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Matching information
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We analyze the optimal allocation of experts to teams, where experts differ in the
precision of their information, and study the assortative matching properties of
the resulting assignment. The main insight is that in general it is optimal to diver-
sify the composition of the teams, ruling out positive assortative matching. This
diversification leads to negative assortative matching when teams consist of pairs
of experts. And when experts’ signals are conditionally independent, all teams
have similar precision. We also show that if we allow experts to join multiple
teams, then it is optimal to allocate them equally across all teams. Finally, we
analyze how to endogenize the size of the teams, and we extend the model by
introducing heterogeneous firms in which the teams operate.
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1. Introduction

The aggregation of decentralized information is a fundamental source of value creation
within firms and organizations. Management heavily relies on the information and
judgement of its employees. The influential work by Marshak and Radner (1972) has
explored this topic in detail. In their basic formulation, a team is a group of agents with
a common objective who take actions based on their information. In most economic
settings, however, a team does not work in isolation but is embedded in a market or a
larger organization with multiple teams that compete for their members. This makes
the composition and information structure of teams endogenous.
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In this paper, we embed such teams in a matching framework, and analyze optimal
sorting patterns in the tradition of Becker (1973). Matching models shed light on how
competition shapes the allocation of heterogeneous agents, such as partners in mar-
riage, business, or firms and workers. A novel feature of our model is that the character-
istic of an agent is the expertise to generate valuable information for a team. This is im-
portant in many applications such as research and development collaborations, teams
of consultants, and the executive board of corporations. It also provides a rationale for
the diversity of worker characteristics commonly observed within firms.

The model consists of a group of agents or experts that must be partitioned into
fixed-size teams. Experts differ in the precision of their signals. Within a team, each
agent draws a signal about an unknown parameter before making a joint decision.
Building on the standard paradigm in team theory, we assume normal distributions and
quadratic payoff functions. Conditional on the unknown state, experts’ signals may be
positively correlated, as is the case if they have access to common resources or received
similar training; alternatively, they may be negatively correlated. We also assume that
team members can transfer utility and observe each other’s signal realizations before
making a decision. While this precludes potential incentive issues, it allows us to zero in
on the impact of information aggregation on matching, which is the novel question we
address.

We first provide a closed form solution for a team’s value function. It depends on ex-
perts’ characteristics and correlation parameter through an index that summarizes the
information contained in the experts’ signals. The index reveals that negatively corre-
lated signals are more informative than conditionally independent ones. The opposite
is true when correlation is positive but small. The intuition relies on the marginal value
of adding a signal. While an expert’s characteristic adds to the team’s precision, this gain
needs to be adjusted by how correlated the signal is with those of the other members.

We then analyze the optimal composition of teams. The main insight is that it is gen-
erally optimal to diversify the composition of the teams. Positive assortative matching
(PAM), that is, allocating the best experts to one team, the second tier of best experts to
another, and so on, is suboptimal in this setting. In most cases there cannot even be two
teams where one contains uniformly better experts than another one. This is because
for a wide range of correlation values, the value function is strictly submodular in ex-
perts’ precision. As a result, there would be profitable swaps of experts between any two
ordered teams that will improve efficiency.

When teams contain two experts, diversification leads to negative assortative match-
ing (NAM), so the optimal team composition pairs the best expert with the worst, the
second best with the second worst, and so on until depleting the pool of experts. But
for larger teams, our model is akin to partition problems that are NP-hard (Garey and
Johnson 1978, Vondrák 2007), and thus a succinct characterization of the composition
of optimal teams is not possible. We can, however, derive further properties of the op-
timal matching when signals are conditionally independent, since in this case a team’s
precision is simply the sum of the precision of its members, and this permits us to obtain
sharp results. We show that in this case it is optimal to build teams that are maximally
balanced, i.e., team precision tends to be equalized across teams.
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We also explore fractional assignment of experts across teams. In reality, team mem-
bers often spend a fraction of their time on different tasks and thus are members of more
than one team (e.g., Meyer 1994). When signals are conditionally independent, the pre-
cision of all teams is equalized, which can be accomplished by allocating each expert
to every team uniformly (i.e., divide the expert’s time equally among all teams). This
diversification result is a generalization of NAM, for the team value function is strictly
submodular in agents’ characteristics. Fractional assignment also affords a simple de-
centralization of the optimal matching as a Walrasian equilibrium, which reduces to
comparing first-order conditions.

We then extend the model by adding heterogeneous firms that match with teams of
experts, and find that there are two dimensions to the optimal sorting pattern, which
combine PAM and diversification. More productive firms match with teams of higher
precision, so there is PAM between firm quality and team precision. Yet within each
team, there can be diversification of expertise, which depends on how spread out firm
productivity is: the higher is the spread, the higher is the difference between team pre-
cision across teams and, hence, the lower the diversity of expertise within teams.

There is a lot of structure in the model that permits the derivation of all the results.
At the end of the paper, we provide a thorough discussion of our main assumptions and
potential extensions that seem interesting to pursue. In particular, we show that many
of the insights extend if we relax the assumption that groups are of equal size.

Related literature

The paper is related to several strands of literature.

Assortative matching Given our focus on sorting, the obvious reference is Becker
(1973). The novel features are that agents differ in their signal informativeness, which is
relevant in matching settings of economic interest, and the multi-agent nature of teams,
unlike the standard pairwise paradigm in matching models with transferable utility.
In Kremer (1993), identical firms hire multiple workers, which could be interpreted as
teams. The team payoff in Kremer (1993) is multiplicatively separable in the workers’
characteristics and, thus, it is strictly supermodular. This implies that PAM is optimal
and that, given his large market assumption, each firm hires all agents with the same
characteristic. Unlike his setting, in our model the team payoff function is in most cases
submodular, and NAM or a generalization thereof ensues. Kelso and Crawford (1982)
also analyze multi-agent matching and prove the existence of equilibrium for a class of
such models. Here we focus on sorting patterns in a team setting. Our model also re-
lates to the literature on matching and peer effects. In the presence of correlation, each
agent’s signal imposes an “externality” on the group via its effect on aggregate precision.
Pycia (2012) provides a comprehensive analysis of this topic, and gives conditions for
positive sorting. Similarly, Damiano et al. (2010) analyze group formation and assorta-
tive matching with peer effects. Our paper differs in many ways from theirs, e.g., our
focus on information and the diversification property.
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Teams We also build on the large literature on teams started by Radner (1962) and
Marshak and Radner (1972). As in that literature, we abstract from incentive problems.
But instead of analyzing a team in isolation with a given information structure, we study
teams in a matching setting. Three recent related papers are Prat (2002), Lamberson and
Page (2011), and Olszewski and Vohra (2012). Prat (2002) analyzes the optimal composi-
tion of a single team, and provides conditions for a homogeneous or a diversified team
to be optimal. In his setting, the cost of an information structure for the team is exoge-
nously given. Lamberson and Page (2011) analyze the optimal composition of a team
of forecasters, who use weighted averages of the signals to estimate an unknown state,
with weights chosen to minimize expected square error. Unlike these papers, we focus
on sorting of agents into teams, where the cost of endowing a team with an information
structure is the opportunity cost of matching the experts with another team. Olszewski
and Vohra (2012) analyze the optimal selection of a team where members’ productivi-
ties are interdependent in an additive way. They provide a polynomial time algorithm
to construct the optimal set and comparative statics results with respect to the cost of
hiring and productivity externalities. Unlike their paper, we assume transferable util-
ity and derive our match payoff function from the information aggregation of experts’
signals, which does not fit their model. As a result, our sorting analysis is quite differ-
ent, and there is no polynomial-time algorithm to select the optimal teams. Although
less related, Meyer (1994) shows that fractional assignment can increase the efficiency
of promotions, for it may enhance learning about the ability of team members. In our
model, it also increases efficiency as it equalizes the precision of teams. Finally, Hong
and Page (2001) study the optimal composition of a problem solving team, where agents
have bounded abilities and apply heuristics to tackle a problem. Our teams do not en-
gage in problem solving but aggregate their information in a Bayesian fashion.

Value of information Since each team runs a multivariate normal experiment, the pa-
per is related to the literature on comparison of such experiments, e.g., Hansen and
Torgersen (1974) and Shaked and Tong (1990). We provide a closed form solution for the
index of informativeness in our problem, and study the effects of correlation on the in-
dex. Also, we analyze the complementarity properties among signals, and this is related
to Börgers et al. (2013), who provide a characterization result for two (discrete) signals
to be complements or substitutes. Unlike that paper, we study a normal framework and
embed it in a matching setting.

Partition problems There is a significant discrete optimization literature on partition
problems, nicely summarized in Hwang and Rothblum (2011). Ours is a partition prob-
lem, and in the conditionally independent case, we actually solve a sum-partition prob-
lem (each team is indexed by the sum of its members’ characteristics). Most of the re-
lated results in the literature are derived for maximization of Schur convex objective
functions, in which case one can find optimal consecutive partitions (i.e., constructed
starting from the highest characteristics downward). We instead deal with the maxi-
mization of a Schur concave objective function, and thus cannot appeal to off-the-shelf
results. Moreover, we also shed light on many other properties of the solution.
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2. The model

There is a finite set I = {1�2� � � � �m} of agents. A mapping x : I → [x�x] assigns a “level
of expertise” (henceforth characteristic) x(i) ≡ xi ∈ [x�x], 0 < x < x < ∞, to each agent
i = 1�2� � � � �m. Without loss of generality, we assume x1 ≤ x2 ≤ · · · ≤ xm.

Each agent is allocated to one of N teams of fixed size k, and we assume that m= kN .
In each team, agents solve a joint decision problem, indexed by an unknown state of
nature s. The prior belief agents have about s is given by a density h that is normal with
mean μ and precision (inverse of the variance) τ, so the random variable s̃ is distributed
normal with mean μ and precision τ, that is, s̃ ∼ N (μ�τ−1).

Once in a team, an agent with characteristic xi draws a signal ξ̃i from f (· | s�xi) that
is normal with mean s and precision xi; that is, ξ̃i ∼ N (s�x−1

i ). Better experts are those
endowed with more precise signals, which are more informative in Blackwell’s sense.1

Conditional on the state s, signals can be correlated across team members. For instance,
it could be the case that agents use similar technologies to estimate the state or they have
acquired their training in similar places, etc. The pairwise covariance between any two
agents xi and xj is given by ρ(xixj)

−0�5, where ρ ∈ (−(k − 1)−1�1).2 An important case
that we analyze in detail is ρ = 0, conditionally independent signals, which is commonly
assumed in normal models of information acquisition.

As in the classical theory of teams, there is no conflict of interest among team mem-
bers. After observing the signal realizations of every member, they jointly take an action
a ∈R to maximize the expected value of π − (a− s)2, where π > 0 is an exogenous profit
level that is reduced by the error in estimating the unknown state.3 To ensure that a
team’s expected payoff is positive, we assume that π > τ−1.

Formally, a group with characteristics x= (x1�x2� � � � � xk) solves

V (x) = max
a(·) π −

∫
· · ·

∫ (
a(ξ)− s

)2
f (ξ | s�x�ρ)h(s)

k∏
i=1

dξi ds�

where a : Rk → R is a measurable function, ξ = (ξ1� ξ2� � � � � ξk), f (· | s�x�ρ) is the joint
density of the signals generated by the members of the group, and V (x) is the maximum
expected payoff for the team. The density f (· | s�x�ρ) is multivariate normal with mean
given by a k × 1 vector with all coordinates equal to s, and a k × k covariance matrix
�k with diagonal elements 1/xi and off-diagonal elements ρ(xixj)

−0�5 for all i �= j. The
resulting (ex post) payoff is shared among team members via transfers.4 Agents have
linear preferences over consumption, and as a result, utility is fully transferable.

1A signal is more informative in Blackwell’s sense than another one if the second is a “garbling” of the

first. Formally, if xi > xj , then ξ̃i is more informative than ξ̃j since ξ̃j = ξ̃i + ε̃, where ε̃ ∼ N (0�x−1
j − x−1

i ) is

independent of ξ̃i (Lehmann 1988, p. 522, and Goel and Ginebra 2003, p. 519).
2We have multiple random variables that can be pairwise negatively correlated. For a simple example,

consider ξ̃1 = s̃ + z̃1 + z̃2, ξ̃2 = s̃ − z̃1 + z̃3, and ξ̃3 = s̃ − z̃2 − z̃3, where z̃i , i = 1�2�3, are independent. The
lower bound −1/(k − 1) ensures that the covariance matrix of any team is positive definite; it is clear that
when k is large, we cannot have too much pairwise negative correlation.

