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Large deviations and stochastic stability
in the small noise double limit

William H. Sandholm
Department of Economics, University of Wisconsin

Mathias Staudigl
Department of Quantitative Economics, Maastricht University

We consider a model of stochastic evolution under general noisy best-response
protocols, allowing the probabilities of suboptimal choices to depend on their
payoff consequences. Our analysis focuses on behavior in the small noise dou-
ble limit: we first take the noise level in agents’ decisions to zero, and then take
the population size to infinity. We show that in this double limit, escape from and
transitions between equilibria can be described in terms of solutions to continu-
ous optimal control problems. These are used in turn to characterize the asymp-
totics of the stationary distribution, and so to determine the stochastically stable
states. We use these results to perform a complete analysis of evolution in three-
strategy coordination games that satisfy the marginal bandwagon property and
that have an interior equilibrium, with agents following the logit choice rule.

Keywords. Evolutionary game theory, equilibrium breakdown, stochastic stabil-
ity, large deviations.

JEL classification. C72, C73.

1. Introduction

Evolutionary game theory studies the behavior of strategically interacting agents whose
decisions are based on simple myopic rules. Together, a game, a decision rule, and a
population size define a stochastic aggregate behavior process on the set of population
states. How one should analyze this process depends on the time span of interest. Over
short to moderate time spans, the process typically settles on a small set of population
states, most often near a Nash equilibrium of the underlying game. If agents sometimes
choose suboptimal strategies, then over longer time spans, transitions between equi-
libria are inevitable, with some occurring more readily than others. This variation in
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the difficulties of transitions ensures that a single equilibrium—the stochastically sta-
ble equilibrium—will be played in a large proportion of periods over long enough time
spans. Thus noise in individuals’ decisions can generate unique predictions of play for
interactions of long duration.1

While stochastic stability analysis is valued for its conclusions about equilibrium se-
lection, the intermediate steps of this analysis are themselves of direct interest. The first
step, which identifies equilibria and other recurrent classes of the aggregate behavior
process, can be viewed as a part of a large literature on the convergence and noncon-
vergence of disequilibrium learning processes to Nash equilibrium.2 The second step
assesses the likelihoods of escapes from and transitions among equilibria and other re-
current classes. Finally, the third step uses graph-theoretic methods to distill the anal-
ysis of transitions between equilibria into a characterization of the limiting stationary
distribution of the process.3

The second step in this analysis, which describes how an established equilibrium is
upset and which (if any) new equilibrium is likely to arise, seems itself to be of inherent
interest. But to date, this question of equilibrium breakdown has not attracted much
attention in the game theory literature.

Most work on stochastic stability follows Kandori et al. (1993) by considering the
best response with mutations (BRM) model, in which the probability of a suboptimal
choice is independent of its payoff consequences.4 This model eases the determination
of stochastically stable states, as the difficulty of transiting from one equilibrium to an-
other can be determined by counting the number of mutations needed for the transition
to occur.

Of course, this simplicity of analysis owes to a polar stance on the nature of subop-
timal choices. In some applications, it may be more realistic to suppose that the proba-
bility of a suboptimal choice depends on its payoff consequences, as in the logit model
of Blume (1993, 2003) and the probit model of Myatt and Wallace (2003). When mistake
probabilities are payoff-dependent, the probability of a transition between equilibria
becomes more difficult to assess, depending now not only on the number of suboptimal
choices required, but also on the unlikelihood of each such choice. As a consequence,
general results on transitions between equilibria and stochastic stability are only avail-
able for two-strategy games.5

In this paper, we consider a model of stochastic evolution under general noisy best-
response protocols. To contend with the complications raised by the sensitivity of mis-
takes to payoffs, we study behavior in the small noise double limit, first taking the noise

1Stochastic stability analysis was introduced to game theory by Foster and Young (1990), Kandori et al.
(1993), and Young (1993), and since these early contributions has developed into a substantial literature.
For surveys, see Young (1998) and Sandholm (2010c, Chapters 11 and 12).

2See, for instance, Young (2004) and Sandholm (2010c).
3See the previous references, Freidlin and Wentzell (1998), or Catoni (1999).
4Kandori and Rob (1995, 1998) and Ellison (2000) provide key contributions to this approach.
5Blume (2003) and Sandholm (2007, 2010b) study stochastic stability in two-strategy games using birth–

death chain methods. Staudigl (2012) studies the case of two-population random matching in 2 × 2 normal
form games. Results are also available for certain specific combinations of games and choice protocols,
most notably potential games under logit choice; see Blume (1993, 1997), Alós-Ferrer and Netzer (2010),
and Sandholm (2010c, Section 11.5).
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level in agents’ decisions to zero, as in the works referenced above, and then taking the
population size to infinity. We thereby evaluate the small noise limit when the popula-
tion size is large.

We show that in this double limit, transitions between equilibria can be described in
terms of solutions to continuous optimal control problems. By combining this analysis
with standard graph-theoretic techniques, we characterize the asymptotics of the sta-
tionary distribution and the stochastically stable states. Finally, to illustrate the appli-
cability of these characterizations, we use control-theoretic methods to provide a com-
plete analysis of long-run behavior in a class of three-strategy coordination games. To
our knowledge, this work is the first to provide tractable analyses of transition dynamics
and stochastic stability when mistake probabilities depend on payoff consequences and
agents choose among more than two strategies.

We consider stochastic evolution in a population of size N . The population recur-
rently plays an n-strategy population game FN , which specifies the payoffs to each strat-
egy as a function of the population state. In each period, a randomly chosen agent re-
ceives an opportunity to switch strategies. The agent’s choice is governed by a noisy
best-response protocol ση with noise level η, which places most probability on strategies
that are currently optimal, but places positive probability on every strategy.

We assume that for any given vector of payoffs, the probability with which a given
strategy is chosen vanishes at a well defined rate as the noise level approaches zero. This
rate, called the strategy’s unlikelihood, is positive if and only if the strategy is suboptimal,
and is assumed to depend continuously on the vector of payoffs. For instance, under the
logit choice model, a strategy’s unlikelihood is the difference between its current payoff
and the current optimal payoff.6

A population game FN and a protocol ση generate a stochastic evolutionary pro-
cess XN�η. In Section 3, we use standard techniques to evaluate the behavior of this
process as the noise level η approaches zero. We start by introducing a discrete best-
response dynamic, which describes the possible paths of play when only optimal strate-
gies are chosen. The recurrent classes of this dynamic are the minimal sets of states from
which the dynamic cannot escape.

To evaluate the probabilities of transitions between recurrent classes in the small
noise limit, we define the cost of a path as the sum of the unlikelihoods associated with
the changes in strategy along the path. Thus a path’s cost is the exponential rate of decay
of its probability as the noise level vanishes.

According to a well known principle from the theory of large deviations, the proba-
bility of a transition between equilibria should be governed by the minimum cost path
that effects the transition. These transition costs, if they can be determined, provide
the inputs to a graph-theoretic analysis—the construction of certain trees on the set of
recurrent classes—that characterizes the behavior of the stationary distribution in the
small noise limit, and so determines the stochastically stable states.

Solving these minimum cost path problems is computationally intensive if the num-
ber of agents is not small. In the case of the BRM model, this difficulty is mitigated by

6See Section 2.2. As we discuss below, the continuity assumption rules out the BRM model, in which
unlikelihood functions are indicator functions.
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the fact that all mistakes are equally likely, so that the cost of a path is determined by its
length. But when probabilities of mistakes depend on their consequences, this simplifi-
cation is no longer available.

We overcome this difficulty by considering the small noise double limit : after taking
the noise level η to zero, we take the population size N to infinity. In so doing, we study
the behavior of the stochastic evolutionary process in the small noise limit when the
population size is large.

In Sections 4 and 5, we develop our central result, which shows that as N grows
large, the discrete path cost-minimization problems described above converge to con-
tinuous optimal control problems on the simplex. In Section 6, we combine this conver-
gence result with graph-theoretic techniques to characterize various aspects of long-run
behavior in the small noise double limit—expected exit times, stationary distribution
asymptotics, and stochastic stability—in terms of solutions to these continuous control
problems.

The control problems appearing in these characterizations are multidimensional
and nonsmooth. Thus to demonstrate the utility of our results, we must show that these
problems are nevertheless tractable in interesting cases.

We do so in Section 7. Our analysis there focuses on evolution under the logit choice
rule, and on three-strategy coordination games that satisfy the marginal bandwagon
property (Kandori and Rob 1998) and that admit an interior equilibrium. This class of
games, which we call simple three-strategy coordination games, is large enough to allow
some variety in its analysis, but small enough that the analysis remains manageable.

We analyze the control problems associated with two distinct kinds of large devi-
ations properties. We first consider the exit problem, which is used to assess the ex-
pected time until the evolutionary process leaves the basin of attraction of a stable
equilibrium and to determine the likely exit path. Solving this problem for the class
of games under consideration, we show that the likely exit path proceeds along the
boundary of the simplex, escaping the basin of attraction through a boundary mixed
equilibrium.

To evaluate stationary distribution asymptotics and stochastic stability, one must
instead consider the transition problem, which is used to assess the probable time until
a transition between a given pair of stable equilibria and to determine the most likely
path that this transition will follow. We solve the transition problem explicitly for sim-
ple three-strategy coordination games. We find that the nature of the problem’s solu-
tion depends in a basic way on whether the game in question is also a potential game.
When this is so, the optimal control problem is degenerate, in that there are open sets
of states from which there are a continuum of minimal cost paths. Still, the optimal
paths between equilibria always proceed directly along the relevant edge of the sim-
plex. The control problem is not degenerate for games without a potential function,
which we call skewed games. But unlike in the case of potential games, optimal paths be-
tween equilibria of skewed games need not be direct; instead, they may proceed along
an alternate edge of the simplex, turn into the interior, and pass through the interior
equilibrium.
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By combining solutions to the control problems with our earlier results, we are able
to characterize the long-run behavior of the evolutionary process in the small noise dou-
ble limit. We use a parameterized class of examples to illustrate the effects of payoff-
dependent mistake probabilities on equilibrium selection, and to contrast long-run be-
havior in the logit and BRM models. In addition, in the class of potential games we
consider, we fully describe the asymptotic behavior of the stationary distribution in the
small noise double limit, showing that the rate of decay of the stationary distribution
mass at each state equals the difference between the value of the potential function at
that state and the maximum value of potential. In contrast to those in previous work
on logit choice in potential games,7 the assumptions we impose on the transition law
of the evolutionary process are asymptotic in nature, and so do not allow us to express
the stationary distribution in closed form. We instead build our analysis on large devia-
tions estimates, and thereby obtain a clearer intuition about the form that the stationary
distribution asymptotics take.

While the optimal control problems we solve have nonsmooth running costs, they
are simple in other respects. If L(x�u) represents the cost of choosing direction of mo-
tion u at state x, then L is piecewise linear in u regardless of the agents’ choice rule.
When agents employ the logit choice rule, L is also piecewise linear in x. Taking advan-
tage of these properties, we use sufficient conditions for optimality due to Boltyanskii
(1966) and Piccoli and Sussmann (2000) to construct candidate value functions, and to
verify that they are indeed the value functions for our problems. These sufficient condi-
tions require the value function to be continuous, to be continuously differentiable ex-
cept on a finite union of manifolds of positive codimension, and to satisfy the Hamilton–
Jacobi–Bellman equation wherever the value function is smooth. In our case, for each
fixed state x, the piecewise linearity of L(x�u) in u means that only a small number
of controls need to be considered, while the piecewise linearity of L(x�u) in x makes
it enough to check the Hamilton–Jacobi–Bellman equation at a small number of well
chosen states.

These properties of the optimal control problem are not dependent on the class of
games we consider, but only on the linearity of payoffs in the population state. Moreover,
much of the structure of the problem is retained under alternatives to the logit choice
rule. Thus as we explain in the final section of the paper, it should be possible to use the
approach developed here to study long-run behavior in broader classes of games and
under other choice rules.

While work in stochastic evolutionary game theory typically focuses on stochastic
stability and equilibrium selection, we feel that the dynamics of transitions between
equilibria are themselves of inherent interest. Just as theories of disequilibrium learn-
ing offer explanations of how and when equilibrium play may arise, models of transition
dynamics suggest how equilibrium is likely to break down. The importance of this ques-
tion has been recognized in macroeconomics, where techniques from large deviations
theory have been used to address this possibility in a variety of applications; see Cho
et al. (2002), Williams (2014), and the references therein. The present paper addresses

7See Blume (1993, 1997) and Sandholm (2010c, Sections 11.5 and 12.2), as well as Section 7.6 below.
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this question in an environment where the stochastic process arises endogenously as a
description of the aggregate behavior of a population of strategically interacting agents.

A number of earlier papers on stochastic evolution have considered small noise dou-
ble limits. Binmore et al. (1995) and Binmore and Samuelson (1997) (see also Sandholm
2012) analyze models of imitation with mutations, focusing on two-strategy games; see
Section 8.1 for a discussion. Fudenberg and Imhof (2006, 2008) extend these analyses
to the many strategy case. The key insight of the latter papers is that under imitation
with mutations, the stochastic evolutionary process is nearly always at vertices or on
edges of the simplex. Because of this, transitions between equilibria can be analyzed as
one-dimensional problems using birth–death chain methods. In contrast, in the noisy
best response models studied here, the least costly transition between a pair of pure
equilibria may pass through the interior of the simplex.

Turning to noisy best response models, Kandori and Rob (1995, 1998) and Ellison
(2000) analyze stochastic evolution under the BRM rule in the small noise double limit.
Blume (2003) and Sandholm (2010b) use birth–death chain techniques to study this limit
in two-strategy games when mistake probabilities are payoff-dependent. In the work
closest to the present one, Staudigl (2012) studies the small noise double limit when
two populations are matched to play 2 × 2 coordination games. The analysis uses op-
timal control methods to evaluate the probabilities of transitions between equilibria. It
takes advantage of the fact that each population’s state variable is scalar and only affects
the payoffs of members of the opposing population; this causes the control problem to
retain a one-dimensional flavor absent from the general case.

The paper proceeds as follows. Section 2 introduces our class of stochastic evolu-
tionary processes. Section 3 reviews stochastic stability in the small noise limit. The fol-
lowing three sections study the small noise double limit. Section 4 provides definitions,
Section 5 presents the main technical results on the convergence of exit and transition
costs, and Section 6 describes the consequences for escape from equilibrium, limiting
stationary distributions, and stochastic stability. Section 7 combines the foregoing anal-
ysis with optimal control techniques to study long-run behavior in a class of coordina-
tion games under the logit choice rule. Section 8 offers concluding discussions. Many
proofs and auxiliary results are presented in the Appendix. See Table 1 for a listing of all
notation used in the paper.

2. The model

2.1 Finite-population games

We consider games in which agents from a population of size N choose strategies from
a common finite strategy set S. The population’s aggregate behavior is described by
a population state x, an element of the simplex X = {x ∈ R

n+ :
∑n
i=1 xi = 1}, or, more

specifically, the grid XN = X ∩ (1/N)Zn = {x ∈ X :Nx ∈ Z
n}. The standard basis vec-

tor ei ∈X ⊂ R
n represents the pure population state at which all agents play strategy i.

States that are not pure are called mixed population states.
We identify a finite-population game with its payoff function FN :XN → R

n, where
FNi (x) ∈ R is the payoff to strategy iwhen the population state is x ∈ XN . Only the values
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Notation Meaning Section

A Symmetric normal form game 2.1, 7.1
b Pure best-response correspondence 4.1
bNi Pure best-response correspondence 2.1
B Mixed best-response correspondence 4.1
Bi Best-response region 4.2, 7.1
Bij Boundary between best-response regions 7.1
cNx�y Cost of a step 3.2
c(φ) Cost of pathφ 4.3
cN(φN) Cost of pathφN 3.2
C(K��) Minimum cost of a path fromK to� 5
CN(KN��N) Minimum cost of a path fromKN to�N 3.3
C(τK) Cost of tree τK 6.2
CN(τKN ) Cost of tree τKN 6.2
ei Standard basis vector 2.1
f Potential function 7.5
F Continuous population game 4.1
FN Payoff function 2.1
FNi→· Clever payoff function 2.1

�N Length of a discrete path 2.3
K Limiting recurrent class 4.2
K̃ Union of limiting recurrent classes other thanK 6.1
KN Recurrent class 3.1
K̃N Union of recurrent classes other thanKN 3.1
K Set of limiting recurrent classes 4.2
KN Set of recurrent classes 3.1
L(x�u) Running cost function 7.2
N Population size 2.1

P
N�η
x�y Transition probability 2.3

Qijk,Q Skew 7.1, 7.3
R(K) Minimal cost of aK-tree 6.2
RN(KN) Minimal cost of aKN -tree 6.2
s(x) Support of state x 3.1
S Set of strategies 2.1
S(x) {y ∈X : s(y)⊆ s(x)} 4.2
SN(KN) Strong basin of attraction 3.3
TN Duration of a discrete path 2.3
TK Set ofK-trees 6.2
TX Tangent space ofX 4.3
vij A′ζij 7.3
V (x) Value function 7.2
V N(x) {ej − ei : i ∈ s(x) and j ∈ bNi (x)} 3.1
WN(KN) Weak basin of attraction 3.3
x Population state 2.1
x∗ Completely mixed equilibrium 7.3
xij Partially mixed equilibrium 7.3
X Simplex 2.1
XN Discrete state space 2.1

Table 1. Table of notation.



286 Sandholm and Staudigl Theoretical Economics 11 (2016)

Notation Meaning Section

XN
i Set of states at which strategy i is in use 2.1

XN�η,XN�η
k Stochastic evolutionary process 2.3

Z conv({ej − ei : i� j ∈ S}) 4.3
γ(x� y) Cost of the direct path from x to y 7.2
ζij (x∗

k)
−1(xij − x∗) 7.3

η Noise level 2.2
μN�η Stationary distribution 2.3
ν(x) Feedback control 7.2
ση Noisy best-response function 2.2
τK K-tree 6.2

τN�η(�N) Hitting time 3.3
ϒ Unlikelihood function 2.2
φ Continuous path 4.3
φN Discrete path 2.3
φ̇N Discrete right derivative of pathφN 4.3
φ(N) Interpolated path 4.3

(K��) Set of paths fromK to� 5

N(KN��N) Set of paths fromKN to�N 3.3
1 Vector of 1s 7.1
| · | �1 norm 4.3
[·]+ Positive part vector 4.3
[·]− Negative part vector 4.3
〈·� ·〉 Standard inner product 4.3

Table 1. Continued.

that the function FNi takes on the set XN
i = {x ∈ XN :xi > 0} are meaningful, since at the

remaining states in XN strategy i is unplayed.

Example 1. Suppose thatN agents are matched to play a symmetric two-player normal
form gameA ∈R

n×n. If self-matching is not allowed, then payoffs take the form

FNi (x)= 1
N − 1

e′iA(Nx− ei)= (Ax)i + 1
N − 1

((Ax)i −Aii)� (1)
♦

In a finite-population game, an agent who switches from strategy i to strategy j when
the state is x changes the state to the adjacent state y = x+ (1/N)(ej − ei). Thus at any
given population state, players playing different strategies face slightly different incen-
tives. To account for this, we use the clever payoff function FNi→· :XN

i →R
n to denote the

payoff opportunities faced by i players at each state x ∈ XN
i . The jth component of the

vector FNi→·(x) is thus

FNi→j(x)= FNj
(
x+ 1

N
(ej − ei)

)
� (2)

Clever payoffs allow one to describe Nash equilibria of finite-population games in a
simple way. The pure best-response correspondence for strategy i ∈ S in finite-population
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game FN is denoted by bNi :XN
i ⇒ S and is defined by

bNi (x)= arg max
j∈S

FNi→j(x)� (3)

State x ∈ XN is a Nash equilibrium of FN if no agent can obtain a higher payoff by
switching strategies: that is, if i ∈ bNi (x) whenever xi > 0.

Example 2. The normal form game A ∈ R
n×n is a coordination game if Aii > Aji for all

distinct i� j ∈ S, so that if one’s match partner plays i, one is best off playing i oneself. If
FN is the population game obtained by matching in A without self-matching, then the
Nash equilibria of FN are precisely the pure population states. Thus finite-population
matching differs from continuous-population matching, under which the Nash equilib-
ria of the population game correspond to the pure and mixed symmetric Nash equilibria
ofA.

To see that no mixed population state of FN can be Nash, suppose that x ∈ XN
i ∩XN

j

is a Nash equilibrium. Then

FNi (x)≥ FNj
(
x+ 1

N
(ej − ei)

)
and FNj (x)≥ FNi

(
x+ 1

N
(ei − ej)

)
�

which with (1) is equivalent to

Ne′iAx−Aii ≥Ne′jAx−Aji and Ne′jAx−Ajj ≥Ne′iAx−Aij� (4)

Summing these inequalities and rearranging yields (Aii −Aji)+ (Ajj −Aij)≤ 0, contra-
dicting that A is a coordination game. Furthermore, pure state ei is a Nash equilibrium
if FNi (x)≥ FNj (x+ (1/N)(ej − ei)) for j �= i, which from (4) is true if and only ifAii >Aji,
as assumed. ♦

It is convenient to assume that revising agents make decisions by considering clever
payoffs, as it ensures that all agents are content if and only if the current state is a Nash
equilibrium. The previous example shows that in a coordination game, such a state must
be pure. While the use of clever payoffs simplifies the finite population dynamics—in
particular, by ensuring that in coordination games, only pure states are rest points—it
does not affect our results on large population limits in an essential way.

2.2 Noisy best response protocols and unlikelihood functions

In our model of stochastic evolution, agents occasionally receive opportunities to switch
strategies. Upon receiving a revision opportunity, an agent selects a strategy by employ-
ing a noisy best-response protocol ση :Rn → int(X)with noise level η> 0, a function that
maps vectors of payoffs to probabilities of choosing each strategy.

