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We study a class of chip strategies in repeated games of incomplete informa-
tion. This class generalizes the strategies studied by Möbius (2001) in the context
of a favor-exchange model and the strategies studied in our companion paper,
Olszewski and Safronov (2017). In two-player games, if players have private values
and their types evolve according to independent Markov chains, then under very
mild conditions on the stage game, the efficient outcome can be approximated by
chip-strategy equilibria when the discount factor tends to 1. We extend this result
(assuming stronger conditions) to stage games with any number of players. Chip
strategies can be viewed as a positive model of repeated interactions, and the in-
sights from our analysis seem applicable in similar contexts, not covered by the
present analysis.
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1. Introduction

Models of repeated games of incomplete information have a wide range of applications.
They include (a) oligopoly markets in which firms privately know their costs, (b) re-
peated auctions in which bidders privately know their valuations, and (c) favor exchange
when a person in need does not know if others can help.

In the existing literature, repeated games of incomplete information have been an-
alyzed by means of two kinds of strategies: (a) simple and intuitive strategies that al-
low attainment of only limited payoffs or (b) strategies that allow attainment of a wider
range of payoffs but are less intuitive and more involved, or have been “tailored” with
the objective of attaining particular payoffs.

In our companion paper, Olszewski and Safronov (2017), we study a class of simple
strategies, called chip strategies, and show that equilibria in strategies from this class ap-
proximate efficient outcomes in many economic applications, including several models
studied extensively in the existing literature, such as the favor-exchange model, repeated
auctions, or repeated duopolies. Intuitively, according to these strategies a player takes
an individually suboptimal action if that action creates a “gain” for the opponent that
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is larger than the player’s “loss” from taking it. In exchange, the player implicitly ob-
tains from the opponent a chip (or a fraction of a chip) that entitles the player to receive
this kind of favor at some future date. Players are initially endowed with a certain num-
ber of chips, and a player who runs out of chips is not entitled to receive any additional
favors—and is on suspension—until she provides a favor to her opponent, in which case
the player receives one chip back. Detectable deviations result in a breakdown of coop-
eration.

Perhaps unsurprisingly, Olszewski and Safronov (2017) show that the scope of their
simple chip equilibria is limited. Such equilibria cannot approximate efficient outcomes
in some (even symmetric) two-player games in which players have more than two types.
The aim of this paper is to explore a wider class of chip strategies, which are still relatively
simple and intuitive, resemble what we observe in numerous settings in practice, and
support the efficient outcomes in a wider range of games.

Although these more general chip strategies are defined for games with any number
of players, the idea is probably most intuitive in two-player games. According to these
more general chip strategies, a player who takes an action that “helps” the other player
increases her chance of implicitly obtaining a chip from the opponent. If, alternatively,
a player takes an action that “hurts” the other player, she increases her chance of giving
the opponent a chip.

The current paper differs from Olszewski and Safronov (2017) in that players no
longer exchange favors for chips (or fractions thereof) at some constant rate; instead,
the probabilities with which players exchange favors and chips are carefully selected to
imitate the d’Aspremont and Gérard-Varet (1979) and Arrow (1979) mechanism by using
continuation payoffs as transfers. That is, players internalize the effect of their actions
on the current payoffs of their opponents by the effect that their actions have on the
number of chips they own and, hence, on their own continuation payoffs.

For two-player games, we show that if players’ types are independent and identically
distributed (i.i.d.) or more generally evolve according to independent Markov chains,
then under some very mild conditions on the stage game, the efficient outcome can
be approximated by chip-strategy equilibria when the discount factor tends to 1. The
fact that the efficient outcome can be approximated is roughly intuitive. When players
assign higher weights to future payoffs, one can equip them with a larger number of
chips. Thus, players go on inefficient suspension less frequently, and the action profile
that maximizes the aggregate payoff is played more frequently.

With more than two players, additional complexity arises if a favor is provided by
more than one player and more than one player benefits from this favor. We provide
efficiency results for this case as well, but under somewhat stronger assumptions. This
suggests that chip strategies are more natural for bilateral interactions, although chip
strategies can still be used for multilateral interactions in a wide range of applications.