3The results extend with minor changes to the case in which π depends on N .
4A team’s ex post payoff can be negative, but this poses no problem as it is expected transfers that matter

at the matching stage, and these can be chosen to be nonnegative since V (x) > 0 for all x.
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Transferable utility implies that any optimal matching maximizes the sum of the

teams’ profits. Hence, an optimal matching is the partition of the set of agents into N

teams of size k that maximizes
∑

n V (xn).5 Formally, let ϒ = {x1�x2� � � � � xkN } be the mul-

tiset of characteristics and let P(ϒ) be the set of all partitions of ϒ into sub-multisets of

size k.6 The optimal matching problem is

max
P∈P(ϒ)

∑
S∈P

V (xS)�

The model subsumes several possible interpretations. It could be a many-to-one match-

ing problem between experts and identical firms of fixed size. Alternatively, we could

think of these teams as different divisions within the same firm. The assignment can be

accomplished by a social planner, by a competitive market, or by a chief executive offi-

cer if all the teams belong to a single firm. Regarding the state of nature s, it could either

be the same for all groups or each team could obtain an independent draw of s from h

(e.g., different teams perform different tasks). Finally, all teams are of equal size k, and

k is given. This simply extends the pairwise assumption made in most of the matching

literature. We later discuss relaxing this assumption.

3. Correlation, informativeness, and diversification

There are two stages in the model: the team formation stage, where agents sort into N

teams each of size k, and the information aggregation stage, in which team members

pool their information and choose an action. We proceed backward and analyze first

the information aggregation problem and then the sorting of agents into teams.

3.1 The team’s decision problem and value function

Consider a team with vector x = (x1�x2� � � � � xk). After observing the signal realizations

ξ = (ξ1� ξ2� � � � � ξk), the team updates its beliefs about the state s. Since the prior distri-

bution of s is normal and so is the distribution of the signals, it follows that the posterior

distribution of s is also normal and is denoted by h(· | ξ�x�ρ). Then the team solves

max
a∈R

π −
∫
(a− s)2h(s | ξ�x�ρ)ds�

It follows from the first-order condition that the optimal decision function is

a∗(ξ) =
∫

sh(s | ξ�x�ρ)ds = E[s̃ | ξ�x�ρ]�

5For simplicity, in the text we use
∑

n in place of
∑N

n=1,
∑

i in place of
∑k

i=1, and so on.
6A multiset is a generalization of a set that allows for repetition of its members.
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Inserting a∗(ξ) into the team’s objective function, we obtain

V (x) = π −
∫

· · ·
∫ (

E[s̃ | ξ�x] − s
)2
f (ξ | s�x�ρ)h(s)

k∏
i=1

dξi ds

= π −
∫

· · ·
∫ (∫ (

s −E[s̃ | ξ�x])2
h(s | ξ�x�ρ)ds

)
f (ξ | x�ρ)

k∏
i=1

dξi

= π −
∫

· · ·
∫

Var(s̃ | ξ�x�ρ)f (ξ | x�ρ)
k∏
i=1

dξi�

where f (ξ | x�ρ) ≡ ∫
f (ξ | s�x�ρ)h(s)ds. The second equality uses h(s | ξ�x�ρ)f (ξ |

x�ρ) = h(s)f (ξ | s�x�ρ), and the third equality follows from replacing the expression for
the variance of posterior density. The team value function thus depends on the infor-
mation conveyed by the signals only through the variance of the posterior density of the
unknown state.

It is well known that when signals are identically distributed normal and condi-
tionally independent (ρ = 0), then the posterior precision is deterministic (it does not
depend on ξ) and it is equal to the sum of the prior’s and the signals’ precisions (see
De Groot 1970, p. 167). The next proposition extends this result to our more general
setting.

Proposition 1 (Value of a team). The value of a team with characteristics x is

V (x) = π − 1
τ + B(x�ρ)

� (1)

where

B(x�ρ)=

(
1 + (k− 2)ρ

) k∑
i=1

xi − 2ρ
k−1∑
i=1

k∑
j=i+1

(xixj)
0�5

(1 − ρ)
(
1 + (k− 1)ρ

) � (2)

The proofs of all the results are provided in the Appendix.7 As illustrations of (1)–(2),
notice that in the conditionally independent case, B(x�0) = ∑

i xi and, thus,

V (x) = π − 1

τ +
k∑
i=1

xi

�

Also, when k = 2, then B(x�ρ) = (x1 + x2 − 2ρ(x1x2)
0�5)/(1 − ρ2). And if x1 = x2 = · · · =

xk = x, then B(x�ρ)= kx/(1 + ρ(k− 1)).

7The proof proceeds by induction after obtaining the general functional form of the inverse of the co-
variance matrix. Another route is first to show that the optimal decision is a weighted average of the sig-
nals, then obtain the general form of the inverse of a covariance matrix, and finally appeal to Theorem 2 in
Lamberson and Page (2011). A third route is simply to adapt formula 3.19 on p. 128 stated without proof in
Figueiredo (2004) to our setup. We provide a simple proof for completeness.
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3.2 Correlation and informativeness

The function B(x�ρ) is the index of informativeness of the vector of signals ξ drawn
from a multivariate normal distribution centered at s and with covariance matrix �k.
The higher is the value of B(x�ρ), the more informative is ξ in Blackwell’s sense.8 An
interesting question to explore is how correlation affects the informativeness of a team.
The following proposition contains the most important properties of B.

Proposition 2 (Team precision). The function B satisfies the following properties:

(i) It is positive for all (x�ρ).

(ii) The addition of a signal increases B for all (x�ρ).

(iii) It is strictly convex in ρ for each x, with arg minρB(x�ρ) > 0 for all x.

The first two properties are intuitive: since x > 0, the precision of any signal is pos-
itive and so is B, which yields property (i). And adding a signal cannot decrease team
precision (at worst it can be ignored); hence property (ii) should hold.

More interesting is the convexity of B in ρ and that its minimum is at a positive value
of ρ. In particular, it implies that B(x�0) > minρB(x�ρ) and thus conditionally indepen-
dent signals are less informative than negatively correlated ones, but more informative
than positively correlated ones in an interval of positive values of ρ.9 Since this is an
issue that has received some attention in the statistical literature in the context of equal
precision normal signals (see Shaked and Tong 1990), we discuss it a bit further.

Suppose k = 2 and x1 = x2 = x. Then B(x�ρ) = 2x/(1 + ρ), and thus 2x/(1 + ρ) > 2x
if and only if ρ < 0. Moreover, B(x�ρ) is decreasing in ρ. This is easiest to see in the
extreme cases: if ρ = 1, then observing the second signal is useless, while it is valuable
under independence, and if ρ = −1, the second signal is infinitely informative, as it re-
veals the state. Consider ρ ∈ (−1�1). The conditional distribution of ξ̃2 given ξ1 and s

is N ((1 − ρ)s + ρξ1� (1 − ρ2)/x). Both positive and negative correlation reduce the vari-
ance of the second signal. But negative correlation makes the mean more “sensitive” to
s than positive correlation, making the second signal more informative about s.

Consider k = 2 but now with an arbitrary x, so B(x�ρ) = (x1 + x2 − 2ρ(x1x2)
0�5)/

(1 − ρ2). Then B(x�ρ) > B(x�0) if ρ < 0, and this also holds when ρ > 0 if and
only if ρ > ρ̂ = (x1x2)

0�5/((x1 + x2)/2), where the right side is less than 1 by the
arithmetic–geometric mean inequality (with equality if and only if x1 = x2). More-
over, now B reaches a minimum at ρ̂, displaying a U shape unlike the constant pre-
cision case. The explanation is that now positively correlated signals continue to be
informative even in the limit, and the reduction in the variance provided by corre-
lation outweighs the lower sensitivity of the mean with respect to s when ρ is large
enough. In the above example, the conditional distribution of the second signal is

8This follows from Theorem 2 in the survey by Goel and Ginebra (2003, p. 521), which is a celebrated
result by Hansen and Torgersen (1974). See Appendix A.3 for details.

9For a simple illustration, let θ̃1 = s̃ + z̃ and θ̃2 = s̃ − z̃, with E[z̃] = 0. Conditional on s, they reveal the

state as θ̃1 + θ̃2 = s. This would not happen if θ̃2 = s̃ + z̃ or with different and independent z̃s.
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N ((1 − (x1/x2)
0�5ρ)s + ρξ1� (1 − ρ2)/x2), where the mean continues to depend on s even

when ρ= 1 and the variance goes to 0. Hence, one can perfectly infer the state with per-
fect positively correlated signals and heterogeneous experts, something that does not
occur with 0 < ρ< 1.

3.3 Diversification of expertise across teams

We now turn to the team formation stage and use the properties of the team value func-
tion (1) to shed light on optimal sorting. We begin with a crucial lemma.

Lemma 1 (Value function properties). Consider a team with characteristics x:

(i) If ρ = 0, then V is strictly submodular in x.

(ii) If ρ < 0, then V is strictly submodular in x if τ ≤ B(x) and x≤ 16x.

(iii) If ρ > 0, then V is strictly submodular in x if ρ≤ 1/((k− 1)(x/x)0�5 − (k− 2)).

Lemma 1 reveals that the value function is submodular in the characteristic of the
team members in many cases of interest. Part (i) asserts that this is true in the condi-
tional independent case, and by continuity it is so for a small amount of correlation.
Regarding part (ii), it shows that under negative correlation, V is submodular when
the value of experts’ information is higher than the precision of the prior, which is ar-
guably the most relevant case. It also contains a restriction on the domain of the pre-
cision of each expert (the proof provides a weaker bound for x that depends also on k,
and that in the standard case in matching with k = 2 is equal to infinity). Finally, part
(iii) provides an upper bound on ρ under positive correlation below which V is strictly
submodular.10

We will say that the optimal matching exhibits diversification if no two teams are or-
dered in the sense that all experts in one team have higher characteristics than those of
the other team. In particular, the presence of diversification implies that positive assor-
tative matching (PAM)—i.e., the best k experts are assigned to one team, the next best k
to another, and so on, and hence all teams are ordered by expertise—cannot be the opti-
mal sorting pattern. In the case of k= 2, optimal diversification is equivalent to negative
assortative matching (NAM).

Proposition 3 (Optimality of diversification). Under the conditions in Lemma 1, the
optimal matching exhibits diversification and it is NAM if k = 2.

This result follows from Lemma 1. Given any partition with two ordered teams, one
can find a swapping of two experts, one from each team, that strictly increases

∑
n V (xn)

10For an intuitive explanation of the bounds in (ii) and (iii), notice that V is concave in B, which is a force
toward submodularity. If ρ < 0, then B is increasing and supermodular in x, which is a force against it. The
bound in (ii) ensures that the first effect prevails. If ρ > 0, then B is submodular, and it is increasing if the
bound in (iii) holds. In that case, the effects of V and B reinforce each other.
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by strict submodularity. And if k = 2, it is well known (Becker 1973) that submodularity
implies NAM. Hence, matching leads to a balanced expertise assignment across teams.

A natural question is whether, in the cases not covered by Lemma 1, V can be su-
permodular and thus optimal matching exhibits PAM. The answer is no when ρ > 0, for
in this case V cannot be supermodular: there is always a subset of [x�x]k around the
“diagonal” x1 = x2 = · · · = xk where the team value function is strictly submodular. In-
deed, in this case, V is strictly submodular in x if x − x is sufficiently small, so there is
not much heterogeneity among experts. If ρ < 0, however, then for any given value of ρ,
the function V is supermodular in x if τ is large enough, in which case we obtain PAM.
But we show in Appendix A.6 that τ must be unboundedly large as ρ converges to 0 or
−1/(k− 1), and that for any ρ ∈ (−1/(k− 1)�0), a necessary condition for V to be super-
modular is that τ be strictly larger than 10kx, i.e., more than 10 times the precision of the
best team possible. That is, PAM can ensue in this case only if prior precision is much
larger than that of any team, and thus experts are of little value.

3.4 Properties of optimal teams

We have focused on the optimality of diversification but have been careful not to assert
that NAM is optimal, except for k = 2. The reason is that it is unclear how to define it
when k > 2 (unlike PAM, which extends straightforwardly). Moreover, we will see below
that computing the entire matching is intractable when k > 2. The best we can do in
Proposition 3 is to assert that the optimal matching will not contain ordered teams, i.e.,
diversification, which rules out PAM. There are, however, important classes of problems
for which we can say much more about the properties of optimal teams.

3.4.1 Size-two teams and negative sorting An important instance we can fully solve is
the case most matching models focus on, namely, pairwise matching or k = 2. Then
NAM is optimal whenever V is submodular (Becker 1973). That is, given any four agents
with characteristics x1 > x2 ≥ x3 > x4, total payoff is maximized if x1 is matched with
x4 and x2 with x3, something that easily follows from submodularity. The computation
of the optimal matching is straightforward in this case: match xi with x2N−i+1 for each
i = 1�2� � � � �N .

Moreover, the conditions in Lemma 1 are easy to obtain. Recall that in this case
B(x1�x2) = (x1 + x2 − 2ρ(x1x2)

0�5)/(1 − ρ2) = 2(AM(x1�x2) − ρGM(x1�x2)/(1 − ρ2),
where AM(x1�x2) = (x1 + x2)/2 is the arithmetic mean, and GM(x1�x2) = (x1x2)

0�5 is
the geometric mean. Inserting this expression into V (x1�x2) = π − (1/(τ + B(x1�x2))

and differentiating, reveals that the sign of the cross-partial derivative of V is equal to
the sign of the expression

3ρAM(x1�x2)− (
2 + ρ2)GM(x1�x2)− 0�5ρ

(
1 − ρ2)τ� (3)

If ρ < 0, then it is easy to check that if τ ≤ 3B(x1�x2) (and there is no restriction on the
support), then the sign of (3) is negative, thereby weakening Lemma 1(ii).11 In turn,

11To see this, simply replace τ by 3B(x1�x2) in (3), which results in a negative expression.
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if ρ > 0, then it suffices to ignore the last term in (3) and provide a bound on ρ such
that 3ρAM(x1�x2)− (2 + ρ2)GM(x1�x2) ≤ 0 (recall that AM ≥ GM with strict inequality
unless x1 = x2). The worst case for a negative sum is when we evaluate AM and GM
at (x�x). Simple algebra reveals that in this case NAM obtains if ρ ≤ (0�75(1 + R2) −
0�25(9 − 14R2 + 9R4)0�5)/R, where R= (x/x)0�5. Alternatively, one can use a similar argu-
ment as in the case of ρ < 0 and show that NAM ensues if τ ≥ 3B(x1�x2) for all (x1�x2).