To justify its name, the protocol ση should recommend optimal strategies with high
probability when the noise level is small:

j /∈ arg max
k∈S

πk ⇒ lim
η→0

σ
η
j (π)= 0� (P1)
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Condition (P1) implies that if there is a unique optimal strategy, then this strategy is as-
signed a probability that approaches 1 as the noise level vanishes. For simplicity, we also
require that when there are multiple optimal strategies, each retains positive probability
in the small noise limit:

j ∈ arg max
k∈S

πk ⇒ lim
η→0

σ
η
j (π) > 0� (P2)

To analyze large deviations and stochastic stability, we must impose regularity con-
ditions on the rates at which the probabilities of choosing suboptimal strategies vanish
as the noise level η approaches 0. To do so, we introduce the unlikelihood function
ϒ :Rn →R

n+, defined by

ϒj(π)= − lim
η→0

η logσηj (π)� (5)

This definition can be expressed equivalently as

σ
η
j (π)= exp

(−η−1(ϒj(π)+ o(1)))�
Either way, the unlikelihood ϒj(π) represents the rate of decay of the probability that
strategy j is chosen as η approaches 0. Because they are defined using logarithms of
choice probabilities, the unlikelihoods of (conditionally) independent choices combine
additively. This fact plays a basic role in the analysis; see Section 3.2.8

We maintain the following assumptions throughout the paper:

The limit in (5) exists for all π ∈R
n� (U1)

The unlikelihood function ϒ is continuous� (U2)

We have ϒj(π)= 0 if and only if j ∈ arg max
k∈S

πk� (U3)

Note that the “if” direction of condition (U3) is implied by condition (P2), and that con-
dition (U1) and the “only if” direction of condition (U3) refine condition (P1).

We proceed with three examples that satisfy the conditions above.

Example 3 (Logit choice). The logit choice protocol with noise level η, introduced to
evolutionary game theory by Blume (1993), is defined by

σ
η
j (π)= exp(η−1πj)∑

k∈S exp(η−1πk)
� (6)

It is well known that this protocol can be derived from an additive random utility
model with extreme-value distributed shocks or from a model of choice among mixed

8Blume (2003) and Sandholm (2010b) place assumptions on the rates of decay of choice probabilities in
the context of two-strategy games. Unlikelihood functions for choice problems with many alternatives are
introduced by Dokumacı and Sandholm (2011); see Example 4 below.
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strategies with control costs given by an entropy function.9 It is easy to verify that this
protocol satisfies conditions (U1)–(U3) with piecewise linear unlikelihood function

ϒj(π)= max
k∈S

πk −πj� ♦

Example 4 (Random utility with averaged shocks). Consider an additive random utility
model in which the payoff vector π is perturbed by adding the sample average ε̄m of
an i.i.d. sequence {ε�}m�=1 of random vectors, where the n components of ε� are drawn
from a continuous distribution with unbounded convex support and whose moment
generating function exists. Writing η for 1/m, we obtain the protocol

σ
η
j (π)= P

(
j ∈ arg max

k∈S
(πk + ε̄mk )

)
�

Dokumacı and Sandholm (2011) show that the limit (5) exists for each π ∈ R
n, and they

characterize the function ϒ in terms of the Cramér transform of ε�. They also show
that ϒj is nonincreasing in πj , nondecreasing in πk for k �= j, and convex (and hence
continuous) in π. ♦

Example 5 (Probit choice). Following Myatt and Wallace (2003), consider an additive
random utility model in which the payoff vector π is perturbed by a multivariate normal
random vector whose components are independent with common varianceη. Since the
average of independent normal random variables is normal, the probit choice model is
a special case of Example 4. Dokumacı and Sandholm (2011) provide an explicit, piece-
wise quadratic expression for the unlikelihood function ϒ. ♦

The only noisy best-response protocol commonly considered in the literature that
does not satisfy our assumptions is the best response with mutations (BRM) protocol of
Kandori et al. (1993), the focus of much of the literature to date. Under this protocol, any
suboptimal strategy has unlikelihood 1 and a unique optimal strategy has unlikelihood
0, so condition (U2) must fail. For further discussion of the BRM protocol, see Remark 13
and Example 14.

2.3 The stochastic evolutionary process

A population game FN and a revision protocol ση define a stochastic evolutionary pro-
cess. The process runs in discrete time, with each period taking 1/N units of clock time.

During each period, a single agent is chosen at random from the population. This
agent updates his strategy by applying the noisy best-response protocol ση. As dis-
cussed in Section 2.1, we assume that agents are clever, so that an i player evaluates
payoffs using the clever payoff vector FNi→·(x) defined in (2).

This procedure described above generates a Markov chain XN�η = {XN�η
k }∞k=0 on the

state space XN . The index k denotes the number of revision opportunities that have oc-
curred to date and corresponds to k/N units of clock time. The transition probabilities

9See Anderson et al. (1992) or Hofbauer and Sandholm (2002).
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P
N�η
x�y for the process XN�η are given by

P
N�η
x�y ≡ P(X

N�η
k+1 = y|XN�η

k = x)
(7)

=

⎧⎪⎨
⎪⎩
xiσ

η
j (F

N
i→·(x)) if y = x+ 1

N (ej − ei), j �= i∑n
i=1 xiσ

η
i (F

N
i→·(x)) if y = x

0 otherwise.

It is easy to verify that
∑
y∈XN P

N�η
x�y = 1 for all x ∈ XN .

A realization of the process XN�η over its first �N <∞ periods is described by a path
through XN of length �N , a sequenceφN = {φNk }�Nk=0 in which successive states either are
identical or are adjacent in XN . Since each period lasts 1/N time units, the duration of
this path in clock time is TN = �N/N .

Since revising agents are chosen at random and play each strategy in S with positive
probability, the Markov chain XN�η is irreducible and aperiodic, and so admits a unique
stationary distribution, μN�η. It is well known that the stationary distribution is the lim-
iting distribution of the Markov chain, as well as its limiting empirical distribution along
almost every sample path.

3. The small noise limit

We now consider the behavior of the stochastic process XN�η as the noise level η ap-
proaches 0, proceeding from short-run through very-long-run behavior. Over short to
medium time scales, XN�η is nearly a discrete best-response process. We introduce this
best-response process and its recurrent classes in Section 3.1. Over longer periods, runs
of suboptimal choices occasionally occur, leading to transitions between the recurrent
classes of the best-response process. We consider these in Sections 3.2 and 3.3. Finally,
over very long time spans, XN�η spends the vast majority of periods at the stochastically
stable states, which we define in Section 3.4. Most of the ideas presented in this section
can be found in the evolutionary game literature, though not always in an explicit form.

3.1 The discrete best-response dynamic and its recurrent classes

In the literature on stochastic evolution in games, the Markov chain XN�η is typically
viewed as a perturbed version of some “unperturbed” process XN�0 based on exact best
responses. To define the latter process as a Markov chain, one must specify the proba-
bility with which each best response is chosen when more than one exists. Here we take
a more general approach, defining XN�0 not as a Markov chain, but by way of a difference
inclusion—in other words, using set-valued deterministic dynamics.

Fix a population size N and a game FN . Suppose that during each discrete time
period, a single agent is chosen from the population, and that he selects a strategy that
is optimal given the current population state and his current strategy. If the current state
is x ∈ XN , then the set of increments in the state that are possible under this procedure
is (1/N)V N(x), where

V N(x)= {ej − ei : i ∈ s(x) and j ∈ bNi (x)} (8)
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and where s(x) = {i ∈ S :xi > 0} denotes the support of state x. The paths through XN

that can arise under this procedure are the solutions to the difference inclusion

xNk+1 − xNk ∈ 1
N
V N(xNk )� (DBR)

We call (DBR) the discrete best-response dynamic.
We call the setKN ⊆ XN strongly invariant under (DBR) if no solution to (DBR) start-

ing in KN ever leaves KN . A set that is minimal with respect to this property is called a
recurrent class of (DBR). We denote the collection of such recurrent classes by KN .10

Example 6. Let FN be defined by random matching in the normal form coordination
gameA as in Example 2, so that the Nash equilibria of FN are the pure states. Suppose in
addition thatA has the marginal bandwagon property of Kandori and Rob (1998): Aii −
Aik > Aji −Ajk for all i� j�k ∈ S with i /∈ {j�k}. This property requires that when some
agent switches to strategy i from any other strategy k, current strategy i players benefit
most. An easy calculation shows that in games with this property, i ∈ bNi (x) implies that
i ∈ bNk (x) for all k ∈ s(x); this is a consequence of the fact that a strategy i player has one
less opponent playing strategy i than a strategy k �= i player.

Now suppose that state x ∈ XN is not a Nash equilibrium. Then there are distinct
strategies i and j such that j ∈ s(x) (j is in use) and i ∈ bNj (x) (i is optimal for agents
playing j), so that a step from x to y = x+ (1/N)(ei − ej) is allowed under (DBR). Since
i ∈ bNj (x) is equivalent to i ∈ bNi (x + (1/N)(ei − ej)), the marginal bandwagon prop-

erty (specifically, the claim ending the previous paragraph) implies that i ∈ bNk (y) for
all k ∈ s(y). Repeating this argument shows that any path from y along which the
number of strategy i players increases until pure state ei is reached is a solution to
(DBR). We conclude that the recurrent classes of (DBR) correspond to the pure states,
KN = {{e1}� � � � � {en}}, as shown by Kandori and Rob (1998).11 ♦

Example 7. Again let FN be defined by random matching in the normal form coordi-
nation game A. If x ∈XN is not Nash, there is a strategy j in the support of x satisfying
j /∈ bNj (x). Lemma 5 in Appendix A.1 shows that in this case, there is a solution to (DBR)
starting from x along which the number of j players decreases until j is unused.

Now suppose further that in game FN , switching to an unused strategy is never op-
timal: j ∈ bNi (x) implies that xj > 0. In this case, applying Lemma 5 inductively shows
that from every state x ∈XN , there is a solution to (DBR) that terminates at a pure state,
implying that KN = {{e1}� � � � � {en}}. ♦

10One can represent the solutions and the recurrent classes of (DBR) using a suitably chosen Markov
chain XN�∗. Define XN�∗ by supposing that during each period, a randomly chosen agent receives a revision
opportunity and switches to a best response, choosing each with equal probability (or, more generally,
with any positive probability). Then a finite-length path is a solution to (DBR) if and only if it has positive
probability under XN�∗, and the recurrent classes of (DBR) as defined above are the recurrent classes of
XN�∗.

11Unlike our model, the model of Kandori and Rob (1995, 1998) allows multiple revisions during each
period; see also footnote 18 below.
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We conjecture that the set of recurrent classes of (DBR) is KN = {{e1}� � � � � {en}} for
any coordination game as defined in Example 2. Example 8 establishes a version of this
claim for the large population limit.

3.2 Step costs and path costs

When the noise level η is small, the process XN�η will linger in recurrent classes, but will
occasionally transit between them. We now work toward describing the probabilities of
these transitions in the small noise limit.

To begin, we define the cost of a step from x ∈ XN to y ∈ XN by

cNx�y = − lim
η→0

η logPN�ηx�y �

with the convention that −log 0 = +∞. Thus cNx�y is the exponential rate of decay of
the probability of a step from x to y as η approaches 0. Using definitions (5) and (7),
we can represent step costs in terms of the game’s payoff function and the protocol’s
unlikelihood function:

cNx�y =
⎧⎨
⎩
ϒj(F

N
i→·(x)) if y = x+ 1

N (ej − ei) and j �= i
mini∈s(x) ϒi(FNi→·(x)) if y = x
+∞ otherwise.

(9)

The important case in (9) is the first one, which says that the cost of a step in which an
i player switches to strategy j is the unlikelihood of strategy j given i’s current payoff
opportunities.12 By virtue of (9) and condition (U3), a step has cost zero if and only if it
is feasible under the discrete best-response dynamic:

cNx�y = 0 ⇔ y − x ∈ V N(x)� (10)

The cost of path φN = {φNk }�Nk=0 of length �N <∞ is the sum of the costs of its steps:

cN(φN)=
�N−1∑
k=0

cN
φNk �φ

N
k+1
� (11)

Definitions (7) and (9) imply that the cost of a path is the rate at which the probability of
following this path decays as the noise level vanishes: for fixedN , we have

P(X
N�η
k =φNk �k= 0� � � � � �N |XN�η

0 =φN0 )=
�N−1∏
k=0

P
N�η

φNk �φ
N
k+1

≈ exp(−η−1cN(φN))�

where ≈ refers to the order of magnitude in η as η approaches 0. By statement (10), path
φN has cost zero if and only if it is a solution to (DBR).

12The second case of (9) indicates that at a state where no agent is playing a best response, staying still
is costly. Since staying still does not facilitate transitions between recurrent classes, this possibility is not
realized on minimum cost paths, but we must account for it carefully in what follows; see Section 4.3.2.
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3.3 Exit costs and transition costs

We now consider escape from and transitions between recurrent classes. Let KN ∈ KN

be a recurrent class of (DBR), and let�N ⊂ XN be a set of states. We define
N(KN��N)
to be the set of finite-length paths through XN with initial state inKN and terminal state
in �N , so that

CN(KN��N)= min{cN(φN) :φN ∈
N(KN��N)} (12)

is the minimal cost of a path fromKN to �N .
If�N is a union of recurrent classes from KN , we define the weak basin of attraction

of �N , denoted WN(�N), to be the set of states in XN from which there is a zero-cost
path that terminates at a state in �N . Notice that by definition,

CN(KN��N)= CN(KN�WN(�N))�

We also define�N(KN�WN(�N))⊆ WN(�N) to be the set of terminal states of cost min-
imizing paths fromKN to WN(�N) that do not hit WN(�N) until their final step.

Two specifications of the target set �N are of particular interest. First, let

K̃N =
⋃

LN∈KN\{KN }
LN (13)

be the union of the recurrent classes other thanKN . We call CN(KN� K̃N) the cost of exit
from KN .13

 Proposition 1 provides an interpretation of this quantity. Here τN�η(�N)=
min{k :XN�η

k ∈�N } denotes the time at which the process XN�η first hits �N .

Proposition 1. Suppose thatXN�η
0 = xN ∈KN for all η. Then

(i) limη→0η logEτN�η(K̃N)= limη→0η logEτN�η(WN(K̃N))= CN(KN� K̃N)
(ii) limη→0η logP(XN�η

τN�η(WN(K̃N))
= y)= 0 if and only if y ∈�N(KN�WN(K̃N)).

Part (i) of the proposition shows that when η is small, the expected time re-
quired for the process to escape from KN to another recurrent class is of order
exp(η−1CN(KN� K̃N)). Part (ii) shows that the states in WN(K̃N) most likely to be
reached first are the terminal states of cost-minimizing paths from KN to WN(K̃N).
Both parts follow by standard arguments from Proposition 4.2 of Catoni (1999), which
provides a discrete-state analogue of the Freidlin and Wentzell (1998) theory.

Proposition 1 concerns behavior within the strong basin of attraction of KN , the set
of states SN(KN)= XN \ WN(K̃N)⊆ WN(KN) from which there is no zero-cost path to
any other recurrent class. But to understand the global behavior of the process, we must
also consider transitions fromKN to each other individual recurrent class in KN .

When LN ∈ KN , we call CN(KN�LN) the cost of a transition from KN to LN . In-
tuitively, CN(KN�LN) describes the likely order of magnitude of the time until LN is
reached. But while the analogue of Proposition 1(ii) on the likely points of entry into

13Thus the cost of exit from KN corresponds to the radius of KN as defined by Ellison (2000).
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WN(LN) is true, the analogue of Proposition 1(i) on the expected hitting time of LN is
false in general, since this expectation may be driven by a low probability of becoming
stuck in some third recurrent class.14

3.4 Stationary distribution asymptotics and stochastic stability

The transition costs CN(KN�LN) are the basic ingredient in Freidlin and Wentzell’s
(1998) graph-theoretic characterization of limiting stationary distributions and stochas-
tic stability. According to this characterization, there is a function �rN :XN → R+, de-
fined in terms of the aggregate costs of certain graphs on XN , such that

− lim
η→0

η logμN�η(x)= �rN(x) for all x ∈ XN� (14)

Thus �rN(x) describes the exponential rate of decay of the stationary distribution
weight on x as η approaches 0.

We call state x ∈ XN stochastically stable in the small noise limit if asη approaches 0,
its stationary distribution weight μN�η(x) does not vanish at an exponential rate.15 By
virtue of (14), state x is stochastically stable in this sense if and only if �rN(x)= 0. Since
these ideas are well known in evolutionary game theory,16 we postpone the detailed pre-
sentation until Section 6.2.

4. The small noise double limit

The exit costs and transition costs introduced in Section 3.3, defined in terms of min-
imum cost paths between sets of states in XN , describe the transitions of the process
XN�η between recurrent classes when the noise level η is small. When step costs depend
on payoffs, finding these minimum cost paths is a challenging computational problem.

We contend with this difficulty by taking a second limit: after taking the noise level η
to 0, we take the population sizeN to infinity, thus evaluating behavior in the small noise
limit when the population size is large. In the remainder of this paper, we show how
one can evaluate this double limit by approximating the discrete constructions from the
previous section by continuous ones. In particular, taking the second limit here turns
the path cost-minimization problem (12) into an optimal control problem. Although
this problem is nonsmooth and multidimensional, it is nevertheless simple enough to
admit analytical solutions in interesting cases.

4.1 Limits of finite-population games

To consider large population limits, we must specify a notion of convergence for se-
quences {FN }∞N=N0

of finite-population games. If such a sequence converges, its limit is

14This is the reason for the correction term appearing in Proposition 4.2 of Catoni (1999). See Freidlin
and Wentzell (1998, pp. 197–198) for a clear discussion of this point.

15Explicitly, this means that for all δ > 0 there is an η0 > 0 such that for all η < η0, μN�η(x) > exp(−ηδ).
This definition of stochastic stability is slightly less demanding than the one appearing in Kandori et al.
(1993) and Young (1993); Sandholm (2010c, Section 12.A.5) explains this distinction in detail.

16See Young (1993, 1998), Kandori and Rob (1995), and Sandholm (2010c, Section 12.A).
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a (continuous) population game, F :X →R
n, which we take to be a continuous function

from the compact set X to R. The pure and mixed best-response correspondences for
the population game F are denoted by b :X ⇒ S and B :X ⇒X , and are defined by

b(x)= arg max
i∈S

Fi(x) and B(x)= {y ∈X : supp(y)⊆ b(x)} = arg max
y∈X

y ′F(x)�

State x is a Nash equilibrium of F if i ∈ b(x) whenever xi > 0 or, equivalently, if x ∈ B(x).
The notion of convergence we employ for the sequence {FN }∞N=N0

is uniform con-
vergence, which asks that

lim
N→∞

max
x∈XN

|FN(x)− F(x)| = 0� (15)

where | · | denotes the �1 norm on R
n. It is easy to verify that under this notion of conver-

gence, the Nash equilibrium correspondences for finite-population games are “upper
hemicontinuous at infinity”: if the sequence of games {FN } converges toF , the sequence
of states {xN } converges to x, and if each xN is a Nash equilibrium of the corresponding
FN , then x is a Nash equilibrium of F .

When agents are matched to play a symmetric two-player normal form game
A ∈R

n×n (Example 1), it is easy to verify that uniform convergence obtains with the
limit game given by F(x)=Ax. It is also easy to verify that if a sequence of population
games converges uniformly, then the clever payoff functions associated with that game
all converge uniformly to the same limit.

4.2 The complete best-response dynamic and limiting recurrent classes

The solutions of the discrete best-response dynamic (DBR) are the paths through XN

that can be traversed at zero cost. To define the analogous dynamic for the large pop-
ulation limit, let S(x)= {y ∈X : s(y)⊆ s(x)} be the set of states whose supports are con-
tained in the support of x. Then the complete best-response dynamic is the differential
inclusion

ẋ ∈ B(x)− S(x)
= {β− α :β ∈ B(x)�α ∈ S(x)} (CBR)

= conv
({ej − ei | i ∈ s(x)� j ∈ b(x)})�

Comparing the final expression above to definition (8), we see that (CBR) is the
continuous-time analogue of the discrete best-response dynamic (DBR), obtained by
taking the large N limit of (DBR) and convexifying the result. We will soon see that so-
lutions to (CBR) correspond to zero-cost continuous paths under our limiting path cost
function.

For intuition, we contrast (CBR) with the standard model of best-response strategy
revision in a large population—the best-response dynamic of Gilboa and Matsui (1991):

ẋ ∈ B(x)− x� (BR)
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Figure 1. The dynamics (BR) and (CBR) and in a three-strategy game from a state x with
b(x)= {1}.

To obtain (BR) as the limit of finite-population dynamics, one assumes that in each dis-
crete time period, an agent is chosen at random from the population and then updates
to a best response. As the population size grows large, the law of large numbers en-
sures that the rates at which the various strategies are abandoned are proportional to
the prevalences of the strategies in the population, generating the −x outflow term in
(BR).17 Thus at states where the best response is unique, (BR) specifies a single vector of
motion, as shown in Figure 1 at a state at which the unique best response is strategy 1.
Under (DBR), there is no presumption that revision opportunities are assigned at ran-
dom. Thus, in the large population limit (CBR), the strategies present in the population
can be abandoned at any relative rates, leading to the −S(x) outflow term in (CBR). In
Figure 1, the set of vectors of motion under (CBR) is the convex hull of the vectors e1 −e2,
e1 − e3, and 0.18

In the classes of coordination games considered in Examples 6 and 7, the set KN

of recurrent classes of the discrete best-response dynamic (DBR) is equal to K =
{{e1}� � � � � {en}} for every population size. We now show that in any coordination game,
we can view this K as the set of “recurrent classes” of the complete best-response dy-
namic (CBR).

Example 8. Consider the continuous-population game F(x)=Ax generated by a coor-
dination gameA (Example 2). Since each pure state ei is a strict equilibrium, the unique
solution to (CBR) starting at ei is the stationary trajectory. At any state ξ in the best-
response region Bi = {x ∈X : (Ax)i ≥ (Ax)j for all j ∈ S}, the vector ei − ξ, which points

17See Roth and Sandholm (2013) for a formal limit result.
18Kandori and Rob (1995, 1998) consider a discrete-time best-response dynamic in which any subset of

the players may revise during any period; for instance, the entire population may switch to a current best
response simultaneously. Figure 1 of Kandori and Rob (1995), used to illustrate this discrete-time dynamic,
resembles Figure 1 above, but the processes these figures represent are different.



