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An interaction-based foundation of aggregate
investment fluctuations

Makoto Nirei
Institute of Innovation Research, Hitotsubashi University

This study demonstrates that the interactions of firm-level indivisible investments
give rise to aggregate fluctuations without aggregate exogenous shocks. When in-
vestments are indivisible, aggregate capital is determined by the number of firms
that invest. I develop a method to derive the closed-form distribution of the num-
ber of investing firms when each firm’s initial capital level varies stochastically.
This method shows that idiosyncratic shocks may lead to nonvanishing aggre-
gate fluctuations when the number of firms tends to infinity. I incorporate this
mechanism in a dynamic general equilibrium model with indivisible investment
and predetermined goods prices. The model features no aggregate exogenous
shocks, and the fluctuation is driven by idiosyncratic productivity shocks. Numer-
ical simulations show that the model generates aggregate fluctuations compara-
ble to the business cycles in magnitude and correlation structure under standard
calibration.
Keywords. Business cycle, strategic complementarity, idiosyncratic shock, law
of large numbers, criticality, power law.

JEL classification. E22, E32.

1. Introduction

This study offers a novel mechanism by which idiosyncratic micro-level shocks affect
aggregate outcomes. The possibility that idiosyncratic shocks might contribute to aggre-
gate fluctuations has traditionally been discounted in macroeconomic research because
such shocks are expected to cancel each other out when the number of agents is large.
However, recent literature has identified examples where idiosyncratic shocks influence
aggregate fluctuations. For example, Gabaix (2011) demonstrated that the actions of in-
dividual agents influence aggregate outcomes when the agents are asymmetric and their
size distribution has a fat tail. Acemoglu et al. (2012) demonstrated a similar effect when
the influence vector of an agent’s action on other agents’ actions is characterized by a
fat-tailed distribution.
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In this study, I demonstrate how firm-level productivity shocks affect aggregate in-
vestments. The mechanism I identify allows for the aggregate effects even when agents
are symmetric. I consider the situation where firms’ investments are indivisible and
strategically complementary. In this situation, the actions of a few firms can trigger dis-
crete responses of a stochastic fraction of other firms. This study shows that the aggre-
gate fluctuations may persist even when the number of agents tends to infinity under a
particular degree of complementarity. Under this condition, which may be called a criti-
cality condition, one agent’s action induces a similar action by another agent on average.
This condition was highlighted by Jovanovic (1987) as allowing idiosyncratic shocks to
generate aggregate risks.

This study builds on that by Nirei (2006), who showed that the aggregate size of the
discrete responses follows a power-law distribution with exponential truncation. The
truncation point was determined by the degree of strategic complementarity. It was
shown that as the number of agents tends to infinity, the variance of aggregate out-
comes converges to 0 more slowly in the case where actions are discrete than in an econ-
omy with continuous actions. The present study extends these results by characterizing
the aggregate fluctuations under a critical level of complementarity. The critical level
of complementarity results in a power-law distribution without exponential truncation
and thus serves as a new source of aggregate fluctuations.

I consider monopolistic firms competing by producing differentiated intermediate
goods. This economy features aggregate demand externality as in Blanchard and Kiy-
otaki (1987), where an increase in aggregate demand proportionally shifts the demand
schedule for each good. Given a technology with constant returns to scale, the aggre-
gate capital level is indeterminate in the production sector if firm-level capital is con-
tinuously adjusted. By incorporating indivisible investments, I obtain two advantages
that do not arise in the case of continuous investments. First, the equilibrium aggregate
capital level is locally unique. Second, the distribution of aggregate investment fluctu-
ations is analytically derived. Multiple equilibria may exist under the complementarity.
However, I obtain the aggregate fluctuations by selecting the least volatile equilibria and
not through the use of extreme equilibria.

Three results arise from this paper. First, I develop an equilibrium model of invest-
ments with exogenous factor prices and derive an asymptotic distribution function of
aggregate capital fluctuation when the number of firms tends to infinity. As in Nirei
(2006), the distribution has a heavier tail than the normal distribution. Second, I show
that under the critical level of complementarity and with particular equilibrium selec-
tions, the variance of aggregate fluctuations does not vanish at the infinite limit of the
number of firms or vanishes much more slowly than the central limit theorem predicts.
I obtain the latter claim when I select the least volatile equilibrium. I obtain the former
claim when I select the equilibrium that is least volatile in the same direction as the sum
of the idiosyncratic shocks. Third, I develop a dynamic general equilibrium model where
the critical level of complementarity arises even with endogenously determined factor
prices. The first and second results are shown with exogenous factor prices, whereas the
third result is shown without this assumption. Moreover, I quantitatively demonstrate
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that the dynamic general equilibrium model with indivisible capital can generate aggre-
gate fluctuations comparable to business cycles in magnitude and correlation structure
if I additionally assume a predetermined price-setting behavior. Given predetermined
goods prices, the investment fluctuations can propagate to consumption and output
fluctuations.

Scholars working on interaction-based models have tackled the question of how to
analyze aggregate fluctuations that arise from discrete, or, more generally, nonlinear, ac-
tions at the micro level. These models have suggested the possibility of endogenous fluc-
tuations arising from the nonlinearity of micro-level actions (e.g., Durlauf 1993, Glaeser
et al. 1996, Brock and Hommes 1997, Brock and Durlauf 2001). In macroeconomics,
the so-called (S� s) literature concentrates on the case where pricing or investment in-
curs fixed costs and thus exhibits nonlinearity at the micro level. Typically, an aggre-
gate (S� s) model features a continuum of firms as in Thomas (2002). This modeling
choice precludes the possibility that interactions of “granular” firms give rise to aggre-
gate fluctuations—a feature of interaction-based models. While I draw on the (S� s) lit-
erature in some respects, the aggregate fluctuation results presented in this paper are
obtained using a model with a large but finite number of firms. The intuition of the
results is analogous to that of interaction-based models.

This study contributes to the ongoing debate on the origins of business cycle fluc-
tuations in three ways. First, I provide a microfoundation for the investment-specific
technology shocks that influence business cycles in dynamic general equilibrium mod-
els empirically demonstrated by researchers including Fisher (2006) and Justiniano et al.
(2010). Second, this paper shares its motivation to explain aggregate fluctuations in the
absence of aggregate shocks with the literature on sunspot equilibria (Galí 1994, Wang
and Wen 2008). However, this study differs from the sunspot literature in that the agents’
expectation system is dynamically determinate in this study. Unlike sunspot models,
the equilibrium outcome is locally unique because of the discreteness of micro-level
decisions. Third, this study extends the literature that emphasizes the role of fat-tailed
distributions that allow idiosyncratic shocks to induce aggregate fluctuations (Gabaix
2011, Acemoglu et al. 2012). The fluctuation mechanism in this paper is most closely
related to self-organized criticality models (Bak et al. 1993). In those models, an individ-
ual action causes an “avalanche” of other actions, and the size of the avalanche follows
a fat-tailed distribution. While these models feature locally interacting firms, this study
is concerned with firms that interact globally (i.e., with all other firms) in goods markets
in dynamic general equilibrium.

The rest of this paper is organized as follows. Section 2 uses an equilibrium model of
investments with exogenous factor prices, and analytically characterizes the aggregate
fluctuations that arise from threshold behaviors and a critical level of complementar-
ity without aggregate shocks. Section 3 presents a dynamic general equilibrium model
with indivisible capital, a technology with constant returns to scale, and predetermined
goods price-setting. Under this specification, the dynamic general equilibrium model
generates the criticality condition and aggregate fluctuations even with endogenously
determined factor prices. Moreover, numerical simulations of the model with a finite
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number of firms show that equilibrium paths mimic the business cycles in the magni-
tude of standard deviations and correlations. Section 4 presents my conclusions. All
proofs are given in the Appendices.

2. Analytical results

In this section, I present my main theoretical results, showing that aggregate fluctua-
tions can occur without aggregate exogenous shocks when firms’ investments follow a
threshold rule. I assume that the real wage and interest rate are exogenously given. This
is a simplifying assumption adopted in this section to develop the theory of aggregate
fluctuations. This assumption is relaxed in Section 3, which shows that the same aggre-
gate fluctuations can occur in a dynamic general equilibrium model where the real wage
and interest rate are determined endogenously.

2.1 Firm’s investment decision

I consider an economy with N distinct intermediate goods, each produced by a mo-
nopolist. These goods can be produced using capital and labor. Specifically, if the
producer of good i uses ki units of capital and li units of labor in period t, it will pro-
duce yi�t = ai�tk

α
i�t l

γ
i�t units of intermediate good i, where α + γ ≤ 1. The productivity

ai�t is stochastic and independently and identically distributed (i.i.d.) across i and t

with a bounded support. These intermediate goods can be combined to produce a fi-
nal good by a competitive goods producer, where yi�t units of each respective interme-

diate good will yield Yt = (
∑N
i=1 y

(η−1)/η
i�t /N)η/(η−1) units of the final good. This final

good can be converted one-for-one into capital that can be used by intermediate goods
producers. Given this structure, I can express the production Yt in terms of aggregate
capital across the N intermediate goods producers. To see this, note that demand for
each intermediate good by the final goods producer will be given by yi�t = (pi�t/Pt)−ηYt ,
where Pt ≡ (∑N

i=1p
1−η
i�t /N)

1/(1−η) denotes aggregate price and is normalized to 1. Given
this demand for its input, each intermediate goods producer will set labor demand
optimally as li�t = (cL/wt)pi�tyi�t , where cL ≡ (1 − 1/η)γ. Substituting these into the
respective production functions shows that final goods output can be expressed as
Yt = (cL/wt)γ/(1−γ)Kα/(1−γ)

t , whereKt ≡ (∑N
i=1 a

ρ/α
i�t k

ρ
i�t/N)

1/ρ is a productivity-weighted

aggregate1 of the capital of all intermediate goods producers and ρ≡ (1−1/η)α/(1−cL).
Firm i owns physical capital ki�t , which accumulates as ki�t+1 = (1 − δ)ki�t + xi�t .