It is also well known that the optimal matching can be decentralized as the allo-
cation of a competitive equilibrium (e.g., see Chade et al. 2017). The following proce-
dure is a standard way to derive the wage function that supports μ as an equilibrium,
where our endogenous V pins down its properties. The simplest way to describe it is
to assume a large market with a measure m of agents and N = m/2 of teams. Let x be
distributed with cumulative distribution function (cdf) G and continuous and positive
density g. Then NAM can be described by a function μ that solves G(μ(x)) = 1 − G(x)

for all x. Posit a wage function w that agents take as given when “choosing” a partner.
Each x solves maxx′ V (x�x′) − w(x′), with first-order condition V2(x�x

′) = w(x′), where
V2 is the derivative with respect to the second argument. In equilibrium, this holds at μ,
so V2(μ(x)�x) =w′(x) for all x, which yields

w(x) =w(x)+
∫ x

x
V2

(
μ(s)� s

)
ds�

The pair (μ�w) is the competitive equilibrium with NAM. Since V2(μ(x)�x) > 0 for all
x when ρ ≤ 0, it follows that wages are higher for experts with higher characteristics. If
ρ > 0, however, V2(μ(x)�x) < 0 for low values of x and positive for higher values. Under
conditional independence, one can easily show that wages are linear if f is symmetric,
and convex if it is decreasing in x (i.e., if experts with higher characteristics are scarcer).

3.4.2 Conditionally independent signals and balanced teams A standard assumption
in applications with information acquisition is that signals are conditionally indepen-
dent. We now describe the properties of optimal teams in this case.

The team value function is V (x) = π − (τ + ∑
i xi)

−1, which is strictly submodu-
lar in x, and it is strictly concave in

∑
i xi. For clarity, we set v(

∑
i xi) ≡ V (x) and de-

note the precision of team n by Xn ≡ ∑
i xin. Any partition of the experts yields a vector

(X1�X2� � � � �XN), and hence we seek the one that maximizes
∑

n v(Xn).
In this case all partitions have the same sum

∑
n Xn = X , so the problem is akin to a

welfare maximization problem where a planner allocates an “aggregate endowment” X

among N identical “consumers,” equally weighted.
If X could be continuously divided, then the problem would reduce to finding

(X1�X2� � � � �XN) to maximize
∑

n v(Xn) subject to
∑

n Xn = X . And since the objective
function is strictly concave, the solution would be Xn =X/N for all n, so all teams would
have the same precision.12 Clearly, this depends on X being continuously divisible, but
a similar insight obtains in the discrete case under independence.

12From the first-order conditions, we obtain that v′(Xn) = v′(Xm) for any n �= m, i.e., the marginal benefit
of team precision must be equalized across all teams.
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Figure 1. Geometry of majorization. The figure depicts vector X ′ = (X ′
1�X

′
2) (and its mirror

image (X ′
2�X

′
1)) whose sum equals that of any point along the line AD. Vectors on the segments

AB and CD, that is, vectors that “pull away” from the 45 degree line, majorize X ′, and any vector
on BC is majorized by X ′. The closer a vector is to the 45 degree line, the higher the value is of
any Schur concave function.

We need the following concepts. A vector X = (X1�X2� � � � �XN) majorizes a vec-
tor X′ = (X ′

1�X
′
2� � � � �X

′
N) if

∑m
�=1 X[�] ≥ ∑m

�=1 X
′[�] for m = 1�2� � � � �N , with

∑N
�=1 X[�] =∑N

�=1 X
′[�], and where X[�] is the �th largest coordinate of X (see Figure 1 for an illus-

tration of majorization). Also, a function f : RN → R is Schur concave if f (X′) ≥ f (X)

whenever X majorizes X′, and it is strictly Schur concave if the inequality is strict (see
Marshall et al. 2010).

Any partition generates a vector of team precisions (X1�X2� � � � �XN). Let  be the
set of such vectors partially ordered by majorization, which is a notion of how “spread
out” a vector is. Then

∑
n v(Xn) is strictly Schur concave on , as it is the sum of strictly

concave functions v (Marshall et al. 2010, Proposition C.1, p. 92).
It follows that if we compare the team precision vectors of two partitions of the ex-

perts and one majorizes the other, then the planner prefers the majorized one (by Schur
concavity). Intuitively, since all partitions have the same “mean” and the majorized par-
tition has less “spread,” a planner with a “concave utility” function is better off with it.
Continuing this way, each time a partition is “improved” by decreasing the spread of
its associated team precision vector in the sense of majorization, the objective function
increases. This suggests that the optimal team structure minimizes the spread in the
precision of the teams, thereby making them as balanced as possible.13

13That teams are diversified does not mean that we cannot find one with homogeneous members. For
instance, consider six agents with characteristics 1, 4, 5, 5, 5, and 10, and let k = 3. Then the optimal
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Proposition 4 (Maximally balanced teams). Assume conditional independence.

(i) The optimal matching must be an element of the set of partitions whose team preci-
sion vectors (X1�X2� � � � �XN) are majorized by those generated by all the remaining
partitions.

(ii) If a team precision vector is majorized by the precision vectors of all the feasible
partitions of the agents, then its associated partition is the optimal matching.

An implication of this result is that if there is a partition with Xn =X/N for all n, then
it is optimal, for the vector (X/N�X/N� � � � �X/N) is majorized by all partitions.

Although vectors majorized by every other vector need not exist—and thus one
needs to use Proposition 4(i) instead—two important cases where they do are k = 2
(teams of size 2) and N = 2 (two-team partitions). The first case has already been dis-
cussed, and, barring ties, the partition identified by the construction of the NAM parti-
tion is the optimal one. And if N = 2, then the precision vectors generated by partitions
are completely ordered by majorization. This follows from X1 =X−X2 for all partitions,
and thus any two precision vectors are ordered. Hence, a minorizing vector (X1�X2) ex-
ists and its associated partition of the set of agents into two teams solves the problem.

Another implication is that finding a polynomial-time algorithm to construct an op-
timal partition is a futile task except when k = 2. The problem requires finding a parti-
tion where team precisions are equalized as much as possible. When N = 2, this reduces
to the so-called number partitioning problem with a constraint on the size of the two
sets in the partition, which is well known to be NP-hard (e.g., Garey and Johnson 1978,
Mertens 2006).14 When N = 3, this is like the three-partition problem, which is strong
NP-complete (Garey and Johnson 1978, p. 504), and so on for N > 3.

A natural question is whether the optimal matching can be decentralized. As we saw,
the answer is yes if k= 2, and in the next section on fractional assignment, we show that
this is indeed the case as well. But we do not have an analogous result when k > 2 and
each agent is assigned to only one group. Our setup is a special case of the general frame-
work in Kelso and Crawford (1982), where firms hire (or partnerships consist of) groups
of heterogeneous agents and the match payoff depends on their composition. We show
in Appendix A.9, however, that our model fails their crucial gross substitutes (GS) condi-
tion, and thus we cannot appeal to their results.15 We conjecture that in our setup where
teams have identical payoff functions, the optimal matching can be decentralized. But
this is a nontrivial task that we leave for future research.

partition is {1�4�10} and {5�5�5}, and the second team contains homogeneous agents. But notice that (a)
the two teams are not “ordered,” and (b) generically, agents will have different characteristics.

14Garey and Johnson (1978, p. 499) provide an optimal dynamic programming algorithm.
15In words, GS asserts that if the wages of experts of different characteristics weakly increase, then a firm

or partnership will still find it optimal to hire those experts to whom they made offers at the previous wages,
whose wages did not change. Most of the general equilibrium with indivisibilities literature relies on this
property. Moreover, if GS held, a byproduct would be that the planner’s objective function would satisfy it
as well, and a greedy algorithm would then find the optimal groups (Murota 2003, Chapter 11, Section 3).
But we know that this is not true in our setting.
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3.4.3 Fractional assignment and perfect diversification Many assignment problems in-
volve fractional time dedication. For instance, management consultants at McKinsey or
partners in a law firm dedicate time to different projects that run in parallel, and sim-
ilarly for researchers. Applying this to our setting, we now assume that agents can be
fractionally assigned to teams.16

To make this operational, we need an assumption about an expert’s contribution to
a team when working fractionally. We assume that the precision of the signal the expert
contributes to a team is proportional to her time dedication to that team. For example,
if an agent works part time for two teams, her signals are independent in each team and
each has half the precision it would have if she worked full time for one of them. To
avoid information spillovers, we assume there is an independent draw of the state of
nature in each team (e.g., each team works on a different task). Finally, we assume that
ρ = 0, so signals are conditionally independent. These assumptions deliver clean results
and make the model amenable to interesting extensions and variations.

It will be helpful to slightly change and abuse the notation: let x(I) = {x1�x2� � � � � xJ}
be the set of distinct characteristics of agents, and denote by mj the number of agents of
characteristic xj , so that

∑
j mj = kN and X = ∑

j mjxj . Denote by μjn ≥ 0 the fractional

assignment of characteristic-j agents to team n. Feasibility requires that
∑

j μjn = k for
every n (i.e., the sum of the allocations of characteristics to team n must equal the fixed
team size k), and

∑
n μjn = mj for every j (i.e., the number of xj agents allocated to all

the teams must equal mj , the total number of them in the population). Finally, let Xn =∑
j μjnxj be the precision of team n.

The fractional assignment problem is

max{μjn}j�n

N∑
n=1

v

(
J∑

j=1

μjnxj

)

s.t.
N∑
n=1

μjn = mj ∀j�
J∑

j=1

μjn = k ∀n� μjn ≥ 0 ∀j�n�

As in the integer case, all partitions of agents have the same total sum X . But fractional
assignment allows for continuous division of X , which yields the following result.

Proposition 5 (Perfect diversification). Assume conditional independence. Then any
optimal matching equalizes team precision across teams, i.e., Xn = X/N for all n. An
optimal solution is to allocate an equal fraction of each expert’s characteristic to each
team, i.e., μjn = mj/N for all j�n.

To gain some insight on this result, notice that a less constrained version of the
fractional assignment problem is to maximize the objective function

∑
n v(

∑
j μjnxj) =∑

n v(Xn) subject only to
∑

j

∑
n μjnxj = X , which reduces to

∑
nXn = X . Since v is

16This assumption is not without precedent in the literature on assignment games, as noninteger assign-
ment of agents is usually permitted in its formulation (although not used in equilibrium). Other combina-
torial optimization problems (e.g., knapsack) also explore versions with fractional solutions.
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strictly concave, the planner wants to minimize the spread in precision across teams,
and thus the unique solution is to set Xn = X/N for all n. The additional constraints do
not affect this property of the solution, and indeed it is easy to check that μjn = mj/N

for all j�n satisfies all the constraints and achieves the equal precision property of teams.
This is actually the unique symmetric solution of the problem, which entails perfect di-
versification of expertise across teams, as they have exactly the same composition.17

Proposition 5 uses the conditional independence assumption in important ways,
especially in the equal-precision property, which does not hold with correlation. The
perfect diversification result, however, extends to the case with negative correlation. The
details are given in the Appendix, but the logic is simple. When ρ is negative, B is concave
in the fractions of each agent in the team, and since V is strictly increasing and strictly
concave in B, it follows that V is concave in the fractions as well. Given the constraints
and the symmetry of the problem, it follows that distributing each agent in an equal
fraction to each team solves the planner’s problem. (If ρ > 0 the concavity of V in the
fractions is lost and little can be said about the optimal fractional assignment.)

Allowing for fractional assignment makes the decentralization of the optimal
matching straightforward under independence. Let there be competitive prices
(w1�w2� � � � �wJ) for different characteristics of experts. Consider the interpretation of
identical firms hiring teams. Then each firm n solves the concave problem

max{μjn}j�n
v

(∑
j

μjnxj

)
−

∑
j

μjnwj

s.t.
∑
j

μjn = k� μjn ≥ 0 ∀j�

There are J first-order conditions for each of the N firms,

v′
(∑

j

μjnxj

)
xj −wj −φn = 0 ∀j�n�

where φn is the Langrange multiplier for firm n. These conditions are the same as the
planner’s once wj is substituted by the planner’s Langrange multiplier for this character-
istic. It readily follows that the planner’s and the decentralized allocations coincide.

Under the identical firms interpretation in a competitive market, we can also endo-
genize the size of the teams once we allow for free entry of firms.