Theoretical Economics 11 (2016) Small noise double limit 297

directly from ξ to ei, is a feasible direction of motion under the best-response dynamic
(BR). Since Bi is convex and contains ei, motion can continue toward ei indefinitely: the
trajectory {xt}t≥0, defined by xt = e−tξ + (1 − e−t)ei, is a solution to (BR), and hence a
solution to (CBR). Thus for any coordination game F(x)=Ax, starting from any initial
condition ξ ∈X , there is solution to (CBR) that converges to a pure, and hence station-
ary, population state. ♦

More generally, the exact positions of the recurrent classes of the discrete best-
response dynamic (DBR) will vary with the population size. To allow for this, we as-
sume that there is a set K = {K1� � � � �Kκ} of disjoint closed subsets of X called lim-
iting recurrent classes. To justify this name, we require that for some constant d > 0
and all large enough population sizes N , the dynamic (DBR) has κ recurrent classes,
KN = {KN1 � � � � �KNκ }, and that

dist(KNi �Ki)≤ d

N
for all i ∈ {1� � � � �κ}� (16)

where dist(KNi �Ki) denotes the �1-Hausdorff distance betweenKNi andKi19

4.3 Costs of continuous paths

To evaluate stochastic stability in the small noise double limit, we need to determine the
costs CN(KN��N), defined by the discrete cost-minimization problems (12) on XN , for
large values of N . To prepare for our continuous approximation of these problems, we
now introduce a definition of costs for continuous paths through the simplex X .

4.3.1 Discrete paths, derivatives, and interpolations Let φN = {φNk }�Nk=0 be a path for
theN-agent process. Since each period of this process takes 1/N units of clock time, we
define

φ̇Nk =N(φNk+1 −φNk ) (17)

to be the discrete right derivative of path φN at time k. Let ıN(k) ∈ S and jN(k) ∈ S
denote the pre- and post-revision strategies of the agent who revises in period k. Then
φNk+1 =φNk + (1/N)(ejN(k) − eıN(k)) and, hence,

φ̇Nk = ejN(k) − eıN(k)� (18)

Note that if ıN(k) = jN(k), so that the revising agent does not switch strategies, then
φ̇Nk = 0.

Each discrete path {φNk }�Nk=0 induces a continuous path {φ(N)t }t∈[0��N/N] via piecewise
affine interpolation:

φ(N)t =φN�Nt� + (Nt − �Nt�)(φN�Nt�+1 −φN�Nt�)� (19)

19That is, dist(KNi �Ki)= max{maxx∈KNi miny∈Ki |x− y|�maxy∈Ki minx∈KNi |x− y|}, where | · | is the �1 norm

on R
n.
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This definition also accounts for each period in theN-agent process lasting 1/N units of
clock time. Evidently, the derivative φ̇(N) of this process agrees with the discrete deriva-
tive φ̇N defined in (17), in the sense that

φ̇
(N)
t = φ̇N�Nt� wheneverNt /∈ Z� (20)

Speed of motion along a continuous path {φt}t∈[0�T ] is measured most naturally by
evaluating the �1 norm |φ̇t | = ∑

i∈S |(φ̇t)i| of φ̇t ∈ TX ≡ {z ∈ R
n :

∑
i∈S zi = 0}, as this

norm makes it easy to separate the contributions of strategies that are gaining play-
ers from those of strategies that are losing players. If for z ∈ R

n we define [z]+ ∈ R
n+

and [z]− ∈ R
n+ by ([z]+)i = [zi]+ and ([z]−)i = [zi]−, then by virtue of (18) and (20), any

interpolated path φ(N) satisfies the following bound on its speed:

|[φ̇(N)t ]+| ≡ |[φ̇(N)t ]−| ≤ 1� and thus |φ̇(N)t | ≤ 2� (21)

4.3.2 Costs of continuous paths To work toward our definition of the cost of a continu-
ous path, we now express the path cost function (11) in a more suggestive form. Let 〈·� ·〉
denote the standard inner product on R

n, and let φN = {φNk }�Nk=0 be a discrete path. If
jN(k) �= ıN(k), then definitions (9) and (17) imply that the cost of step k is

cN
φNk �φ

N
k+1

=ϒjN(k)(FNıN(k)→·(φ
N
k ))= 〈

ϒ(FN
ıN(k)→·(φ

N
k ))� [φ̇Nk ]+

〉
� (22)

If jN(k) = ıN(k), so that the revising agent does not switch strategies, then φ̇Nk
equals 0; thus the rightmost expression of (22) evaluates to 0 for such null steps. This
disagrees with the second case of (9) when there is no best response to φNk is in its sup-
port. Since this discrepancy only arises when a path lingers at some such state, it is
inconsequential when determining the minimal cost of a path between subsets of XN ,
as there is always a least cost path that does not linger at all.

Summing up the step costs, the cost (11) of a discrete pathφN without null steps can
be expressed as

cN(φN)=
�N−1∑
k=0

cN
φNk �φ

N
k+1

=
�N−1∑
k=0

〈
ϒ(FN

ıN(k)→·(φ
N
k ))� [φ̇Nk ]+

〉
� (23)

Now let φ : [0�T ] →X be absolutely continuous and nonpausing, meaning that |φ̇t | �= 0
for almost all t ∈ [0�T ]. Since FNi→· ≈ F for large N , the form of the path costs in (23)
suggests that the cost of φ should be defined as

c(φ)=
∫ T

0

〈
ϒ(F(φt))� [φ̇t]+

〉
dt� (24)

This derivation is informal; the formal justification of definition (24) is provided by the
approximation results to follow.

While the discrete path cost function (23) only concerns paths with discrete deriva-
tives of the basic form φ̇Nk = ejN(k) − eıN(k), definition (24) allows any absolutely contin-

uous path with derivatives φ̇t in Z = conv({ej − ei : i� j ∈ S}) or, indeed, in the tangent
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space TX . This extension combines two new ingredients. First, allowing φ̇t to be the
weighted average of a number of vectors ej − ei makes it possible to approximate the
cost of a continuous path by the costs of rapidly oscillating discrete paths, a point we
discuss further in Section 5.3. Second, by virtue of the linear homogeneity of the inte-
grand of (24) in φ̇t , the cost of a continuous path is independent of the speed at which it
is traversed.

Finally, we observe that a nonpausing absolutely continuous path φ has zero cost
under (24) if and only if it is a solution of the complete best-response dynamic (CBR).

5. The convergence theorem

In Section 3.3, we defined the minimal cost CN(KN��N) of a discrete path from recur-
rent class KN ∈ KN to set �N ⊂ XN . We now consider a sequence of such problems,
where the recurrent classesKN converge to the limiting recurrent classK ∈ K as in con-
dition (16) and where the target sets �N ⊂ XN converge to a closed set � ⊂ X in the
same sense:

dist(�N��)≤ d

N
(25)

for some d > 0 and allN large enough.
Let 
(K��) be the set of absolutely continuous paths of arbitrary duration through

X fromK to �, and define

C(K��)= min{c(φ) :φ ∈
(K��)} (26)

to be the minimal cost of a continuous path from K to �. Our aim in this section is
to show that the normalized optimal values of the discrete problems converge to the
optimal value of the continuous problem:

lim
N→∞

1
N
CN(KN��N)= C(K��)� (27)

This conclusion will justify definition (24) of the cost of a nonpausing absolutely contin-
uous path, and will provide the tool needed to evaluate exit times, stationary distribu-
tion asymptotics, and stochastic stability in the large population double limit.

5.1 Assumptions

We prove our results under two assumptions about the minimum cost path problems
(12) and (26). To state the first assumption, which is needed to obtain the lower bound in
(27), we recall that the duration TN = �N/N of the discrete path {φNk }�Nk=0 is the number
of units of clock time it entails.

Assumption 1. There exists a constant T̄ <∞ such that for allKN ∈ KN ,�N ⊂ XN , and
N , there is a path of duration at most T̄ that achieves the minimum in (12).
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Since state space XN is finite, cost-minimizing paths between subsets of �N can
always be assumed to have finite length. Assumption 1 imposes a uniform bound on
the amount of clock time that these optimal paths require. It thus requires that cost-
minimizing paths not become extremely convoluted as the population size grows large,
as might be possible if, despite the uniform convergence of payoff functions in (15), the
step costs cNx�y defined in (9) became highly irregular functions of the current population
state.

To introduce our second assumption, which is needed to obtain the upper bound in
(27), we need some additional definitions. Let φ : [0�T ] →X be a continuous path. We
call φ monotone if we can express the strategy set S as the disjoint union S+ ∪ S−, with
φj nondecreasing for j ∈ S+ and φi nonincreasing for i ∈ S−. If M is a positive integer,
we say that φ is M-piecewise monotone if its domain [0�T ] can be partitioned into M
subintervals such that φ is monotone on each; if this is true for some M , we say that φ
is piecewise monotone. Monotonicity and piecewise monotonicity for discrete paths are
defined analogously.

Motivated by bound (21), we say that piecewise monotone pathφmoves at full speed
if

|[φ̇t]+| ≡ |[φ̇t]−| = 1� and thus |φ̇t | = 2� for almost all t ∈ [0�T ]� (28)

By the linear homogeneity of the integrand of cost function (24), there is no loss if the
minimum in (26) is taken over paths in 
(K��) that move at full speed.

Assumption 2. There exist constants T̃ <∞ and M̃ <∞ such that for all K ∈ K and
� ∈ K ∪ {{x}}x∈X , there is an M̃-piecewise monotone, full speed path of duration at most
T̃ that achieves the minimum in (26).

Since the state space X is compact and the integrand of the cost function is (24)
continuous, and since we may work with the compact, convex set of controls Z, it is
reasonable to expect the minimum in (26) to be achieved by some finite-duration path.
Piecewise monotonicity is a mild regularity condition on the form of the minimizer. In
practice, one applies the results developed below by explicitly solving control problem
(26); in so doing, one verifies Assumption 2 directly.

So as to appeal to Assumption 2, we assume in what follows that the target set � is
either a limiting recurrent class or a singleton.20

5.2 The lower bound

To establish the convergence claim in (27), we must show that C(K��) provides both a
lower and an upper bound on the limiting behavior of (1/N)CN(KN��N).

The key to obtaining the lower bound is to show that if the normalized costs
(1/N)cN(φN) of a sequence of discrete paths of bounded durations converge, then the

20For the results to follow that only concern recurrent classes, it is enough in Assumption 2 to consider
target sets in K . Singleton target sets are needed in Theorem 10 to derive the asymptotics of the stationary
distribution on the entire state space, rather than just its asymptotics on the recurrent classes.
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costs c(φ(N)) of the corresponding linear interpolations converge to the same limit. This
is the content of the following proposition. Its proof, which is based on continuity argu-
ments, is presented in Appendix A.2.

Proposition 2. Let {φN }∞N=N0
be a sequence of paths with durations at most T̄ and

whose costs satisfy limN→∞(1/N)cN(φN) = C∗. Then the corresponding sequence
{φ(N)}∞N=N0

of linear interpolations satisfies limN→∞ c(φ(N))= C∗.

Now consider a sequence (or, if necessary, a subsequence) of optimal discrete paths
φN ∈ 
N(KN��N) for problem (12) with durations TN ≤ T̄ (cf. Assumption 1) and
whose costs converge to C∗. By Proposition 2, the costs of their linear interpolations
φ(N) ∈ 
(KN��N) also converge to C∗. We can extend these to paths in 
(K��) by
adding subpaths linking K to φ(N)0 ∈ KN and φ(N)

TN
∈ LN to L. Conditions (16) and (25)

imply that this can be done at negligible cost. This argument yields the following result,
whose proof is presented in Appendix A.3.

Proposition 3. We have lim infN→∞(1/N)CN(KN��N)≥ C(K��).

5.3 The upper bound

The key to obtaining the upper bound is to show that given a continuous path φ with
cost c(φ), we can find a sequence of discrete paths {φN } whose normalized costs ap-
proach c(φ). The natural approach to this problem is to define each φN as a suitable
discrete approximation ofφ, and then to use continuity arguments to establish the con-
vergence of normalized costs. But unlike the argument behind Proposition 2, the cost
convergence argument here is not straightforward. The earlier argument took advan-
tage of the fact that every discrete path induces a continuous path via linear interpo-
lation. Here, the discrete approximation of the continuous path must be constructed
explicitly.

Moreover, there are limits to what a discrete approximation can achieve. As defini-
tions (23) and (24) state, a path’s cost depends on its derivatives at each point of time;
these derivatives specify the sequence of revisions that occur over the course of the path.
However, one cannot always construct discrete approximations φN whose derivatives
approximate those of the continuous path φ.

As an illustration, consider Figure 2(i), which presents a continuous path φ through
X from vertex e1 to the barycenter ( 1

3 �
1
3 �

1
3). As this path is followed, the state moves in

direction 1
2(e2 + e3) − e1: the mass playing strategy 1 falls over time, while the masses

playing strategies 2 and 3 rise at equal rates. But discrete paths through XN are unable
to move in this direction. At best, they can alternate between increments (1/N)(e2 − e1)

(i.e., switches by a single agent from 1 to 2) and (1/N)(e3 −e1). The states in the resulting
discrete paths are all close to states in φ. But the alternation of increments needed to
stay close toφ prevents the derivatives of the discrete paths from converging asN grows
large.



302 Sandholm and Staudigl Theoretical Economics 11 (2016)

Figure 2. Discrete approximation of continuous paths.

Despite this difficulty, it is possible to construct discrete approximations φN whose
costs approach those of the continuous path φ, provided that φ is piecewise mono-
tone.21 To begin, Proposition 4 shows that if φ is monotone and moves at full speed,
then we can find discrete pathsφN that are also monotone and that closely approximate
φ, in that φN is within 2n/N of φ in the uniform norm.

Proposition 4. Suppose φ = {φt}t∈[0�T ] is monotone and moves at full speed. If

N ≥ 1/T , there is an sN ∈ [0�1/N) and a feasible monotone path φN = {φNk }�Nk=0, �N =
�N(T − sN)� satisfying

max
0≤k≤�N

|φNk −φsN+k/N | ≤ 2n
N
� (29)

A constructive proof of this proposition is presented in Appendix A.4.
Next, Proposition 5 shows that the normalized costs of the discrete paths so con-

structed converge to the cost of the original path φ.

Proposition 5. Suppose that the path {φt}t∈[0�T ] is monotone and moves at full speed,

and that the paths {{φNk }�Nk=0}∞N=N0
are monotone and approximate φ in the sense of (29).

Then limN→∞(1/N)cN(φN)= c(φ).
The proof of Proposition 5 is presented in Appendix A.5, but we explain the logic of

the proof here. By (23) and definition (17) of φ̇N , we can express the normalized cost of
path φN as

1
N
cN(φN)=

�N−1∑
k=0

〈
ϒ(FN

ıN(k)→·(φ
N
k ))� [φNk+1 −φNk ]+

〉
� (30)

21As an aside, we note that the continuous and discrete paths in Figure 2 are both monotone with S+ =
{2�3} and S− = {1}.
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Because path φN is monotone, the second term in the inner product telescopes:

[φNb −φNa ]+ =
b−1∑
k=a

[φNk+1 −φNk ]+�

This property allows us to approximate (30) by a sum with only O(
√
N) summands,

each of which corresponds to O(
√
N) terms in the original expression. This sum can

be approximated in turn by replacing values of φN with values of φ. Doing so yields a
Riemann–Stieltjes sum (cf. (86)) whose integratorφ is monotone. Since there areO(

√
N)

rather than O(N) summands, the O(1/N) bound in (29) ensures that replacing φN with
φ leads to an approximation of (1/N)cN(φN) that is asymptotically correct.22 But since
the number of summands still grows without bound in N , the Riemann–Stieltjes sums
converge asN grows large; their limit is the integral that defines c(φ).

By Assumption 2, there is a full speed, piecewise monotone optimal path φ ∈

(K��) for problem (26). By Propositions 4 and 5, there are monotone discrete ap-
proximations of each monotone segment ofφwith total cost close to c(φ). To construct
a path φN ∈ 
(KN��N), we patch together these monotone discrete approximations,
and also add segments from KN to φ0 ∈ K and from φT ∈ � to �N . As before, condi-
tions (16) and (25) ensure that this can be done at negligible cost. This argument yields
the following upper bound, whose proof is presented in Appendix A.6.

Proposition 6. We have lim supN→∞(1/N)CN(KN��N)≤ C(K��).

Together, Propositions 3 and 6 establish the convergence of minimal path costs.

Theorem 9 (Convergence theorem). We have limN→∞(1/N)CN(KN��N)= C(K��).

6. Consequences for long-run behavior

We now use the convergence theorem to characterize exit times, stationary distribu-
tion asymptotics, and stochastic stability in the small noise double limit. These char-
acterizations are stated in terms of solutions to the continuous control problems (26).
As these problems are tractable in certain interesting cases, the results here allow one
to obtain explicit descriptions of the long-run behavior of the stochastic evolutionary
processes.

6.1 Expected exit times and exit locations

Given a recurrent class KN ∈ KN , (13) defined K̃N as the union of the recurrent classes
in KN other than KN . Thus if the process XN�η starts in KN , then EτN�η(K̃N) is the
expected time until it reaches another recurrent class.

22One can make an equivalent point in terms of derivatives: while φ̇N does not converge to φ̇, the local

averages of φ̇N over time intervals of length O(
√
N) converge to the corresponding local averages of φ̇.

Compare Figure 2.
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To characterize this expected waiting time, we let K be the limiting recurrent class
corresponding toKN (cf. (16)), and we define

K̃ =
⋃

L∈K\{K}
L

to be the union of the limiting recurrent classes other than K. Combining Proposi-
tion 1(i) and Theorem 9 immediately yields the following result.

Corollary 1. LetXN�η
0 = xN ∈KN for all η> 0 andN ≥N0. Then

lim
N→∞

lim
η→0

η

N
logEτN�η(K̃N)= C(K� K̃)�

In words, Corollary 1 says that when N is sufficiently large, the exponential growth
rate of the expected waiting time EτN�η(K̃N) as η vanishes is approximately NC(K� K̃).
This quantity can be evaluated explicitly by solving control problem (26).

Turning to exit locations, Proposition 1(ii) showed that in the small noise limit, the
exit point of XN�η from the strong basin of attraction SN(KN) = XN \ WN(K̃N) is very
likely to be the terminal state of a minimum cost path from KN to WN(K̃N). Although
the statements of the main results in Section 5 focus on costs, their proofs establish that
optimal discrete paths can be approximated arbitrarily well by nearly optimal continu-
ous paths and vice versa. It follows that the likely exit points of XN�η from SN(KN) can be
approximated by the terminal points of the optimal solutions of the appropriate control
problems (26).

6.2 Stationary distribution asymptotics and stochastic stability

6.2.1 The small noise limit To state our results on stationary distribution asymptotics
and stochastic stability in the small noise double limit, we first review the well known
results for the small noise limit alluded to in Section 3.4. The analysis, which fol-
lows Freidlin and Wentzell (1998), is cast in terms of graphs on the set of recurrent
classes KN .

A tree on KN with root KN , sometimes called a KN -tree, is a directed graph on KN

with no outgoing edges from KN , exactly one outgoing edge from each LN �=KN , and a
unique path though KN from each LN �=KN to KN . Denote a typical KN -tree by τKN ,
and let TKN denote the set of KN -trees. The cost of tree τKN on KN is the sum of the
costs of the transitions over its edges:

CN(τKN )=
∑

(LN�L̂N)∈τ
KN

CN(LN� L̂N)�

Let RN :KN → R+ assign each recurrent class KN ∈ KN the minimal cost of a
KN -tree:

RN(KN)= min
τ
KN

∈T
KN

CN(τKN )�
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Then define the function rN :XN → R+ by

rN(x)= min
KN∈KN

(
RN(KN)+CN(

KN� {x}))� (31)

If x is in recurrent class KN , then rN(x) = RN(KN). Otherwise, rN(x) is the sum of the
cost of someKN -tree and the cost of a path fromKN to x.23 Finally, let �rN :KN → R be
a version of rN whose values have been shifted to have minimum 0:

�rN(x)= rN(x)− min
y∈XN

rN(y)�

Proposition 7 shows that the function �rN describes the exponential rates of decay
of the stationary distribution weights μN�η(x) in the small noise limit. It is an easy con-
sequence of Proposition 4.1 of Catoni (1999).

Proposition 7. The stationary distributions μN�η satisfy

− lim
η→0

η logμN�η(x)= �rN(x) for all x ∈ XN� (15)

6.2.2 The small noise double limit To describe the asymptotics of the stationary distri-
bution in the small noise double limit, we repeat the construction above using the set
of limit recurrent classes K and the limit costs C. Denote a typical K-tree on the set of
limiting recurrent classes K by τK , and let TK denote the set of K-trees. Define the cost
of tree τK by

C(τK)=
∑

(L�L̂)∈τK
C(L� L̂)�

Then define the functions R :K →R+, r :X →R+, and �r :X →R by

R(K)= min
τK∈TK

C(τK)� r(x)= min
K∈K

(
R(K)+C(K� {x}))� and �r(x)= r(x)−min

y∈X
r(y)�

Theorem 10 describes the asymptotics of the stationary distributions μN�η in the
small noise double limit.

Theorem 10. The stationary distributions μN�η satisfy

lim
N→∞

lim
η→0

max
x∈XN

∣∣∣∣− η

N
logμN�η(x)−�r(x)

∣∣∣∣ = 0�

In words, the theorem says that when N is sufficiently large, the exponential rate of
decay of μN�η(x) as η−1 approaches infinity is approximatelyN�r(x).

A weaker version of Theorem 10, one that does not require uniformity of the large
N limit in x, would follow directly from Theorem 9 and Proposition 7.24 To prove Theo-
rem 10 as stated, we need to show that the limit in Theorem 9 is uniform over all choices

23State x need not be in the weak basin of the recurrent class that yields the minimum in (31).
24In fact, since the number of recurrent classes is finite, a version of the theorem that focused only on

these would also follow directly from Theorem 9.
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of the target set� ∈ K ∪{{x}}x∈X (cf. Assumption 2). We accomplish this in Appendix A.7
by bounding the rate of convergence in the results from Section 5 independently of the
specific paths and target sets under consideration. This uniform convergence in these
earlier results directly yields the uniform asymptotics for the stationary distributions.