I consider the case where the firm’s investment decision is restricted to a discrete set
ki�t+1 ∈ {λκ(1 − δ)ki�t}κ=0�±1, where λ(1 − δ) > 1. Capital ki�t+1 is chosen to be either
the depreciated level (1 − δ)ki�t , the depreciated level multiplied by indivisibility pa-
rameter λ, or the depreciated level multiplied by λ−1. This discrete constraint is equiv-
alent to assuming that the firm can only choose a gross investment rate xi�t/ki�t of 0,
(λ− 1)(1 − δ), or (λ−1 − 1)(1 − δ), that is, inaction, lumpy investment, or lumpy divest-
ment, respectively. This constraint reflects the firm’s capital choice in the short term,

1The variable Kt corresponds to aggregate capital when aggregate productivity is properly defined and
normalized to 1. The analysis in this paper does not depend on the level of aggregate productivity.
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where investments in physical assets such as equipment and structure are indivisible.
Firms lack incentives to make substantial capital adjustments in sufficiently short time
horizons when both productivity shocks and depreciation are relatively small and the
environment is stationary.2

In this section, I assume that factor prices are exogenously given. This assumption
is relaxed in Section 3, where factor prices are determined endogenously. I further as-
sume that all firms know the productivity profile (ai�t+1)

N
i=1 in period t. This assumption

simplifies the analysis of a firm’s investment decision.
Firm i chooses capital ki�t+1 in period t so as to maximize the expected discounted

sum of the dividend stream, Et[∑∞
τ=t (

∏τ
s=t+1R

−1
s )di�τ], where di�t = pi�tyi�t −wtli�t − xi�t

denotes the dividend andRt denotes the inverse of the discount factor given to the firm.
Using the firm’s labor demand schedule, the objective function is written as an expected
discounted sum of π(ki�t+1), where

π(ki�t+1)= (1 − cL)(cL/wt+1)
γ/(1−γ)K(α/η)/((1−γ)(1−cL))

t+1 a
ρ/α
i�t+1k

ρ
i�t+1

− (Rt+1 − 1 + δ)ki�t+1�

The function π(·) is strictly concave because ρ < 1, which holds true in that α + γ ≤ 1
and η> 1. Thus, there exists a unique k∗

i�t+1 that satisfies π(k∗
i�t+1)= π(λk∗

i�t+1).
Because π is concave, there exists a threshold ¯ki�t+1 below which it is optimal for

firm i to invest, as well as another threshold k̄i�t+1 above which it is optimal to disin-
vest. I assume that the support of ai�t and the shifts in factor prices are sufficiently small
so that | logk∗

i�t+2 − log(k∗
i�t+1(1 − δ))| is no greater than logλ. This boundedness condi-

tion is satisfied in the environment assumed in Section 2.4. Under this condition, firm
i’s problem reduces to a maximization of π with respect to ki�t+1 that is chosen from
the discrete set.3 Firm i is indifferent between investment and inaction at an optimal
threshold, and, hence, π(¯ki�t+1) = π(λ¯ki�t+1). Similarly, i is indifferent between divest-
ment and inaction at k̄i�t+1, and, hence, π(k̄i�t+1)= π(λ−1k̄i�t+1). Therefore, I obtain the
optimal thresholds as ¯ki�t+1 = k∗

i�t+1 and k̄i�t+1 = λk∗
i�t+1. By solving the optimal condi-

tion π(k∗
i�t+1)= π(λk∗

i�t+1), the lower threshold k∗
i�t+1 is obtained as

k∗
i�t+1 = bi�t+1K

φ
t+1�

(1)

bi�t+1 ≡
(
λρ − 1
λ− 1

)1/(1−ρ)(
(1 − cL)

(
cL
wt+1

)γ/(1−γ) a
ρ/α
i�t+1

Rt+1 − 1 + δ
)1/(1−ρ)

�

2It is possible to extend the choice set to {λ±κ(1 − δ)ki�t}, κ = 0�1� � � � � κ̄, for a finite κ̄. For some initial
capital profile, the equilibrium is a corner solution where capital takes the boundary value of the choice set.
Thus, if κ̄ is taken to infinity, an equilibrium may not exist with exogenous factor prices and finiteN .

3It must be noted that the choice set for ki�t+2 depends on ki�t+1. However, this dependence does not
affect the optimal threshold for ki�t+1 under the boundedness condition, because the new option for ki�t+2

that is gained by not following the optimal threshold rule is dominated by the choices available when the
optimal threshold is followed.
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where φ ≡ α/[(1 − γ){η − (η − 1)(α + γ)}]. The parameter φ ∈ (0�1] determines the
strength of the positive feedback from aggregate capital to individual investment de-
cisions, and thus represents the degree of strategic complementarity between invest-
ments. In particular, φ= 1 holds when α+ γ = 1. Note that k∗

i�t+1 is decreasing in λ.
At the heart of the aggregate fluctuations arising from idiosyncratic shocks in this

model lie the complementarity and nonlinearity of firm-level investment decisions. The
firms’ investment choices exhibit complementarity with each other because of aggre-
gate demand externality. The capital decision ki�t+1 is nonlinear because of indivisibility
and the threshold policy. The average capital level Kt+1 affects threshold k∗

i�t+1 contin-
uously, but it may or may not induce an adjustment in capital ki�t+1. Individual capital
is insensitive to a small perturbation in average capital, whereas an average response
amounts to the size of the perturbation multiplied by φ.

2.2 Random gap distribution

The gap between a firm’s capital and the threshold, normalized by indivisibility, is de-
noted by si�t = (logki�t − logk∗

i�t)/ logλ. In this section, I derive the closed-form distribu-

tion of the fluctuations of aggregate capital Kt+1 when the initial capital profile (ki�t)Ni=1
varies stochastically. Specifically, I assume that si�t is a uniform random variable with
support [0�1). In Section 2.6, I show that si�t converges to the uniform distribution as
t → ∞, independent across i, when λ and δ are heterogeneous across i. This implies that
the probability of drawing a particular profile (si�t)Ni=1 from an N-dimensional jointly
uniform distribution corresponds to the likelihood of the profile of the gap between a
firm’s capital and the threshold being realized over the long run.

2.3 Equilibrium selection

For each realization of the gap and productivity profiles (si�t � ai�t+1)
N
i=1, and given aggre-

gate capital Kt+1, the capital profile in the next period (ki�t+1)
N
i=1 is determined using

the threshold rule (1). An aggregate reaction function is then defined by aggregating the
firms’ capital decision, given K, as

�(K; (ki�t � ai�t+1)
N
i=1)=

(
N∑
i=1

(a
1/α
i�t+1(1 − δ)ki�tλκi�t+1)ρ/N

)1/ρ

�

where

κi�t+1 =
⎧⎨
⎩

1 if (1 − δ)ki�t < bi�t+1K
φ

0 if bi�t+1K
φ ≤ (1 − δ)ki�t < λbi�t+1K

φ

−1 if λbi�t+1K
φ ≤ (1 − δ)ki�t .

(2)

Note that K enters � via the threshold rule (2). As depicted in Figure 1, � is a step func-
tion and is nondecreasing in K.

The equilibrium aggregate capital is a fixed point of �. If the mapping from a pro-
file (si�t � ai�t+1)

N
i=1 to the fixed point were one-to-one, the distribution function of aggre-

gate growth logKt+1 − logKt would be determined using the joint distribution function
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Figure 1. Aggregate reaction function �. The variable K1 is selected using Equilibrium Selec-
tion 1 (ES1) because | logK1 − logK∗|< | logK2 − logK∗|;K2 is selected using Equilibrium Selec-
tion 2 (ES2) because sign(logK2 − logK∗)= sign(log�(K∗)− logK∗).

of (si�t � ai�t+1)
N
i=1. However, as depicted in Figure 1, multiple fixed points may exist be-

cause of the indivisibility of capital. Thus, to obtain the distribution for fluctuations of
logKt+1 − logKt , an equilibrium selection mechanism is required.

I determine the equilibrium by selecting the fixed point of � that is closest to some
benchmark level of aggregate capital denoted by K∗

t+1. For φ < 1, I define K∗
t+1 as the

fixed point of the aggregate reaction function when a continuum of firms exists,

K∗
t+1 =

(∫ 1

0
(a

1/α
i�t+1(1 − δ)ki�tλκi�t+1)ρ di

)1/ρ

� (3)

where ki�t = λs̃i�t bi�tK
φ
t and s̃i�t is a uniform random variable. Here, log� plotted against

logK converges to a line with slope φ as N → ∞ because each step size of log� shrinks
as 1/N . Thus, K∗

t+1 uniquely exists for φ< 1. For φ= 1, log� plotted against logK coin-
cides with the 45-degree line as N → ∞ and, thus, K∗

t+1 becomes indeterminate in (3).
This reflects the fact that if a continuum of firms exists, the aggregate capital level is in-
determinate in the production sector under φ = 1 and given factor prices. Thus, when
φ = 1, I set K∗

t+1 exogenously. The analysis in this section holds for any choice of K∗
t+1

when φ = 1. Note that Rt+1, Rt , wt+1, wt , and Kt are exogenously given. For φ = 1,
Rt+1 and wt+1 are restricted by the condition

∫ 1
0 λ

ρs̃i�t+1b
ρ
i�t+1 di= 1, where s̃i�t+1 is a uni-

form random variable. In Section 3, I develop a dynamic general equilibrium model in
whichRt+1 andwt+1 are endogenously determined, andK∗

t+1 is uniquely determined as
K∗
t+1 = E(Kt+1 |Kt) under rational expectations of factor prices for the case φ= 1.

With this K∗
t+1, I define an equilibrium selection as follows.

Definition 1. Equilibrium Selection 1 (ES1) selects the equilibrium aggregate
capital Kt+1 for each realization of (ki�t � ai�t+1)

N
i=1 that attains the minimum of

| logKt+1 − logK∗
t+1| among allKt+1 solving Kt+1 = �(Kt+1; (ki�t � ai�t+1)

N
i=1).
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Using this equilibrium selection, I construct the least volatile fluctuations of aggre-
gate capital in equilibrium that are possible. In other words, fluctuations due to multi-
ple equilibria are excluded from the selected equilibrium. This is a strategic assumption
made in this paper to demonstrate that idiosyncratic shocks with nonlinear behaviors
alone can generate nonvanishing aggregate fluctuations even when I exclude the possi-
bility of a large shift in aggregate capital that arises from purely informational coordina-
tion among firms.

To facilitate the analysis of this equilibrium, I define another selection mechanism
as an auxiliary.

Definition 2. Equilibrium Selection 2 (ES2) selects the equilibrium aggregate
capital Kt+1 for each realization of (ki�t � ai�t+1)

N
i=1 that attains the minimum of

| logKt+1 − logK∗
t+1| among all Kt+1 solving Kt+1 = �(Kt+1; (ki�t � ai�t+1)

N
i=1) and satis-

fying sign(logKt+1 − logK∗
t+1)= sign(log�(K∗

t+1)− logK∗
t+1).

ES2 adds a condition to ES1. Namely, ES2 selects the equilibrium aggregate capital
that is closest to K∗

t+1 in the direction to which the firms are induced by idiosyncratic
shocks to adjust under K∗

t+1. In Figure 1, this mechanism selects K2. Some properties
are known about this mechanism. Vives (1990) showed that the equilibrium selected
using this mechanism is the convergent point of the best-response dynamics Ku+1 =
�(Ku) starting at K∗. Cooper (1994) supported the use of this selection mechanism in
macroeconomics on the grounds that the best-response dynamics are a realistic process
in a situation where many agents interact with each other and make decisions only with
aggregate-level information.

In the following discussion, I characterize the fluctuations of Kt+1 provided that the
investment follows the threshold rule (1), the gap si�t follows a uniform distribution, and
K∗
t+1 is given. These three premises are established in a dynamic general equilibrium

model in Section 3.