Proposition 6 (Endogenous team size). Assume ρ = 0 and fractional assignment,
and let identical firms enter a competitive market by paying a fixed cost F , with

17The solution in terms of team precision Xn = X/N is unique. But unless there are only two character-
istics, μjn = mj/N is not the unique solution. For an example, let k = 2, N = 6, and x(I) = {1�2�3�4�5},
with one agent of each characteristic 1–4 and two agents with characteristic 5. Thus, X = 20. Both
{{1�4�5}� {2�3�5}} and mj/2 yield X1 = X2 = 10. Multiplicity is due to the linearity of the constraints and
because the experts’ precision in a team are perfect substitutes. Also, the proof of Proposition 5 makes
clear that fractional assignment allows for unequal size groups (not imposing the

∑
j μjn = k constraint),

something that is hard to obtain with integer assignment.
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π − (1/τ) < F < π, which can hire workers at wages (w1�w2� � � � �wJ) without a size con-
straint on teams. Then there is a unique equilibrium team size k∗, which is strictly in-
creasing in F and strictly decreasing in τ and X .

To avoid the trivial cases with no firm or an infinite number of them, we assume π −
(1/τ) < F < π.18 We show in Appendix A.12 that there is a unique equilibrium number
of active N� > 0. As the number of experts m is fixed, we obtain a unique equilibrium
team size k� = m/N�. A higher entry cost F implies that firms require higher post-entry
profits. Thus, fewer firms enter the market, which leads to a larger team size in each firm.
Since firm size is larger, this lowers the marginal product of experts, which leads to lower
wages and higher post-entry profits. An increase in prior precision τ reduces wages and
increases the revenue v(X/N), which induces entry and and thus a lower equilibrium
team size. A similar logic applies to an increase in aggregate precision X .

4. Heterogeneous firms, PAM, and diversification

One interpretation of the model is that of a market where identical firms compete to
form teams of experts. In reality, firms are likely to be heterogeneous as well and solve
problems of varying economic impact. For example, consulting firms that differ in their
reputation consult for clients who are also heterogeneous. The value of expertise differs
at those firms and so will their demand for experts, thus affecting sorting.

We now analyze such an extension. For simplicity, we assume conditional indepen-
dent signals and fractional assignment, but the main insights hold more generally. There
are N heterogeneous firms. Let yi be the characteristic (e.g., productivity or technology)
of firm i, with 0 < y1 ≤ y2 ≤ · · · ≤ yN . Each firm matches with a team of size k. If a firm
with characteristic y matches with a team with precision

∑
i xi, then the expected payoff

from the match is yv(
∑

i xi). The optimal matching problem is to partition the experts
into k-size teams and assign them to the firms to maximize

∑
n ynv(

∑
i xin).

Since yv(
∑

i xi) is supermodular in (y�
∑

i xi), it is clear that it is optimal to match
better firms with higher precision teams. And since it is submodular in experts’ charac-
teristics, there can still be diversification of expertise across teams. This insight is stated
formally as follows.

Proposition 7 (Heterogeneous firms). The optimal matching entails PAM between
firm quality yn and team precision Xn, n = 1�2� � � � �N , with Xn given by

Xn = y0�5
n

N∑
n=1

y0�5
n

(τN +X)− τ� (4)

Moreover, there exists a fractional assignment rule {μjn}j�n that yields (4) for all n.

18An alternative to free entry that yields the same insights is to assume that there is a cost of forming
teams, c, that is strictly increasing and convex in N .
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The optimal matching of firm quality and team precision solves the problem

max
{Xn}Nn=1

N∑
n=1

ynv(Xn)

s.t.
∑
n

Xn =X�

The first-order conditions are ynv
′(Xn) = yn′v′(Xn′) for all n �= n′, which yields (4).

For some intuition on its solution, we note that this problem is equivalent to a welfare
maximization problem where a planner allocates an “aggregate endowment” X among
N consumers, with weight yn on consumer n.

A lot can be learned from (4) (see the details in Appendix A.13). First, unless yn = y

for all n, in which case Xn =X/N , the optimal solution is increasing in n, so higher char-
acteristic firms match with higher precision teams.19 Second, an increase in aggregate
precision X increases the precision of all teams. Tracing a welfare maximization parallel,
if the aggregate endowment increases, each consumer gets a higher level of consump-
tion Xn (i.e., team precision is a “normal good” for the planner). Moreover, the difference
between team precision at consecutive firms, Xn−Xn−1, increases. Third, an increase in
prior precision τ increases Xn for high values of n and decreases otherwise. In the plan-
ner’s analogy, an increase in τ affects the planner’s marginal rate of substitution between
Xi and Xj for any i �= j in the direction of the consumer with the larger weight between
the two. The difference between team precision at consecutive firms, Xn − Xn−1, also
increases. Finally, if the yns become more “spread out” (in a precise sense related to ma-
jorization), then team precision increases for better ranked firms and decreases for lesser
ranked ones. The intuition is similar to that given above for the planner’s analogy and
the changes in the marginal rate of substitution.

All these insights are based on the optimal team precision for the teams. To
complete the analysis, we prove that there exists a fractional assignment rule {μjn}j�n
that implements (4). With heterogeneous firms, the assignment differs from perfect
diversification.

For an illustrative example, consider two firms and four experts who match in pairs
with the firms. Formally, N = 2, k = 2, y1 = 1, y2 = y ≥ 1, there are two agents with
characteristic x1 = 5, and two with x2 = 20. For simplicity, assume τ = 0. From (4) we
obtain X2 = (y0�5/(y0�5 + 1))50 and X1 = (1/(y0�5 + 1))50, so X2 ≥ X1. As y increases,
the composition of teams ranges from NAM to PAM with different degrees of diver-
sification. More precisely, if y = 1, then X2 = X1 and NAM is optimal, i.e., {5�20},
{5�20}; if y ≥ 16, then X2 = 40, X1 = 10, and PAM is optimal, i.e., {5�5}, {20�20}; and
if 1 ≤ y < 16, there is diversification within groups. The fractional assignment rule is
(μ1n�μ2n) = ((40 −Xn)/15� (Xn − 10)/15), n = 1�2.

19The opposite would hold if match payoff were submodular in firm characteristic and team precision.
An easy way to see this is to assume that it is v(

∑
i xi)/z, z > 0, and replace yi by 1/zi in (4).
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5. Discussion and concluding remarks

Many important economic applications entail the formation of teams composed of
members of varying expertise. We have analyzed such a matching problem in a highly
structured model of information, where the notion of a team, the expertise of its mem-
bers, and the aggregate informativeness of their signals are easy to interpret. In this set-
ting, we have derived several insights regarding the sorting patterns that emerge given
the properties of the match payoff function of a team. In particular, we have shown
that in most cases of interest, the optimal formation of teams calls for diversification of
expertise: no team can have uniformly better experts than another team, which rules
out PAM. In the case of pairwise matching, the optimal matching is NAM, while under
conditional independence, diversification leads to teams that are maximally balanced,
which takes the extreme form of equal-precision teams when experts can be fractionally
assigned. We also explored the role of correlation on the informativeness of a team, the
decentralization of the optimal matching, and endogenous team size. Finally, we ana-
lyzed the implications of adding another heterogeneous side of the market, i.e., firms
that differ in their quality, and showed that the optimal sorting pattern exhibits a com-
bination of PAM between firm quality and team precision with diversification within
teams.

We close with some comments on robustness and describe some open problems.

Alternative information models

We build on a canonical model of information that plays a central role in statistical de-
cision theory, i.e., the normal-prior–normal-signals model with quadratic payoff.20 This
setup features prominently in the economic literature on teams, networks, and global
games, in part due to its tractability.21 Another common way to model information
acquisition in economic applications is to assume that an agent receives an informa-
tive signal with some probability, and otherwise receives pure noise. In our setting, an
agent’s characteristic xi is now her probability of receiving an informative signal, signals
are conditionally independent, and the team’s payoff if n informative signals are ob-
served is u(n), where u is concave in n (for example, the informative signals are drawn
from a normal distribution centered at s with precision κ). If k = 2, then the team value
function is

V (x1�x2) = x1x2u(2)+ (
x1(1 − x2)+ x2(1 − x1)

)
u(1)+ (1 − x1)(1 − x2)u(0)�

which is clearly strictly submodular in (x1�x2). Using Poisson’s binomial distribution
(Wang 1993), we show in Appendix A.14 that this is true for any k. Therefore, diversifica-
tion is optimal in this alternative model as well.22

20It is easy to show that the results extends to a payoff function π−(a−s)n with n even, and we conjecture
that they hold for a larger class of strictly decreasing and strictly concave functions of a− s.

21For a couple of representative contributions to networks and global games, see Ballester et al. (2006),
Angeletos and Pavan (2007), and the references therein.

22As we note in Appendix A.14, it turns out that the team value function in this case is very similar to the
expected diversity function in Weitzman (1998) in a different setting.
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Going beyond the analysis of canonical models is hard, as we lose tractability and,
more importantly, we do not know much in general about curvature properties of the
value of information. Indeed, an important feature of our model is that the value of a
team is pinned down by the variance of the posterior beliefs, and that is concave in B and
independent of the realization of the signals. This allows us obtain V in closed form. In
turn, the Gaussian structure of the signals led to a tractable functional form for B, whose
complementarity properties are easy to derive. Similarly, in the variation above it comes
in handy that u is independent of the experts’ characteristics and probabilities are multi-
plicative in them. But it is well known (e.g., Chade and Schlee 2002, Moscarini and Smith
2002) that nonconcavities are hard to rule out in models with information acquisition,
and not much is known about complementarity properties of signals in such problems.
Until there is more progress on this issue, a general analysis that covers a larger class of
models will remain elusive.23 As an illustration of the limits of the analysis, we construct
two examples with PAM in Appendix A.15: one where utility is multiplicative in action
and the state; the other with multidimensional actions.24 In both cases the information
structure and payoff function create complementarities among experts.

Different group sizes

We assume that all groups must be of size k. As mentioned, this is a generalization of
the standard assumption in assignment games where agents match in pairs. We use
this assumption in Proposition 3 when checking for profitable swaps of experts, for it
was important to have teams’ value functions defined on the same domain. We view
the extension of the analysis to groups of different sizes as an important open problem.
Most of the other propositions do not use this assumption in a crucial way. Clearly,
Propositions 1 and 2 do not depend on it, as they apply to any given team. Proposition 4
is also independent of group size, since it is stated in terms of team precision, which
equals the sum of the precision of its members. Its interpretation, however, can change if
teams could have different group sizes. As an illustration, consider ρ = 0 and six agents,
with characteristics 2, 2, 7, 7, 8, and 10. Ifk = 3, then the optimal partition is {2�7�10} and
{2�7�8}, with X1 = 19 and X2 = 17. If we allow the two groups to be of different size, then
the optimal partition is {2�2�7�7} and {8�10}, with X1 = X2 = 18, a strict improvement.
The partition is consecutive in the sense that it puts agents with high characteristics
in one team and agents with low characteristics in the other, and diversification occurs
via the size of each group (the group with better characteristics is smaller). It would be
interesting to know if the property of this example holds in general, although available
results on partitioning problems with optimal consecutive partitions do not apply to
our setup (see Hwang and Rothblum 2011). Notice, however, that this issue is irrelevant
under fractional assignment, since perfect diversification yields X1 = X2 = 18. More

23If one restricts attention to a quadratic payoff and decisions that are weighted averages of the signals—
which are optimal in our normal setting—then one can generalize the results to a large class of signal dis-
tributions. This follows from an application of Theorem 2 in Lamberson and Page (2011).

24We thank an anonymous referee for providing the multidimensional-action example.
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generally, since there is a unique solution under fractional assignment in terms of teams’
precision, there always exists an optimal assignment where all firms have the same size.
As a result, Propositions 5 and 6 extend to variable group sizes.

Class of matching problems

We cast our model as an information aggregation problem that naturally occurs in eco-
nomic contexts where teams form. Besides economic relevance, the model also provides
a microfoundation for the value function of each team based on the informativeness of
its members’ signals. But it is clear from the analysis that what matters are the properties
of V (B(·)) as a function of x. Thus, the results also apply to a class of matching problems
where the value of a team is strictly increasing and strictly concave in B, and B exhibits
the complementarity properties we have used in our results. Since submodular maxi-
mization problems are, in general, NP-hard, this constitutes a subset of such problems
where a lot can be said about their solution.

Nontransferable utility

We make the standard assumption of transferable utility. This would not hold with risk
aversion or moral hazard. If experts were risk averse, in addition to the information ag-
gregation motive, they would be interested in sharing the risky payoff efficiently. Simi-
larly, if moral hazard were added to the problem, e.g., agents exert unobservable effort to
affect signal precision, then the incentive constraints would impose limits on transfer-
ability. These variations turn the model into one with nontransferable utility (see Legros
and Newman 2007). The analysis of sorting in these cases is a relevant open problem
with several economic applications.

Appendix: Omitted proofs

A.1 Preliminaries

We first state a few facts about Bayesian updating and the normal distribution that we
invoke in the proof. Recall that each signal ξ̃i ∼ N (s�x−1

i ), i = 1�2� � � � �k, and the vector
ξ̃ = (ξ̃1� ξ̃2� � � � � ξ̃k) is distributed ξ̃ ∼ N (s��k), where s is a k × 1 vector with s in all
entries, and �k is a k × k symmetric positive definite matrix with diagonal elements
1/xi, i = 1�2� � � � �k, and off-diagonal elements ρ(xixj)−0�5, i �= j. Also, s̃ ∼ N (μ�τ−1).