In view of Theorem 10, we call state x ∈ X stochastically stable in the small noise
double limit if for any open set O ⊂X containing x, probability mass μN�η(O) does not
vanish at an exponential rate in η once N is large enough.25

 Theorem 10 implies that
state x is stochastically stable in the small noise double limit if and only if �r(x)= 0.26

7. An analysis of the logit model

To move from the results in the previous section to analyses of specific examples, one
needs to solve instances of the path cost-minimization problem (26). In this section, we
show how to solve such problems using optimal control techniques, and we combine
these solutions with the results below to describe long-run play in particular examples.
Our focus is on evolution under the logit choice rule (Example 3), in three-strategy coor-
dination games (Example 2) that satisfy the marginal bandwagon property (Example 6)
and that have an interior equilibrium. In Section 8.2, we explain why it should be possi-
ble to carry out similar analyses in other settings.

7.1 Definitions

7.1.1 Notation and definitions for symmetric normal form games We begin by intro-
ducing a convenient new notation for working with symmetric normal form games
A ∈ R

n×n. We use superscripts to refer to rows of A and subscripts to refer to columns.
Thus Ai is the ith row of A,Aj is the jth column ofA, andAij is the (i� j)th entry. These
objects can be obtained by pre- and postmultiplyingA by standard basis vectors:

Ai = e′iA� Aj =Aej� Aij = e′iAej�

In a similar fashion, we use super- and subscripts of the form i − j to denote certain
differences obtained fromA:

Ai−j =Ai −Aj = (ei − ej)′A� A
i−j
k−� =Aik −Ai� −Ajk +Aj� = (ei − ej)′A(ek − e�)�

In this notation, the best-response region for strategy i is described by

Bi = {x ∈X :Ai−jx≥ 0 for all j ∈ S}�

The set Bij = Bi ∩ Bj is the boundary between the best-response regions for strategies i
and j.

25Logically, ∀δ > 0 ∀O ∈ O(X�x) ∃N0 ∈ N ∀N >N0 ∃η0 > 0 ∀η < η0 μ
N�η(O) > exp(−ηδ), where O(X�x)

denotes the set of open subsets of X containing x.
26This characterization remains true under a more demanding definition of stochastic stability, requiring

that for every δ > 0, there exist an O ∈ O(X�x) such that (leaving the quantifiers on N and η in place)
μN�η(y) > exp(−ηδ) for every y ∈O ∩ XN .
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In the present notation,A is a coordination game (Example 2) if

Aii >A
j
i for all i� j ∈ S with j �= i� (32)

so that each pure state is a Nash equilibrium of F . This implies that

A
i−j
i−j > 0 for all i� j ∈ S� (33)

We callAi−ji−j =Aj−ij−i the (i� j)th alignment of A. This quantity, which corresponds to the
denominator of the mixed equilibrium weights in the binary-choice game with strate-
gies i and j, represents the strength of incentives to coordinate (or, if negative, to misco-
ordinate) in the restricted game with strategy set {i� j}.

Likewise, gameA has the marginal bandwagon property (Example 6) if

A
i−j
i−k > 0 for all i� j�k ∈ S with i /∈ {j�k}� (34)

As noted earlier, this property requires that when opponents switch to strategy i from
some other strategy, the payoffs to playing strategy i improve relative to those of all other
strategies. In three-strategy coordination games with an interior equilibrium, prop-
erty (34) has a simple geometric interpretation: it requires that the boundaries between
best-response regions do not hit the boundary of the simplex at sharp angles; see Sec-
tion 7.3.1, especially Figure 4.

The next definition for games with three or more strategies plays a basic role in our
analysis. For an ordered triple of distinct strategies (i� j�k), we define the (i� j�k)th skew
ofA by

Qijk =Aij−k +Ajk−i +Aki−j
(35)

=A
i−j
i−k −Ai−ki−j =Aj−kj−i −Aj−ij−k =Ak−i

k−j −Ak−j
k−i �

Evidently skew is alternating, in the sense that it is preserved by even permutations of
the index list and negated by odd ones:

Qijk =Qjki =Qkij = −Qkji = −Qjik = −Qikj� (36)

We call A a potential game if A= C + 1r ′ for some symmetric matrix C ∈ R
n×n and

some vector r ∈ R
n, where 1 ∈ R

n denotes the vector of 1s. Thus A is the sum of a com-
mon interest game C and a passive game 1r ′ in which a player’s payoff depends only on
his opponent’s strategy. Clearly, games A and C induce the same best-response corre-
spondence and the same set of Nash equilibria.

Potential games admit a variety of characterizations. For instance, A is a potential
game if and only if 
A
 is a symmetric matrix, where 
= I − (1/n)11′ ∈R

n×n is the or-
thogonal projection onto the tangent space TX = {z ∈ R

n :
∑
i zi = 0}.27 The latter con-

dition says thatA is a symmetric bilinear form on TX × TX , meaning that z′Aẑ = ẑ′Az

27The “only if” direction of this claim is obvious. Letting �= (1/n)11′ = I −
, the “if” direction follows
from the decomposition A= (
A
+ (
A�+�A′
))+�(A−A′
). Compare Sandholm (2010a).
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for all z� ẑ ∈ TX . Alternatively, A is a potential game if and only if it satisfies the trian-
gular integrability condition of Hofbauer (1985), which can be stated in terms of skews:
Qijk = 0 for all distinct i� j�k ∈ S.28

7.1.2 Path costs and the minimum cost path problems To determine the path cost func-
tion for the present context, recall that the unlikelihood function for the logit choice
protocol (6) is

ϒi(π)= max
j∈S

πj −πi� (37)

Plugging this expression into (24), we find that the cost of continuous path φ under the
logit protocol in the linear population game F(x)=Ax is

c(φ)=
∫ T

0
[φ̇t]′+(1Ab̌(φt) −A)φt dt� (38)

where b̌(·) is any selection from the game’s pure best-response correspondence b(·).
The results in Section 6 described the long-run behavior of the process XN�η in terms

of the minimal costs of continuous paths from limiting recurrent classes to unions of
these classes. In the case of coordination games with the marginal bandwagon property,
Example 6 shows that the set of limiting recurrent classes is the set of pure equilibria:
K = {{e1}� � � � � {en}}. Corollary 1 thus implies that in the small noise double limit, the
expected time until the process XN�η exits from equilibrium ei to another equilibrium is
captured by the cost of exit

C

(
{ei}�

⋃
j �=i

{ej}
)

= min
{
c(φ) :φ ∈


(
{ei}�

⋃
j �=i

{ej}
)}
� (39)

Theorem 10 shows that to evaluate limiting stationary distributions and stochastic sta-
bility in the small noise double limit, we must assess the costs of transitions between
strict equilibria:

C({ei}� {ej})= inf
{
c(φ) :φ ∈
({ei}� {ej})

}
� (40)

Example 8 shows that in coordination games, a straight-line path from any state in
best-response region Bj to equilibrium ej has zero cost. Thus replacing {ej} with Bj

in (39) and (40) does not change the minimal cost in either case, and we will write the
minimal cost path problems this way in what follows.

7.2 Preliminary analysis

7.2.1 A verification theorem To understand the long-term behavior of the processes
XN�η in the small noise double limit, we must solve the exit cost problems (39) and the
transition cost problems (40). These problems have nonsmooth running costs and are
multidimensional in games with more than two strategies. Nevertheless, these problems

28See Sandholm (2009, Proposition 4.5).
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can be solved explicitly. We now introduce the result from optimal control theory that
we use to do so.

Let A be anm-dimensional affine subspace of Rn with tangent space TA, and let the
set�⊂ A be closed relative to A and have piecewise smooth boundary. Let the function
L :A ×TA → R+ be Lipschitz continuous, and let Z ⊂ TA be compact and convex. The
control problem and its value function V ∗ :A →R+ are defined as

V ∗(x)= min
∫ T

0
L(φt� νt)dt

over T ∈ [0�∞)� ν : [0�T ] → Z measurable

subject to φ : [0�T ] → A absolutely continuous (41)

φ0 = x� φT ∈�
φ̇t = νt for almost every t ∈ [0�T ]�

Theorem 11 provides sufficient conditions for a function V :A → R+ to be the value
function of (41). The key requirement is that the Hamilton–Jacobi–Bellman (HJB)
equation

min
u∈Z

(L(x�u)+DV (x)u)= 0 (42)

hold at almost every x ∈ A.

Theorem 11 (Verification theorem (Boltyanskii 1966, Piccoli and Sussmann 2000)). Let
V :A → R+ be a continuous function that is continuously differentiable except on the
union U ⊂ A of a finite number of manifolds, each of dimension less thanm. Assume the
following:

(i) For every x ∈ A, there is a time T ∈ [0�∞) and a measurable function ν : [0�T ] → Z

such that the corresponding controlled trajectory φ : [0�T ] → A with φ0 = x satis-
fies φT ∈� and

∫ T
0 L(φt� νt)dt = V (x).

(ii) The HJB equation (42) holds at all x ∈ A \ U.

(iii) The boundary condition V (x)= 0 holds at all x ∈�.

Then V = V ∗.

Condition (i) of the theorem says that the values specified by the function V can all
be achieved, and so implies that V ∗ ≤ V . Establishing the opposite inequality is straight-
forward if V is C1. Suppose that this is the case, and that T̂ ∈ [0�∞) and ν̂ : [0� T̂ ] → Z

are feasible in problem (41), so that the controlled trajectory φ̂ : [0� T̂ ] → A with φ̂0 = x

satisfies φ̂T̂ ∈�. Then the HJB equation (42) implies that

L(φ̂t� ν̂t)≥ −DV (φ̂t)ν̂t = − d
dt
V (φ̂t) for almost all t ∈ (0� T̂ )�
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Figure 3. The original and extended versions of the transition problem (40).

Integrating and applying the boundary condition (iii) yields

∫ T̂

0
L(φt� νt)≥ −(V (φ̂T̂ )− V (φ̂0))= V (x)�

and so V ∗ ≥ V .
To prove Theorem 11 as stated, one establishes that the cost of any feasible con-

trolled trajectory can be approximated arbitrarily well by the cost of a feasible controlled
trajectory that only intersects the manifolds in U at a finite set of times. The first result
along these lines is due to Boltyanskii (1966), with various improvements culminating
in the work of Piccoli and Sussmann (2000). Theorem 11 above follows from the state-
ment and proof of Theorem 6.3.1 in the textbook treatment of Schättler and Ledzewicz
(2012).29

While our control problems are set in the simplex X , Theorem 11 addresses prob-
lems whose state space is an affine subset of Rn. To use the theorem, we redefine our
problems by extending their state space to the affine hull aff(X) = {x ∈ R

n :
∑
i xi = 1}

of X . Since our target sets are defined by linear inequalities, we can define the target
sets of our extended problem by imposing the same linear inequalities in aff(X) rather
than in X (Figure 3). If in this extended problem, the optimal paths from initial condi-
tions in X to the extended target set are themselves contained in X , then these paths
are optimal in the original problem; consequently, the restriction of the resulting value
function to X is the value function of the original problem. This is precisely what hap-
pens in the minimum cost path problems for the games we focus on here. We discuss
the general case in Section 8.2.

29In the statement of Theorem 6.3.1 of Schättler and Ledzewicz (2012), A is all of Rn, the function L is
C1, and the target set � is required to have a smooth boundary. However, inspection of their proof reveals
that it goes through unchanged under the weaker requirements imposed in Theorem 11 above.
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Also, recall that under path cost function (24), reparameterizing a path—changing
the speed at which the states in the path are traversed—does not affect its cost. Thus in
looking for minimum cost paths between sets in aff(X), it is without loss of generality to
consider paths satisfying φ̇t ∈Z, where Z is the compact set conv({ei − ej : i� j ∈ S}).

The control problem (41) is stated in terms of control trajectories ν : [0�T ] → Z,
which specify the control vectors as a function of time. It is convenient here to work
with feedback controls ν̂ :A → Z, which specify the control vectors as a function of the
current state. The corresponding controlled trajectories are the Carathéodory solutions
to the differential equation φ̇t = ν̂(φt).30 If φ is such a trajectory and if we define the
control trajectory ν by νt = ν̂(φt), then the pair (φ�ν) satisfies φ̇t = νt for almost all times
t, as required in problem (41).

7.2.2 A lemma for checking the HJB equation We now introduce a basic tool for veri-
fying the HJB equation in our setting. When x is in Bi ⊂ aff(X), the HJB equation (42)
becomes

min
u∈Z

([u]′+(1Ai −A)x+DV (x)u)= 0� (43)

Since the function being minimized in (43) is linear in u on each orthant of Rn, there
must be a minimizer either at an extreme point of Z or at the origin, where the function
evaluates to 0. Therefore, substituting ea − eb for u, we see that (43) is equivalent to

min
ea�eb �=ea

((ei − ea)′Ax+DV (x)(ea − eb))≥ 0� (44)

Lemma 1 provides a sufficient condition for the HJB equation (44) to be satisfied at a
state in the (relative) interior of Bi whenA is a three-strategy game.

Lemma 1. Let A be a three-strategy game with S = {i� j�k}. Suppose that the candidate
value function V is constructed from a feedback control that takes value ek − ei at all
states in a neighborhood of x ∈ int(Bi). If

DV (x)(ei − eh) ≥ 0 for h ∈ {j�k} (45)

(DV (x)− (Ax)′)(ej − ek) ≥ 0� (46)

then V satisfies the HJB equation (44) at x.

The proof of Lemma 1 is presented in Appendix A.8. We argue there that the as-
sumption that the control is ek − ei in a neighborhood of x implies that the function to
be minimized in the HJB equation (44) equals 0 when ea = ek and eb = ei. This equality
can be restated as

(DV (x)− (Ax)′)(ek − ei)= 0� (47)

The proof then uses conditions (45)–(47) and the fact that x ∈ Bi to show that the func-
tion to be minimized in (44) is nonnegative for the remaining five choices of ea − eb.

30A Carathéodory solution to an ordinary differential equation is an absolutely continuous trajectory that
satisfies the equation at almost all times.
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7.2.3 Costs of direct paths As a final preliminary, we present two simple formulas for
path costs (38) in linear games under the logit rule. For x� y ∈ aff(X), we let γ(x� y) de-
note the cost of the direct (straight-line) path from x to y:

γ(x� y)= c(φ)� where φ : [0�1] →X is defined by φt = (1 − t)x+ ty�

The first formula concerns a class of direct paths whose costs are easily expressed in
terms of the paths’ endpoints: those in which the motion of the state involves agents
switching away from the current best response.

Lemma 2. Suppose that x� y ∈ Bi, and that y − x= d(α− ei) for some α ∈X with αi = 0
and some d ≥ 0. Then

γ(x� y)= (x− y)′A
(
x+ y

2

)
�

Proof. Since φ̇t = y − x = d(α − ei) ∈ TX and [φ̇t]′−(1Ai − A) = de′i(1A
i − A) =

d(Ai −Ai)= 0′,

γ(x� y) =
∫ 1

0
[φ̇t]′+(1Ai −A)φt dt =

∫ 1

0
φ̇′
t (1A

i −A)φt dt = −
∫ 1

0
φ̇′
tAφt dt

= −(y − x)′A
∫ 1

0
φt dt = (x− y)′A

(
x+ y

2

)
� �

In some important cases this formula can be simplified further. The second formula
describes the costs that are realized when the state moves from x ∈ Bi in direction ek−ei
until reaching a state y in the set Bij = Bi∩Bj , where strategies i and j are both optimal.

Lemma 3. Let x ∈ Bi, and suppose that

y = x+ d(ek − ei) ∈ Bij for some d > 0 (48)

and thatAi−ji−k �= 0. Then

d = Ai−jx
A
i−j
i−k

(49)

γ(x� y) = dAi−ky + 1
2
d2Ai−ki−k� (50)

In particular, if j = k, thenAi−ky = 0, so (50) becomes

γ(x� y)= 1
2
d2Ai−ki−k = 1

2
(Ai−kx)2

Ai−ki−k
�
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Proof. Since y ∈ Bij , we have Ai−jy = 0, which with (48) implies (49). Also, combining
(48) and Lemma 2 yields (50), since

γ(x� y) = (x− y)′A
(
x+ y

2

)
= d(ei − ek)′A

(
y + 1

2
d(ei − ek)

)

= dAi−ky + 1
2
d2Ai−ki−k� �

7.3 Construction of value functions: The initial step

7.3.1 Simple three-strategy coordination games We now focus on three-strategy coor-
dination games (32) that satisfy the marginal bandwagon property (34) and that admit a
completely mixed equilibrium, a class of games we henceforth call simple three-strategy
coordination games. The completely mixed equilibrium x∗ ∈ int(X) is the unique state
in aff(X) at which the payoffs to all strategies are equal: Ax∗ = c1 for some c ∈R. For dis-
tinct strategies i� j ∈ S, such games admit a unique mixed equilibrium xij with support
{i� j}. This xij is the unique state in Bij with xk = 0.

We now define two vectors that play basic roles in the analysis to come. For distinct
strategies i� j ∈ S, we define the vector ζij ∈ TX by

ζij = 1
x∗
k

(xij − x∗)� (51)

When drawn with its tail at x∗, ζij points outward along the boundary Bij between best-
response regions Bi and Bj (Figure 4). Since the vector (Aj−i)′ is normal to Bij , ζij is a
multiple of the cross-product

(Aj−i)′ × 1 =Aj−ij−kei +Ai−ji−kej −Aj−ij−iek�

Since (51) implies that ζijk = −1, it follows that

ζij =
A
j−i
j−k

A
j−i
j−i
ei +

A
i−j
i−k

A
j−i
j−i
ej − ek ≡ βij − ek� (52)

The equivalence in (52) defines the vector βij . Since A is a coordination game with the
marginal bandwagon property, βij is an element of conv({ei� ej}), and so ζij is a convex
combination of ei − ek and ej − ek. Thus boundary Bij does not hit the boundary of the
simplex at an angle of less than 60◦, implying that mixed equilibrium xij is in the sextant
northwest of mixed equilibrium x∗; see Figure 4.31

Next, we define the vector vij = vji ∈R
3 by

(vij)′ = (ζij)′A= 1

A
j−i
j−i
(A

j−i
j−kA

i +Ai−ji−kA
j −Aj−ij−iA

k)�

31The sextants are six closed convex cones in aff(X) with common origin x∗ and 60◦ angles between
their boundaries. In Figures 4 and 5, the portions of the sextants’ boundaries lying in X are represented by
dotted lines.
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Figure 4. Multiples of the vectors ζij , ζjk, and ζki.

By definition (51) of ζij , (vij)′x is positive if and only if mixed strategy xij earns a higher
payoff than mixed strategy x∗ at state x. Both the geometry and the importance of the
vector vij will be made clear below.

7.3.2 Construction of the value function near the target set To solve the exit cost prob-
lem (39) and the transition cost problem (40) via dynamic programming, we first deter-
mine the form of the value function at states near the target set. We therefore consider
the cost of reaching the set Bk from nearby states in Bi. It is natural to guess that there
is a region Rik ⊆ Bi whose boundary contains Bik, in which motion in direction ek − ei
leads to Bik and defines the optimal feedback control. By Lemma 3, this choice of con-
trol generates the candidate value function

V (x)= 1
2
(Ai−kx)2

Ai−ki−k
(53)

in region Rik.
We use Lemma 1 to determine when this function satisfies the HJB equation (44) in

Rik. To start, we compute the derivative32 DV : aff(X)→L(TX�R) of V at points in the
interior of Rik:

DV (x)z = Ai−kx
Ai−ki−k

Ai−kz for x ∈ int(Rik)� (54)

32Since V is defined on aff(X), its derivative at x, DV (x), is a linear map from TX to R. There are many
vectors v ∈ R

n that represent this map, in the sense that DV (x)z = v′z for all z ∈ TX . The gradient of V at
x, ∇V (x), is the defined to be the unique representative of DV (x) in TX ; it can be obtained by applying
the orthogonal projection matrix
= I− 1

n11′ to an arbitrary representative ofDV (x) in R
n. See Sandholm

(2010c, Section 3.C) for further discussion.
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Since strategies i and k are both best responses at states in Bik, vectors tangent to Bik

are orthogonal to (Ai−k)′. Equation (54) implies that such vectors ẑ satisfy DV (x)ẑ = 0
and so are tangent to the level sets of the value function. Intuitively, moving the state in
a direction tangent to Bik changes neither the distance needed to travel to Bik nor the
payoff differences that must be overcome en route.

We now apply Lemma 1. To check condition (45), we first observe that

DV (x)(ei − eh)= Ai−kx
Ai−ki−k

Ai−ki−h�

Now Ai−kx ≥ 0 (since x ∈ Bi), Ai−ki−k > 0 (since A is a coordination game; see (33)),

and Ai−ki−j ≥ 0 (by the marginal bandwagon property (34)). Thus DV (x)(ei − eh) ≥ 0 for
h ∈ {j�k}, establishing condition (45). To check condition (46), we compute

(DV (x)− (Ax)′)(ej − ek) = Ai−kx
Ai−ki−k

Ai−kj−k −Aj−kx

= 1

Ai−ki−k
(Ak−i

k−jA
i−k −Ak−i

k−iA
j−k)x (55)

= 1

Ai−ki−k
(Ak−i

k−jA
i −Ak−i

k−iA
j +Ai−ki−j A

k)x (56)

= (vki)′x�

Lemma 1 thus yields the following result.

Lemma 4. Suppose that the function V is defined by (53) on a regionRik ⊆ Bi as specified
above. Then the HJB equation (44) for V is satisfied at x ∈ int(Rik) if

(vki)′x≥ 0� (57)

By our earlier interpretation of vki, inequality (57) requires that at state x, mixed
strategy xki is a weakly better response than mixed strategy x∗.

7.3.3 The geometry of the initial sufficient condition We now describe the necessary
condition (57) from Lemma 4 in geometric terms. In what follows, it is convenient to
endow the strategy set S = {1�2�3} with the cyclic order 1 ≺ 2 ≺ 3 ≺ 1. When we refer
to the strategies generically, as i, j, and k, we require that this labeling satisfy i ≺ j ≺
k ≺ i. We give the order a geometric meaning by labeling the vertices of the simplex X
counterclockwise, as in Figure 4. If R3 is presented in right-handed coordinates, so that
the cross-product obeys the right-hand rule, then our labeling of X corresponds to the
view from the “outside,” with the origin lying behind the figure and the vector 1 pointing
toward us.

Also, recalling the definition (35) and alternating property (36) of the skew, we abuse
notation by writingQ=Qijk = −Qkji. It follows from the discussion in Section 7.1.1 that
the three-strategy games with zero skew are the potential games. Games withQ> 0 and
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Q< 0 are said to have clockwise skew and counterclockwise skew.33 Since the sign of the
skew can be reversed by renaming the strategies, there is no loss of generality in focusing
on games with zero or clockwise skew.

