebra,

αWT ≥
1− 3x
1 + 15x + 1− 9x

1 + 15xαWW .



56 MARCIN PĘSKI

It follows that

2αWW + 4αWT − 2αTT

≥8
3αWW + 16

3 αWT −
4
3

≥
(8

3 + 16
3

1− 9x
1 + 15x

)
αWW + 16

3
1− 3x
1 + 15x −

4
3 > 2,

where the last inequality holds for all αWW ≥ 0 and all x < 3
100 . �

A symmetric argument shows that usn1 (normal1) > 2, where usn is the thread
equilibrium payoff vector if the first player is strong, and the second player is normal.
Because players must be ex post indifferent about revealing their type truthfully, we
have

unn2 (normal2) = uns2 (normal2) > 2,

unn1 (normal1) = usn1 (normal1) > 2,

where unn is the thread payoff vector if both players are revealed to be normal.
On the other hand, the sum of the payoffs of the normal types, given any action

profile, is never higher than 4. This implies that for any equilibrium payoff vector
u∈ NE (normal1, normal2), u1 (normal1)+u2 (normal2) ≤ 4. The contradiction shows
that u∗ cannot be a thread.
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