Fact 1. The inverse of �k is the k× k matrix �−1
k = [qij], where for all i� j = 1�2� � � � �k,

qij = −ρ(xixj)
0�5

(1 − ρ)
(
1 + (k− 1)ρ

) ∀i �= j� qii =
xi

(
1 + (k− 2)ρ

)
(1 − ρ)

(
1 + (k− 1)ρ

) �
To prove it, algebra shows that �−1

k �k = Ik, where Ik is the k× k identity matrix.
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Fact 2. The conditional distribution of ξ̃i, i = 2�3� � � � �k, given (ξ1� ξ2� � � � � ξi−1) is

ξ̃i|ξ1�ξ2�����ξi−1 ∼ N
(
ais + bi�

1
qii

)
�

where ai and bi are given by the expressions

ai = 1 +

i−1∑
j=1

qij

qii
� bi = −

i−1∑
j=1

qijξj

qii
�

This follows from normal distribution results (e.g., Section 5.4 in De Groot 1970).

Fact 3. Given random variables θ̃ ∼ N (m� t−1) and ỹ ∼ N (b+ aθ�x−1), then

θ̃|y ∼ N
(
tm+ xa(y − b)

t + a2x
�

1

t + a2x

)
�

This is a standard result; e.g., see Williams (1991, Section 15.7).

Fact 4. Using ξ̃1 ∼ N (s�x−1
1 ) and Facts 2 and 3, we obtain

s̃|ξ1 ∼ N
(
τμ+ ξ1x1

τ + x1
�

1
τ + x1

)
�

s̃|ξ1�ξ2�����ξi ∼ N
(
τi−1μi−1 + ai(ξi − bi)qii

τi−1 + a2
i qii

�
1

τi−1 + a2
i qii

)
� i = 2�3� � � � �k�

This follows immediately from the two facts mentioned.

A.2 Proof of Proposition 1

The derivation of V (x) shows that V (x) = π − E[Var(s̃ | ξ�x�ρ)], where the expectation

is taken with respect to the distribution of ξ. Thus, we must show that Var(s̃ | ξ�x�ρ) =
1/(τ+B(x�ρ)), which is independent of ξ. We will prove this result in terms of precision,

i.e., we will show that τk = τ +B(x�ρ).

We proceed by induction. This is true for k = 1, as (2) collapses to B(x1�ρ) = x1 and

thus τ1 = τ+x1. Assume it is true for k− 1. We will show it is true for k as well. Using (in
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this order) Facts 4, 2, and 1, we can write τk as

τk = τk−1 + a2
kqkk

= τk−1 +

⎛
⎜⎜⎜⎜⎜⎜⎝

1 − ρ(
1 + (k− 2)ρ

)
k−1∑
j=1

x0�5
j

x0�5
k

⎞
⎟⎟⎟⎟⎟⎟⎠

2

(
xk

(
1 + (k− 2)ρ

)
(1 − ρ)

(
1 + (k− 1)ρ

))

= τk−1 +

(
x0�5
k

(
1 + (k− 2)ρ

) − ρ

k−1∑
j=1

x0�5
j

)2

(1 − ρ)
(
1 + (k− 2)ρ

)(
1 + (k− 1)ρ

) �

(5)

By the induction hypothesis, τk−1 = τ+B(x1�x2� � � � � xk−1�ρ) or, equivalently (using (2)),

τk−1 = τ +

(
1 + (k− 3)ρ

) k−1∑
i=1

xi − 2ρ
k−2∑
i=1

k−1∑
j=i+1

(xixj)
0�5

(1 − ρ)
(
1 + (k− 2)ρ

) � (6)

Combining (5) and (6) yields, after long but straightforward algebra,

τk = τ +

⎛
⎜⎜⎜⎜⎜⎝

((
1 + (k− 1)ρ

)(
1 + (k− 3)ρ

) + ρ2)k−1∑
i=1

xi

1 + (k− 2)ρ

− 2ρ
k−1∑
i=1

k∑
j=i+1

(xixj)
0�5 + xk

(
1 + (k− 2)ρ

)
⎞
⎟⎟⎟⎟⎟⎠

/(
(1 − ρ)

(
1 + (k− 1)ρ

))
�

(7)

Since (1 + (k− 1)ρ)(1 + (k− 3)ρ)+ ρ2 = (1 + (k− 2)ρ)2, (7) can be written as

τk = τ +

(
1 + (k− 2)ρ

) k∑
i=1

xi − 2ρ
k−1∑
i=1

k∑
j=i+1

(xixj)
0�5

(1 − ρ)
(
1 + (k− 1)ρ

) = τ + B(x�ρ)�

Hence, the formula is true for k as well, and the induction proof is complete.

A.3 B(x�ρ) and Blackwell more informative signals

The following result, which follows from a theorem in Hansen and Torgersen (1974),
is stated in Goel and Ginebra (2003, p. 521): Let X = (X1� � � � �Xn) ∼ N (Aβ��X) and
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Y = Y1� � � � �Ym ∼ N (Bβ��Y ), where β = (β1� � � � �βl)
′ is a vector of unknown parame-

ters, A is a known n × l matrix, B is a known m × l matrix, and �X and �Y are pos-
itive definite covariance matrices. Then X is more informative than Y if and only if
A′�−1

X A−B′�−1
Y B is a nonnegative definite matrix.

We apply this result to our setting. Consider two teams with compositions x and x′,
respectively. Let the vector β be simply the scalar s, and let the matrices A and B be
the k × 1 unit vector Ik. Then ξ is more informative than ξ′ if and only if (the scalar)
I′
k�

−1
k Ik − I ′

k�
′−1
k Ik ≥ 0. Tedious algebra using the inverse of the covariance matrix given

in the proof of Proposition 1 reveals that this is equivalent to B(x�ρ) ≥ B(x′�ρ), thereby
showing that B indexes the informativeness of the team signals.

A.4 Proof of Proposition 2

To simplify the notation, let A ≡ ∑k
i=1 xi and C ≡ ∑k−1

i=1
∑k

j=i+1(xixj)
0�5. Below we will

also use the notation Ak and Ck−1�k when we want to highlight the limits of the sums.
We first show a result that we invoke below,

(k− 1)A− 2C =
k−1∑
i=1

k∑
j=i+1

(
x0�5
i − x0�5

j

)2 ≥ 0�

with strict inequality unless xi = xj = x for all i, j. To see this, expand the right side,

k−1∑
i=1

k∑
j=i+1

(
x0�5
i − x0�5

j

)2 =
k−1∑
i=1

k∑
j=i+1

(
xi + xj − 2x0�5

i x0�5
j

)

=
k−1∑
i=1

k∑
j=i+1

(xi + xj)− 2C

=
(
k−1∑
i=1

xi(k− i)+
k−1∑
i=2

xi(i− 1)

)
− 2C

= (k− 1)
k∑
i=1

xi − 2C

= (k− 1)A− 2C�

where the third and fourth equalities follow by expansion of the sums.
(i) To prove that B is positive for all (x�ρ), note that

B(x�ρ)=
(
1 + (k− 2)ρ

)
A− 2ρC

(1 − ρ)
(
1 + (k− 1)ρ

)

≥ 2C

(
1 + (k− 2)ρ

)
k− 1

− ρ

(1 − ρ)
(
1 + (k− 1)ρ

)
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= 2C
(k− 1)

(
1 + (k− 1)ρ

)
> 0�

where the first inequality follows from (k− 1)A ≥ 2C.
(ii) Let xk be a vector of size k. We must show that B(xk�xk+1�ρ) ≥ B(xk�ρ) for all

(xk�ρ) or, equivalently, that(
1 + (k− 1)ρ

)
Ak+1 − 2ρCk�k+1

(1 − ρ)(1 + kρ)
≥

(
1 + (k− 2)ρ

)
Ak − 2ρCk−1�k

(1 − ρ)
(
1 + (k− 1)ρ

) � (8)

By cross-multiplying and using Ak+1 = Ak + xk+1, Ck�k+1 = Ck−1�k + x0�5
k+1

∑k
i=1 x

0�5
i ,

(1 + (k − 1)ρ)2 − (1 + kρ)(1 + (k − 2)ρ) = ρ2, and 1 + (k − 1)ρ − (1 + kρ) = −ρ, we can
rewrite (8) as

ρ2(Ak + 2Ck−1�k)+ (
1 + (k− 1)ρ

)2
xk+1 − 2ρ

(
1 + (k− 1)ρ

)
x0�5
k+1

k∑
i=1

x0�5
i ≥ 0� (9)

which clearly holds if ρ ≤ 0. Assume then that ρ > 0. Notice that in this case (9) is strictly
convex in xk+1. Thus, we are done if it is nonnegative when this expression is minimized
with respect to xk+1. The first-order condition for an interior solution yields

(
1 + (k− 1)ρ

)2 − ρ
(
1 + (k− 1)ρ

)
x−0�5
k+1

k∑
i=1

x0�5
i = 0

⇒ x̂k+1 = ρ2(
1 + (k− 1)ρ

)2

(
k∑
i=1

x0�5
i

)2

�

By inserting x̂k+1 into (9), one can verify that the resulting expression is zero. And since
it is strictly convex in xk+1, it is positive for any other value xk+1 �= x̂k+1. And if x̂k+1 > x,
then the solution of the minimization problem is at x and (9) at xk+1 = x is positive.
Thus, we have shown that for all (x�ρ), B(xk�xk+1�ρ)≥ B(xk�ρ).

(iii) Since x is fixed, we can rewrite B as B(x�ρ)= Cz(ρ�A/C), where

z

(
ρ�

A

C

)
=

(
1 + (k− 2)ρ

)A
C

− 2ρ

(1 − ρ)
(
1 + (k− 1)ρ

) �
The result follows if z(·�A/C) is strictly convex in ρ. Differentiating z twice with respect
to ρ and simplifying yields

zρρ

(
ρ�k�

A

C

)
= 2

k

⎛
⎜⎜⎝
(k− 1)

A

C
− 2

(1 − ρ)3 +

(
2 + A

C

)
(k− 1)2

(
1 + (k− 1)ρ

)3

⎞
⎟⎟⎠ �
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which is positive since, as was shown above, (k− 1)A ≥ 2C, proving convexity. To show
that the minimum is achieved at a positive ρ, one can verify that the sign of the first
derivative of B with respect to ρ is determined by the sign of

A(k− 1)ρ
(
2 + (k− 2)ρ

) − 2C
(
1 + (k− 1)ρ2)�

which is negative at ρ = 0, and thus the minimum is achieved at a positive ρ.

A.5 Proof of Lemma 1

Recall that the team value function is

V (x)= π −

⎛
⎜⎜⎜⎜⎝

1

τ +
(
1 + (k− 2)ρ

)∑k
i=1 xi − 2ρ

∑k−1
i=1

∑k
j=i+1(xixj)

0�5

(1 − ρ)
(
1 + (k− 1)ρ

)

⎞
⎟⎟⎟⎟⎠ �

Since this function is C2, it follows that V is submodular (supermodular) in x if and only
if Vlm = ∂2V /∂xl ∂xm ≤ (≥)0 for all 1 ≤ l �= m≤ k. Simple yet long algebra reveals that the
sign of Vlm is equal to the sign of the expression

(
1 + (k− 2)ρ

)(
4ρ

(
x0�5
l

∑
j �=m

x0�5
j + x0�5

m

∑
j �=l

x0�5
j

)

− ρ

k∑
i=1

xi −
(
1 + (k− 2)ρ

)
4(xlxm)0�5

)
− τρ(1 − ρ)

(
1 + (k− 1)ρ

)

+ 2ρ2
k−1∑
i=1

k∑
j=i+1

(xixj)
0�5 − 4ρ2

∑
j �=m

x0�5
j

∑
j �=l

x0�5
j �

(10)

(i) Expression (10) at ρ = 0 equals −4x0�5
l x0�5

m < 0 and thus Vlm|ρ=0 < 0. Since this
holds for any l and m, and any values of xl and xm, V is strictly submodular in x.25

(ii) Notice that when ρ < 0, B(x) ≤ B(x) for all x. Hence, the premise implies that
τ < B(x). Replacing τ by B(x) and using (2), we obtain that (10) is smaller than

4ρ
(
1 + (k− 2)ρ

)(
x0�5
l

∑
j �=m

x0�5
j + x0�5

m

∑
j �=l

x0�5
j

)
− (

1 + (k− 2)ρ
)24(xlxm)0�5

− 2ρ
(
1 + (k− 2)ρ

)∑
i

xi − 4ρ2

(∑
j �=m

x0�5
j

∑
j �=l

x0�5
j −

k−1∑
i=1

k∑
j=i+1

(xixj)
0�5

)
�

25Notice that (10) is continuous in ρ, so there is an open interval around ρ = 0, which can be made
dependent only on τ, x, and x, on which V is strictly submodular.
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Since
∑

j �=m x0�5
j

∑
j �=l x

0�5
j >

∑k−1
i=1

∑k
j=i+1(xixj)

0�5, it follows that (10) is smaller than

(
1 + (k− 2)ρ

)[
2ρ

(
2
(
x0�5
l

∑
j �=m

x0�5
j + x0�5

m

∑
j �=l

x0�5
j

)
−

∑
i

xi

)
− (

1 + (k− 2)ρ
)
4(xlxm)0�5

]
�

A sufficient condition for this expression to be negative (and thus V strictly submodular)
is that the term multiplying 2ρ inside the square bracket is nonnegative for all x. This
would follow if and only if the minimum of this expression is nonnegative. Rewrite it as

2
(
x0�5
l

∑
j �=m

x0�5
j + x0�5

m

∑
j �=l

x0�5
j

)
−

∑
i

xi = xl + xm + 2
(
x0�5
l + x0�5

m

) ∑
j �=l�m

x0�5
j −

∑
j �=l�m

xj�

Consider the problem

min
x≤x1�����xk≤x

xl + xm + 2
(
x0�5
l + x0�5

m

) ∑
j �=l�m

x0�5
j −

∑
j �=l�m

xj�

It is easy to see that at the optimum xl = xm = x and all the xj , j �= l�m, are equal and
either all x or all x. If they are all x, then the value of the objective at the minimum is
(2 + 3(k− 2))x > 0 and then V is strictly submodular. If they are all x, then the value of
the objective is 2x+ (k− 2)x0�5(4x0�5 − x0�5), which is positive if x ≤ 16x.