Related literature

Fudenberg et al. (1994) prove a folk theorem for a family of repeated games in which
players have i.i.d. types and private values. The focus of their paper is entirely on the
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payoffs that can be attained in equilibria, not on the strategies that yield these payoffs.
Escobar and Toikka (2013) study the more general model in which players have Markov
independent types and private values. They show that the efficient payoffs could be
attained in some version of review strategies; moreover, Escobar and Toikka prove that
any Pareto-efficient payoff vector above a stationary minmax vector can be attained for
a generic class of games. The review strategies1 used by Escobar and Toikka are intuitive
and deliver general results. However, their complete strategies are not entirely explicit.
Contingent on some histories, they are defined by a fixed-point argument. Hörner et al.
(2015) provide even more general results, relaxing the assumptions of private values and
independent types; the focus of their paper is also on the payoffs that can be attained in
equilibria.2

Some versions of chip strategies were introduced in the context of a two-player,
favor-exchange model by Möbius (2001) and studied in the subsequent papers by
Hauser and Hopenhayn (2008) and Abdulkadiroğlu and Bagwell (2012, 2013). Some
form of one-chip strategies also appears in the study of oligopolies (see Athey et al.
2004, Athey and Bagwell 2008, and the discussion of repeated games with incomplete
information in Mailath and Samuelson 2006), and in the papers on repeated auctions
by Aoyagi (2003, 2007) and Rachmilevitch (2013). Chip strategies have also been used by
Wolitzky (2015) in a model of information transmission on networks.

The focus of our paper is on behavior rather than on payoffs. We do not pretend
to improve on the existing literature in terms of generality of efficiency results. Indeed,
Fudenberg, Levine, and Maskin, and Escobar and Toikka provide quite general results
for stage games with private values and independent types. Hörner et al. (2015) pro-
vide even more general results, relaxing the assumptions of private values, independent
types, and perfect monitoring. We view our main contribution as describing intuitive
strategies that provide a positive model of playing repeated games with incomplete in-
formation. Under relatively mild conditions, these strategies approximate efficient pay-
offs in settings with Markov independent types and private values. However, our meth-
ods also allow for showing the existence of efficient equilibria in settings in which this
existence cannot be derived from the literature, namely, in some repeated auctions with
correlated types in which the monitoring is imperfect and the values may not be private.
(Moreover, the construction of efficient equilibria is much simpler for the repeated auc-
tions, and so we relegate the analysis to Olszewski and Safronov 2017, in which we study
such simpler strategies.)

The rest of the paper is organized as follows. In Section 2, we introduce the model
and present our main assumptions on the stage game. In Section 3, we show the effi-
ciency result for repeated games with transfers. This result is not new; the purpose of
including it is to demonstrate the idea of transfers as in the d’Aspremont and Gérard-
Varet (1979) and Arrow (1979) mechanism, which will later be imitated by continuation

1Review strategies were initially studied by Radner (1985) in a repeated moral-hazard game. In the case
of i.i.d. costs, the ideas behind Escobar and Toikka’s equilibria are also closely related to the linking mech-
anism from Jackson and Sonnenschein (2007).

2They also imitate the d’Aspremont and Gérard-Varet (1979) and Arrow (1979) mechanism to construct
suitable monetary transfers that are recursively imitated by continuation payoffs.
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payoffs. In Sections 4 and 5, we describe chip-strategy equilibria for two-player games
with i.i.d. types and prove their approximate efficiency. We generalize this result to two-
player games with Markov types and games with any number of players in Sections 6 and
7, respectively. We discuss some advantages and drawbacks of chip-strategy equilibria
in Section 8.

2. Preliminaries

2.1 Model

Consider a normal-form game G with I players, indexed by i = 1� � � � � I. Let Ai and �i

be the finite sets of actions and (privately observed) types, respectively, of player i. Let
ui(θi� a) be the payoff of player i. We make some assumptions on the payoffs, but it is
convenient to postpone presenting them until the end of this section.

We study a repeated game in which players play stage game G in periods t = 1�2� � � �
and discount future payoffs at a common rate δ; it is convenient to denote 1 − δ by ε.
Actions are publicly observed at the end of each period. In the repeated game, players
are allowed to communicate at the beginning of each period by sending simultaneous,
publicly observed cheap-talk messages regarding their types. We assume that the mes-
sage space of each player i coincides with the type space �i.3 Players also have access
to a public randomization device, that is, they observe the realization of a random vari-
able distributed uniformly on the interval [0�1]. The timing of events in each period is
as follows: (a) players privately observe their types; (b) they simultaneously send pub-
lic cheap-talk messages regarding their types; (c) players simultaneously take publicly
observed actions; (d) they observe a realization of the public randomization device.

We first assume that players’ types are i.i.d. according to distributions ηi, i = 1� � � � � I,
and then generalize the results to the case in which players’ types are still indepen-
dently distributed but evolve over time according to homogeneous, aperiodic irre-
ducible Markov chains. We assume that there exists a t such that for every pair of type
profiles θ, θ′, if the type profile in the current period is θ, the type profile t periods
from now will be θ′ with positive probability. By the ergodic theorem (see, for example,
Shiryaev 1996), every such process has a limiting type distribution η= (η1� � � � �ηI) and,
independently of the initial type profile, the distribution of types at time t converges to
the limiting distribution at an exponential rate as t → ∞.