2.4 Results

The equilibrium aggregate capital growth rate, logKt+1 − logKt , consists of an antici-
pated part, logK∗

t+1 − logKt , and an unanticipated part, logKt+1 − logK∗
t+1. The antic-

ipated part is exogenously given. Thus, I focus on the distribution of the unanticipated
growth. I concentrate on a homogeneous setup in which indivisibility and productivity
are common across firms: λi = λ and ai�t = ai�t+1 = 1. In this homogeneous setup, the
only source of deviation from the expected aggregate capital is the gap si�t . The variation
of si�t can be regarded as the results of past realizations of productivity shocks up to pe-
riod t − 1. A generalization to the case of heterogeneous indivisibility and productivity
is discussed in Section 2.6. I use the notation

qt ≡
φ log

K∗
t+1
Kt

− 1
1−ρ

( γ
1−γ log wt+1

wt
+ log Rt+1−1+δ

Rt−1+δ
) − log(1 − δ)

logλ
�

This denotes the anticipated fraction of firms that invest because of an exogenous shift
in the aggregate environment. I assume that the exogenous shifts of wt and Rt are
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bounded so that qt < 0�5 holds for any t. In the remainder of this section, I drop the
time subscript t from all variables.

Consider a sequence of economies with a number of firms N =N0�N0 + 1� � � � , for a
largeN0. Let gN denote the unanticipated growth logK− logK∗ for an economy withN
firms. The main analytical result of this study is characterizing the asymptotic variance
of gN for ES1 and ES2.

To characterize the aggregate fluctuations, I use a fictitious tatonnement, which is
defined by the best-response dynamics of the capital profile,

ki�1 =
{
λ(1 − δ)ki�0 if (1 − δ)ki�0 < k∗

i�0
(1 − δ)ki�0 otherwise

ki�u+1 =
⎧⎨
⎩
λki�u if ki�u < k∗

i�u

ki�u/λ if ki�u ≥ λk∗
i�u

ki�u otherwise,

where Ku = (∑i a
ρ/α
i�t+1k

ρ
i�u/N)

1/ρ and k∗
i�u = bi�t+1K

φ
u for u= 1�2� � � � and k∗

i�0 = bi�t+1K
∗φ,

respectively. Subscript u represents a step in the fictitious tatonnement. The best-
response dynamics are consistent with the aggregate response function Ku+1 =
�(Ku; (ki�u� ai�t+1)

N
i=1).

The expected number of firms that adjust capital in the first step is Nq. Their in-
vestments may not exactly balance with aggregate capital depreciation: �(K∗) may not
coincide with K∗. The gap is denoted by m1 ≡ N(log�(K∗) − logK∗)/ logλ. If m1 = 0,
K∗ constitutes the equilibrium. Otherwise, the optimal threshold is updated under a
new aggregate capital K1 and the adjustments in the second step occur. This proce-
dure is iterated until there are no more firms that newly adjust. The convergent point
corresponds to the equilibrium selected by ES2 (depicted asK2 in Figure 1).

Unanticipated growth gN is divided into m1 and subsequent adjustments. Subse-
quent adjustments after the first step are measured in the number of firms that adjust
capital upward in step u, denoted by mu for u = 2�3� � � � �T . If firms adjust downward,
mu is set as negative. The series mu is either positive or negative for all u depending on
whetherm1 > 0 orm1 < 0. The total number of firms that adjust capital subsequently af-
ter the first step of tatonnement is denoted byM ≡ ∑T

u=2mu. Note that T is the stopping
time of the tatonnement, T ≡ minu :mu=0 u. The equilibrium capital vector is determined
by the convergent point of the dynamics, (ki�T )Ni=1.

In the first step toward the characterization of gN , I show that the capital growth due
to the subsequent adjustments is asymptotically proportional to the number of firms
that adjust.

Lemma 1. The termN(logKu+1 − logKu) converges tomu+1 logλ asN → ∞ almost surely
for u= 1�2� � � � �T − 1.

Lemma 1 implies thatN(logK2 − logK∗) converges in distribution to (m1 +M) logλ.
I then show that the number of adjusting firms in the tatonnement asymptotically fol-
lows a Poisson branching process by applying a result from my previous paper (Nirei
2006, Lemma 9).
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Lemma 2. The variable mu for u = 2�3� � � � �T asymptotically follows a branching pro-
cess in which each firm in mu bears firms in step u+ 1 whose number follows a Poisson
distribution with mean φ.

A branching process is an integer stochastic process of a population in which each
parent in a generation bears a random number of children in the next generation. In
a Poisson branching process, the number of children born from a parent is a Poisson
random variable. It is known that a branching process converges to 0 in a finite time
period with probability 1 if the mean number of children born from a parent is less than
or equal to 1 (Feller 1957, p. 276). This confirms that the best-response dynamics stop
in a finite time T with probability 1 when φ≤ 1.

The following result is known for the cumulative population size of the Poisson
branching process.

Lemma 3. The random variableM conditional onm1 > 0 follows

Pr(M =m |m1)=m1e
−φ(m+m1)φm(m+m1)

m−1/m! (4)

for m= 0�1� � � � . Conditional on m1 < 0, −M follows the same distribution with |m1| in-
stead ofm1. The right tail of the distribution (4) is approximated by

Pr(M =m |m1)∼ (m1e
(1−φ)m1/

√
2π)e−(φ−1−logφ)mm−1�5� (5)

Lemma 3 is similar to my previous result (Nirei 2006, Proposition 4) except for
the characteristics of m1. Nirei (2006) was concerned with a productivity perturbation
scaled as 1/N , which resulted in a Poisson distribution of m1. In the present model, the
initial adjustments are caused by capital depreciation. Thus, the central limit theorem
holds for the initial adjustment size. Defining

σ2
1 ≡ (1 − λ−2ρq)/(2ρ logλ)− ((1 − λ−ρq)/(ρ logλ))2�

I obtain the following result.

Lemma 4. The random variable m1/
√
N asymptotically follows a normal distribution

with mean 0 and variance σ2
1 .

Lemmas 3 and 4 fully characterize the distribution of gN under ES2. Using these
results, I obtain the main results of this study.

Proposition 1. Under ES1, if φ= 1, limN→∞
√
N Var(gN) > 0.

Proposition 2. Under ES2, if φ= 1, Var(gN) converges to a strictly positive constant as
N → ∞.

Proposition 1 states that if φ= 1, the asymptotic variance of gN under ES1 declines
no faster than 1/

√
N . Proposition 2 states that the asymptotic variance can be nonzero

under ES2.
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The main idea of the proof for Proposition 2 is as follows. Lemma 4 shows that
m1/

√
N asymptotically follows a normal distribution with finite variance. Hence, the

mean of the absolute value |m1| scales as
√
N . Lemma 3 shows that NgN/ logλ − m1

conditional on m1 = 1 follows a power-law tailed distribution with exponent 0�5 if
φ = 1. Then the variance of NgN conditional on m1 = 1 diverges as N1�5 because∫ N

x2x−1�5 dx ∼ N1�5. Combining these two results implies that NgN unconditional on
m1 has variance scaling asN2 becauseNgN can be divided into

√
N subpopulation sets,

each of which has variance that scales asN1�5. Hence, the variance of gN scales asN0 un-
der ES2 for φ= 1. Namely, gN has a nonzero variance at the limit because the vanishing
variance of initial disturbance m1/N is multiplied by the diverging effect of subsequent
propagationM that follows a power law with exponent 0�5.

Finally, Proposition 1 for ES1 is proven using the power-law distribution of M .
Under ES1, gN is determined using the minimum between | logK1 − logK∗| and
| logK2 − logK∗|. These two terms are independent conditional on m1. Moreover, it can
be shown that the distribution of | logK2 − logK∗| declines no faster than a power law
with exponent 0�5 for φ = 1. Combined with the power law for logK1 − logK∗, gN un-
der ES1 cannot decline faster than a power law with exponent 1. This yields the desired
result.

2.5 Implications

Proposition 1 states that the variance of gN converges to 0 no faster than 1/
√
N under

ES1 if φ = 1. Proposition 2 shows that the variance of gN converges to a nonzero con-
stant under ES2 if φ = 1. These results open up a theoretical possibility that indivisi-
ble investment at the micro level contributes to sizable macro-level fluctuations when
the number of firms is large but finite. These results contrast with the Long–Plosser
model with continuous capital adjustments, where the aggregate variance declines as
fast as 1/N . This is because idiosyncratic productivity shocks cancel each other out in
aggregation, as the central limit theorem predicts (Dupor 1999). In contrast, Proposi-
tion 1 shows that the variance of the capital growth rate decreases to 0 at a much slower
rate, even if I choose the least volatile equilibrium (ES1) when φ= 1 holds.

Equation (5) shows that gN conditional on m1 asymptotically follows a gamma-
type distribution that combines a power function m−1�5 and an exponential function
e−(φ−1−logφ)m. Here, φ− 1 − logφ > 0 for φ < 1. Because an exponential function de-
clines faster than a power function does, the tail distribution is dominated by the expo-
nential when φ < 1. Thus, the degree of strategic complementarity φ determines the
speed of the exponential truncation of the distribution.

Whether the tail obeys an exponential decay or a power decay has an important
implication for moments of the distribution. Any kth moment exists if the tail decays
exponentially because

∫ ∞
0 xke−x dx is a gamma function and thus finite. In contrast,

if the tail decays in power with exponent α, only moments lower than α exist because∫ ∞
xkx−α−1 dx is finite only for k < α. When the exponent of the power law is 0�5, even

the mean diverges.



964 Makoto Nirei Theoretical Economics 10 (2015)

The power-law tail of the propagation effect, resulting from the criticality condition
φ = 1, generates a macro-level fluctuation. When this condition is not met, the aggre-
gate fluctuations eventually die down as the number of firms increases to infinity. This
is becauseφ, the mean number of children per parent, determines the trend population
growth in the branching process. The mean population of the nth generation isφn given
a single initial parent. The population diverges to infinity when the process is supercrit-
ical, φ> 1, whereas the population decreases to 0 if the process is subcritical, φ< 1. At
the critical point φ= 1, the population of a generation decreases to 0 with probability 1,
whereas the mean cumulative population diverges to infinity.

The key environment for the power law, φ= 1, can be interpreted as a critical level
of complementarity of indivisible investments. By the critical level of complementarity,
I mean that a proportional increase in the capital of all other firms induces the same
proportional increase in the capital of a firm if the increment is much larger than the
indivisibility. Because of the indivisibility of capital, however, a shock smaller than the
indivisibility does not cause a symmetric movement across firms. Thus, the firm’s invest-
ment behavior at criticality can be summarized as local inertia combined with global
linear complementarity.

It might appear counterintuitive that the aggregate variance does not converge to 0
when there are only idiosyncratic discrepancies in the initial capital gap. In a smoothly
adjusting competitive economy, the aggregate capital level is indeterminate in the pro-
duction sector if the firms’ investment decisions are linearly complementary because
of technology with constant returns to scale. In the present model, the equilibrium is
locally unique because of the indivisibility of capital. Nonetheless, the globally indeter-
minate environment makes it possible for the aggregate fluctuations to reappear as the
power-law distribution.

The limit of the standard deviation of gN under ES2 in Proposition 2 is affected by
logλ. In fact, the indivisibility parameter logλ has an almost proportional effect on the
aggregate standard deviation. This is because gN is a product of logλ andM/N that has
only weak dependence on λ. The almost proportional impact of logλ on the aggregate
standard deviation implies that the indivisibility of capital provides a foundation for the
sizable idiosyncratic volatility of firm-level decisions, which in turn has a one-to-one
impact on aggregate volatility.