(iii) From (1), we obtain that Vlm < 0 if and only if Blm − (2BlBm/(τ + B)) < 0. When
ρ > 0, Blm < 0. Hence, it suffices that Bi, i = 1�2� � � � �k, be nonnegative. The sign of Bi

reduces to that of

1 + (k− 2)ρ− ρx−0�5
i

∑
j �=i

x0�5
j ≥ 1 + (k− 2)ρ− ρ(k− 1)

(
x

x

)0�5
�

which is nonnegative if ρ≤ ((k− 1)(x/x)0�5 − (k− 2))−1.
One can improve the bound given in (ii) by checking when 2x +

(k − 2)x0�5(4x0�5 − x0�5) ≥ 0. It is easy to show that this is the case if x ≤ α(k)x, where

α(k) = (7 − 7�5k+ 2k2 − 2(k− 2)
2
3 (k− 1)0�5)−1 > 16 for all k≥ 2, and limk→2 α(k) = ∞.

A.6 Supermodularity of V and prior precision

Assume ρ < 0 as in Lemma 1(ii). We assert in Section 3.2 that in this case supermodular-
ity of V in x requires τ > 9�89kx. We now justify this assertion.

Using (11), it follows that a necessary condition for V supermodular in x when cor-
relation is ρ is that prior precision be larger than the bound

τ >
4(1 − ρ)+ kρ

−kρ
(
1 + (k− 1)ρ

)kx�
Notice that the right-hand side goes to infinity as ρ goes to 0 or −1/(k− 1). More gener-
ally, consider the problem

J(k) = min
ρ∈(− 1

1−k �0)

4(1 − ρ)+ kρ

−kρ
(
1 + (k− 1)ρ

) �
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One can show that the minimum is achieved at −(2(2(k−1)−√
3k(k− 1))/(4−5k+k2)

and that J(k) = (−4 + 7k + 4
√

3k(k− 1))/k, which is increasing in k. Since k ≥ 2, it
follows that J(k) ≥ J(2) = 9�898979 for all k ≥ 2. Therefore, τ must be at least J(2)kx for
V to be supermodular in x at ρ.

A.7 Failure of supermodularity of V around the diagonal

Assume ρ > 0. We asserted in the text that V cannot be supermodular. To show it, let
x ∈ [x�x] and x1 = x2 = · · · = xk = x. Evaluating the expression for the cross-partial in
(10) at this vector yields

(
1 + (k− 2)ρ

)(
8ρ(k− 1)x− ρkx− (

1 + (k− 2)ρ
)
4x

) − τρ(1 − ρ)
(
1 + (k− 1)ρ

)
+ ρ2(k− 1)x

(
k− 4(k− 1)

)
�

After algebraic manipulation, this expression can be written as

−τρ
(
1 + (k− 1)ρ

) − x
(
4(1 − ρ)+ kρ

) ≤ −τρ
(
1 + (k− 1)ρ

) − x
(
4(1 − ρ)+ kρ

)
< 0� (11)

Hence, Vlm|x1=···=xk=x < 0 for any x ∈ [x�x] and any l �= m. By continuity, there is an
interval around x such that if the components of x belong to that interval, then Vl�m <

0 for all l and m. Thus, for any ρ > 0, V cannot be supermodular on [x�x]k. Finally,
since the result holds for any x ∈ [x�x], it follows that for | x − x | sufficiently small, i.e.,
equal to the aforementioned neighborhood around x, the team value function is strictly
submodular. Hence, diversification ensues if heterogeneity of expertise is small.

A.8 Proof of Proposition 4

Let M ⊆  consist of all the vectors (generated by partitions) that are majorized by all the
remaining vectors in Mc (the complement of M in ).

(i) Toward a contradiction, assume that the optimal partition has a precision vec-
tor (X1� �X2� � � � �XN) that does not belong to M (this set is defined in the text). Since
any element of M is majorized by (X1�X2� � � � �XN) and the objective function is
Schur concave, an improvement is possible, thereby contradicting the optimality of
(X1�X2� � � � �XN).

(ii) This follows from (i) and the singleton property of M .

A.9 Failure of the Gross substitutes property

Recall that the model can be reinterpreted as one of matching groups of experts with
identical firms. A decentralized version of the problem would have each firm face a
vector of characteristic-dependent wages w at which it can hire them. Ignore the size-k
restriction in what follows (it is easy to introduce it). The firm solves

max
A⊆I

v

(∑
i∈A

xi

)
−

∑
i∈A

w(xi)�
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Let D(w) be the set of solutions to this problem. The crucial property in Kelso and Craw-
ford (1982) is the gross substitutes condition (GS): If A∗ ∈D(w) and w′ ≥w, then there is
a B∗ ∈D(w′) such that T(A∗)⊆ B∗, where T(A∗) = {i ∈A∗ | w(xi) =w′(xi)}.

The following example shows that GS fails in our model.
The firm faces three experts, 1, 2, and 3, with x1 = 1, x2 = 2, and x3 = 3. Make the

innocuous assumption that π = τ = 1 (so hiring nobody yields zero profits).
Let w = ((1/12)−ε�1/12�1/6). Then it is easy to verify that v(x1)−w(x1) = (5/12)+ε,

v(x2) − w(x2) = 7/12, v(x3) − w(x3) = 7/12, v(x1 + x2) − w(x1) − w(x2) = (7/12) + ε,
v(x1 + x3) − w(x1) − w(x3) = (33/60) + ε, v(x2 + x3) − w(x2) − w(x3) = 7/12, and
v(x1 +x2 +x3)−w(x1)−w(x2)−w(x3) = (44/84)+ε. Thus, the optimal choice is unique
and given by A∗ = {1�2}.

Suppose now that w = ((1/12) − ε�1/6�1/6), so that only the wage of expert 2 has
increased. Profits from each subset of experts are v(x1) − w(x1) = (5/12) + ε, v(x2) −
w(x2) = 1/2, v(x3) − w(x3) = 7/12, v(x1 + x2) − w(x1) − w(x2) = (1/2) + ε, v(x1 + x3) −
w(x1) − w(x3) = (33/60) + ε, v(x2 + x3) − w(x2) − w(x3) = 1/2, and v(x1 + x2 + x3) −
w(x1)−w(x2)−w(x3)= (37/84)+ε. Thus, if ε < 1/30, then the optimal choice is unique
and given by B∗ = {3}.

Since in this case T(A∗)= {1} � B∗, it follows that GS does not hold.
Notice that the same example shows that if the firm were constrained to hire at most

two experts, GS would still fail.

A.10 Proof of Proposition 5

Let Xn ≡ ∑
j μjnxj ; multiply both sides of

∑
n μjn = mj by xj and sum with respect to

j to obtain
∑

n Xn = X . If we ignore the other constraints in the problem, we obtain
the doubly relaxed problem of finding (X1� � � � �XN) to maximize

∑
n v(Xn) subject to∑

n Xn = X , whose unique solution (by strict concavity of v) is Xn = X/N for all n. Thus,
any vector of μjns such that

∑
j μjnxj = X/N and μjn ≥ 0 for all j, n solves the doubly

relaxed problem. If, in addition, such a vector satisfies
∑

n μjn = mj for all j, then it
solves the relaxed problem where only the size constraint is omitted.26 Finally, if it also
satisfies

∑
j μjn = k for all n, then it solves the fractional assignment problem.

Let μjn = mj/N for all j, n. Then Xn = ∑
j μjnxj = ∑

j(mj/N)xj = X/N for all
n. Moreover,

∑
n μjn = ∑

nmj/N = Nmj/N = mj and
∑

j μjn = ∑
j mj/N = kN/N = k.

Thus, μjn =mj/N for all j, n solves the fractional assignment problem.
Since there is at least one solution in terms of μjns that achieves the value Nv(X/N)

(the value of the less constrained problem above), it follows that any optimal matching
must have the property that Xn =X/N for all n.27

26Unlike the case with integer assignment, now we could easily solve the problem with unequal group
sizes, since the main requirement is that the equal-team precision condition is satisfied.

27An alternative proof of this property is to show that if it does not hold at the optimum of the fractional
assignment problem, then there are two teams n′′ and n′ such that Xn′′ <Xn′ , and two characteristics x� <

xp with μ�n′′ > 0 and μpn′ > 0. Then an ε > 0 reallocation of these types reduces Xn′ and increases Xn′′ ,
which increases the value of the objective function. Thus, Xn = X/N for all n.
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A.11 Fractional assignment with ρ ≤ 0

Recall that there are m agents with x1 ≤ x2 ≤ · · · ≤ xm. Assume that ρ ∈ (−1/(m−1)�0]. It
will be convenient to reinterpret μin as the fraction of agent i, between 0 and 1, allocated
to team n. As in Section 3.4.3, we assume that if i allocates a fraction 0 ≤ μin ≤ 1 to team
n, then she contributes with the realization of a signal whose precision is μinxi. For
clarity, denote the informativeness of team n given {μin}mi=1 by

B(x�μn�ρ)=

(
1 + (m− 2)ρ

) m∑
i=1

μinxi − 2ρ
m−1∑
i=1

m∑
j=i+1

(μinxiμjnxj)
0�5

(1 − ρ)
(
1 + (m− 1)ρ

) � (12)

Notice that B is concave in μn when −1/(m − 1) < ρ ≤ 0, as it is a sum of concave
functions of the μins. Denote the value of team n given (x�μn�ρ) by v(B(x�μn�ρ)) =
π − (1/(τ+B(x�μn�ρ))). Since v(B(x� ·�ρ)) is a strictly increasing and concave transfor-
mation of B(x� ·�ρ)), it follows that v(B(x� ·�ρ)) is concave in μn.

We will assume that all agents are present in all teams in some fraction, which can
be zero for some teams. The planner then solves the problem

max
μ1�����μN

N∑
n=1

v
(
B(x�μn�ρ)

)

s.t.
m∑
i=1

μin = k� n = 1�2� � � � �N� (13)

μin ≥ 0� i = 1� � � � �m�n = 1�2� � � � �N�

μin ≤ 1� i = 1� � � � �m�n = 1�2� � � � �N� (14)

N∑
n=1

μin = 1 i = 1�2� � � � �m� (15)

Proposition 8. Under the assumptions made, the perfect diversification assignment
μin = 1/N for all i� n solves the planner’s problem.

Proof. The objective function is continuous in μn and the constraints set is compact
and consists of linear constraints. Thus, a solution exists, and since the objective func-
tion is concave in μn, any critical point that satisfies the Kuhn–Tucker conditions is a
global optimum. Concavity and symmetry make μin = 1/N for all i� n a natural candi-
date solution.

Notice that μin = 1/N for all i� n is feasible, for it satisfies all the constraints (the first
one because k=m/M). We now show that it is indeed an optimal solution.

Let λn, ξin, and νi, i = 1�2� � � � �m, n = 1�2� � � � �N , be the multipliers of constraints
(13), (14), and (15), respectively. The Kuhn–Tucker conditions are, for all i, n,

v′(B(x�μn�ρ)
)
Bμin(x�μn�ρ)− λn − ξin − νi ≤ 0� μin ≥ 0

with complementary slackness.
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Consider, as part of a candidate solution, μin = 1/N for all i� n. Since this is positive
and strictly less than 1, it follows that ξin = 0 for all i, n and

v′
(
B

(
x�

1
N

�
1
N

� � � � �
1
N

�ρ

))
Bμin

(
x�

1
N

�
1
N

� � � � �
1
N

�ρ

)
= λn + νi� (16)

Notice that (16) is a system of i × n equations. Since the compositions of all teams are
equal, it follows that Bμin is independent of n; denote it then by Bμi . But this implies
that the right-hand side of (16) is independent of n and as a result λn = λ for all n. Thus,
there exists a λ ≥ 0 and νi = v′Bμi − λ ≥ 0 for all i, thereby completing the description
of a critical point with μin = 1/N for all i, n. Since the planner’s problem is a concave
programming problem, μin = 1/N for all i, n is an optimal solution. �

We have implicitly assumed in the proof that all experts are present in each team
even if the fraction of the agent allocated to the team is zero. That is, we kept m fixed in B
even when some fractions were zero. This is irrelevant in the conditionally independent
case since B(x�μn�0) = ∑m

i=1 μinxi and thus if μin = 0 for some n, then the number of
characteristics present in a team is automatically reduced by one.