The following properties of the normal vector vki allow us to locate the states satis-
fying inequality (57), and hint at the effects of skew on solutions of our optimal control
problems. It follows from expression (55) for vki, or from our interpretation of vki, that

(vki)′x∗ = 0� (58)

implying that inequality (57) binds at the mixed equilibrium x∗. Moreover, expressions
(55) and (56) for vki, and the fact thatAk−i

k−i =Ak−i
k−j +Ak−i

j−i imply that

(vki)′(ei − ek) = 1

Ak−i
k−i

(Ak−i
k−jA

i−k
i−k −Ak−i

k−iA
j−k
i−k)=Q (59)

(vki)′(ek − ej) = 1

Ak−i
k−i

(Ak−i
k−jA

i
k−j −Ak−i

k−iA
j
k−j +Ai−ki−j A

k
k−j)

(60)

= 1

Ak−i
k−i

(Ak−i
k−jA

j−i
j−k +Ak−i

j−i A
j−k
j−k) > 0

(vki)′(ei − ej) = 1

Ak−i
k−i

(Ak−i
k−jA

i−k
i−j +Ak−i

k−iA
j−k
j−i ) > 0� (61)

We illustrate the consequences of these relations in Figure 5. Figure 5(i) illustrates
inequality (57) when Q= 0, so that A is a potential game. In this case, (59) says that the
line on which (57) binds is parallel to ei − ek. Thus, by our interpretation of vki, whether
mixed strategy xki or mixed strategy x∗ is a better response to state x depends only on
the value of xj . Inequalities (60) and (61) imply that (57) is satisfied at states ei and ek,
but not at state ej , which also agrees with our interpretation of vki.

Figure 5(ii) illustrates inequality (57) when Q > 0, so that A has clockwise skew. In
this case, (59) says that the line on which (57) binds is rotated counterclockwise through
x∗ relative to the unskewed case. Inequality (60) implies that this rotation is less than
60◦, so that the line where (57) binds passes through the same sextant as mixed equi-
librium xij . Finally, inequality (61) implies that (57) is satisfied at state ei, but not at
state ej .34

To complete the initial step of the analysis, let us consider states that are in the re-
gion Rik ⊆ Bi introduced above and that are close to Bik. States in the latter set can be
expressed as x∗ + dζki with d ≥ 0. Since (52) says that the vector ζki is a convex combi-
nation of ek − ej and ei − ej , equation (58) and inequalities (60) and (61) imply that

(vki)′(x∗ + dζki)= d(vki)′ζki ≥ 0�

33For motivation, note thatQ=Ai(ej − ek)+Aj(ek − ei)+Ak(ei − ej) represents a composite effect on
payoffs of a clockwise circuit of the vertices ofX .

34If Q < 0, similar logic shows that the rotation of the line where (57) binds is clockwise relative to the
unskewed case, and again less than 60◦.
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Figure 5. Skew and inequality (57) in coordination games with the marginal bandwagon prop-
erty. The vector v̄ki =
vki is the orthogonal projection of the normal vector vki onto the tangent
space TX .

with a strict inequality when d > 0. Thus Lemma 4 implies that at states in Rik close to
Bik, the value function (53) generated by control ek − ei satisfies the HJB equation (44).

7.4 Characterization of exit costs

We now turn to the exit cost problem (39), whose solutions describe the expected time
until the stochastic evolutionary process XN�η escapes an equilibrium’s strong basin of
attraction, as well as the likely point of exit.

To begin, we hypothesize that the optimal feedback control takes the form shown in
Figure 6. There the best-response region Bi is split into two regions; in one, the optimal
control is ej − ei and exit paths lead to Bij ; in the other, the optimal control is ek − ei
and exit paths lead to Bik. The boundary between the regions is a ray whose endpoint
is the mixed equilibrium x∗, and that passes through a state x̂i determined below. From
points on this ray, motion in either basic direction is optimal.

In Appendix A.9, we verify that the optimal feedback control takes this form and we
present the corresponding value function. Lemma 7 determines the state x̂i. This state
is uniquely defined by four properties: it lies on the boundary ofX ; it places less weight
on strategies j and k than does the mixed equilibrium x∗; it equates the costs of moving
in direction ej − ei to Bj and of moving in direction ek− ei to Bk; and it ensures that the
value function derived from the feedback control in Figure 6 satisfies the HJB equation
(44). Proposition 12 provides explicit expressions for this feedback control and value
function, and states that the latter is indeed the value function for the exit cost problem
(39). The proposition is a direct consequence of Lemma 7, Lemma 4, and the verification
theorem.
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Figure 6. Optimal exit paths from Bi when x̂i is on face eiej .

This analysis yields the solution to exit problem (39). The optimal exit path from
state ei out of basin Bi proceeds along a face of the simplex through either mixed equi-
librium xij or mixed equilibrium xki, according to whether state x̂i lies on face eiek or
on face eiej ; if x̂i = ei, then both paths are optimal. We therefore have the following
proposition.

Proposition 8. In a simple three-strategy coordination game,

C({ei}�Bj ∪ Bk)= min{γ(ei�xij)�γ(ei�xki)} = min
(

1
2
(Ai−jei)2

A
i−j
i−j

�
1
2
(Ai−kei)2

Ai−ki−k

)
�

7.5 Characterization of transition costs

In this section, we consider the transition cost problem (40), whose solutions are used
to describe the global long-run behavior of the process XN�η.

Unlike that of exit costs, the analysis of transition costs depends in a basic way on
whether the game at hand is a potential game. To see why, we recall the reasoning from
Section 7.3.2, where we sought to define a region in Bi from which optimal paths to
Bk proceed in direction ek − ei to Bik, generating value function (53) in that region.
By Lemma 4, this value function is consistent with the HJB equation (44) whenever
(vki)′x≥ 0.

Suppose first that A is a potential game, so that the skew Q equals 0. In this case,
Figure 5(i) shows that states in Bi satisfying xj ≤ x∗

j , from which motion in direction

ek−ei leads to Bki, also satisfy inequality (57). It is therefore consistent with the analysis
so far for optimal paths to proceed in direction ek − ei to Bk whenever feasible. We
analyze this case in Section 7.5.1.
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Figure 7. Optimal transition paths to Bk in a potential game (Q = 0). In the cross-hatched
regions, continuous sets of control directions are optimal.

If instead A has clockwise skew, so that Q> 0, Figure 5(ii) shows that the same con-
clusion about motion from Bi to Bk obtains. However, we cannot reach the analogous
conclusion about motion from Bj to Bk. In the thin triangle to the left of x∗, motion in
direction ek − ej leads to Bjk. But since (vjk)′x < 0 here, this motion is not consistent
with the HJB equation (44). Thus the optimal paths to Bk must take a different form, a
form we determine in Section 7.5.2.

7.5.1 Transition costs in potential games Recall from Section 7.1.1 that the symmet-
ric normal form game A is a potential game if A = C + 1r ′ for some symmetric matrix
C ∈ R

n×n and some vector r ∈ R
n. In this case, the function f (x) = 1

2x
′Cx is a potential

function for the population game F(x) =Ax in the sense that Df(x)z = F(x)′z = z′Ax
for all z ∈ TX and x ∈X .35

In potential games, the value function for the transition cost problem (40) is easy
to describe and is even smooth, but the optimal feedback controls are of a degener-
ate form. These controls are illustrated in Figure 7. At states in the sextant northwest
of x∗ other than those on the ray through xij , continuous ranges of control vectors are
optimal. This degeneracy is particular to potential games, as we explain below.

Proposition 13 in Appendix A.10 provides explicit formulas for the optimal feedback
controls and the corresponding value function, and states that this function is indeed
the value function for the transition cost problem. The proof is a direct application of
the verification theorem. A key step in the argument, Lemma 11, shows that the cost
of any path is bounded below by the difference in potential at its initial and terminal
points, and that the cost is equal to this difference if only optimal strategies lose mass
along the path. Since this is true of all of the controlled trajectories pictured in Figure 7,
the value function is entirely determined by such differences in potential.

35See Hofbauer and Sigmund (1988) and Sandholm (2001, 2009).
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This analysis provides the solution to the transition cost problem (40) in potential
games. As shown in Figure 7, the optimal transition path from ei to Bk proceeds directly
along the boundary through mixed equilibrium xki. As noted above, the cost of the path
is given by the change in potential.

Proposition 9. If the simple three-strategy coordination gameA= C+1r ′ is a potential
game, so that f (x)= 1

2x
′Cx is a potential function for F(x)=Ax, then

C({ei}�Bk)= γ(ei�xki)= 1
2
(Ai−kei)2

Ai−ki−k
= f (ei)− f (xki)�

Remark 12. Because the integrand of the cost function (38) is piecewise linear in the
control u= φ̇t , it is natural to expect the optimal control vector in bd(Z) to be unique at
almost all states. That this is not true here is a consequence of the integrability proper-
ties that define potential games, a point we now consider from two points of view.

First, we noted above that along any controlled trajectory pictured in Figure 7, agents
only switch from optimal strategies to suboptimal strategies, so that by Lemma 11, the
minimal cost of reaching Bk from each state x is the change in potential between state
x and the terminal state of the controlled trajectory. When there are multiple controlled
trajectories between the initial and terminal states, as in the cross-hatched region of
Figure 7, each achieves this same minimal cost.36

Second, we argue that A being a potential game is a necessary condition for having
a region in Bi where both ej − ei and ek − ei are optimal controls. Equation (47) implies
that in the interior of such a region, the value function must satisfy

DV (x)(ej − ei)=Aj−ix and DV (x)(ek − ei)=Ak−ix�

Since ej − ei and ek − ei span TX , these equalities imply that

DV (x)z = z′Ax for all z ∈ TX�

Thus the second derivativeD2V (x) is given by

D2V (x)(z� ẑ)= z′Aẑ for all z� ẑ ∈ TX�

The first expression is symmetric in z and ẑ, by virtue of being a second derivative. Thus
A is symmetric with respect to TX × TX , and so is a potential game.

36To address a possible misconception, let us consider an initial state x= (1 − c)ei + cej with c ∈ (0�x∗
j ).

Figure 7 indicates that the optimal path from x to Bk proceeds in direction ek − ei until reaching the state
y ∈ Bik with yj = c. The argument above shows that this path’s cost is f (x)− f (y). One might wonder why
there is not a lower cost path that terminates at the mixed equilibrium xki: since f (xki) is greater than f (y),
f (x)− f (xki) is less than f (x)− f (y). But along any path from x that first hits Bik at xki , some agents must
abandon the suboptimal strategy j. Thus Lemma 11 does not apply and, indeed, the cost of such a path
exceeds f (x)− f (xki). The cheapest path from x to xki goes first from x to y at cost f (x)− f (y), and then
from y to xij at zero cost. Proposition 13 implies that no path can reach xij more cheaply.
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Figure 8. Optimal transition paths to Bk in a clockwise skewed game when x̂jk is on face eiej .

7.5.2 Transition costs in skewed games We now consider the transition cost problem
(40) in games with clockwise skew: Q> 0.

It is natural to expect that if the skew Q is small, then the optimal control should
resemble the one from theQ= 0 case from Figure 7. The previous discussion shows that
once Q is positive, no region will have multiple optimal controls. Thus the form of the
control in the sextant northwest of x∗ must change.

At the start of this section, we argued that in clockwise-skewed games, motion from
Bi to Bki in direction ek − ei is consistent with the HJB equation whenever such a path
exists. We therefore hypothesize that motion is in direction ek − ei throughout the inte-
rior of Bi, even when such motion leads to boundary Bij . We also saw that motion from
Bj to Bjk in direction ek − ej is not always consistent with the HJB equation. This leads
us to hypothesize that in a portion of Bj close to Bij , motion will instead be in direction
ei − ej .

The conjectured form of the optimal control is pictured in Figures 8 and 9. In the
sextant northwest of x∗, the multiple optimal controls from Figure 7 have been replaced
with selections from these controls. The boundary Bij is approached from states on
both sides, but it is approached obliquely from the Bi side and nearly squarely from the
Bj side. The figures differ in the position of state xjk, determined below, which defines
the boundary between the set of states where the feedback control is ek − ej and the set
where it is ei − ej .

In Appendix A.11, we verify that the optimal feedback control takes the form shown
in Figures 8 and 9, and we describe the corresponding value functions. Lemma 13
determines the state xjk, which is uniquely defined by four properties: it lies on the
boundary of the simplex; it places less weight on strategies i and k than does the mixed
equilibrium x∗; it equates the costs of moving in direction ek − ej to Bk and of follow-
ing the piecewise linear path through xij to x∗; and it ensures that in the region below
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Figure 9. Optimal transition paths to Bk in a clockwise skewed game when x̂jk is on face ejek.

segment x̂jkx∗, the value function derived from the proposed feedback control satis-
fies the HJB equation (44). Proposition 14 provides explicit expressions for the feedback
control and value function, and states that the latter is indeed the value function for the
transition cost problem. Its proof consists of a lengthy verification of the conditions of
Theorem 11.

This analysis implies that in clockwise-skewed games, the possible optimal transi-
tion paths depend on the ordering of the strategy pair in question. For a clockwise tran-
sition, from ei to Bk, the optimal path is always the direct boundary path to xki. For a
counterclockwise transition, from ej to Bk, the optimal path is either the direct bound-
ary path to xjk (Figure 8) or a two-segment path that proceeds first to mixed equilib-
rium xij and from there to interior equilibrium x∗ (Figure 9). Proposition 10 provides a
summary.

Proposition 10. In a simple three-strategy coordination game with clockwise skew,

C({ei}�Bk) = γ(ei�x
ki)= 1

2
(Ai−kei)2

Ai−ki−k
C({ej}�Bk) = min{γ(ej�xjk)�γ(ej�xij)+ γ(xij� x∗)}

= min
{

1
2
(Aj−kej)2

A
j−k
j−k

�
1
2
(Aj−iei)2

A
j−i
j−i

+ 1
2
(x∗
k)

2(ζij)′Aζij
}
�

Remark 13. It is worth comparing the exit and transition costs for simple three-strategy
coordination games under the logit protocol to those under the BRM protocol of Kandori
et al. (1993), in which any switch to a suboptimal strategy has unlikelihood 1. Under the
latter, the least cost exit path from ei to Bj ∪ Bk follows a boundary to either mixed
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equilibrium xij or mixed equilibrium xki, since these are the states in Bij and Bki at
which xi is largest. Thus exit costs under the BRM protocol are

CBRM({ei}�Bj ∪ Bk)= min{xijj � xkik } = min
{
Ai−jei
A
i−j
i−j

�
Ai−kei
Ai−ki−k

}
�

where the last expressions follow from Lemma 3. The candidate paths are the same as in
the logit model, but since the cost of a given path differs in the two models, the identity
of the optimal exit path may differ as well.

Turning to the transition problem, recall that since the unlikelihood function of the
BRM protocol is discontinuous when multiple strategies are optimal, in violation of as-
sumption (U2), our convergence theorem from Section 5 cannot be applied.37 Never-
theless, results of Kandori and Rob (1998) imply that under the BRM protocol, the opti-
mal path from ei to B�, � ∈ {j�k} is the direct boundary path to mixed equilibrium xi�.38

Thus transition costs are given by

CBRM({ei}�B�)= xi�� = Ai−�ei
Ai−�i−�

�

In particular, in the games considered here, optimal BRM transition paths never pass
through the interior of the simplex, as they may in the logit model.

7.6 Stationary distribution asymptotics and stochastic stability

We now combine results from Section 7.5 with Theorem 10 to draw conclusions about
the global behavior of the stochastic evolutionary process XN�η in the small noise dou-
ble limit. As a first application, we characterize the asymptotic behavior of the station-
ary distributions μN�η when A is both a simple three-strategy coordination game and a
potential game.

Proposition 11. Let A = C + 1r′ be a simple three-strategy coordination game and a
potential game. Let f (x)= 1

2x
′Cx be a potential function for F(x)=Ax, and let�+f (x)=

maxi∈S f (ei)− f (x). Then

lim
N→∞

lim
η→0

max
x∈XN

∣∣∣∣− η

N
logμN�η(x)−�+f (x)

∣∣∣∣ = 0� (62)

In words, the proposition says that when N is large, the exponential rate of decay of
μN�η(x) as η approaches 0 is approximatelyN�+f (x), where �+f (x)≥ 0 is the deficit in

37This was not an issue for the exit problem, since within a single best-response region the BRM proto-
col’s unlikelihood function is constant.

38For a proof, observe first that in simple three-strategy coordination games, xi�i ≥ x∗
i (see Figure 4). The

previous paragraph showed that the direct boundary path from ei to B� is optimal among those that do not
enter Bh, h /∈ {i� �}. This path’s cost is xi�� = 1 −xi�i ≤ 1 −x∗

i = x∗
� +x∗

h. But any transition path that enters Bh

must have at least this cost, since reaching Bh entails a cost of at least xihh ≥ x∗
h, due to switches from i to h,

plus a cost of at least x∗
� , due to switches from either i or h to �.
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potential of state x relative to the maximizers of potential. Thus the latter states are the
stochastically stable states in the small noise double limit.

Proof of Proposition 11. We abuse notation in what follows by identifying singleton
sets with their lone elements (e.g., by writing C(ej� ei) in place of C({ej}� {ei})).

We start by finding the minimal cost R(ei) of an ei-tree. Since the three ei-trees
are {(ej� ei)� (ek� ei)}, {(ek� ej)� (ej� ei)}, and {(ej� ek)� (ek� ei)}, Proposition 9 implies
that

R(ei)= min{C(ej� ei)+C(ek� ei)�C(ek� ej)+C(ej� ei)�C(ej� ek)+C(ek� ei)}
= min

{
(f (ej)− f (xij))+ (f (ek)− f (xki))�

(f (ek)− f (xjk))+ (f (ej)− f (xij))�
(f (ej)− f (xjk))+ (f (ek)− f (xki))}

= f (ej)+ f (ek)− max{f (xij)+ f (xki)� f (xjk)+ f (xij)� f (xjk)+ f (xki)}
= −f (ei)+ (

f (ei)+ f (ej)+ f (ek)
− max{f (xij)+ f (xki)� f (xjk)+ f (xij)� f (xjk)+ f (xki)})�

In the final expression, the term in parentheses, henceforth denotedK, does not depend
on the choice of ei.

Next, it follows from Lemma 11 in Appendix A.10 that for any x ∈X ,

−f (ei)+C(ei�x)≥ −f (ei)+ (f (ei)− f (x))= −f (x)� (63)

If x ∈ Bi, then along the straight-line path from ei to x, only the optimal strategy i loses
mass, so Lemma 11 implies that the inequality in (63) binds.

Combining these facts yields

r(x)≡ min
i∈S
(R(ei)+C(ei�x))= −f (x)+K�

SinceA is a coordination game, the potential function f is maximized at a pure state, so

�r(x)≡ r(x)− min
y∈X

r(y)= −f (x)− min
y∈X

(−f (y))= −f (x)+ max
i∈S

f (ei)= �+f (x)�

The proposition thus follows from Theorem 10. �

The close connection between stationary distributions and potential functions in
potential games has been understood since the work of Blume (1993, 1997). Building on
Blume’s work, Sandholm (2010c, Corollary 12.2.5) derives statement (62) for a particular
specification of the process XN�η. In this specification, not only the limit game F , but
also all of the finite-population games FN are assumed to be potential games. This def-
inition ensures that XN�η is reversible for each (N�η) pair, and so that each stationary
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distribution μN�η admits a simple closed form.39 Equation (62) is obtained by taking the
limit of these explicit formulas.

In the present analysis, we only assume that the finite-population games FN con-
verge to a limiting potential game F .40 This assumption does not require XN�η to be
reversible, and so explicit expressions for μN�η are generally unavailable. We describe
the asymptotics of the stationary distribution under this weaker assumption by way of
the large deviations properties of the stochastic processes. Doing so provides intuition
about the forces behind the selection of the potential maximizer. Since transition costs
are determined by differences in potential, the transitions used in every minimum cost
tree pass through the same mixed equilibria, so that differences in the trees’ costs are
due to differences in potential at the trees’ roots.

The next example provides explicit computations of stochastically stable states
under the logit protocol, and compares these predictions with those under the BRM
protocol.

Example 14. Consider the game F(x)=Ax with

A=
⎛
⎝ 7 0 0

2 − q 6 0
2 0 5

⎞
⎠ �

where q ∈ [0�5). For each such q, A is a simple coordination game41 with interior equi-
librium x∗ = (6/(17+q)� (5+q)/(17+q)�6/(17+q)). The mixed equilibria on the bound-
ary of X are x12 = (6/(11 + q)� (5 + q)/(11 + q)�0), x23 = (0� 5

11 �
6
11), and x31 = ( 1

2 �0� 1
2).

The parameter q is the skew ofA. Thus when q= 0,A is a potential game.42

To evaluate stochastic stability, we compute the costs of the direct paths from each
pure state to the two adjacent mixed equilibria on the boundary ofX , as well as the costs
of the direct paths from the boundary mixed equilibria to the interior equilibrium x∗. We
present these path costs in Figure 10(i).

Next, when q is positive, we determine whether the optimal path for each counter-
clockwise transition from ej to Bk is the direct path to xjk or the two-segment path via
xij to x∗ (see Proposition 10 and Figures 8 and 9). In the present example, the boundary
paths are optimal for every q ∈ (0�5). Proposition 9 implies that they are also optimal
when q= 0.

39See Sandholm (2010c, Theorem 11.5.12).
40Finite-population potential games are defined by equalities relating benefits from unilateral deviations

to changes in potential, and so are nongeneric. Thus, a typical sequence of games FN that converges to a
limiting potential game F will not itself consist of potential games.

41For the marginal bandwagon property (34), note thatA3−2
3−1 = 5 − q.

42In this case,A admits the decompositionA=C + 1r ′ with

C =
⎛
⎝5 0 0

0 6 0
0 0 5

⎞
⎠ and r′ = (2 0 0)�
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Figure 10. The path costs needed to determine transition costs in Example 14.