2.6 Heterogeneous firms and uniform distribution of capital gap

The fluctuation results can be extended to the case where the indivisibility and depreci-
ation rates are heterogeneous across firms. Suppose that a type of firm with lumpiness
λi and depreciation δi is drawn from a joint density function with finite mean and i.i.d.
across i. I assume ¯λ(1 − δ̄) > 1, where ¯λ and δ̄ denote the lower bound of λi and up-
per bound of δi, respectively. Productivity ai�t is a random variable independent from
(λi� δi) and i.i.d. across i and t. I assume that the support of logai�t is bounded as
Pr(| logai�t+1 − logai�t |< qα(1/ρ− 1) log ¯λ)= 1 so that firms have no incentives to make
adjustments of more than one notch. This constraint holds for sufficiently short time
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horizons, when both productivity change and depreciation are relatively small. I main-
tain that si�t is a uniform random variable. I next define

φ̂≡φE
[
(logλi)

(
λ
ρ
i − 1
λi − 1

)ρ/(1−ρ)]
E
[

1
logλi

]/
E
[(
λ
ρ
i − 1
λi − 1

)ρ/(1−ρ)]
�

Then I obtain the following proposition.

Proposition 3. Under ES2 and with heterogeneous λi,M conditional onm1 = 1 follows
the same distribution as (4), where φ is replaced with φ̂.

Proposition 3 shows that the power-law tail distribution with the same exponent is
obtained even in the general setup where the indivisibility and depreciation rates are
heterogeneous across firms. This is an important generalization for the business cycle
model, as empirical studies imply large variations in the lumpiness in the investment-
to-capital ratio across firms (Doms and Dunne 1998, Cooper et al. 1999). It is also a nec-
essary extension for this study because the uniform distribution of si�t is proven when λi
has a nontrivial density, as shown next.

So far, I have assumed that the capital gap distribution follows a uniform distribu-
tion. In the heterogeneous setup, it can be shown that the capital gap distribution con-
verges to the uniform distribution. This gap si�t always takes a value between 0 and 1
at equilibrium under the boundedness condition of ai�t+1 and the stationarity of wt and
Rt . The gap develops as

si�t+1 =
( log(1 − δi)+ logk∗

i�t − logk∗
i�t+1

logλi
+ si�t + 1

)
mod 1� (6)

where xmod 1 denotes the remainder after the division of x by 1. Starting from an initial
state si�0, si�t is given as the natural depreciation t log(1 −δi) divided by logλi, plus a ran-
dom variable, and taken modulo 1. This remainder converges to a uniform distribution
on a unit interval (Engel 1992, Section 3.1.1).

Proposition 4. If (log(1 − δi))/ logλi has a nondegenerate density, si�t converges in dis-
tribution to a uniform random variable in [0�1) as t → ∞.

Proposition 4 is proven similarly as in Caballero and Engel (1991). As in Caplin and
Spulber (1987), the cross-section distribution of si�t stays at the uniform distribution
even if aggregate variables fluctuate because a shift inKt merely rotates the distribution
of si�t on a circle of unit circumference.4

2.7 Relation to previous research

The power-law tail with exponent 0�5 characterizes the aggregate fluctuations even in a
heterogeneous extension of the model (Section 2.6). The robustness of the exponent

4When the support of the distribution of ai�t is broader than what is assumed, Proposition 4 still holds if
the firm’s capital choice set is broadened as {λ±κ(1 − δ)ki�t}, κ= 0�1� � � � � κ̄ for properly set κ̄.
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0�5 results from the fact that any branching process with a martingale property (i.e.,
φ = 1) brings out the power-law tail with exponent 0�5 for the cumulative population
size (Harris 1963, p. 32).5 The robustness reflects the fact that in various models of con-
nected nonlinear dynamics, the critical level of complementarity φ = 1 appears as a
condition for idiosyncratic shocks to have aggregate consequences through power-law
distributions. For example, in a celebrated theorem by Erdős and Rényi, the condition
φ= 1 corresponds to the critical point for the emergence of a “giant cluster” in a random
graph (Bollobás 1998, p. 240).

In the literature on economic fluctuations, Jovanovic (1987) demonstrated in sev-
eral simple models that aggregate fluctuations could be generated by interactions of id-
iosyncratic shocks. Notably, he pointed out that a key condition for the aggregate risks to
emerge from interacting idiosyncratic shocks is that “the effect that a unit increase in the
average decision of others has on [an individual decision]” is 1.6 This corresponds to the
criticality condition φ= 1. He shows some examples in which a “multiplier” effect of an
individual’s action has an

√
N order of magnitude. Combined with the multiplier effect,

idiosyncratic shocks, which shrink in aggregation as 1/
√
N , can generate nonvanishing

aggregate fluctuations. In the case of adjustments on the extensive margin as featured in
this model, the propagation effect (i.e., how many firms are affected) becomes stochastic
rather than a constant multiplier. This study develops Jovanovic’s insight and fully char-
acterizes the fluctuations on the extensive margin. The analysis shows that the variation
of the propagation effect, rather than the mean, has an order of magnitude

√
N .7

In a general model of industries with binary technological choice and comple-
mentarities, Durlauf (1993) showed that the degree of complementarities determines
whether an economy has a unique equilibrium or multiple equilibria. The present
model is narrower than his in that the firm’s behavioral rule is parametrically specified
and in that the firms interact only through aggregate capital. The analysis here, how-
ever, differs in its aim. By specifying an equilibrium selection mechanism, this model
excludes the fluctuations from multiple equilibria and concentrates on the least volatile
ones. While Durlauf’s paper explains long-run phenomena such as industrialization,
this study is concerned with short-run fluctuations such as business cycles and derives
the distribution of aggregate fluctuations.

The possibility of a power-law distribution of sectoral propagation was first pointed
out by Bak et al. (1993). In a model of a simple supply chain with a lattice network, they
obtained a power-law distribution of aggregate fluctuations. Nirei (2006) implemented
their fluctuation mechanism in an equilibrium model of a globally connected network

5The distribution of population size in the branching processes is closely related to the distribution of
the first return time of a random walk, which has the same power-law exponent 0�5.

6Jovanovic (1987, p. 403).
7Gabaix (2011) points out that Jovanovic’s multiplier is too large, especially when the multiplier is ap-

plicable to aggregate shocks. Whether the same criticism applies to the present model depends on how
the aggregate shock is modeled. For example, in the general equilibrium model in Section 3, any common
shock in productivity is mitigated by shifts in factor prices and expected aggregate capital; furthermore,
such a shock does not alter the fluctuation of unanticipated capital growth.
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where an agent’s action affects all other agents.8 A fluctuation distribution similar to
(4) was obtained in that paper. This current study extends the previous one by proving
the nonzero asymptotic variance of the aggregate growth rate for the case of φ= 1. The
mechanism for the break from the law of large numbers is analogous to Jovanovic’s: the
variation of the extensive margin (the number of firms affected) implied by the distribu-
tion (4) is scaled as

√
N , which cancels out with the shrinking magnitude 1/

√
N (implied

by the law of large numbers) of the initial disturbances caused by capital depreciation.
In addition, this study is placed within a standard real business cycle framework (Sec-
tion 3), which underpins three key assumptions in this section: the criticality φ= 1, the
uniform distribution of the gap si�t , and the well defined expectation formation K∗

t+1.
This model may be viewed as a self-organized criticality model as advocated by Bak

et al. (1987). In that interpretation, the criticality in this model is the uniform distribu-
tion of si�t . When the density of si�t at the threshold is greater than 1, a large propaga-
tion of investments ensues. When the density at the threshold is smaller than 1, little
propagation occurs. In either case, diffusion effects caused by productivity ai�t and het-
erogeneous indivisibility λi bring the density at the threshold to 1, where the size of the
propagation follows a power-law distribution. However, the key condition φ = 1 is set
exogenously. This study claims that the aggregate fluctuations arise from idiosyncratic
shocks in an environment where individual investment thresholds are linearly depen-
dent on aggregate capital, that is, when φ= 1 is realized. While this is a restrictive con-
dition, there are several important examples that satisfy this condition in an economy,
as shown by Jovanovic (1987). In this section, I showed that the firms’ investment de-
cisions exhibit a critical level of complementarity under constant returns to scale in an
equilibrium given factor prices. In the next section, I present a general equilibrium ex-
ample in which the critical level of complementarity of investments continues to hold
when the factor prices are determined endogenously.

3. A business cycle model

In this section, I construct a dynamic general equilibrium model with indivisible in-
vestments, predetermined prices of goods, and constant returns to scale. The model is
shown to satisfy the premises in the previous section: (a) K∗

t+1 is rationally determined,
(b) si�t+1 follows a uniform distribution, and (c) φ = 1. Then the equilibrium paths are
numerically simulated.

3.1 Households

There is a representative household that maximizes utility Et[∑∞
τ=t βτ−tU(Cτ�Lτ)] by

choosing consumption Cτ and labor supply Lτ subject to Cτ = wτLτ + Dτ ∀τ. Here

8A corollary difference between Bak et al. (1993) and Nirei (2006) occurs in the exponent of the power-
law distribution, which arises from the varied network topology. Bak et al. feature a two-dimensional lattice
network in which two avalanches starting from neighboring sites can overlap. This leads to a longer chain
reaction and a lower power-law exponent ( 1

3 ). In contrast, market equilibrium models as in Nirei (2006)
and this paper feature an essentially dimensionless network of firms. Thus, the market model corresponds
to an infinite-dimensional case of lattice models, which yields the cluster-volume exponent 0�5 at criticality
(Grimmett 1999, p. 256).
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Dt denotes aggregate dividends that the household receives from firms. Each firm i

owns capital and delivers dividend di�t . Households as shareholders instruct each firm
to maximize its expected discounted sum of dividends stream Et[∑∞

τ=t �t�τdi�τ]. The dis-
count factor is �t�τ ≡ ∏τ

s=t+1R
−1
s , where �t�t = 1 by convention and Rt is the inverse of a

stochastic discount factor

R−1
t ≡ βUCt /UCt−1 � (7)

The real wage is equal to the marginal rate of substitution between Lt and Ct by the
maximization conditions

wt = −ULt /UCt � (8)

3.2 Firms

The production of firms is specified as in Section 2.1. In this section, I assume constant
returns to scale (γ = 1 − α), and I allow the indivisibility parameter λi to be heteroge-
neous across i. At the initial period, λi is drawn from a continuous density function over
the support (1/(1 − δ)�∞). I assume that the mean of λi − 1 is smaller than the output-
to-capital ratio so that the resource constraint is always satisfied. Once λi is drawn, it
does not change over periods. Productivity ai�t is an i.i.d. random variable that satisfies
the boundedness condition in Section 2.6.

I also assume that firm i commits to the price pi�t+1 of its product one period ahead.
Namely, firm i decides pi�t+1 in period t. This assumption of predetermined goods
prices is necessary for the investment fluctuations to have propagation effects on other
macroeconomic variables. The aggregate price is still normalized to 1. This normaliza-
tion is innocuous even with the predetermined prices because all the firms decide the
goods prices simultaneously. The real wage wt is flexible. The time protocol is set as
follows. At the beginning of period t, productivities ai�t+1 are revealed to all firms. Next,
firm i decides its price pi�t+1 and capital ki�t+1 for the next period, while next-period
aggregate capitalKt+1 and contemporaneous investmentXt are determined simultane-
ously. Finally, contemporaneous yi�t , li�t , di�t , and Ct are determined givenXt .