Although we have assumed that we keep zero precision members as part of the team,
the perfect diversification result under negative correlation still obtains if we reduce the
number of experts present in a team by one when the fraction of an expert is zero. To
see this, notice that the sums in (12) do not change if we replace m by m − 1 when one
of the μins is zero. So the difference is in the first term in the numerator (which is a
function of m) and the denominator. To simplify the notation, let A = ∑m

i=1 μinxi and
B = −2ρ

∑m−1
i=1

∑m
j=i+1(μinxiμjnxj)

0�5. Then

B(x�μn�ρ)=
(
1 + (m− 2)ρ

)
A+B

(1 − ρ)
(
1 + (m− 1)ρ

) �
It is straightforward to show that sign(∂B/∂m) = sign(ρ2A− ρB) > 0. Hence B increases
in m or, equivalently, the informativeness of a team is lower if a zero fraction of an expert
reduces m by one. As a result, the value of the team is lower, and hence if μin = 1/N for
all i, n solves the problem under our assumption, then it also solves it if a zero fraction
of an expert reduces the number of fractionally allocated experts in a team by one.

A.12 Proof of Proposition 6

Firms choose the μjns to maximize v(
∑

j μjnxj) − ∑
j μjnwj . From the first-order con-

ditions, we obtain Xn = ∑
j μjnxj = X/N for all n, and thus μjn = mj/N is the unique

symmetric equilibrium allocation. Inserting the solution into the zero profit constraint
v(

∑
j μjnxj) − ∑

j μjnwj − F = 0, taking wj = v′(X/N)xj from the first-order condition,

and using X = ∑
j mjxj yields the following equilibrium condition for N :

π − F = N(Nτ +X)−1 +NX(Nτ +X)−2�



Theoretical Economics 13 (2018) Matching information 407

Rewrite the equilibrium condition as

π − F = N2τ + 2NX

(Nτ +X)2 � (17)

The left-hand side is a positive constant. The right-hand side is zero at N = 0, it is strictly
increasing in N , and converges to 1/τ as N goes to infinity. Since π − F < 1/τ, there is a
unique N∗ (and hence k∗) that solves (17).28

The comparative statics of N∗ with respect to F , τ, and X are as follows. Rewrite (17)
as π − F = z(N∗� τ�X). It is easy to verify that the right-hand side is strictly decreasing
in τ and also in X . Thus, ∂N∗/∂F = −1/zN < 0, ∂N∗/∂τ = −zτ/zN > 0, and ∂N∗/∂τ =
−zX/zN > 0. Hence, k∗ increases in F , and it decreases in τ and X .

A.13 Proof of Proposition 7

Since v′(Xi) = (τ +Xi)
−2, the first-order condition ynv

′(Xn)= ymv
′(Xm) yields

τ +Xm = y0�5
m

y0�5
n

(τ +Xn)�

Fix n and sum both sides for all m. Using
∑

mXm = X , we obtain

Nτ +X =

N∑
m=1

y0�5
m

y0�5
n

(τ +Xn) ⇒ Xn = y0�5
n

N∑
m=1

y0�5
m

(τN +X)− τ�

which is (4). By the strict concavity of v, this is the unique solution to the optimization
problem. Notice that Xn is increasing in n, thus showing the PAM property between firm
quality and team precision.

To prove the second part of the proposition, notice that the optimal precision vector
(X1�X2� � � � �XN) can be implemented by any fractional assignment {μjn}j�n that satisfies

J∑
j=1

μjnxj = Xn ∀n�

N∑
n=1

μjn = mj ∀n�

μjn ≥ 0 ∀j�n�
where we have omitted from the system the equations

∑
j μjn = k for all n since, as the

proof of Proposition 5 shows, one can relax the equal-size group restriction in this case
(what is important is that the precision of all teams is pinned down uniquely).

28Strictly speaking, the number of groups/firms will be the integer part of N�.
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We now show that there exists a nonnegative vector {μjn}j�n that satisfies these equa-
tions. Rewrite the above system as

Aμ = b� μ≥ 0� (18)

where A = [A1 A2 ··· AN
I I ··· I

] is a (N + J) × JN matrix; each An is a N × J matrix with

x1�x2� � � � � xJ in row n and the rest zeroes, and I is a J × J identity matrix; μ is a
JN × 1 vector whose entries are μ11� � � � �μJ1�μ12� � � � �μJ2� � � � �μ1N� � � � �μJN ; and b =
[X1� � � � �XN�m1� � � � �mJ] is a (N + J)× 1 vector.

By Farkas’ lemma, (18) has a solution if and only if there is no 1 × (N + J) vector z
that solves the system

zA≥ 0� zb < 0� (19)

Assume there is a solution to (19). Notice that zA≥ 0 consists of

zixj + zN+j ≥ 0� i = 1�2� � � � �N� j = 1�2� � � � �N�

Multiplying by mj and summing for all j yields

zi

J∑
j=1

mjxj +
J∑

j=1

zN+jmj ≥ 0� i = 1�2� � � � �N�

Since X = ∑
j mjxj and the inequality holds for all zi, i = 1�2� � � � �N , it follows that it also

holds for mini zi, so

(
min
i

zi

)
X +

J∑
j=1

zN+jmj ≥ 0�

But (mini zi)X = (mini zi)
∑

i Xi ≤ ∑
i ziXi and thus

∑
i

ziXi +
J∑

j=1

zN+jmj ≥ 0�

and this contradicts zb < 0, which is equal to

∑
i

ziXi +
J∑

j=1

zN+jmj < 0�

Hence, system (19) does not have a solution; by Farkas’ lemma, there is a solution
to (18), which proves the existence of a fractional assignment of agents into teams with
precision Xn given by (4) for all n.

We now prove the comparative statics properties of Xn, n = 1�2� � � � �N , asserted in
the text. The derivative of (4) with respect to X is y0�5

n /
∑

m y0�5
m > 0, and thus an increase

in X increases Xn for all n.
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The derivative of (4) with respect to τ is (y0�5
n N/

∑
m y0�5

m ) − 1, and this is positive if
and only if y0�5

n >
∑

m y0�5
m /N . Since yn is increasing in n, it follows that there is an n∗ such

that Xn increases in τ for n≥ n∗ and decreases otherwise.
The difference Xn −Xn−1 is given by

Xn −Xn−1 =
(
y0�5
n − y0�5

n−1
)

N∑
n=1

y0�5
n

(τN +X)�

Since yn ≥ yn−1, an increase in X or in τ increases Xn −Xn−1.
We now show that increasing the spread of the vector y increases the team preci-

sion for better teams and decreases it for worse ones. We do so for a class of vectors
ordered by majorization that in addition satisfy a single crossing property. Consider
y′ = (y ′

1� y
′
2� � � � � y

′
N) such that y ′

n = yn − �n for all n ≤ n̂, with �1 ≥ �2 ≥ · · · ≥ �n̂ ≥ 0, and

y ′
n = yn +�n, �n ≥ 0, for all n ≥ n̂+ 1, and such that

∑n̂
n=1 �n = ∑N

n=n̂+1 �n. Notice that y′
majorizes y= (y1� y2� � � � � yN). We will show that there exists an n∗ such that Xn increases
for all n≥ n∗ and decreases otherwise when y is replaced by y′.

Since
∑

n y
0�5
n is the sum of concave functions in one variable y0�5

n , it follows that it is
Schur concave in (y1� y2� � � � � yN). Hence,

∑
n(y

′
n)

0�5 ≤ ∑
n y

0�5
n since y′ majorizes y. It is

now immediate that Xn increases for all n ≥ n̂+ 1, for in this case (y ′
n)

0�5 > y0�5
n and thus

(y ′
n)

0�5/
∑

n(y
′
n)

0�5 > y0�5
n /

∑
n y

0�5
n , thereby increasing Xn (see (4)).

Consider now teams 1�2� � � � � n̂. If Xn decreases for any n ≤ n̂ when y′ replaces y, then
it must decrease for all teams 1� � � � � n, for Xn decreases if and only if

(yn −�n)
0�5

N∑
n=1

(
y ′
n

)0�5

≤ y0�5
n

N∑
n=1

y0�5
n

⇔
(

1 − �n

yn

)0�5
≤

N∑
n=1

(
y ′
n

)0�5

N∑
n=1

y0�5
n

�

Since the last term is a constant and (1 − (�n/yn))
0�5 decreases when yn is replaced by a

lower value yn−i and �n is replaced by a higher value �n−i, it follows that if Xn decreases
for such an n, it must decrease for all lower teams, thus proving the existence of such n∗.

Finally, we complete the analysis of the example in the text. When J = 2, the follow-
ing vector for each n = 1�2� � � � �N solves the fractional assignment problem:

(μ1n�μ2n) =
(
kx2 −Xn

x2 − x1
�
Xn − kx1

x2 − x1

)
� (20)

Intuitively, μ1n decreases in n while μ2n increases in n. When N = k= 2, a simple rewrit-
ing of (20) yields the formulas used in the example in the text.

A.14 Alternative information model

We now prove the assertion made in Section 5 that the team value function is strictly
submodular when an agent’s characteristic is the probability of receiving an informative
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signal. We could have appealed to Weitzman (1998, Theorem 2), since the value function
is similar to the submodular expected diversity function considered in that paper. To
make the paper self-contained, we include a proof that is slightly different.

Denote by u(n) the payoff to the team when there are n informative signals out of
the k realizations. We assume that u is strictly increasing in n and satisfies strictly de-
creasing differences in n, i.e., u(n)−u(n− 1) is strictly decreasing in n. Since each signal
is informative with probability xi, i = 1� � � � �k, the number of informative signals in a
k-size team is a random variable with Poisson’s binomial distribution (Wang 1993). Let
m= 0�1� � � � �k and define Fm ≡ {B : B ⊆ {1�2� � � � �k}� | B |=m}.

The probability of m informative signals out of k in a team with characteristics x is

∑
B∈Fm

(∏
�∈B

x�

)(∏
p/∈B

(1 − xp)

)
�

Thus, the team value function is

V (x) =
k∑

m=0

u(m)

( ∑
B∈Fm

(∏
�∈B

x�

)(∏
p/∈B

(1 − xp)

))

=
∑

R⊆{1�2�����k}
u
(|R|)(∏

�∈R
x�

)(∏
p/∈R

(1 − xp)

)

=
∑

R⊆{1�2�����k}�{i�j}

(∏
�∈R

x�

)(∏
p/∈R

(1 − xp)

)
(xixju

(|R| + 2
)

+ xi(1 − xj)u
(|R| + 1

) + xj(1 − xi)u
(|R| + 1

) + (1 − xi)(1 − xj)u
(|R|)�

(21)

where the second equality follows from the fact that summing over all sets is the same
as summing first over all sets of a given cardinality and then over all feasible set sizes,
and the third equality follows from a straightforward decomposition of the sum (see
Lemma 3 in Calinescu et al. 2011).

Differentiating (21) with respect to xi and xj yields

sgn
(
∂2V (x)

∂xi ∂xj

)
= sgn

((
u
(|R| + 2

) − u
(|R| + 1

)) − (
u
(|R| + 1

) − u
(|R|)))< 0�

where the inequality follows from the strictly decreasing difference property of u in n.
Since i and j were arbitrary, V is strictly submodular in x.

A.15 Examples of PAM under alternative assumptions

Our analysis shows that when standard models of information acquisition are embed-
ded in a matching setting, optimal sorting entails diversification of expertise.

As we mention in the concluding remarks, it is difficult to provide more general re-
sults given the current knowledge of curvature and complementarity properties in the
value of information as a function of the informativeness of the signals.
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We now present two examples that illustrate that, for carefully chosen primitives
(outside the canonical models), one can construct cases where PAM is optimal.