We then determine the minimum cost R(ei) of an ei tree for i ∈ {1�2�3}. Simple cal-
culations show that

R(e1) = C(e3� e2)+C(e2� e1)= 25
22

+ 18
11 + q

R(e2) =
⎧⎨
⎩C(e3� e2)+C(e1� e2)= 25

22 + (5+q)2
2(11+q) if q≤ 1

4(−15 + √
265)≈ 0�3197

C(e3� e2)+C(e1� e3)= 25
22 + 25

20 otherwise

R(e3) =
⎧⎨
⎩
C(e1� e2)+C(e2� e3)= (5+q)2

2(11+q) + 18
11 if q≤ 5

22

C(e2� e1)+C(e1� e3)= 18
11+q + 25

20 otherwise.

Further calculations show that R(e2) is smallest when q ∈ [0� 17
5 ] and that R(e1) is small-

est when q ∈ [ 17
5 �5). Therefore, Theorem 10 implies that under the logit protocol, state

e2 is stochastically stable in the small noise double limit in the former case and state e1

is in the latter; both are stochastically stable when q= 17
5 .

We now compare these selection results to those obtained under the BRM proto-
col.43

 Remark 13 states that under this protocol, optimal transition paths in simple co-
ordination games are direct. The BRM costs of the six relevant paths can be read di-
rectly from the coordinates of the boundary equilibria; they are shown in Figure 10(ii).

43We consider a version of the BRM protocol under which all optimal strategies are chosen with nonneg-
ligible probability. Since the convergence results in Section 5 do not apply to the BRM model, we cannot
appeal to them here. But in the present example, the intermediate results needed to establish stochastic
stability follow from elementary considerations, provided that the minimal cost tree is unique. Compare
Kandori and Rob (1995, 1998).
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Calculations show that the minimal tree costs are

RBRM(e1) = CBRM(e3� e2)+CBRM(e2� e1)= 5
11

+ 6
11 + q

RBRM(e2) =
{
CBRM(e3� e2)+CBRM(e1� e2)= 5

11 + 5+q
11+q if q≤ 1

CBRM(e3� e2)+CBRM(e1� e3)= 5
11 + 5

10 otherwise

RBRM(e3) =
⎧⎨
⎩
CBRM(e1� e2)+CBRM(e2� e3)= 5+q

11+q + 6
11 if q≤ 11

23

CBRM(e2� e1)+CBRM(e1� e3)= 6
11+q + 5

10 otherwise.

Finding the smallest of these costs, we conclude that under the BRM protocol, state e2 is

stochastically stable when q ∈ [0�1) and state e1 is stochastically stable when q ∈ (1�5).
To compare predictions under the two protocols, it is useful to focus on the min-

imal cost trees themselves. Under the logit protocol, three trees have minimal cost

for some q ∈ [0�5): the e2-tree {(e3� e2)� (e1� e2)} for q ∈ [0� q̂], q̂ ≈ 0�3197; the e2-tree

{(e3� e2)� (e1� e3)} for q ∈ [q̂� 17
5 ); and the e1-tree {(e3� e2)� (e2� e1)} for q ∈ [ 17

5 �5). Un-

der the BRM protocol, only the first and last of these have minimal costs, according

to whether q ∈ [0�1] or q ∈ [1�5). By way of explanation, notice that as q increases, so

does the payoff disadvantage 7 − (2 − q) = 5 + q of strategy 2 at state e1. This causes

the cost of the (e1� e2) transition to grow more rapidly under logit than under BRM,

so that the optimal logit e2-tree abandons this transition earlier than the optimal BRM

e2-tree.

Under both protocols, the stochastically stable state switches from equilibrium e2

to efficient equilibrium e1 as q increases. But the switch occurs sooner for BRM: for

q ∈ (1� 17
5 ), BRM selects e1, while logit selects e2. Under BRM, the selection switches

once strategy 1 begins to pairwise risk dominate strategy 2. This would follow from clas-

sic results in the absence of strategy 3, and the fact that transition (e3� e2), which heads

away from e3, appears in all BRM minimal cost trees ensures that strategy 3’s presence

does not affect the selection. In contrast, as noted above, transition (e1� e3), which heads

into e3, is in the logit minimal cost tree for intermediate values of q. Its appearance there

reflects the advantage of the indirect route from e1 to e2 via e3 over the direct route, and

explains why strategy 2 persists in being stochastically stable despite being pairwise risk

dominated by strategy 1.

As q increases through 17
5 , the logit minimal cost tree replaces transition (e1� e3)with

transition (e2� e1), changing the stochastically stable state from e2 to e1. The former tran-

sition must overcome an initial payoff disadvantage of 7 − 2 = 5, compared to 6 − 0 = 6
for the latter, leading the former to be less costly at low values of q. As q increases, mixed

equilibrium x12 moves closer to state e2, causing the payoff advantage of strategy 2 over

strategy 1 to dissipate more quickly as the state moves from e2 toward e1. This reduces

the cost of the (e2� e1) transition under the logit protocol, and leads to the replacement

of e2 by e1 as the stochastically stable state. ♦
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8. Discussion

8.1 Orders of limits and waiting times

This paper investigates long-run behavior in stochastic evolutionary models in the small
noise double limit, taking η to zero before taking N to infinity. This order of limits em-
phasizes the consequences of the rareness of mistakes for long-run play.

Following work by Binmore and Samuelson (1997) and Sandholm (2010b) on the
two-strategy case, one can instead investigate the averaging effects of large population
sizes on long-run play by focusing on the large population limit, either by itself or fol-
lowed by the small noise limit. With just two strategies, birth–death chain methods can
be used to carry this analysis to its completion. To obtain results in more general en-
vironments, one needs to use more sophisticated tools from the theory of sample path
large deviations, ones that consider sequences of Markov processes that run on increas-
ingly fine state spaces (Dupuis 1988, Dupuis and Ellis 1997). For recent progress in this
direction, see Sandholm and Staudigl (2015).

It is natural to ask whether the conclusions about long-run play are independent of
the order in which the limits in η and N are taken, so that the force driving the large
deviations analysis does not change the form our predictions takes. In the case of two-
strategy games, for which birth–death chain methods are available, the effects of orders
of limits on the limiting stationary distribution and stochastic stability are well under-
stood. In the case of imitative dynamics with mutations, Binmore and Samuelson (1997)
show that reversing the order of limits can alter the set of stochastically stable states in
hawk–dove games, although Sandholm (2012) shows that this dependence can be elim-
inated by vanishingly small changes in the specification of the model. For noisy best
response rules, Sandholm (2010b) shows that the asymptotic behavior of the stationary
distributions, and hence the identity of the stochastically stable states, is the same for
both orders of limits. Whether these conclusions extend to games with more than two
strategies is an intriguing open question.

Stochastic stability models have been subject to the criticism that the amount of
time required for their predictions to become relevant is too long for most economic ap-
plications. Since here we are taking multiple limits, this criticism holds additional force.
To better understand the relevance of our analysis to applications, one could assess the
extent to which versions of the model’s predictions are correct when the noise level is
not too small and the population size not too large. This could certainly be done nu-
merically; whether analytical results along these lines can be established is a challenging
open question.

8.2 Analyzing other protocols and classes of games

This paper characterized the long-run behavior of a class of stochastic evolutionary pro-
cesses in the small noise double limit. Our explicit calculations in Section 7 focused on
evolution in simple three-strategy coordination games under the logit protocol. We con-
clude by discussing the prospects for extending our analysis to other games and choice
rules.
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To evaluate these prospects, recall that the running cost appearing in the path cost
integral (24) is L(x�u) = [u]′+ϒ(F(x)), where ϒ is the unlikelihood function (5) of the
revision protocol. The piecewise linearity of L in the control u= φ̇t ensures that at each
state x, the optimal choices of u in the HJB equation (42) include extreme points of the
control set Z = conv({ei − ej : i� j ∈ S}). Thus for any game and revision protocol, we
expect optimal feedback controls for the exit and transition problems (39) and (40) to
partition the state space into regions in which the various basic directions ei − ej are
followed.

The logit protocol (6) is particularly convenient because its unlikelihood function
(37) is piecewise linear in the payoff vector and, thus, is piecewise linear in the state
when the limit payoff function F(x) = Ax is linear. This leads the value functions for
problems (39) and (40) to be piecewise quadratic; in particular, they are homogeneous
of degree 2 in the displacement of the state from an interior equilibrium x∗. This en-
sures that the optimal feedback controls partition the state space into convex sets with
common extreme point x∗, as shown in Figures 6–9. This structure should be preserved
by certain other revision protocols. Under the probit protocol (Example 5), the unlikeli-
hood function is piecewise quadratic. This should lead to value functions that are piece-
wise cubic—specifically, homogeneous of degree 3 in the displacement of the state from
x∗—so that in the class of games studied here, the boundaries between control regions
are again rays emanating from x∗.

Returning to the logit protocol, the piecewise linearity of running costs L(x�u) in
both the control u and the state x suggests that the exit and transition problems can
be solved beyond the class of simple three-strategy coordination games studied here.
The main new consideration in solving control problems (39) and (40) for general linear
games is that the state constraints, which require controlled trajectories to stay in the
state space X , may bind. The fact that these constraints are slack in the games studied
here allowed us to appeal to a verification theorem, Theorem 11, that does not include
such constraints. To handle more general cases, one would need to extend the verifica-
tion theorem to allow for linear state constraints. For the class of problems generated by
the logit protocol, we see no conceptual difficulty in obtaining this extension. Still, the
proof of Theorem 11 is not simple, and extending it to incorporate state constraints is a
challenge we leave for future research.

Appendix

A.1 Statement and proof of Lemma 5

The analysis of Example 7 requires the following lemma.

Lemma 5. Let FN be a finite-population game defined by random matching in normal
form coordination game A. Let x ∈ XN

j satisfy xj > 0 and j /∈ bNj (x). Then there is a
solution to (DBR) that begins at x and reaches a state at which j is unused inNxj steps.

Proof. We construct a solution to (DBR) as follows. The initial state is x0 = x. We
choose i1 ∈ bNj (x0) to be a best response for a j player at this state, and then advance
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in increments (1/N)(ei1 − ej) until reaching a state x1 = x0 + d1(ei1 − ej), where either
j is unused or i1 /∈ bNj (x0). In the latter case, we choose i2 ∈ bNj (x1) and continue the

procedure until reaching a state xC at which j is unused.
To prove the lemma, it is enough to show that upon reaching state xc , c < C, the

best response ic+1 ∈ bNj (xc) cannot be j itself. To do so, recall from definition (3) that

ic ∈ bNj (xc−1)means that FNj→ic (x
c)≥ FNj→k(x

c−1) for all k ∈ S, or, equivalently, by (1) and
(2),

N

N − 1
(eic − ek)′Axc−1 − 1

N − 1
(eic − ek)′Aej ≥ 0 for all k ∈ S� (64)

By construction,

xc = xc−1 + dc(eic − ej) for some dc > 0� (65)

Since ic+1 ∈ bNj (xc),

N

N − 1
(eic+1 − ek)′Axc − 1

N − 1
(eic+1 − ek)′Aej ≥ 0 for all k ∈ S� (66)

and since ic /∈ bNj (xc), the inequality in (66) is strict when k = ic . Combining (64) (with

k= ic+1) and the strict version of (66) (with k= ic) with (65) yields

(eic − eic+1)′A(eic − ej) < 0� (67)

SinceA is a coordination game, we conclude that ic+1 �= j, as we aimed to show. �

A few additional steps show that the sequence of best responses {i1� � � � � iC} is non-
repeating and, hence, that C < n. Suppose to the contrary that two elements of the se-
quence are the same; for definiteness, let i1 = iC . Then

C−1∑
c=1

(eic − eic+1)′Aej = 0� (68)

Summing (67) over c ∈ {1� � � � �C − 1} and substituting (68) yields

C−1∑
c=1

(eic − eic+1)′Aeic < 0�

again contradicting thatA is a coordination game.

A.2 Proof of Proposition 2

Fix ε > 0. Since F and ϒ are continuous, ϒ is uniformly continuous on F(X) (the image
ofX under F), so we can choose δ > 0 so that

|π − π̂|< δ implies that |ϒj(π)−ϒj(π̂)|< ε for all π� π̂ ∈ F(X) and j ∈ S� (69)
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Moreover, since {FN } is uniformly convergent, F uniformly continuous, and each φ(N)

is Lipschitz continuous with Lipschitz constant 2 (by (21)), we can chooseN0 so that

N ≥N0 implies that |FNi→·(x)− F(x)|< δ for all x ∈XN
i and i ∈ S (70)

N ≥N0 implies that |F(φ(N)t )− F(φ(N)s )|< δ whenever |t − s| ≤ 1
N
� (71)

It follows that forN ≥N0, there exist αN and βN with |αN |< ε and |βN |< ε such that

1
N
cN(φN) = 1

N

�N−1∑
k=0

〈
ϒ(FN

ıN(k)→·(φ
N
k ))� [φ̇Nk ]+

〉

= 1
N

�N−1∑
k=0

〈
ϒ(F(φ(N)k/N))� [φ̇Nk ]+

〉 + αN �N
N

=
∫ TN

0

〈
ϒ(F(φ

(N)
�Nt�/N))� [φ̇(N)t ]+

〉
dt + αNTN (72)

=
∫ TN

0

〈
ϒ(F(φ(N)t ))� [φ̇(N)t ]+

〉
dt + (αN +βN)TN

= c(φ(N))+ (αN +βN)TN�

The first equality is (23), the second follows from (69), (70), and (19), the third follows
from (19) and (20), and the fourth follows from (69), (71), and (21). Since ε > 0 was
chosen arbitrarily and the TN are bounded, the proposition follows.

A.3 Proof of Proposition 3

By Assumption 1, there are paths φN = {φNk }�Nk=0 ∈ 
N(KN��N) of durations TN =
�N/N < T̄ < ∞ that are optimal in problem (12), so that CN(KN��N) = cN(φN). Let
C∗ be the liminf of (1/N)cN(φN). There is a subsequence along which (1/N)cN(φN)
converges to C∗, which we take without loss of generality to be the entire sequence.

For eachφN , we construct a corresponding continuous pathφ[N] ∈
(K��) by con-
catenating three subpaths: a subpathφ[N]�0 from a point inKi toφN0 , the linear interpo-
lation φ(N) defined in (19), which leads from φN0 to φN

�N
, and a subpath φ[N]�1 from φN

�N

to a point inKj .
To construct φ[N]�0, recall from condition (16) that since φN0 ∈ KNi , there is an

x[N]
0 ∈Ki such that |φN0 − x

(N)
0 | ≤ d

N . Define {φ[N]�0
t }t∈[0�1] by φ[N]�0

t = (1 − t)x[N]
0 + tφN0 .

Then letting b <∞ be the maximum of the continuous function ϒ ◦ F on the compact
setX , we have that

c(φ[N]�0)=
∫ 1

0

〈
ϒ(F(φ

[N]�0
t ))� [φ̇[N]�0

t ]+
〉
dt ≤ bd

N
�

Subpath φ[N]�1 is constructed analogously and satisfies the same bound.
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Now fix ε > 0. The previous argument and (72) imply that for allN large enough, we
have

c(φ[N])≤ c(φ(N))+ 2bd
N

≤ 1
N
cN(φN)+ 2εT̄ + 2bd

N
� (73)

Since ε was arbitrary, we conclude that limN→∞ c(φ[N]) ≤ limN→∞(1/N)cN(φN) = C∗
and, hence, that C(K��)≤ C∗.

A.4 Proof of Proposition 4

FixN , and write n+ = #S+ and n− = #S−. To prove the proposition, we construct, for all
N large enough, a monotone path φN that satisfies

max
k

∑
j∈S+

|φNk�j −φsN+k/N�j| ≤
2n+
N

and max
k

∑
i∈S−

|φNk�i −φsN+k/N�i| ≤
2n−
N
�

Summing these inequalities yields inequality (29).
Because φ = {φt}t∈[0�T ] is monotone and moves at full speed, and since 1/N ≤ T ,

there is a time sN ∈ [0�1/N) at which

∑
j∈S+

φsN�j ∈ 1
N

Z and, hence,
∑
i∈S−

φsN�i ∈
1
N

Z� (74)

This is the sN introduced in the statement of the theorem. To minimize notation in what
follows, we will take sN to be 0. This assumption and (74) imply that there is a φN0 ∈ XN

such that ∑
j∈S+

φ0�j =
∑
j∈S+

φN0�j�
∑
i∈S−

φ0�i =
∑
i∈S−

φN0�i (75)

∑
i∈S

|φ0�i −φN0�i| <
2
N
� (76)

Inequality (76) follows from the fact that every point in the simplex in R
n is within �1

distance 2(n− 1)/n of some vertex.
This inequality is the base of our inductive argument. To write the inductive step,

let x= φk/N , y = φ(k+1)/N , and x = φNk be given, with y = φNk+1 to be determined. The
inductive step says that if

∑
j∈S+

|xj − xj| ≤ 2n+
N

and
∑
i∈S−

|xi − xi| ≤ 2n−
N
�

then we can choose y = x + (1/N)(ej∗ − ei∗) with j∗ ∈ S+ and i∗ ∈ S− so that

∑
j∈S+

|yj − yj| ≤ 2n+
N

and
∑
i∈S−

|yi − yi| ≤ 2n−
N
�
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This procedure ensures that φN is also monotone, with the same partition S = S+ ∪ S−
as φ.

Our proof of the inductive step focuses on the claim for strategies in S+; the proof of
the claim for strategies in S− is nearly identical. Monotonicity and the fact that φmoves
at full speed imply that

y − x= 1
N
z for some z ∈Z with zj ≥ 0 for j ∈ S+ and

∑
j∈S+

zj = 1� (77)

Since y = x + (1/N)(ej∗ − ei∗) for some j∗ ∈ S+ and i∗ ∈ S−, it follows that

∑
j∈S+

|yj − yj| =
∑
j∈S+

∣∣∣∣xj − xj + 1
N
(zj − 1j=j∗)

∣∣∣∣ ≤
∑
j∈S+

|xj − xj| + 2
N
�

This establishes the claim for cases where
∑
j∈S+ |xj − xj| ≤ 2(n+ − 1)/N . The claim for

the complementary case is a consequence of the following lemma.

Lemma 6. If

∑
j∈S+

|xj − xj| ≥ 2(n+ − 1)
N

� (78)

then y = x + (1/N)(ej∗ − ei∗) can be chosen so that
∑
j∈S+ |yj − yj| ≤ ∑

j∈S+ |xj − xj|.

Proof. Recall from (75) thatφ0 andφN0 place equal total mass on strategies in S+. Thus,
since φ and φN move at full speed and are monotone with respect to the same partition
S = S+ ∪ S−, it follows that this equality is maintained at all corresponding points on
paths φ and φN . In particular, we have

0 =
∑
j∈S+

(xj − xj)=
∑
j∈S+

[xj − xj]+ −
∑
j∈S+

[xj − xj]−� (79)

It follows that there are at most n+ − 1 strategies j ∈ S+ for which xj − xj > 0. Therefore,
since (78) and (79) imply that

∑
j∈S+

[xj − xj]+ ≥ n+ − 1
N

�

there is a strategy j∗ ∈ S+ with

xj∗ − xj∗ ≥ 1
N
� (80)

Since y = x + (1/N)(ej∗ − ei∗) by definition, it follows from (80) and (77) that

yj∗ − yj∗ = xj∗ − xj∗ + 1
N
(zj − 1)≥ 0�
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This inequality and (77) yield

∑
j∈S+

|yj − yj| =
∑
j∈S+

[yj − yj]+ +
∑
j∈S+

[yj − yj]−

=
∑
j∈S+

[
xj − xj + 1

N
(zj − 1j=j∗)

]
+

+
∑
j∈S+

[
xj − xj + 1

N
zj

]
−

≤
∑
j∈S+

(
[xj − xj]+ + 1

N
(zj − 1j=j∗)

)
+

∑
j∈S+

[xj − xj]−

=
∑
j∈S+

[xj − xj]+ +
∑
j∈S+

[xj − xj]−

=
∑
j∈S+

|xj − xj|�
�

This completes the proof of Proposition 4.

A.5 Proof of Proposition 5

Fix ε > 0. Choose δ > 0 so that (69) holds, and then chooseN0 so that (70) and

N ≥N0 implies that |F(φk/N)− F(φNk )|< δ for all k ∈ {0� � � � � �NT �} (81)

hold; the latter is possible because F is uniformly continuous and becauseφN converges
uniformly to φ, as described in (29); as in the proof of Proposition 4, we minimize nota-
tion by taking sN to equal 0.

By the triangle inequality,

∣∣ϒj(FNi→·(φ
N
k ))−ϒj(F(φk/N))

∣∣
≤ ∣∣ϒj(FNi→·(φ

N
k ))−ϒj(F(φNk ))

∣∣ + ∣∣ϒj(F(φNk ))−ϒj(F(φk/N))
∣∣� (82)

Thus ifN ≥N0, there exists αN with |αN |< ε such that

1
N
cN(φN) =

�N−1∑
k=0

〈
ϒ(FN

ıN(k)→·(φ
N
k ))� [φNk+1 −φNk ]+

〉
(83)

=
�N−1∑
k=0

〈
ϒ(F(φk/N))� [φNk+1 −φNk ]+

〉 + 2αNTN�

The first equality here is (30), and the second follows from (69), (70), (81), and (82).
Now let LN = �√N� and letMN = �NT �/LN , so that

lim
N→∞

MN = ∞ and lim
N→∞

MN

N
= 0� (84)
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Also, choose τ > 0 so that

|t − s| ≤ 2τ implies that |F(φt)− F(φs)|< δ� (85)

Then continuing from (83), consideringN ≥N0 large enough thatLN/N ≤ τ, and taking
MN to be an integer for notational convenience only, there exist βN with |βN |< ε and a
constant b > 0 whose value depends on the maximum of ϒ ◦ F onX such that

1
N
cN(φN) =

MN−1∑
m=0

LN−1∑
k=0

〈
ϒ(F(φmLN ))� [φNmLN+k+1 −φN

mLN+k]+
〉 + (2αN +βN)TN

=
MN−1∑
m=0

〈
ϒ(F(φmLN ))� [φN(m+1)LN −φN

mLN
]+

〉 + (2αN +βN)TN (86)

=
MN−1∑
m=0

〈
ϒ(F(φmLN ))� [φ(m+1)LN/N −φmLN/N ]+

〉 + (2αN +βN)TN + bTN√
N
�

The first equality uses (85) and (69), the second uses the monotonicity of φN , and the
third uses the boundedness ofϒ ◦F onX and theO(1/N) convergence ofφN toφ spec-
ified in (29).