Firm i’s problem in period t is to maximize Et[∑∞
τ=t �t�τdi�τ] by choosing pi�t+1 and

ki�t+1 subject to the demand function, the production function, and the discrete con-
straint for capital. The optimal price is solved by maximizing the dividend in period
t + 1 as pi�t+1 = (a

1/α
i�t+1ki�t+1/Kt+1)

−α/(η(1−cL)). Substituting pi�t+1 in the demand func-

tion and aggregating across i, I obtain9

Kt+1 = (Et[(wt+1/cL)Y
1/(1−α)
t+1 /Rt+1]/Et[Yt+1/Rt+1])(1−α)/α� (9)

Using the optimal price, firm i’s problem in period t is choosing ki�t+1 from a
discrete set {λκi (1 − δ)ki�t}κ=0�±1, as in the previous section, to maximize π(ki�t+1) =
(1 − cL)Et[Yt+1/Rt+1]aρ/αi�t+1(ki�t+1/Kt+1)

ρ− (1 − (1 −δ)Et[R−1
t+1])ki�t+1. The optimal strat-

egy for firm i is to invest in period t when (1 − δ)ki�t is below a lower threshold k∗
i�t+1, to

9See Appendix B for details of the derivation.
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divest when (1 − δ)ki�t is above an upper threshold λik∗
i�t+1, and to not adjust otherwise.

Then, proceeding as in Section 2.1, I determine k∗
i�t+1 as

k∗
i�t+1 = bi�t+1Kt+1 (10)

bi�t+1 ≡At(a
ρ/α
i�t+1(λ

ρ
i − 1)/(λi − 1))1/(1−ρ)

At ≡
(

(1 − cL)Et[Yt+1/Rt+1]1/α

(1 − (1 − δ)Et[R−1
t+1])Et[(wt+1/cL)Y

1/(1−α)
t+1 /Rt+1](1−α)/α

)1/(1−ρ)
�

Note that At summarizes the environment of aggregate demand and factor prices in
period t + 1, expected conditionally on the information available to firms in period t.

3.3 General equilibrium

The labor-market-clearing condition is Lt = ∑N
i=1 li�t/N . By substituting the price-

setting rule in labor demand li�t = (p−η
i�t Yt/(ai�tk

α
i�t))

1/(1−α) and aggregating, I obtain the
aggregate production function

Yt =Kαt L1−α
t � (11)

The final goods market clears as

Yt = Ct +Xt� (12)

where Xt ≡ ∑N
i=1 xi�t/N is aggregate investment. Because there are only a finite num-

ber N of firms, the economy experiences some fluctuations due to finite idiosyncratic
shocks. I show that the fluctuation of aggregate investment Xt remains nontrivial even
whenN is large. WhenXt differs from the expected level because of finite shocks, firms
adjust their labor demand and the labor market clears by adjusting the wage. Thus, un-
der predetermined prices, the investment fluctuation causes quantity adjustments in
the hours worked, production, and consumption.

Equilibrium conditions are derived as (7), (8), (9), (10), (11), (12), and

Kt+1 =
(
N∑
i=1

(λ
κi�t+1
i (1 − δ)a1/α

i�t ki�t)
ρ

N

)1/ρ

(13)

Xt =
N∑
i=1

(λ
κi�t+1
i − 1)(1 − δ)ki�t/N (14)

1 =
(
N∑
i=1

a
ρ/(α(1−ρ))
i�t+1

(
λ
ρ
i − 1
λi − 1

)ρ/(1−ρ) λρsi�t+1
i

N

)1/ρ

At� (15)

where the last condition is derived fromKt+1 = (∑N
i=1 a

ρ/α
i�t+1(λ

si�t+1
i k∗

i�t+1)
ρ/N)1/ρ.

The state space involves the distribution of the gap si�t , which is included in the in-
formation set for the conditional expectation in period t and affects the summations
in (13)–(15). Because the gap profile has large dimensions N , it is difficult to solve the
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equilibrium exactly. Thus, I approximate the equilibrium system using the stationary
distributions of si�t and ai�t with a continuum of firms. Using this approximation, I re-
place the summations across i in (13)–(15) with integrals over the uniform distribution
of si�t . Note that Proposition 4 applies to this model, warranting the convergence of si�t
to the uniform distribution.

I assume that agents use the approximated equilibrium system to form expectations
of future variables, whereas the exact realizations ofKt+1 andXt are determined by (13)
and (14) while keeping the summations. Then the threshold becomes a function of only
idiosyncratic productivity and aggregate capital:

k∗
i�t+1/Kt+1 = bi�t+1 =A(aρ/αi�t+1(λ

ρ
i − 1)/(λi − 1))1/(1−ρ) (16)

A ≡
(∫ (

λ
ρ
i − 1

(λi − 1)ρ

)1/(1−ρ) aρ/(α(1−ρ))
i�t+1

ρ logλi
di

)−1/ρ

�

Note that (16) satisfies the condition φ= 1 in Section 2.1. The effect of factor prices on
the threshold tends to the constant, A. This constant effect of factor prices along with
constant returns to scale technology results in the critical level of complementarity of
the investment decision. The system of equations for the agents’ expectation becomes
(7), (8), (9), (11), (12), and

A1−ρ = (1 − cL)Et[Yt+1/Rt+1]1/α

(1 − (1 − δ)Et[R−1
t+1])Et[(wt+1/cL)Y

1/(1−α)
t+1 /Rt+1](1−α)/α (17)

Kt+1 = (1 − δ)Kt + (Aρ−1/ρ)Xt (which is derived in Appendix B) (18)

Xt = Et−1[Xt]eεt � (19)

Here,Xt is multiplied byAρ−1/ρ in the capital accumulation becauseKt is the average of
ki�t weighted by productivity. Entering (19) is the aggregate investment shock εt , defined
as the log difference between realized and expected investments. Note that εt signifies
the shock on firms’ demand for investment goods. Finally, I specify the utility function
using the King–Plosser–Rebelo preference

U(Ct�Lt)= C1−σ
t (1 −ψLζt )1−σ/(1 − σ)�

The expectation system can be approximated in the first order as shown in Appendix A.
Using a standard procedure, I establish the following proposition, where a bar over a
variable denotes a steady-state value.

Proposition 5. There exists a unique saddle-point path for the expectation system if
X̄/Ȳ ≤ α holds.

Using this proposition, the expectation system has a determinate solution. Com-
bined with εt , the equilibrium path fluctuates around the determinate saddle-point
path.
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3.4 Aggregate investment shock

In a finite economy, the aggregate investment shock εt is defined as the log difference
between realized aggregate investmentXt and expected aggregate investment Et−1[Xt].
I determine Xt along with Kt+1 and k∗

i�t+1, using (13), (14), and (16) given exact capital
ki�t and realized productivity ai�t+1. I determine Et−1[Xt], using the expectation system
(7), (8), (9), (11), (12), (17), (18), and (19) given Kt . The deviation of actual aggregate
investment from the expected value is caused by idiosyncratic productivity shocks ai�t+1
for a finite number of firms and the deviation of the gap distribution from the uniform
distribution.

Because of the nonlinear decision of ki�t+1 with strategic complementarity across i,
there can be multiple solutions for (13) and (16) for each state (ki�t � ai�t+1)

N
i=1. For those

cases, I use Equilibrium Selection 1 that picks the solution that minimizes |εt | among
all solutions. This selection rule picks the equilibrium capital path that minimizes the
deviation from the expected path. The benchmark level of capital K∗

t+1 that I used to
select equilibria in Section 2 now corresponds to the rationally expected level of capital
Et−1[Kt+1] = (1 − δ)Kt + (Aρ−1/ρ)Et−1[Xt].

3.5 Calibration and numerical simulations

For a benchmark calibration, I set the unit of time to quarters. The parameters for pro-
duction technology and households’ preferences are set as in Table 1. Details on the
calibration are given in Appendix C. Table 2 reports the standard deviations and co-
movement structure of simulated output, consumption, investment, hours worked, and
capital. As can be seen, the model is able to generate aggregate investment fluctuations
to a magnitude comparable to business cycles. The fluctuations in aggregate variables
are driven mostly by investment shocks εt , while movements in capital play a very small
quantitative role. The standard deviation of logK is less than 0�3% in the table.10

The standard deviation of εt , which determines the standard deviation of X̃ , is al-
most proportionally related to the size of indivisibility logλ. This can be seen in Table 2
for the case of E[λi] = 1�056, for which the indivisibility is twice the benchmark case.
This result agrees with the analytical result, suggesting that the asymptotic aggregate
standard deviation of capital growth decreases almost proportionally when logλ is low-
ered. The aggregate fluctuation is subdued because capital can closely keep track of
idiosyncratic productivity with little indivisibility. The size of indivisibility, rather than
the size of productivity shocks, determines the magnitude of idiosyncratic volatility in
this model.

Simulations with an increased N in Table 2 exhibit little reduction in the magnitude
of fluctuations compared with the benchmark. That is, the diversification effect of large
N is weak for ES1 in the calibrated range of parameter values. This implies that even
though Proposition 1 does not establish a nonvanishing variance of gN , the convergence
of gN is sufficiently slow that fluctuations for ES1 potentially match with business cycle
fluctuations in terms of their magnitude.

10For the sake of comparison, the standard deviation of logK for ES2 is calculated using the analyti-
cal distribution of M . It is calculated as 1�9% under the calibrated parameter values while ignoring the
dispersion of λi and setting q= − log(1 − δ)/ logλ.
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α δ σ β η ψ ζ E(λi) Std(logai�t ) N w̄L̄/Ȳ C̄/Ȳ

0�26 0�02 1�5 0�99 11 1 2 1�028 0�05% 110,000 0�67 0�84

Table 1. Benchmark calibration and endogenous steady-state values.

Standard deviation (%) Correlation with Ỹ

Ỹ C̃ X̃ L̃ K̃ C̃ X̃ L̃ K̃

Benchmark 2�28 0�86 6�60 3�06 0�26 0�822 0�979 0�795 −0�018
(std errors) (0�09) (0�03) (0�28) (0�11) (0�01) (0�007) (0�001) (0�006) (0�009)
E[λi] = 1�056 4�67 1�69 13�52 5�99 0�55 0�840 0�980 0�813 −0�004
N = 350,000 2�23 0�85 6�44 3�02 0�26 0�820 0�979 0�793 −0�020
σ = 3 3�49 2�80 6�45 5�21 0�26 0�930 0�905 0�925 −0�155

Table 2. Standard deviations and correlations of business cycle variables.