The first example assumes that s ∈ {0�1} with prior P[s = 1] = μ ∈ (0�1); the action
set is A = R+; the signal of each agent i is ξ̃i ∼ N(s�xi), i.e., normally distributed with
mean s and precision xi > 0; signals are conditionally independent; k= 2; and the payoff
function a team maximizes is 2a− sa2.29

Consider any given team. The posterior belief after observing (ξi� ξj) is

μ(ξi� ξj�xi�xj) = μf(ξi | 1�xi)f (ξj | 1�xj)
μf (ξi | 1�xi)f (ξj | 1�xj)+ (1 −μ)f (ξi | 0�xi)f (ξj | 0�xj)

�

where

f (ξ | s�x) = 1√
2πx−1

e− x
2 (ξ−s)2

�

After observing the signal realizations and updating beliefs, the team solves

U(ξi� ξj�xi�xj) = max
a

μ(ξi� ξj�xi�xj)
(
2a− a2) + (

1 −μ(ξi� ξj�xi�xj)
)
2a�

Simple algebra reveals that a∗(ξi� ξj)= 1/μ(ξi� ξj�xi�xj) =U(ξi� ξj�xi�xj).
The marginal density of the signals is

f (ξi� ξj�xi�xj) = μf(ξi | 1�xi)f (ξj | 1�xj)+ (1 −μ)f (ξi | 0�xi)f (ξj | 0�xj)�

which we denote by μf1if1j + (1 −μ)f0if0j . Then the value of the team is given by

V (xi�xj) =
∫ ∞

−∞

∫ ∞

−∞
1

μ(ξi� ξj�xi�xj)

(
μf1if1j + (1 −μ)f0if0j

)

=
∫ ∞

−∞

∫ ∞

−∞

(
μf1if1j + (1 −μ)f0if0j

)2

f1if1jμ

= 2 −μ+ (1 −μ)2

μ

∫ ∞

−∞

∫ ∞

−∞
f 2

0i
f1i

f 2
0j

f1j

= 2 −μ+ (1 −μ)2

μ

(∫ ∞

−∞
f 2

0i
f1i

)(∫ ∞

−∞

f 2
0j

f1j

)

= 2 −μ+ (1 −μ)2

μ
exiexj �

where the second equality follows by replacing μ(ξi� ξj�xi�xj), the third follows by
straightforward algebra, the fourth follows by independence of ξ̃i and ξ̃j , and the last
follows from (�= i� j)

∫ ∞

−∞
f 2

0�
f1�

= ex�
∫ ∞

−∞
1√

2πx−1
�

e− x�
2 (y+1)2 = ex��

29The example generalizes to multiple experts a single-agent example in Chade and Schlee (2002).
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where we use that the integrand in the middle expression is the density of a random
variable that is normal with mean −1 and precision xi, and hence integrates to 1.

Notice that V (xi�xj)= 2 −μ+ ((1 −μ)2/μ)exiexj is strictly supermodular in (xi�xj).
Hence, in this setting the optimal matching is PAM.

In the second example, the state is a pair (s1� s2), si ∈ {0�1}, independently dis-
tributed with P[si = 1] = 0�5, i = 1�2. There are four agents: 1 and 2 observe uninfor-
mative signals about the states; 3 observes a perfectly informative signal about s1 and
an uninformative signal about s2, and the opposite is true for agent 4. Agents match
pairwise and each teams maximizes the expected value of −max{(a1 − s1)

2� (a2 − s2)
2}

with respect to a1, a2, with ai ∈R, i = 1�2. We will show that PAM is optimal.
Under NAM, 1 matches with 3 and 2 matches with 4. Consider team {1�3}: since 3

receives a signal that reveals state s1, his action will match the state perfectly and hence
the value of this team, V (1�3), is

V (1�3) = 0�5 max
a2

(−(a2 − 1)2 − a2
2
) = −0�25�

where the second inequality follows by replacing the optimal action a2 = 0�5. Similarly,
V (2�4) = −0�25, and the overall payoff for the planner under NAM is −0�5.

Under PAM, 1 matches with 2 and 3 matches with 4. Clearly, V (3�4) = 0 as each agent
has perfect information about one state. Regarding the other team, V (1�2) is given by

V (1�2) = 0�25 max
a1�a2

(−max
{
(a1 − 1)2� (a2 − 1)2} − max

{
a2

1� (a2 − 1)2}
− max

{
(a1 − 1)2� a2

2
} − max

{
a2

1� a
2
2
})

= −0�25�

where the second equality follows by replacing the optimal actions a1 = a2 = 0�5. Hence,
the planner’s payoff under PAM is −0�25 >−0�5, thereby proving that PAM is optimal.

References

Angeletos, George-Marios and Alessandro Pavan (2007), “Efficient use of information
and social value of information.” Econometrica, 75, 1103–1142. [394]

Ballester, Coralio, Antoni Calvó-Armengol, and Yves Zenou (2006), “Who’s who in net-
works. Wanted: The key player.” Econometrica, 74, 1403–1417. [394]

Becker, Gary S. (1973), “A theory of marriage: Part I.” Journal of Political Economy, 81,
813–846. [378, 379, 386]

Börgers, Tilman, Angel Hernando-Veciana, and Daniel Krähmer (2013), “When are sig-
nals complements or substitutes?” Journal of Economic Theory, 148, 165–195. [380]

Calinescu, Gruia, Chandra Chekuri, Martin Pál, and Jan Vondrák (2011), “Maximizing a
monotone submodular function subject to a matroid constraint.” SIAM Journal on Com-
puting, 40, 1740–1766. [410]

http://www.e-publications.org/srv/te/linkserver/setprefs?rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C377%3AMI%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:1/AngPav&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C377%3AMI%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:2/Calvo&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C377%3AMI%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:3/Becker&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C377%3AMI%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:4/Borgers&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C377%3AMI%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:5/Calinescu&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C377%3AMI%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:1/AngPav&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C377%3AMI%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:2/Calvo&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C377%3AMI%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:3/Becker&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C377%3AMI%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:4/Borgers&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C377%3AMI%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:5/Calinescu&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C377%3AMI%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:5/Calinescu&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C377%3AMI%3E2.0.CO%3B2-P


Theoretical Economics 13 (2018) Matching information 413

Chade, Hector, Jan Eeckhout, and Lones Smith (2017), “Sorting through search and
matching models in economics.” Journal of Economic Literature, 55, 1–52. [387]

Chade, Hector and Edward Schlee (2002), “Another look at the Radner–Stiglitz noncon-
cavity in the value of information.” Journal of Economic Theory, 107, 421–452. [395, 411]

Damiano, Ettore, Hao Li, and Wing Suen (2010), “First in village or second in Rome?”
International Economic Review, 51, 263–288. [379]

De Groot, Morris H. (1970), Optimal Statistical Decisions. McGraw-Hill, New York. [383,
397]

Figueiredo, Mário A. T. (2004), “Lecture notes on Bayesian estimation and classification.”
Unpublished paper, Instituto de Telecomunicações. [383]

Garey, M. R. and D. S. Johnson (1978), “Strong NP-completeness results: Motivation,
examples, and implications.” Journal of the Association for Computing Machinery, 25,
499–508. [378, 389]

Goel, Prem and Josep Ginebra (2003), “When is one experiment ‘always better than’ an-
other?” Journal of the Royal Statistical Society. Series D (The Statistician), 52, 515–537.
[381, 384, 398]

Hansen, Ole Havard and Erik N. Torgersen (1974), “Comparison of linear normal exper-
iments.” The Annals of Statistics, 2, 367–373. [380, 384, 398]

Hong, Lu and Scott E. Page (2001), “Problem solving by heterogeneous agents.” Journal
of Economic Theory, 97, 123–163. [380]

Hwang, Frank and Uriel G. Rothblum (2011), Partitions: Optimality and Clustering Vol-
ume I: Single-Parameter. Series on Applied Mathematics. World Scientific, Singapore.
[380, 395]

Kelso, Alexander S. and Vincent P. Crawford (1982), “Job matching, coalition formation,
and gross substitutes.” Econometrica, 50, 1483–1504. [379, 389, 404]

Kremer, Michael (1993), “The O-ring theory of economic development.” Quarterly Jour-
nal of Economics, 108, 551–575. [379]

Lamberson, P. J. and Scott E. Page (2011), “Optimal forecasting groups.” Management
Science, 58, 805–810. [380, 383, 395]

Legros, Patrick and Andrew F. Newman (2007), “Beauty is a beast, frog is a prince: Assor-
tative matching with nontransferabilities.” Econometrica, 75, 1073–1102. [396]

Lehmann, E. L. (1988), “Comparing location experiments.” The Annals of Statistics, 16,
521–533. [381]

Marshak, Jakob and Roy Radner (1972), Economic Theory of Teams. Yale University Press,
New Haven. [377, 380]

Marshall, Albert, Ingram Olkin, and Barry Arnold (2010), Inequalities: Theory of Ma-
jorization and Its Applications, Second edition. Springer Series in Statistics. Springer,
New York. [388]

http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:6/CES&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C377%3AMI%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:7/ChadeSchlee&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C377%3AMI%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:8/Damiano&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C377%3AMI%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:11/GareyJohnson&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C377%3AMI%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:12/GoelGinebra&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C377%3AMI%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:13/HansenTorgersen&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C377%3AMI%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:14/PageHong&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C377%3AMI%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:15/Rothblum&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C377%3AMI%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:16/KelsoCrawford&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C377%3AMI%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:17/Kremer&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C377%3AMI%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:18/PageLamberson&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C377%3AMI%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:19/Legros&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C377%3AMI%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:20/Lehmann&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C377%3AMI%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:6/CES&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C377%3AMI%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:7/ChadeSchlee&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C377%3AMI%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:8/Damiano&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C377%3AMI%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:11/GareyJohnson&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C377%3AMI%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:11/GareyJohnson&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C377%3AMI%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:12/GoelGinebra&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C377%3AMI%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:13/HansenTorgersen&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C377%3AMI%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:14/PageHong&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C377%3AMI%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:15/Rothblum&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C377%3AMI%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:16/KelsoCrawford&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C377%3AMI%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:17/Kremer&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C377%3AMI%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:18/PageLamberson&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C377%3AMI%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:19/Legros&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C377%3AMI%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:20/Lehmann&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C377%3AMI%3E2.0.CO%3B2-P


414 Chade and Eeckhout Theoretical Economics 13 (2018)

Mertens, Stephan (2006), “The easiest hard problem: Number partitioning.” In Compu-
tational Complexity and Statistical Physics (Allon Percus, Gabriel Istrate, and Cristopher
Moore, eds.), 125–139, Oxford University Press, New York. [389]

Meyer, Margaret A. (1994), “The dynamics of learning for team production: Implications
for task assignments.” The Quarterly Journal of Economics, 109, 1157–1184. [379, 380]

Moscarini, Giuseppe and Lones Smith (2002), “The law of large demand for informa-
tion.” Econometrica, 70, 2351–2366. [395]

Murota, Kazuo (2003), Discrete Convex Analysis. Discrete Mathematics and Applications.
Siam, Philadelphia. [389]

Olszewski, Wojciech and Rakesh Vohra (2012), “Team selection problem.” Unpublished
paper, Northwestern University. [380]

Prat, Andrea (2002), “Should a team be homogeneous?” European Economic Review, 46,
1187–1207. [380]

Pycia, Marek (2012), “Stability and preference alignment in matching and coalition for-
mation.” Econometrica, 80, 323–362. [379]

Radner, Roy (1962), “Team decision problems.” The Annals of Mathematical Statistics,
33, 857–881. [380]

Shaked, Moshe and Y. L. Tong (1990), “Comparison of experiments for a class of pos-
itively dependent random variables.” The Canadian Journal of Statistics, 18, 79–86.
[380, 384]

Vondrák, Jan (2007), Submodularity in Combinatorial Optimization. Doctoral Thesis,
Department of Applied Mathematics, Charles University. [378]

Wang, Y. H. (1993), “On the number of success in independent trials.” Statistica Sinica,
3, 295–312. [394, 410]

Weitzman, Martin L. (1998), “The Noah’s ark problem.” Econometrica, 66, 1279–1298.
[394, 410]

Williams, David (1991), Probability With Martingales. Cambridge University Press. [397]

Co-editor George J. Mailath handled this manuscript.

Manuscript received 7 April, 2014; final version accepted 7 February, 2017; available online 14
March, 2017.

http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:24/Meyer&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C377%3AMI%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:25/MoscariniSmith&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C377%3AMI%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:28/Prat&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C377%3AMI%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:29/Marek&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C377%3AMI%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:30/Radner&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C377%3AMI%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:31/Shaked&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C377%3AMI%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:33/Wang&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C377%3AMI%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:34/Weitzman&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C377%3AMI%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:24/Meyer&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C377%3AMI%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:25/MoscariniSmith&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C377%3AMI%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:28/Prat&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C377%3AMI%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:29/Marek&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C377%3AMI%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:30/Radner&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C377%3AMI%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:31/Shaked&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C377%3AMI%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:33/Wang&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C377%3AMI%3E2.0.CO%3B2-P

	Introduction
	Related literature
	Assortative matching
	Teams
	Value of information
	Partition problems


	The model
	Correlation, informativeness, and diversiﬁcation
	The team's decision problem and value function
	Correlation and informativeness
	Diversiﬁcation of expertise across teams
	Properties of optimal teams
	Size-two teams and negative sorting
	Conditionally independent signals and balanced teams
	Fractional assignment and perfect diversiﬁcation


	Heterogeneous ﬁrms, PAM, and diversiﬁcation
	Discussion and concluding remarks
	Alternative information models
	Different group sizes
	Class of matching problems
	Nontransferable utility

	Appendix: Omitted proofs
	Preliminaries
	Proof of Proposition 1
	B(x,rho) and Blackwell more informative signals
	Proof of Proposition 2
	Proof of Lemma 1
	Supermodularity of V and prior precision
	Failure of supermodularity of V around the diagonal
	Proof of Proposition 4
	Failure of the Gross substitutes property
	Proof of Proposition 5
	Fractional assignment with rho<=0
	Proof of Proposition 6
	Proof of Proposition 7
	Alternative information model
	Examples of PAM under alternative assumptions

	References