The limits in (84) and the monotonicity ofφ imply that asN approaches infinity, and
the Riemann–Stieltjes sum in (86) converges to a Riemann integral. (To be more precise,
writing the inner product in the initial term of (86) as a sum and then reversing the order
of summation yields a sum of n Riemann–Stieltjes sums, which converges to a sum of
n Riemann integrals.) Accounting explicitly for the approximation error, there exist γN

with |γN |< ε such that for large enoughN ,

1
N
cN(φN) =

∫ T

0

〈
ϒ(F(φt))� [φ̇t]+

〉
dt + (2αN +βN + γN)TN + bTN√

N
(87)

= c(φ)+ (2αN +βN + γN)TN + bTN√
N
�

Since TN ≤ T (see the statement of Proposition 4), the last summand vanishes as N
grows large. Thus since ε was arbitrary, we conclude that limN→∞(1/N)cN(φN)= c(φ).

A.6 Proof of Proposition 6

By Assumption 2, there is a continuous, piecewise monotone path φ = {φt}t∈[0�T ] ∈

(K��) with cost c(φ) = C(K��). As noted in Section 5.1, we can assume that path
φ moves at full speed, as in (28). Fix ε > 0. We will construct a sequence of discrete
paths with φN ∈
N(KN��N) whose normalized costs converge to the sum of c(φ) and
terms that vanish with ε.

Asφ is piecewise monotone, there is anM <∞ and times 0 = T0 < T1 < · · ·< TM = T
such that φ is monotone on each subinterval [Tm−1�Tm]. The discrete path φN is
the concatenation of 2M + 1 subpaths: ψN�0�φN�1�ψN�1�φN�2� � � � �φN�M�ψN�M . For
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m ∈ {1� � � � �M}, subpath φN�m is the discrete approximation of φ|[Tm−1�Tm] constructed
in Proposition 4; the length of this subpath is �N�m = �N(Tm − Tm−1 − sN�m)�, where
sN�m ∈ [0�1/N) too is from Proposition 4.

For m ∈ {1� � � � �M − 1}, subpath ψN�m must begin at node φN�m
�N�m

and end at node

φN�m+1
0 . We focus for notational convenience onm= 1, although the bound we establish

next applies for all m ∈ {1� � � � �M − 1}. Define ŝN�1 by T1 − ŝN�1 = sN�1 + �N�1/N . Then
ŝN�1 ∈ [0�1/N), and we can bound the distance between φN�1

�N�1
and end at node φN�20 as

|φN�1
�N�1

−φN�20 | ≤ |φN�1
�N�1

−φT1−ŝN�1 | + |φT1−ŝN�1 −φT1+sN�2 | + |φT1+sN�2 −φN�20 |
(88)

≤ 2n
N

+ 4
N

+ 2n
N
�

The bounds on the first and third terms are from Proposition 4, and the bound on the
second term follow from the fact that ŝN�1 and sN�2 are less than 1/N and the full speed
requirement (28) on φ.

The initial subpath ψN�0 begins at a state in KN and ends at φN�10 , and the final

subpath ψN�M begins at φN�M
�N�M

and ends at a state in �N . Focusing for convenience
on the former, note that since φ0 ∈ K, condition (16) ensures that we can choose
φN�00 = xN ∈KN with |φN�00 −φ0| ≤ d/N . We therefore have

|xN −φN�10 | ≤ |xN0 −φ0| + |φ0 −φsN�1 | + |φsN�1 −φN�10 | ≤ d

N
+ 2
N

+ 2n
N
� (89)

The bound on the second term follows from the fact that sN�1 ≤ 1/N and from the full
speed requirement (28), and the bound on the third term follows from Proposition 4.

Observe that given any distinct x�y ∈ XN , there is a state x̂ adjacent to x such that
|x̂ − y| = |x − y| − 2/N . These observations and inequalities (88) and (89) imply that
each subpath ψN�m, m ∈ {1� � � � �M − 1}, can be constructed to have length no greater
than 2n+ 2, and that subpaths ψN�0 and ψN�M can each be constructed to have length
no greater than 1

2(d+ 2 + 2n).
As before, let b <∞ be the maximum of the continuous function ϒ ◦ F on the com-

pact set X . Since each FNi→· converges uniformly to F , for all N large enough, the maxi-
mum cost of a feasible step in theNth process is at most 2b. This fact and the arguments
from the previous paragraph show that for such N , the total cost of the subpaths ψN�m

satisfies

M∑
m=0

cN(ψN�m)≤ 2b((M − 1)(2n+ 2)+ (d+ 2 + 2n))≤ 2b(3nM + d)� (90)

Since for each N , the total duration of subpaths φN�1� � � � �φN�M is less than T , in-
equalities (87) and (90) imply that for allN large enough,

1
N
cN(φN)≤ c(φ)+ 4εT + bT√

N
+ 2b(3nM + d)

N
� (91)
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Since ε was arbitrary, it follows that

lim
N→∞

1
N
cN(φN)≤ c(φ)

and, thus, that

lim sup
N→∞

1
N
CN(KN��N)≤ C(K��)�

A.7 Proof of Theorem 10

Fix ε > 0. We need to show that for all large enoughN ,

lim
η→0

max
x∈XN

∣∣∣∣− η

N
logμN�η(x)−�r(x)

∣∣∣∣< ε�
By Proposition 7, it is enough to show that for all large enoughN ,

max
x∈XN

∣∣∣∣ 1
N
�rN(x)−�r(x)

∣∣∣∣< ε� (92)

In fact, it is enough to show that for all large enoughN ,

max
x∈XN

∣∣∣∣ 1
N
rN(x)− r(x)

∣∣∣∣< ε� (93)

since this uniform convergence of rN to r implies that the minimum of rN converges to
the minimum of r, and together these imply (92).

Combining the definitions of rN , RN , and CN yields

rN(x)= min
KN∈KN

(
min

τ
KN

∈T
KN

∑
(LN�L̂N)∈τ

KN

CN(LN� L̂N)+CN(KN� {x})
)
� (94)

and r(x) can be expressed analogously. Now fix a population size N and a state x ∈ XN .
For this fixed x, there are κ2 transition costs that need to be found to evaluate (94):
specifically, there are κ2 − κ terms of the form CN(LN� L̂N), where (LN� L̂N) is an or-
dered pair of distinct recurrent classes, and there are κ terms of the form CN(KN� {x}).
Since κ2 is finite, the convergence of these costs guaranteed by Theorem 9 is uniform:
there is anN0 such that for allN ≥N0 and all choices of recurrent classes,∣∣∣∣ 1

N
CN(LN� L̂N)−C(L� L̂)

∣∣∣∣ < ε

κ
(95)∣∣∣∣ 1

N
CN(KN� {x})−C(K� {x})

∣∣∣∣ < ε

κ
if x ∈ XN�

Thus |(1/N)rN(x)− r(x)|< ε and, hence, limN→∞(1/N)rN(x)= r(x), where the limit is
taken overN such that x ∈ XN .
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To establish (93), we must show that the limit just obtained holds uniformly
over x. By the previous logic, this would follow if we could show that convergence of
(1/N)CN(KN� {x}) to C(K� {x}) were uniform in x. To see that this is so, note that by in-
equalities (73) and (91), the choice of N0 needed to ensure inequality (95) for all N ≥N0
can be determined as a function of the following constants: d (from condition (16)), T̄
(from Assumption 1), b (the maximum of ϒ ◦ F onX), M̃ and T̃ (since Assumption 2 re-
quires thatM =M(x) and T = T(x) from inequality (91) satisfyM(x)≤ M̃ and T(x)≤ T̃
for all x), and n (the number of strategies). Since none of these constants depends on x,
we can indeed choose N0 so that (95) holds for all N ≥N0 and for all x ∈ XN simultane-
ously. This establishes (93) and so completes the proof of the theorem.

A.8 Proof of Lemma 1

We start by deriving (47). Since V is constructed from a feedback control that equals
ek − ei in a neighborhood of x ∈ int(Bi), Lemma 2 implies that

V (x+ t(ei − ek))− V (x)= γ(x+ t(ei − ek)�x)= tAi−kx+ 1
2 t

2Ai−ki−k

for t close to 0. Thus

DV (x)(ek − ei)= −
(

d
dt
γ(x+ t(ei − ek)�x)

)∣∣∣∣
t=0

=Ak−ix�

which is equivalent to (47).
To verify the HJB equation (44), we must show that the function to be minimized,

H(ea� eb)= (ei − ea)′Ax+DV (x)′(ea − eb)�
is nonnegative at each of the five choices of (ea� eb) other than (ek� ei), and, indeed,

H(ei� eh) =DV (x)(ei − eh)≥ 0 for h ∈ {j�k} by (45)

H(ej� ei) = (DV (x)− (Ax)′)(ej − ei)= (DV (x)− (Ax)′)(ej − ek)≥ 0 by (47) and (46)

H(ek�ej) = (ei − ek)′Ax+DV (x)(ek − ej)=DV (x)(ei − ej)≥ 0 by (47) and (45)

H(ej� ek) = (ei − ej)′Ax+DV (x)(ej − ek)≥ (ei − ek)′Ax
≥ 0 by (46) and the fact that x ∈ Bi�

A.9 The value function for the exit cost problem

We begin by determining the state x̂i that defines the boundary between the two control
regions pictured in Figure 6. To start, we define

V j(x)= 1
2
(Ai−jx)2

A
i−j
i−j

and V k(x)= 1
2
(Ai−kx)2

Ai−ki−k
�

By Lemma 3, V j(x) is the cost of a path from state x that moves through Bi in direction
ej − ei until reaching boundary Bij ; V k(x) is interpreted analogously.
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Figure 11. The construction of x̂i when it is on face ekei andQ> 0.

Lemma 7. There is a unique state x̂i ∈ Bi ∩ bd(X) such that

x̂ij < x
∗
j and x̂ik < x

∗
k (96)

(vij)′x̂i > 0 and (vik)′x̂i > 0 (97)

V j(x̂i) = V k(x̂i)� (98)

The interpretation of Lemma 7 is provided in Section 7.4, and its proof is presented
at the end of this section. In brief, the proof considers the behavior of the difference
V k − V j on the lines �ij = {sei + (1 − s)ej : s ∈R} and �ik = {sei + (1 − s)ek : s ∈R} through
aff(X) (see Figure 11). It is easy to check that V k − V j is quadratic on each of these
lines, and that it is concave on �ij and convex on �ik. Computations show that V k − V j
admits two 0s on each line; the 0s of interest, denoted yij and yik, are those with the
larger i components. By definition, these points satisfy condition (98), and further com-
putations confirm that they satisfy conditions (96) and (97), and that yij , yik, and x∗ are
collinear. If yij and yik are both ei, we set x̂i = ei. If not, exactly one of yij and yik is inX ,
and that one is our x̂i.

With Lemma 7 in hand, we can describe the value function and the optimal feedback
control for the exit problem. To do so, we define the cross-product

wi = x∗ × (x̂i − x∗)

to be a vector normal to segment x̂ix∗. By the right-hand rule (see Section 7.3.3), states
satisfying (wi)′x > 0 appear to the left of segment x̂ix∗ in Figure 6. It is convenient to
focus on controls from the boundary bd(Z) of Z, since every nonzero element of Z is
proportional to a point in bd(Z). Note also that

bd(Z)= {α−β :α�β ∈X� supp(α)∩ supp(β)= ∅}�
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For concision, the results to come do not say explicitly that the value function equals 0
on the target sets; neither do they specify that the optimal control on those sets is the
null control.

Proposition 12. If A is a simple three-strategy coordination game, the value function
V ∗ :Bi → R+ for the exit cost problem (39) with target set Bj ∪Bk is the continuous func-
tion

V ∗(x)=

⎧⎪⎪⎨
⎪⎪⎩

1
2
(Ai−kx)2
Ai−ki−k

if (wi)′x≤ 0

1
2
(Ai−jx)2
A
i−j
i−j

if (wi)′x > 0.
(99)

The optimal feedback controls with range bd(Z) are

ν∗(x)

⎧⎨
⎩

= ek − ei if (wi)′x < 0
∈ {ek − ei� ej − ei} if (wi)′x= 0
= ej − ei if (wi)′x > 0.

(100)

Proof. We apply the verification theorem. The value function V ∗ in (99) is constructed
from feedback controls (100) that generate feasible solutions to the exit problem, as re-
quired by condition (i) of Theorem 11. The continuity of V follows from Lemma 7 and
the argument in the subsequent paragraph. The function V ∗ is clearly C1 off the set
{x ∈ aff(X) : (wi)′x = 0}, and Lemmas 4 and 7 imply that the HJB equation holds away
from this set. Thus condition (ii) of Theorem 11 is satisfied, and the proof is complete. �

Proof of Lemma 7. For concreteness, we assume that Q ≥ 0. The proof when Q< 0 is
essentially the same, but with strategies j and k interchanged.

Let x̃ik = x∗ +x∗
k(ei−ek)= (x∗

i +x∗
k)ei+x∗

j ej and x̃ij = x∗ +x∗
j (ei−ej)= (x∗

i +x∗
j )ei+

x∗
kek (see Figure 11). We start by establishing the following lemma.

Lemma 8. We have V k(x̃ik) > V j(x̃ik) and V k(x̃ij) < V j(x̃ij).

Proof. Observe that

V k(x̃ik)− V j(x̃ik) = 1
2

(
(Ai−k(x∗ + x∗

k(ei − ek)))2
Ai−ki−k

− (Ai−j(x∗ + x∗
k(ei − ek)))2

A
i−j
i−j

)

= 1
2
(x∗
k)

2
(
Ai−ki−k − (A

i−j
i−k)

2

A
i−j
i−j

)
�

Thus to prove the first inequality, it suffices to show that Ai−ji−jA
i−k
i−k − (A

i−j
i−k)

2 > 0, and,
indeed,

A
i−j
i−jA

i−k
i−k−Ai−ji−kA

i−j
i−k =Ai−ji−jA

i−k
i−k−Ai−ji−jA

i−j
i−k−Ai−jj−kA

i−j
i−k =Aj−ij−kA

i−j
i−k+Ai−ji−jA

k−j
k−i > 0�

Interchanging j and k in these calculations proves the second inequality. �
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Next, let �ij = {sei+ (1 − s)ej : s ∈R}. The directional derivative of the quadratic func-
tion V k − V j along this line is evaluated as

(DV k(x)−DV j(x))(ei − ej) =
(
Ai−kx
Ai−ki−k

Ai−k − Ai−jx
A
i−j
i−j

Ai−j
)
(ei − ej)

= Ai−kx
Ai−ki−k

Ai−ki−j −Ai−jx

= 1

Ai−ki−k
(Ai−ki−j A

i−k −Ai−ki−kA
i−j)x (101)

= 1

Ai−ki−k
(−Ak−i

k−jA
i +Ai−ki−kA

j −Ai−ki−j A
k)x

= −(vki)′x�
Thus on �ij , V k − V j is concave and is maximized at the unique state x̌ik satisfying
(vki)′x= 0 (see Figure 11).

Recall that x̃ik = x∗ + x∗
k(ei − ek) = x∗

j ej + (x∗
i + x∗

k)ei ∈ �ij and let x̃jk = x∗ +
x∗
k(ej − ek)= x∗

i ei+ (x∗
j +x∗

k)ej ∈ �ij . SinceQ≥ 0, (58) and (59) and inequality (60) imply

that (vki)′x̃ik = x∗
kQ ≥ 0 and that (vki)′x̃jk < 0. Thus x̌ik lies between x̃ik and x̃jk, and is

equal to the former if and only ifQ= 0 (again, see Figure 11). Since V k(x̃ik) > V j(x̃ik) by
Lemma 8 and since V k − V j is concave quadratic on �ij , we have the following lemma.

Lemma 9. There is a unique state yij ∈ �ij with yiji > x̌
ik
i ≥ x∗

i such that V k(yij)= V j(yij).

Next, we consider the directional derivative of the quadratic function V k − V j along
line �ik = {sei + (1 − s)ek : s ∈R}. A calculation similar to (101) shows that

(DV k(x)−DV j(x))(ei − ek)= 1

A
i−j
i−j
(A

i−j
i−jA

i−k −Ai−ji−kA
i−j)x= (vij)′x�

Thus on �ik, V k − V j is convex and is minimized at the unique state x̌ij on �ik satisfying
(vij)′x = 0 (once again, see Figure 11). Since Q ≥ 0, (58) and (59) and inequality (60)
imply that x̌ij = x̃ij + c(ei − ek) for some c ≥ 0, with equality only if and only if Q = 0.
Since V k(x̃ij) < V j(x̃ij) by Lemma 8 and since V k − V j is convex quadratic on �ik, we
have the following lemma.

Lemma 10. There is a unique state yik ∈ �ik with yiki > x̌
ij
i ≥ x̃

ij
i such that V k(yik) =

V j(yik).

To complete the proof, we use the homogeneity of degree 2 of V j(x) and V k(x) in
the displacement z = x− x∗ of x from x∗. Specifically, for z ∈ TX and s ∈ R, we have

V k(x∗ + sz)− V j(x∗ + sz) = V k(sz)− V j(sz)= s2(V k(z)− V j(z))
= s2(V k(x∗ + z)− V j(x∗ + z))�
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Thus if V k(x∗ + z)= V j(x∗ + z), then V k(x∗ + sz)= V j(x∗ + sz) for all s ∈ R. It therefore
follows from Lemmas 9 and 10 that yij and yik are collinear with x∗ (see Figure 11), and
so that both of these points satisfy (96), (97), and (98). It could be that yij = yik = ei, in
which case we choose x̂i = ei. Otherwise, exactly one of yij and yik is inX , in which case
we choose x̂i to be this state. This completes the proof of Lemma 7. �

A.10 The value function for the transition cost problem in potential games

The following proposition describes the optimal feedback controls (Figure 7) and value
function for the transition cost problem (40) in potential games.

Proposition 13. Let A be a simple three-strategy coordination game and suppose that
A is a potential game. Then the value function V ∗ :Bi ∪ Bj → R+ for the transition cost
problem (40) with target set Bk is the C1 function

V ∗(x)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2
(Ai−kx)2
Ai−ki−k

if xj < x∗
j

1
2(x− x∗)′A(x− x∗) if xj ≥ x∗

j and xi ≥ x∗
i

1
2
(Aj−kx)2

A
j−k
j−k

if xi < x∗
i .

(102)

The optimal feedback controls with range bd(Z) are

ν∗(x)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

= ek − ei if xj < x∗
j

∈ conv({ej − ei� ek − ei}) if xj ≥ x∗
j andAi−jx > 0

= −ζij ifAi−jx= 0
∈ conv({ei − ej� ek − ej}) if xi ≥ x∗

i andAi−jx < 0
= ek − ej if xi < x∗

i .

(103)

Proof. To apply the verification theorem, we first show that V ∗ isC1. This is clearly true
inside each of the three regions in the piecewise definition (102). It remains to consider
the behavior of V ∗ at states satisfying xj = x∗

j or xi = x∗
i . We focus on the former states.

Such states satisfy x= x∗ + d(ek − ei) for some d ≥ 0. It follows that V ∗ is continuous at
such states, since

V 1(x)≡ 1
2
(Ai−kx)2

Ai−ki−k
= 1

2
d2Ai−ki−k = 1

2
(x− x∗)′A(x− x∗)≡ V 2(x)�

To check that V ∗ is C1, recall from Section 7.1.1 that sinceA is a potential game, we can
write A = C + 1r ′ for some symmetric matrix C ∈ R

n×n and some vector r ∈ R
n. Using

these facts and the fact that x∗ is an interior Nash equilibrium of bothA and C, we have

V 2(x) = 1
2
(x− x∗)′A(x− x∗)= 1

2
(x− x∗)′C(x− x∗)= 1

2
(x− x∗)′Cx

(104)

= 1
2
(x′Cx− x′Cx∗)= 1

2
(x′Cx− (x∗)′Cx∗)�
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Thus for z ∈ TX , these facts and the symmetry ofA with respect to TX × TX yield

DV 2(x)z = x′Cz = z′Cx= z′Ax= z′A(x− x∗)= (x− x∗)′Az� (105)

But at states x with xj = x∗
j , the fact thatAi−kx∗ = 0 and the definition of d imply that

DV 1(x)z = Ai−kx
Ai−ki−k

Ai−kz = Ai−k(x− x∗)
Ai−ki−k

Ai−kz = dAk−iz = (x− x∗)′Az�

so V ∗ is C1 at these states.
Next, we show that the value function V ∗ is generated by the controls (103). For the

first and third cases of definition (102), this follows from Lemma 3. To address the sec-
ond case, we require the following lemma, which applies equally well to the other cases
(see the discussion following this proof). The lemma uses the fact that f (x)= 1

2x
′Cx is

a potential function for F(x)=Ax on aff(X), in the sense that Df(x)z = F(x)′z = z′Ax
for all z ∈ TX and x ∈ aff(X).

Lemma 11. The cost c(φ) of trajectory φ : [0�T ] → aff(X) satisfies c(φ)≥ f (φ0)− f (φT ).
If for each t ∈ (0�T ), every strategy hwith (φ̇t)h < 0 is optimal at φt , then c(φ)= f (φ0)−
f (φT ).