3.6 Discussion

The investment shock εt propagates to other variables in two paths: Kt+1 and Yt . On
one hand, an investment shock generates an exogenous increase in future capital Kt+1.
This raises future labor productivity and the real wage. The prospect of increased labor
productivity induces households to consume more in both the current and following
periods. This effect can be seen in the saddle-point path, where the marginal utility of
consumption is negatively related to capital. On the other hand, an increase in invest-
ment raises aggregate demand for contemporaneous goods if consumption demand
is unaffected. Firms respond to the increased demand by increasing labor demand,
which raises the real wage. Households respond to the higher real wage by raising hours
worked, which in turn raises the marginal utility of consumption when σ > 1. Thus, to
keep the marginal utility lower so that it is on the saddle-point path, consumption de-
mand must increase. Hence, the investment shock raises consumption and thus output.
In Table 2, I observe that the standard deviation of consumption relative to investment
is larger when σ is greater. This result is consistent with the propagation mechanism
previously described because the hours–consumption complementarity becomes larger
when σ − 1 is greater, given a fixed marginal utility of consumption.

The predetermined price provides a key environment for the investment–consump-
tion comovement, as previously described. With predetermined prices, firms are com-
mitted to accommodating demand shocks using only output. Thus, an increase in ag-
gregate investment causes firms to hire more, which raises contemporaneous consump-
tion. In contrast, under flexible prices, firms are able to increase their prices and sup-
press output when a demand shock occurs. Thus, as in Thomas (2002), an increase in
investment raises factor prices and dampens production. The key difference from the
flexible prices model is that the efficient hiring condition (9) holds only in terms of ex-
pectations in the predetermined prices model.

The dynamic general equilibrium model in this section underpins the assumptions
made in the previous section where factor prices are exogenously given. The critical
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level of complementarity of investments (a key condition for nonvanishing aggregate
fluctuations) is shown under the assumption of constant returns to scale, where the ef-
fect of factor prices on the investment rule becomes constant. The dynamic general
equilibrium model also provides a well defined expected aggregate capital K∗

t+1, which
is determined by the unique saddle-point path of the expectation system. Moreover, it
generates the self-organization of the gap distribution toward the uniform distribution
at which the power-law propagation effects emerge. Simulated gap distributions show
little deviation from the uniform distribution. Simulations using the exact gap distribu-
tion instead of the uniform distribution did not significantly improve firms’ prediction
power over future factor prices.

The model presented here can be a departure point for various extensions. The
model can be extended by incorporating firms that adjust capital smoothly. Because the
capital choice of the smoothly adjusting firm is proportional to aggregate capital given
factor prices, the results of the model are not affected when such firms enter symmet-
rically as those with an indivisibility constraint. It is also possible to incorporate some
firms that flexibly adjust goods prices. The flexible pricing does not alter the functional
form of the optimal threshold, but it changes the contemporaneous response of factor
prices when an aggregate investment shock occurs. Another extension is to introduce
a fixed adjustment cost that endogenizes the indivisibility of investments as studied in
(S� s) models. In this study, aggregate fluctuations stemming from interactions occur
when the density of firms at the threshold of si�t is 1. This level of density holds under
the uniform distribution, which is generated by the one-sided (S� s) rule.11 Given that
capital is constantly depreciated, the one-sided rule holds for investment with a fixed
adjustment cost at least in the short term, where productivity shocks are small. How-
ever, the density condition may well not hold in a general (S� s) economy. One limitation
of the model presented here as a business cycle model is that it does not generate quan-
titatively large autocorrelation. I leave the incorporation of a mechanism that generates
persistence to future research.

4. Conclusion

This paper characterizes the aggregate fluctuations arising from the complementarity
of indivisible investments at the firm level. Analytically, I propose a method to evaluate
the fluctuation of aggregate investment along the evolution of heterogeneous capital
as if it were a stochastic fluctuation whose randomness arises from the stochastic con-
figuration of relative capital levels. For each configuration, the equilibrium aggregate
investment is determined as a convergent point of a fictitious best-response dynam-
ics of firms’ investment decisions. The best-response dynamics can be embedded in a
branching process with a probability measure of the stochastic configuration of relative
capital. This enables us to derive the distribution function of the aggregate fluctuation
in a closed form.

The fluctuation in the number of investing firms is shown to follow a power-law dis-
tribution with an exponential truncation at the tail. The truncation speed is determined

11See Nirei (2006) for the distribution of aggregate capital when the threshold density is not equal to 1.
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using the degree of strategic complementarity among firms. Under the constant returns
to scale assumption, the distribution becomes a pure power law, and the standard de-
viation of the growth rate of aggregate capital is shown to be strictly positive even when
there are an infinite number of firms. The limit of the standard deviation is shown to be
directly affected by the indivisibility of firm-level investments.

I incorporate this fluctuation mechanism in a dynamic general equilibrium model,
and I numerically compute equilibrium paths without making the randomness assump-
tion of the capital configuration. Under plausible parameter values, the equilibrium
path is shown to exhibit aggregate fluctuations comparable in magnitude and cross-
correlation structure to business cycles. The dynamic general equilibrium model pre-
sented here does not provide a full account of business cycles because it lacks important
dimensions, such as autocorrelations. Nonetheless, the model highlights the possibility
that interactions of idiosyncratic shocks may cause aggregate fluctuations in a realisti-
cally calibrated environment.

Appendix A: Proofs

Proof of Lemma 1. LetHu, u= 2�3� � � � �T , denote the set of firms that adjust capital in
step u. Assume that the size ofHu is finite with probability 1 whenN → ∞, which I verify
later. I consider the case m1 > 0 without loss of generality. Thus, logki�u = logki�u−1 +
logλ for i ∈Hu.

The Taylor series expansion of N(logKu+1 − logKu) around (logku)i∈Hu+1 is calcu-
lated as follows. The first derivative is ∂N logKu/∂ logki�u = (ki�u/Ku)

ρ. Thus, ∂Ku/∂ki�u
is of order 1/N .12 The second and higher derivatives with respect to logki�u are
∂n(ki�u/Ku)

ρ/∂ logkni�u = ρn(ki�u/Ku)ρ+O(∂Ku/∂ki�u) for n= 1�2� � � � . The second cross-

derivatives, ∂2 logKu/(∂ logki�u∂ logkj�u), are of order ∂Ku/∂kj�u and, thus,O(1/N). Sim-
ilarly, the higher order cross-derivative terms with respect to the capital of h distinct
firms in Hu+1 are of order 1/Nh−1. Because Hu+1 is finite, the nth derivative of N logKu
has a finite number of cross-derivative terms for any finite n. Hence, a Taylor series
expansion ofN(logKu+1 − logKu) yields

∞∑
n=1

∑
i∈Hu+1

(
ki�u
Ku

)ρ
ρn−1(logλ)n

n! +O(1/N)= λρ − 1
ρ

∑
i∈Hu+1

(
ki�u
Ku

)ρ
+O(1/N)�

where I used λρ = λ0 + ∑∞
n=1(d

nλρ/dρn)|ρ=0(ρ
n/n!). Using ki�u = k∗

uλ
si�u , I obtain that∑

i∈Hu+1
(ki�u/Ku)

ρ = (
∑
i∈Hu+1

λsi�uρ)/(
∑N
i=1 λ

si�uρ/N). The denominator converges to
E[λsi�uρ] as N → ∞ almost surely by the law of large numbers, and I have E[λsi�uρ] =∫ 1

0 λ
si�uρ dsi�u = (λρ − 1)/(ρ logλ). The numerator

∑
i∈Hu+1

λsi�uρ converges to mu+1 for
every event when Hu+1 is finite because si�u is smaller than φ(logKu − logKu−1)/ logλ
for any i ∈Hu+1. Thus, λsi�u converges to 1 asN → ∞. This completes the proof. �

12By taking yN of order xN or, interchangeably, yN = O(xN), I mean that |yN |/|xN | is bounded for all
sufficiently large values ofN .
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Proof of Lemma 2. The conditional probability for firm i to invest in u= 2�3� � � � �T is

Pr
(
i ∈Hu

∣∣∣ i /∈ ⋃
v=2�3�����u−1

Hv

)
= φ(logKu − logKu−1)/ logλ

1 −φ(logKu−1 − logK0)/ logλ
� (20)

Thus, mu follows a binomial distribution with population N − ∑u−1
v=2 mv and probability

(20). The mean of mu converges to φmu−1 as N → ∞ by using Lemma 1. Then the
binomial distribution of mu converges to a Poisson distribution with mean φmu−1 for
u = 2�3� � � � �T . Since a Poisson distribution is infinitely divisible, the Poisson variable
with mean φmu−1 is equivalent to an mu−1-fold convolution of a Poisson variable with
mean φ. Thus, the process mu for u= 2�3� � � � �T is a branching process with a Poisson
random variable with mean φ, wherem2 follows a Poisson distribution with mean φm1.
Note that m1 is not included in the branching process because it is not necessarily an
integer. �

Proof of Lemma 3. It is known that the accumulated sumM = ∑T
u=2mu of the Poisson

branching process conditional on m2 follows an infinitely divisible distribution called
the Borel–Tanner distribution (Kingman 1993, p. 68),

Pr(M =m |m2)= (m2/m)e
−φm(φm)m−m2/(m−m2)! (21)

for m=m2�m2 + 1� � � � . By combining (21) with m2, which follows the Poisson distribu-
tion with mean φm1, and by using the binomial theorem in the summation over m2, I
obtain (4) as

Pr(M =m |m1) =
m∑

m2=1

(m2/m)e
−φm(φm)m−m2

(m−m2)!
e−φm1(φm1)

m2

m2!

= m1e
−φ(m+m1)φm

m(m− 1)!
m∑

m2=1

(m− 1)!
(m−m2)!(m2 − 1)!m

m−m2m
m2−1
1 (22)

= m1e
−φ(m+m1)φm

m! (m+m1)
m−1�

Furthermore, the approximation in (5) is obtained by applying Stirling’s formula m! ∼√
2πe−mmm+0�5 and the fact that (1 +m1/m)

m−1 → em1 asm→ ∞. �

Proof of Lemma 4. I splitm1/
√
N into three terms as

log�(K0)− log

(
N∑
i=1

((1 − δ)ki�0)ρ/N
)1/ρ

log

(
N∑
i=1

((1 − δ)ki�0)ρ/N
)1/ρ

− logK−1
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and

logK−1 − logK0�

all multiplied by
√
N/ logλ, where (K−1�K0) corresponds to (Kt�K∗

t+1) in the model. The

second term represents depreciation and is equal to (
√
N/ logλ) log(1 − δ). Thus, the

sum of the second and third terms yields −q√N . The first term represents the first-step
adjustments induced directly by depreciation. Define H1 as the set of firms that adjust
in the first step. Using ki�0 = λsi�0k∗

0, I obtain K1 = (1 − δ)k∗
0((λ

ρ − 1)
∑
i∈H1

λsi�0ρ/N +∑N
i=1 λ

si�0ρ/N)1/ρ and (
∑N
i=1((1 − δ)ki�0)

ρ/N)1/ρ = (1 − δ)k∗
0(

∑N
i=1 λ

si�0ρ/N)1/ρ. Hence,
the first term ofm1/

√
N becomes

√
N

ρ logλ
log

(
(λρ − 1)

∑
i∈H1

λsi�0ρ/N∑N
i=1 λ

si�0ρ/N
+ 1

)
� (23)

By assumption, si�0 is distributed uniformly. Thus, the denominator
∑N
i=1 λ

si�0ρ/N in

(23) converges to
∫ 1

0 λ
si�0ρ dsi�0 = (λρ − 1)/(ρ logλ) with probability 1 by the law of large

numbers. Let x denote the numerator: x≡ ∑
i∈H1

λsi�0ρ/N . Here, i ∈H1 is equivalent to
0 ≤ si�0 < q. Then the asymptotic mean of x is x0 = ∫ q