Proof. By definition (38) of path costs and since [φ̇t]′+1 = [φ̇t]′−1 and 1Ab̌(φt)φt ≥Aφt ,

c(φ) =
∫ T

0
[φ̇t]′+(1Ab̌(φt) −A)φt dt ≥

∫ T

0
([φ̇t]′−A− [φ̇t]′+A)φt dt

= −
∫ T

0
φ̇′
tAφt dt = −

∫ T

0
Df(φt)φ̇t dt = f (φ0)− f (φT )�

If the assumption on the support of [φ̇t]− holds, then [φ̇t]′−1Ab̌(φt)φt = [φ̇t]′−Aφt , so the
inequality in the display binds. �

Proceeding with our earlier argument, we note that any controlled path φ : [0�T ] →
aff(X) starting from a state x with xj ≥ x∗

j and xi ≥ x∗
i and generated by controls satis-

fying (103) both satisfies the assumption of Lemma 11 and terminates at φT = x∗ (see
Figure 7). Thus Lemma 11, the definition of f , and (104) yield

c(φ)= f (x)− f (x∗)= 1
2x

′Cx− 1
2(x

∗)′Cx∗ = 1
2(x− x∗)′A(x− x∗)�

as specified in the second case of (102).
The proposition will follow from Theorem 11 if we can show that V ∗ satisfies the

HJB equation (44) at all states. Since A is a potential game, the states with (vki)′x > 0
are those satisfying xj < x∗

j (see Figure 5(i)), so Lemma 4 implies that V ∗ satisfies (44)
at these states. Analogous reasoning shows that V ∗ satisfies (44) when xi < x∗

i . It thus
remains to check (44) at states satisfying xj ≥ x∗

j and xi ≥ x∗
i . To do so, we show that (44)

holds when xj ≥ x∗
j and Ai−jx > 0; the argument when xi ≥ x∗

i and Ai−jx < 0 is similar;
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and then (44) must hold when xj = x∗
j , xi = x∗

i , or Ai−jx= 0 by virtue of the fact that V ∗

is C1.
So suppose that x satisfies xj ≥ x∗

j and Ai−jx > 0. Since DV ∗(x)z = z′Ax at such
states by (105), substitution into the HJB equation (44) yields

min
ea�eb �=ea

(ei − eb)′Ax= 0� (106)

Since x is in Bi but not in Bj or Bk (see Figure 7), minimization in (106) requires set-
ting eb = ei. Then choosing ea to be either ej or ek attains the minimum of 0.44 This
completes the proof of the proposition. �

A.11 The value function for the transition cost problem in skewed games

A.11.1 Preliminary calculations Lemma 13 and Proposition 14 require a number of
preliminary definitions and calculations. To begin, we introduce notation for the end-
points of paths that proceed in a basic direction until reaching a boundary between
best-response regions. Using Lemma 3 and proceeding from top to bottom in Figure 8
or Figure 9, we have

for x ∈ Bi with xj ≤ x∗
j �

letωik(x)= x+ (ek − ei)dik(x) ∈ Bki� where dik(x)= Ai−kx
Ai−ki−k

for x ∈ Bi with xj ≥ x∗
j �

let χik(x)= x+ (ek − ei)δik(x) ∈ Bij� where δik(x)= Ai−jx
A
i−j
i−k

for x ∈ Bj with xk ≤ x∗
k�

let χji(x)= x+ (ei − ej)dji(x) ∈ Bij� where dji(x)= Aj−ix
A
j−i
j−i

for x ∈ Bj with xi ≤ x∗
i �

letωjk(x)= x+ (ek − ej)djk(x) ∈ Bjk� where djk(x)= Aj−kx
A
j−k
j−k

�

Using these definitions, we can define the pieces of the value function. Again proceeding
from top to bottom in Figure 8 or Figure 9, we have

V 1(x) = γ(x�ωik(x))

V 2(x) = γ(x�χik(x))+ γ(χik(x)�x∗)
44To consider all controls in bd(Z), we must write the HJB equation in form (43); then the previous

argument and the piecewise linearity of (43) imply that the set of optimal controls is conv({ej − ei� ek− ei}),
as described in the second case of (103).
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V 3(x) = γ(x�χji(x))+ γ(χji(x)�x∗)

V 4(x) = γ(x�ωjk(x))�

We next state a counterpart of Lemma 3 for paths along Bij to x∗.

Lemma 12. If y ∈ Bij , then

y = x∗ + dζ(y)ζij� where dζ(y)= x∗
k − yk

(107)
γ(y�x∗) = 1

2d
ζ(y)2A

ζ
ζ� whereAζζ = (ζij)′Aζij > 0�

Proof. Since y ∈ conv({xij� x∗}), (51) implies that we can write y = x∗ + dζij for some
d > 0. Then (52) implies that yk = x∗

k − d, which yields (107), and Lemma 2 implies that

γ(y�x∗) = (y − x∗)′A
(

1
2(y + x∗)

)
= dζ(y)(ζij)′A

(
x∗ + 1

2d
ζ(y)ζij

)
= 1

2d
ζ(y)2A

ζ
ζ� �

Lemma 12 gives an expression for dζ(y) that is affine in y. To match Lemma 3, one
can instead write dζ(y) = (ζij)′Ay/Aζζ . The key point is that either way, dζ(x∗ + z) is
linear in the displacement z.

Next we give explicit expressions for each piece of the value function and their
derivatives:

V 1(x)= γ(x�ωik(x))= 1
2
dik(x)2Ai−ki−k = 1

2
(Ai−kx)2

Ai−ki−k
� so

DV 1(x)= Ai−kx
Ai−ki−k

Ai−k

V 2(x)= γ(x�χik(x))+ γ(χik(x)�x∗)

= δik(x)Ai−kχik(x)+ 1
2
δik(x)2Ai−ki−k + 1

2
dζ(χik(x))2A

ζ
ζ� so

DV 2(x)= δik(x)Ai−kDχik(x)+Ai−kχik(x)Dδik(x)+Ai−ki−kδ
ik(x)Dδik(x)

+Aζζdζ(χik(x))Ddζ(χik(x))Dχik(x)

V 3(x)= γ(x�χji(x))+ γ(χji(x)�x∗)= 1
2
dji(x)2A

j−i
j−i +

1
2
dζ(χji(x))2A

ζ
ζ� so

DV 3(x)=Aj−ij−id
ji(x)Ddji(x)+Aζζdζ(χji(x))Ddζ(χji(x))Dχji(x)

V 4(x)= γ(x�ωjk(x))= 1
2
djk(x)2A

j−k
j−k = 1

2
(Aj−kx)2

A
j−k
j−k

� so

DV 4(x)= Aj−kx
A
j−k
j−k

Aj−k�
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The functions above are expressed in terms of derivatives of linear functions from
Section 7.5.2 and Lemma 12. These derivatives are written explicitly as

Dδik(x) = Ai−j

A
i−j
i−k

Dχik(x) = I + (ek − ei)Dδik(x)= I + (ek − ei) A
i−j

A
i−j
i−k

Ddji(x) = Aj−i

A
j−i
j−i

Dχji(x) = I + (ei − ej)Ddji(x)= I + (ei − ej)A
j−i

A
j−i
j−i

Ddζ(y) = −e′k for y ∈ Bij �

A.11.2 Statement and proof of Lemma 13 Lemma 13 identifies state x̂jk from Figures
8 and 9. The requirements of the lemma were interpreted in Section 7.5.2, and its proof
proceeds in similar fashion to that of Lemma 7.

Lemma 13. If A has clockwise skew, then there is a unique state x̂jk ∈ Bj ∩ bd(X) such
that

x̂
jk
k < x∗

k (108)

(vjk)′x̂jk > 0 (109)

V 3(x̂jk) = V 4(x̂jk)� (110)

Proof. We consider the behavior of the quadratic function V 4 − V 3 on the line �ij =
{sei+ (1− s)ej : s ∈R}. To begin, note that sinceDχji(x)(ej−ei)= 0, a calculation similar
to (101) shows that

(DV 4(x)−DV 3(x))(ej − ei)= 1

A
j−k
j−k

(A
j−k
j−i A

j−k −Aj−kj−kA
j−i)x= −(vjk)′x�

Since ej − ei is tangent to �ij , it follows that V 4 − V 3 is concave on �ij and reaches its
maximum on this line at the unique state on �ij satisfying (vjk)′x = 0. We denote this
state by x̌jk (see Figure 12).

Let x̃jk = x∗ + x∗
k(ej − ek) ∈ �ij . We show that V 4(x̃jk) − V 3(x̃jk) > 0. Observe that

djk(x̃jk)= x∗
k, dζ(x̃jk)= x∗

k, and

dji(x̃jk)= Aj−i(x∗ + x∗
k(ej − ek))

A
j−i
j−i

= x∗
k

A
j−i
j−k

A
j−i
j−i
�
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Figure 12. The construction of x̂jk when it is on face ejek.

so we have that

V 4(x̃jk)− V 3(x̃jk)= 1
2
(x∗
k)

2A
j−k
i−k −

(
1
2

(
x∗
k

A
j−i
j−k

A
j−i
j−i

)2

A
j−i
j−i +

1
2
(x∗
k)

2A
ζ
ζ

)
� (111)

Since

Aj−iζij = 1
x∗
k

Aj−i(xij − x∗)= 1
x∗
k

Aj−ixij = 0 (112)

and ζij + ζiji (ej − ei)= ej − ek, and using expression (52) for ζij , we have

A
ζ
ζ = (ζij)′Aζij

= (ej − ek)′Aζij

=Aj−k
(Aj−ij−k
A
j−i
j−i
(ei − ek)+ A

i−j
i−k

A
j−i
j−i
(ej − ek)

)

= 1

A
j−i
j−i
(A

j−k
i−kA

j−i
j−k +Aj−kj−kA

i−j
i−k)�

Thus continuing from (111), we have

2Aj−ij−i
(x∗
k)

2 (V
4(x̃jk)− V 3(x̃jk)) =A

j−k
j−kA

j−i
j−k − (Aj−ij−k)

2 −Aj−ki−kA
j−i
j−k −Aj−kj−kA

i−j
i−k

=A
j−k
j−kA

j−i
j−k − (Aj−ij−k)

2 −Aj−ki−kA
j−i
j−k

=A
j−i
j−k(A

j−k
j−i −Aj−ij−k)
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=A
j−i
j−kQ

> 0�

as claimed.
Since (vjk)′x̌jk = 0 and (vik)′(ei−ej) > 0 (see (61)), it follows that x̌jk = x̃jk+c(ej−ei)

for some c > 0. Thus as one proceeds along �ij in direction ej − ei starting from x̃jk,
the function V 4 − V 3 starts at a positive value, increases until reaching its maximum
at x̌jk, and then decreases, ultimately approaching −∞. Thus there is a unique point
yjk = x̌jk + b(ej − ei) ∈ �ij with b > 0 at which V 4(x)− V 3(x)= 0 (see Figure 12).

If yjki ≥ 0, so that yjk is in X , then we let x̂jk = yjk, and this point clearly satisfies

(108), (109), and (110). If instead yjki < 0, we let

x̂jk = x∗
i

x∗
i − yjki

y
jk
i + −yjki

x∗
i − yjki

x∗�

which is the point on the segment between yjk and x∗ whose ith component is 0 (see
Figure 12). Since equality (110) and inequality (109) hold at yjk and are preserved along
rays from x∗, they continue to hold at x̂jk, with a strict inequality in the case of (109).

And since x̂jkk is a strictly convex combination of x∗
k and −yjkk > 0, we have x̂jkk < x∗

k,
which is inequality (108). This completes the proof of the lemma. �

A.11.3 Statement of Proposition 14 Proposition 14 describes the optimal feedback
controls (Figures 8 and 9) and value function for the transition cost problem (40) in
skewed games. To state it, we define the vector wjk to be the cross-product

wjk = x∗ × (x̂jk − x∗)�

In Figures 8 and 9, the states satisfying (wjk)′x > 0 are those below the ray from x∗
through x̂jk.

Proposition 14. Let A be a simple three-strategy coordination game with clockwise
skew. Then the value function V ∗ :Bi ∪ Bj → R+ for the transition cost problem (40)
with target set Bk is

V ∗(x)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
γ(x�ωik(x)) if xj ≤ x∗

j

γ(x�χik(x))+ γ(χik(x)�x∗) if xj > x∗
j andAi−jx≥ 0

γ(x�χji(x))+ γ(χji(x)�x∗) ifAi−jx < 0 and (wjk)′x < 0
γ(x�ωjk(x)) if (wjk)′x≥ 0.

(113)

The optimal feedback controls with range bd(Z) are

ν∗(x)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

= ek − ei ifAi−jx > 0
= −ζij ifAi−jx= 0
= ei − ej ifAi−jx < 0 and (wjk)′x < 0
∈ {ei − ej� ek − ej} if (wjk)′x= 0
= ek − ej if (wjk)′x > 0.
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To prove Proposition 14, we establish that the value function defined in (113) satis-
fies the conditions of the verification theorem. In Appendix A.11.4, we show that V is
continuous and that it is differentiable except at states x at which (wjk)′x = 0. In Ap-
pendix A.11.5, we use Lemmas 1, 4, and 13 to show that the HJB equation holds at all
other states. The proposition then follows from Theorem 11.

While the algebraic presentation below may look complicated, many of the argu-
ments are quite simple when interpreted geometrically.

A.11.4 Continuity and piecewise smoothness of V ∗ Lemma 14 shows that the value
function V ∗ is continuous on the boundary between the third and fourth cases of defi-
nition (113).

Lemma 14. If x ∈ Bj and (wjk)′x= 0, then V 3(x)= V 4(x).

Proof. Since (wjk)′x = 0 and wjk = x∗ × (x̂jk − x∗), we can write x = x∗ + r(x̂jk − x∗)
for some r ∈ [0�1]. By condition (110) and the expressions for V 3 and V 4 above, it is
enough to show that djk(x)= rdjk(x̂jk), dji(x)= rdji(x̂jk), and dζ(χji(x))= rdζ(χji(x)).
And indeed, the fact thatAx∗ is a multiple of 1 implies that

djk(x) = Aj−kx
A
j−k
j−k

= rA
j−kx̂jk

A
j−k
j−k

= rdjk(x̂jk)

dji(x) = Aj−ix
A
j−i
j−i

= rA
j−ix̂jk

A
j−i
j−i

= rdji(x̂jk)�

while the third equality follows from the fact that

dζ(χji(x))= x∗
k − e′k(x+ (ei − ej)dji(x))= x∗

k − xk� �

Lemmas 15 and 16 establish differentiability of V ∗ on the boundaries between the
first and second and the second and third cases of definition (113).

Lemma 15. If x̃ ∈ Bi satisfies x̃= x∗ +d(ei−ek) for some d ≥ 0, thenDV 1(x̃)=DV 2(x̃)=
dAi−k.

Proof. Note first that

DV 1(x̃)= Ai−kx̃
Ai−ki−k

Ai−k = Ai−k(x∗ + d(ei − ek))
Ai−ki−k

Ai−k = dAi−k�

To computeDV 2(x̃), use the definition of χik and Lemma 12 (or draw a picture) to show
that δik(x̃)= d, χik(x̃)= x∗, and dζ(x∗)= 0. Then sinceAi−kx∗ = 0, we have that

DV 2(x̃) = δik(x̃)Ai−kDχik(x̃)+Ai−ki−kδ
ik(x̃)Dδik(x̃)

= dAi−k
(
I + (ek − ei) A

i−j

A
i−j
i−k

)
+Ai−ki−kd

Ai−j

A
i−j
i−k
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= dAi−k + dAi−kk−i
Ai−j

A
i−j
i−k

+Ai−ki−kd
Ai−j

A
i−j
i−k

= dAi−k� �

Lemma 16. If y ∈ Bij , thenDV 2(y)=DV 3(y)= (Ay)′ (as linear forms on TX).

Proof. Since y ∈ Bij , we have δik(y)= 0, χik(y)= y, and dζ(y)= d. Thus

DV 2(y) =Ai−kχik(y)Dδik(y)+Aζζdζ(χik(y))Ddζ(χik(y))Dχik(y)

=Ai−ky A
i−j

A
i−j
i−k

+Aζζ(x∗
k − yk)

(
−e′k

(
I + (ek − ei) A

i−j

A
i−j
i−k

))

=Ai−ky A
i−j

A
i−j
i−k

+Aζζ(x∗
k − yk)

(
−e′k − Ai−j

A
i−j
i−k

)

= Ai−ky −Aζζ(x∗
k − yk)

A
i−j
i−k

Ai−j −Aζζ(x∗
k − yk)e′k�

Thus

DV 2(y)(ei − ek)=Ai−ky −Aζζ(x∗
k − yk)+Aζζ(x∗

k − yk)=Ai−ky = (Ay)′(ei − ek)�

and sinceAi−jζij = 0 (see (112)) and

(ζij)′Ay = (ζij)′A(x∗ + dζ(y)ζij)=Aζζ(x∗
k − yk)�

we have

DV 2(y)ζij =Aζζ(x∗
k − yk)= (Ay)′ζij�

Since ei − ek and ζij span TX , we conclude thatDV 2(y)= (Ay)′.
Again using δji(y)= 0 and χji(y)= y, we have

DV 3(y) =A
ζ
ζd
ζ(χji(y))Ddζ(χji(y))Dχji(y)

=A
ζ
ζ(x

∗
k − yk)

(
−e′i

(
I + (ei − ej)A

j−i

A
j−i
j−i

))

= −Aζζ(x∗
k − yk)e′k�

Thus

DV 3(y)(ei − ej) = 0 = (Ay)′(ei − ej)
DV 3(y)ζij =A

ζ
ζ(x

∗
k − yk)= (Ay)′ζij�

Thus since ei − ej and ζij span TX , we conclude thatDV 3(y)= (Ay)′. �
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A.11.5 Checking the HJB equation To complete the proof of Proposition 14, we need
to show that the HJB equation (44) is satisfied at all states at which V ∗ is C1. In the first
case of the definition (113) of V ∗, this follows from Lemma 4 and the fact that Q > 0,
since (59) implies that (vki)′x≥ 0 when x ∈ Bi and xj ≤ x∗

j (see Figure 5(ii)).
Similarly, in the fourth case of definition (113), the HJB equation follows from

Lemma 4 (with the roles of i and j reversed) and Lemma 13, which ensures that
(vjk)′x≥ 0 when x ∈ Bj and (wjk)′x≥ 0 (see Figure 12).

To handle the two remaining cases of definition (113), we apply Lemma 1. Observe
that the regions defined by these cases are convex cones in aff(X) emanating from x∗.
Also, the expressions forDV 2(x) andDV 3(x) in Appendix A.11.1 imply that within each
of these regions, the function to be minimized in the HJB equation (44) is linear in the
displacement z = x− x∗ of x from x∗. Therefore, to establish inequalities (45) and (46)
from Lemma 1 for all the states in one of these cones, it is enough to do so at three states:
x∗ and one state from each edge of the cone. Since we have shown that V ∗ is C1 on the
boundaries between the first and second and the second and third cases of (113), this
analysis also establishes that the HJB equation (44) holds on these boundaries.

For the second case of definition (113), we show that inequalities (45) and (46) hold
at states x∗, xij , and x̃ik = x∗ + x∗

k(ei − ek)= (x∗
i + x∗

k)ei + x∗
j ej :

DV 2(x∗) =DV 2(x∗)− (Ax∗)′ = 0′ (as a linear form on TX)

DV 2(xij)(ei − ek) =Ai−kxij > 0

DV 2(xij)(ei − ej) =Ai−jxij = 0

DV 2(xij)− (Axij)′ = 0′ (as a linear form on TX)

DV 2(x̃ik)(ei − ek) = x∗
kA

i−k
i−k > 0

DV 2(x̃ik)(ei − ej) = x∗
kA

i−k
i−j > 0

(DV 2(x̃ik)− (Ax̃ik)′)(ek − ej) = (DV 1(x̃ik)− (Ax̃ik)′)(ek − ej)≤ 0�

The final statement uses the fact that V ∗ is C1 on the boundary between the second and
third cases of (113), the fact that (vki)′x̃ik > 0, and the display before Lemma 4.

For the third case of definition (113), we show that inequalities (45) and (46) hold at
states x∗, xij , and yjk ∈ �ij , the last of which was introduced in the proof of Lemma 13.
The inequalities for the first two states are straightforward to check:

DV 3(x∗) =DV 3(x∗)− (Ax∗)′ = 0′ (as a linear form on TX)

DV 3(xij)(ej − ek) =Aj−kxij > 0

DV 3(xij)(ej − ei) =Aj−ixij = 0

DV 3(xij)− (Axij)′ = 0′ (as a linear form on TX)�

It remains to check inequalities (45) and (46) for state yjk. SinceDχij(x)(ej − ei)= 0,

DV 3(yjk)(ej − ei)=Aj−ij−id
ji(yjk) > 0�
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Next, since

dζ(χji(x))= dζ(x+ (ei − ej)dji(x))= x∗
k − xk

and since for y ∈ Bij ,

Dχji(y)(ej − ek) = (ej − ek)+ (ei − ej)
A
j−i
j−k

A
j−i
j−i

= 1

A
j−i
j−i
((ej − ek)Aj−ij−i + (ei − ej)Aj−ij−k)

= 1

A
j−i
j−i
(A

j−i
j−kei +Ai−ji−kej −Aj−ij−iek)

= ζij�

we have

DV 3(x)(ej − ek) =A
j−i
j−kd

ji(x)+Aζζdζ(χji(x))Ddζ(χji(x))Dχji(x)(ej − ek)
=A

j−i
j−kd

ji(x)+Aζζ(x∗
k − xk)(−e′kζij)

=A
j−i
j−kd

ji(x)+Aζζ(x∗
k − xk)�

Thus the fact that yjkk = 0 implies that

DV 3(yjk)(ej − ek)=Aj−ij−kd
ji(x)+Aζζx∗

k > 0�

This establishes the two cases of inequality (45) at state yjk.
It remains to establish inequality (46) at state yjk. Computing as above shows that

for y ∈ Bij ,

Dχji(y)(ei − ek) = 1

A
j−i
j−i
((ei − ek)Aj−ij−i + (ei − ej)Aj−ii−k)= ζij

DV 3(x)(ei − ek) =A
j−i
i−kd

ji(x)+Aζζ(x∗
k − xk)�

Hence

(DV 3(x)− (Ax)′)(ei − ek)

=Aj−ii−k
Aj−ix
A
j−i
j−i

+Aζζ(x∗
k − xk)−Ai−kx

= 1

A
j−i
j−i
(A

j−i
i−kA

j−i −Aj−ij−iA
i−k)x+ (ζij)′Aζij(x∗

k − xk)

= 1

A
j−i
j−i
(−Aj−ij−kAi −Ai−ji−kAj +Aj−ij−iAk)x+ 1

A
j−i
j−i
(vij)′ζij(x∗

k − xk)
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= (vij)′((x∗
k − xk)ζij − x)

= (vij)′
(
x∗
k − xk
x∗
k

(xij − x∗)− x
)

= (vij)′
(
x∗
k − xk
x∗
k

xij − x
)
�

The proof of Lemma 13 shows that yjk = xij + a(ej − ei) for some a > 0. Thus since

y
jk
k = 0, we find that

(DV 3(yjk)− (Ayjk)′)(ek − ei)= (vij)′(yjk − xij)= a(vij)′(ej − ei)= aQ> 0�

where the final equality follows from (59). This concludes the verification of the HJB
equation at states where V ∗ is smooth, and so completes the proof of Proposition 14.
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