0 λ
si�0ρ dsi�0 = (λρq − 1)/(ρ logλ). By

the central limit theorem,
√
N(x− x0) converges in distribution to the normal distribu-

tion with mean 0 and variance

∫ q

0
(λsi�0ρ)2 dsi�0 −

(
λρq − 1
ρ logλ

)2

= λ2ρq − 1
2ρ logλ

−
(
λρq − 1
ρ logλ

)2

�

I regard (23) as a function F of x. Using the delta method, I determine that F(x) asymp-
totically follows a normal distribution with mean F(x0) and variance F ′(x0)

2 Avar(x).
Note that F(x0) is calculated as

√
N

ρ logλ
log

(
(λρ − 1)(λρq − 1)/(ρ logλ)

(λρ − 1)/(ρ logλ)
+ 1

)
= q√N�

This cancels out with the second and third terms ofm1/
√
N .Furthermore,F ′(x0)

2 Avar(x)
is calculated as σ2

1 in the proposition. Then m1/
√
N asymptotically follows a normal

distribution with mean 0 and variance σ2
1 . �

Proof of Proposition 1. As shown in Figure 1, K1 is defined as a fixed point on the
other side of K2 (selected by ES2) across K∗. The interval between K1 and K∗ is divided
by an interior point (denoted byKa), where the aggregate reaction function � crosses the
45-degree line vertically. Define Ma as the number of firms that adjust between �(K∗)
and Ka, and define Mb as the number of firms that adjust between Ka and K1. Using
Lemma 1, (N/ logλ)(logK1 − logK∗)+m1 asymptotes toMa +Mb.

The function (N/ logλ)�(K) is regarded as a realized path of a Poisson process with
rate 1 when the horizontal axis is rescaled by (N/ logλ) logK. Hence, each horizontal
interval between jumps of (N/ logλ)� follows an exponential distribution with mean 1.
Note that (N/ logλ)| logKa − logK∗| is a sum of the intervals that require the Poisson
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jumps to achieve the levelm1 +Ma. Let Zi denote an exponential random variable with
mean 1. Then m1 +Ma is equal to the minimum integer s of a discrete-time stochastic
process m1 + ∑s

i=1Zi to drop below s. In other words, m1 +Ma is the first-passage time
of a discrete-time martingalem1 + ∑s

i=1(Zi − 1) passing 0.
The term (1/

√
N)

∑s
i=1(Zi − 1) asymptotically follows a normal distribution with

mean 0 and variance s/N for large s. Thus, (1/
√
N)(m1 + ∑s

i=1(Zi − 1)) for s =
1�2� � � � �N asymptotically follows the Wiener process Wt in the interval t ∈ [0�1] start-
ing from W0 = limN→∞m1/

√
N as N goes to infinity. The first-passage time T of the

Wiener process starting from m1/
√
N to 0 follows the inverse Gaussian distribution,

with density function (m1/
√

2πN)T−1�5e−(m1/
√
N)2/(2T) (Asmussen and Albrecher 2010,

p. 42). Thus, the probability of Ma = TN asymptotically becomes proportional to

(m1/
√

2π)M−1�5
a e−m2

1/(2Ma) for large Ma conditional on m1. This implies that the inverse
cumulative probability ofMa does not decline faster thanM−0�5

a .
By Lemma 3 for ES2,Mb follows a power-law tail with exponent 0�5 and an initial dis-

turbance smaller than 1. In contrast, the initial disturbance forMa is |m1|. By Lemma 4,
m1/

√
N asymptotically followsN(0�σ2

1 ). Thus, |m1| scales as
√
N . Hence, the asymptotic

variance ofMa +Mb is dominated byMa.
By combining the tail behaviors of Ma and Mb, the inverse cumulative prob-

ability of Ma + Mb does not decline faster than the power law with exponent 0�5
does. By the selection rule ES1, |gN | = min{| logK1 − logK∗|� | logK2 − logK∗|}. Be-
cause the two terms in the minimization operator are independent conditional on m1,
Pr(|gN |> g |m1)= Pr(| logK1 − logK∗|> g |m1)Pr(| logK2 − logK∗|> g |m1). Thus, gN
conditional on m1 has a tail that does not decay faster than the power function with
exponent 0�5 + 0�5 = 1. At the power exponent 1, the variance of gN conditional on m1

decreases as
∫ N

x2x−2 dx/N2 ∼ 1/N .
The variance of Ma is linear in |m1|, because Ma is the first-passage time to travel

|m1|. For the same reason, the variance of M for ES1 is linear in |m1|. Hence,
min{M�Ma +Mb} asymptotically also has a variance linear in |m1|. Because the mean
of |m1| increases as

√
N and the variance of gN conditional on m1 = 1 decreases as 1/N ,

the variance of gN decreases as 1/
√
N . Therefore, when the tail distribution of gN con-

ditional on m1 does not decay faster than the power law with exponent 1, the variance
of gN does not decrease faster than 1/

√
N . �

Proof of Proposition 2. Lemma 1 implies that (logK2 − logK∗)/ logλ asymptotes to
(m1 +M)/N , which I focus on here. Its unconditional variance Var((m1 +M)/N) is de-
composed as E[Var(M/N |m1)] + Var(m1/N + E[M/N |m1]). By Lemma 4, the variance
ofm1/N converges to 0. Furthermore, |M| ≤N(1 +q) holds because of the discrete con-
straint on capital choice. Therefore, Var((m1 +M)/N) is always finite. In what follows, I
show that this variance has a strictly positive lower bound.

The asymptotic probability distribution function for M conditional on |m1| when
φ= 1 is obtained using (22) is

p(m)≡ Pr(M =m | |m1|)= |m1|e−|m1|−m

m! (m+ |m1|)m−1� (24)
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The maximum number of firms that adjust in the tatonnement process depends on
the sign of m1. This asymmetry in the upper bound of M matters for ES2, where the
aggregate fluctuation does not vanish in the limit of N . With the discrete constraint
on capital choice, the maximum number of investments in the tatonnement process
(mu) is N(1 − q), whereas that of divestments is N(1 + q). Thus, the distribution of M
unconditional on m1 is symmetric around 0 up to N(1 − q). Hence, the upper bound
of |E[M/N | |m1|]| is obtained by modifying the integrand M/N as M/N = 1 − q for the
eventM >N(1−q) andM/N = −(1+q) for the eventM <−N(1−q). The upper bound
is then evaluated as E[∑∞

m=N(1−q)+1 qp(m)]. This implies

Var(M/N | |m1|)
= E[(M/N)2 | |m1|] − E[M/N | |m1|]2

>

N(1−q)∑
m=0

(m/N)2p(m)+
∞∑

m=N(1−q)+1

(1 − q)2p(m)−
[ ∞∑
m=N(1−q)+1

qp(m)

]2

�

The combination of the last two terms is nonnegative for any N when q < 0�5. The first
term is evaluated using (24) as

N(1−q)∑
m=0

(m/N)2p(m) >

N(1−q)∑
m=0

|m1|e−|m1|−m√
2πmm+0�5e−m+1/(12m)

(m+ |m1|)m−1(m/N)2

=
N(1−q)∑
m=0

|m1|√
2π
(1 + |m1|/m)m−1e−|m1|e−1/(12m)m−1�5(m/N)2�

where the first line holds according to the inequality (Feller 1957, p. 52)

m!<√
2πmm+0�5e−m+1/(12m)�

For an arbitrarily small ε0 > 0, there exists a large number Nε0 such that for all m>Nε0 ,
(1 + |m1|/m)m−1e−|m1|e−1/(12m) > 1 − ε0 holds. Thus,

N(1−q)∑
m=0

(m/N)2p(m) > (1 − ε0)
|m1|√

2π

N(1−q)∑
m=Nε0

m−1�5(m/N)2

> (1 − ε0)
|m1|√
2πN2

∫ N(1−q)

Nε0−1
m0�5 dm (25)

= (1 − ε0)((1 − q)1�5 − ((Nε0 − 1)/N)1�5)

1�5
√

2π

|m1|√
N
�

Hence,
∑N(1−q)
m=0 (m/N)2p(m) converges to a number greater than (25).

Becausem1/
√
N asymptotically followsN(0�σ2

1 ) by Lemma 4, I can use the formula
E[|m1|/

√
N] → σ1

√
2/π. Applying this, I find that the asymptotic variance of M/N is

bounded from below by (1 − q)1�5σ1/(1�5π). �
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Proof of Proposition 3. When si�t follows a distribution uniform over the unit in-
terval, si�u−1 follows the same distribution. This is because the uniform distribution is
invariant to transformation by adding idiosyncratic and common shocks and by taking
a modulo 1.

Define log λ̂i ≡ (logλi)a
ρ/α
i�t+1b

ρ
i�t+1/E[aρ/αi�t+1b

ρ
i�t+1]. The time subscript t is dropped in

the rest of the proof. The heterogeneous counterpart of Lemma 1 is

N(logKu − logKu−1) =
∞∑
n=1

∑
i∈Hu

(
a

1/α
i ki�u−1

Ku−1

)ρ
ρn−1(logλi)n

n! +O(1/N)

=
∑
i∈Hu a

ρ/α
i b

ρ
i λ
si�u−1ρ

i∑N
i=1 a

ρ/α
i b

ρ
i λ
si�u−1ρ

i /N

∞∑
n=1

ρn−1(logλi)n

n! +O(1/N)

→
∑
i∈Hu

log λ̂i� asN → ∞�

where the last line used
∑N
i=1 λ

si�u−1ρ

i /N → ∫ 1
0 λ

si�u−1ρ

i dsi�u−1 = (λ
ρ
i − 1)/(ρ logλi). In ad-

dition, for i ∈Hu, si�u−1 <φ(logKu−1 − logKu−2)→ 0 asN → ∞.
The probability for firm j to be included inHu+1 is

Pr
(
j ∈Hu+1

∣∣∣ j /∈ ⋃
v=2�3�����u

Hv

)
= φ(logKu − logKu−1)/ logλj

1 −φ(logKu−1 − logK0)/ logλj

∼ φ
∑
i∈Hu log λ̂i

N logλj −φ∑
h∈⋃

v=2�3�����u Hv
log λ̂h

� asN → ∞�

The event j ∈Hu+1 asymptotically follows a Bernoulli trial with probability (26). Uncon-
ditional on realizations of λ̂i and λj , the probability is equal to

φmuE[log λ̂i]E
[

1
/(
N logλj −φ

∑
h∈⋃

v=2�3�����u Hv

log λ̂h

)]
�

The number of firms of j ∈ ⋃
v=2�3�����u Hv is

∑u
v=2mv. Hence, the number of firms mu+1

follows a binomial distribution with this probability and populationN − ∑u
v=2mv.

Suppose that the process
∑u
v=2mv is finite with probability 1. Then, the mean of

mu+1 with this binomial distribution converges to φ̂mu as N → ∞. For
∑u
v=2mv to be

finite, mu must be a supermartingale. Thus, φ̂ ≤ 1 must hold. Hence, for φ̂ ≤ 1, mu+1
asymptotically follows a Poisson distribution with mean φ̂mu. Because a Poisson dis-
tribution is infinitely divisible, mu+1 is equivalent to a mu-fold convolution of a Poisson
distribution with mean φ̂. The rest of the proof proceeds as that for Lemma 3. �

Proof of Proposition 4. Using a heterogeneous-firm counterpart of the optimal in-
vestment threshold, the right-hand side of the gap dynamics in (6) is written as a mod-
ulo 1 of

log(1 − δi)+ log(Âi�tK
φ
t )− log(Âi�t+1K

φ
t+1)+ ρ

α(1−ρ) (logai�t − logai�t+1)

logλi
+ si�t + 1�
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where Âi�t ≡ (wγ/(1−γ)
t (Rt − 1 + δi))−1/(1−ρ). Then

si�t = (tUi + Vi�t +Wi�t + si�0 + t)mod 1 = (tUi + Vi�t +Wi�t + si�0)mod 1�

where Ui ≡ (log(1 − δi))/ logλi, Vi�t ≡ (ρ/(α(1 − ρ)))(logai�0 − logai�t)/ logλi, and Wi�t ≡
(log(Âi�0K

φ
0 ) − log(Âi�tK

φ
t ))/ logλi. Because ai�t is an i.i.d. bounded random variable,

Vi�t has a well defined density that is common for any t. The variable Wi�t is a stationary
process, and Ui has a continuous density. Hence, tUi taken modulo 1 converges in dis-
tribution to a unit uniform random variable as t → ∞. Moreover, its sum with an abso-
lutely continuous random variable, taken modulo 1, also converges to the unit uniform
distribution (Engel 1992, pp. 28–29). �

Proof of Proposition 5. The expectation system (7), (8), (9), (11), (12), (17), (18),
and (19) can be log-linearized as follows. Let a tilde denote the log difference from the
steady state. In accordance with Sims (2001), for the log difference variables, the time
subscripts indicate the period in which the variable is observable to the agents. For
example, a predetermined variableKt corresponds to K̃−1, whereas Et−1Ct corresponds
to E−1C̃0. Then I obtain

K̃0 = (1 − δ)K̃−1 + δX̃0 (26)

Ỹ0 = αK̃−1 + (1 − α)L̃0 (27)

Ỹ0 = (C̄/Ȳ )C̃0 + (X̄/Ȳ )X̃0 (28)

E−1Ỹ0 = K̃−1 − 1 − α
α

E−1w̃0 (29)

w̃0 = C̃0 + (ζ − 1 + w̄L̄/C̄)L̃0 (30)

0 = 1 − α
α

E−1w̃0 + R̄

R̄− 1 + δE−1R̃0 (31)

R̃0 = σ(C̃0 − C̃−1)− (σ − 1)(w̄L̄/C̄)(L̃0 − L̃−1) (32)

X̃0 = E−1X̃0 + ε0

C̃0 = E−1C̃0 +ηC0 � L̃0 = E−1L̃0 +ηL0
Ỹ0 = E−1Ỹ0 +ηY0 � w̃0 = E−1w̃0 +ηw0 �

where (ηC0 �η
L
0 �η

Y
0 �η

w
0 ) are endogenous expectation errors caused by the expectation

error in investment, ε0.
The labor share w̄L̄/Ȳ is constant at cL. I set the definitions ac ≡ C̄/Ȳ , ax ≡ X̄/Ȳ ,

and aR ≡ R̄/(R̄ − 1 + δ). I also denote the marginal utility of consumption as μt ≡
C−σ
t (1 −ψLζt )1−σ . Then

μ̃0 = −σC̃0 + (σ − 1)(cL/ac)L̃0� (33)

Thus, (30) and (33) yield the compensated labor supply function L̃0 = ηL(w̃0 + μ̃0/σ),
where ηL ≡ ((2 − 1/σ)(cL/ac) + ζ − 1)−1 is Frisch elasticity. Combining this with (31)
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and (32), I obtain (
αaR

1 − α + 1
σ

)
E−1μ̃0 = αaR

1 − αμ̃−1 +η−1
L E−1L̃0� (34)

Combining (33) with (27), (29), and (30), I obtain

− 1
σ

E−1μ̃0 = αK̃−1 − (α+η−1
L )E−1L̃0� (35)

Substituting E−1L̃0 out from (34) and (35), I obtain(
ηL

σ(1 + αηL) + aR
1 − α

)
E−1μ̃0 = 1

1 + αηLK−1 + aR
1 − αμ̃−1� (36)

Combining (33) with the capital accumulation process (26), (27), and (28), I obtain
A1E−1L̃0 = −(ac/σ)E−1μ̃0 + (ax/δ)E−1K̃0 − (α+ ax(1 − δ)/δ)K̃−1, where A1 ≡ 1 − α−
cL(σ − 1)/σ . Substituting E−1L̃0 by using (35), I obtain

ax

δ
E−1K̃0 −

(
ac

σ
+ A1

σ(α+η−1
L )

)
E−1μ̃0 =

(
α+ ax(1 − δ)

δ
+ A1α

α+η−1
L

)
K̃−1� (37)

Note that (37) and (36) represent the expectation system and are stacked in a matrix
form:

B

[
E−1K̃0

E−1μ̃0

]
=D

[
K̃−1

μ̃−1

]
�

I note that B21 = D12 = 0, where the subscript ij denotes the (i� j)th coordinate of
the matrices B and D. Using this property, I obtain det(B−1D) =D11D22/(B11B22) > 0.
Similarly, for a two-by-two identity matrix I, I obtain

det(B−1D− I) = det(B−1D)+ 1 − det(B)−1(B22D11 −B12D21 +B11D22)

= (B11 −D11)(B22 −D22)+B12D21

B11B22
�

I have B22 −D22 > 0, B12D21 < 0, and B11B22 > 0, while B11 −D11 ≤ 0 if ax ≤ α. Hence,
det(B−1D − I) < 0 holds if the investment-to-output ratio is less than α at the steady
state.

Let ϕ(ξ) denote the determinant of B−1D − ξI. From the earlier results, I deter-
mine that ϕ(0) = det(B−1D) > 0 and ϕ(1) = det(B−1D− I) < 0. Thus, ϕ(ξ) is a convex
quadratic function that has a strictly positive intercept at ξ= 0 and takes a strictly nega-
tive value at ξ= 1. Therefore, ϕ(ξ) has two real roots ξ1� ξ2 such that 0< ξ1 < 1< ξ2 and,
hence, the dynamics of (K̃� μ̃) have a unique saddle-point path in the neighborhood of
the steady state if ax < α.

Now the capital accumulation is driven by aggregate investment shock as K̃0 =
E−1K̃0 + δε0. Thus, [K̃0 E−1μ̃0]′ = B−1D[K̃−1 μ̃−1]′ + [δ 0]′ε0. As shown earlier, B−1D

has one eigenvalue for each inside and outside of a unit circle. Hence, the expectation
system is determinate. �
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Appendix B: Derivations of equations in Section 3

Derivation of (9). Since pi�t+1 is predetermined in period t, li�t+1 is determined pas-
sively by a production function and a demand function as

li�t+1 =
( p−η

i�t+1Yt+1

ai�t+1k
α
i�t+1

)1/(1−α)
�

By using these relations, I can write the firm’s objective in period t as

Et

[
R−1
t+1

(
p

1−η
i�t+1Yt+1 −wt+1

( p−η
i�t+1Yt+1

ai�t+1k
α
i�t+1

)1/(1−α)
+ (1 − δ)ki�t+1

)]
− ki�t+1�

The first order condition with respect to pi�t+1 yields

p
1−η+η/(1−α)
i�t+1 = (ai�t+1k

α
i�t+1)

−1/(1−α)Et[(wt+1/cL)Y
1/(1−α)
t+1 /Rt+1]/Et[Yt+1/Rt+1]�

where cL ≡ (1 − 1/η)(1 − α). Substituting this into the normalization condition Pt = 1
and using Kt ≡ (∑N

i=1(a
1/α
i�t ki�t)

ρ/N)1/ρ, I obtain (9). �

Derivation of (18). The threshold capital k∗
i�t+1 can be translated to the threshold

gap s∗i�t , where firms with si�t ∈ [0� s∗i�t) invest in period t. Because ai�t+1 is known to i
in period t, si�t+1 = 0 holds when si�t = s∗i�t . Thus, the threshold is obtained from (6) as

s∗i�t =
logk∗

i�t+1 − logk∗
i�t

logλi
− log(1 − δ)

logλi
�

Because of the assumption of the bounded increment of logai�t , the gap si�t always de-
creases over time unless there is an increase by 1.

Aggregate gross investment under the stationary uniform distribution of si�t is calcu-
lated as

Xt =
∫ ∫ s∗i�t

0
(λi − 1)(1 − δ)ki�t dsi�t di

= (1 − δ)
∫ ∫ s∗i�t

0
(λi − 1)λ

si�t
i k

∗
i�tdsi�t di

= (1 − δ)
∫
(λi − 1)(λ

s∗i�t
i − 1)

logλi
k∗
i�t di

= (1 − δ)
∫
λi − 1
logλi

((1 − δ)−1k∗
i�t+1 − k∗

i�t) di

=
∫
λi − 1
logλi

bi�t+1 diKt+1 −
∫
λi − 1
logλi

bi�t di(1 − δ)Kt

= ρA1−ρ(Kt+1 − (1 − δ)Kt)�
Thus, (18) is obtained. �
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Appendix C: Details on calibration and computation

The firms’ markup rate 1/(η − 1) is set at 10%. The capital intensity α is set such that
the labor share w̄L̄/Ȳ is equal to 0�67. The annual rate of depreciation is set at 8%, and
the annual risk-free rate is at 4%. Disutility from labor is specified as a quadratic func-
tion. Indivisibility parameter λi is a random variable drawn in period 0 and fixed for
later periods. Note that λi is set to be drawn from a normal distribution with mean 1�028
and standard deviation 0�004 truncated at 2 standard deviations. I choose this spec-
ification to match the 2�8% plant Herfindahl index estimated by Ellison and Glaeser
(1997). Plant Herfindahl index measures the representative share of a plant’s employ-
ment in an industry. When capital size is adjusted by changing the number of plants,
the plant Herfindahl index can be interpreted as a lower bound of capital indivisibility,
which coincides with firm-level capital indivisibility if the industry is a monopoly. These
parameters and steady-state values for the benchmark specification are summarized in
Table 1.

The number of firms N is set at 110,000 to match the number of firms with 100 em-
ployees or more in the U.S. Census data in 2008. The logarithm of the idiosyncratic
productivity logai�t is assumed to follow a normal distribution with standard deviation

0�05%. The mean productivity is set such that the mean of aρ/(α(1−ρ))
i�t (which appears in

the threshold rule (10)) is normalized to 1. In the initial period, si�0 is randomly drawn
from a uniform distribution, and in each period, productivity ai�t is drawn indepen-
dently. The equilibrium path is simulated for 1,100 periods, from which the first 100
periods are discarded. The reported moments in Table 2 are averages of 10 simulated
runs. Figures in parentheses report standard errors for each averaged moment.
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