All other elements of the model, that is, histories, repeated-game strategies, and pay-
offs, are defined in the standard manner.

2.2 Assumptions on the stage game

In this section, we present the assumptions that we impose on the stage game in the
case of two players with i.i.d. types. Since these assumptions are also used in the case of
more than two players, we present them in the general form. We adjust these assump-
tions to the Markov case in Section 6. For more than two players, we need an additional
assumption, which we introduce and discuss in Section 7.

3This message space can be replaced with any other message space that has at least as many elements.
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For any set of players R ⊂ {1� � � � � I} and their type profile θR ∈ �R = ∏
i∈R�i, denote

by a(θR) an R-efficient action profile, that is, an action profile that maximizes the total
payoff of all players in R. For any θ, denote by a(θ) the efficient action profile, that is,
the action profile that maximizes the sum of the stage-game payoffs of all I players. We
make the following assumptions.

Assumption I. For all subsets R ⊂ {1� � � � � I} and all type profiles θR ∈ �R, there is a
unique action profile a(θR) that maximizes the total payoff of all players in R, given the
profile θ. In addition, a(θR) �= a(θ′

R) for all θR and θ′
R such that θi �= θ′

i for some i ∈R and
θj = θ′

j for all i �= j ∈R.

For i /∈R, let viR =Eθ(ui(θi� a(θR))) denote the expected stage-game payoff of player
i when players take the R-efficient action profile. Similarly, for i ∈ R, let wi

R denote the
expected stage-game payoff of player i when players take the R-efficient action profile.
We sometimes call the players in R active and say that the players not in R are on sus-
pension.

Assumption II. For any i� j ∈ {1� � � � � I} and any R such that i� j ∈R,

viR−{i} <wi
R <wi

R−{j}�

Here and throughout the paper, when we use symbols i and j to denote players, we
assume that i �= j, that is, that these two letters denote different players. Assumption II
guarantees that every player prefers being active to being on suspension (regardless of
which of the other players are active) and that every player gains from another player
going on suspension.

Assumption III (In the i.i.d. case). The incomplete information stage game has a
Bayesian Nash equilibrium in which the payoff of every player i is strictly less than wi

R

for R= {1� � � � � I}.

We call the equilibrium described in Assumption III the bad equilibrium. Although
Assumption III does not hold for all games, bad equilibria do exist in many settings of
interest. In addition, in symmetric games, a stage-game symmetric equilibrium always
exists. This equilibrium can be either efficient or inefficient. In the latter case, the game
satisfies Assumption III and allows for the construction of an efficient equilibrium in
chip strategies.

3. The main idea

We first focus on the i.i.d. types. Later, we generalize our results to the case when players’
types are Markovian. The main idea of our construction is to imitate the d’Aspremont
and Gérard-Varet (AGV) mechanism (see d’Aspremont and Gérard-Varet 1979 and Arrow
1979) using variations in continuation payoffs as transfers. To introduce this idea, we as-
sume in this section that players are allowed to make monetary transfers to one another
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at the end of each period, and that these transfers enter players’ payoffs in a quasi-linear
manner. We construct an efficient equilibrium using monetary transfers. Then, in the
next section, we show that those monetary transfers can be imitated by variations in
continuation payoffs.

Theorem 1. If the stage game satisfies Assumption III and players are allowed to make
monetary transfers at the end of each period, then the efficient payoff can be attained in
equilibrium if the discount factor is sufficiently large. If, in addition, the game satisfies
Assumption I, then the efficient payoff can be attained in strict equilibrium.

We prove Theorem 1 by essentially constructing the expected externality mechanism
of d’Aspremont and Gérard-Varet. The claim in Theorem 1 is not new; for example,
Athey and Segal (2013) established a more general result (see their Proposition 2). Our
main objective, however, is to prove the result without transfers and in chip strategies.
We provide the proof of Theorem 1 not only for completeness, but also to facilitate ref-
erence to this construction in the following sections.

First, we introduce some auxiliary terms, which are also used later. Let

s
j
i = Eθ−i

(
uj

(
θj�a(θi� θ−i)

)) −EθiEθ−i

(
uj

(
θj�a(θi� θ−i)

))

be the expected effect of player i’s report θi on player j’s payoff; in particular, sji > 0
(sji ≤ 0) if player i reports a type that gives player j in expectation a payoff higher (no
higher) than the ex ante expected payoff. This effect is obviously a function of θi, but we
often disregard its argument as that will cause no confusion. Let

si =
∑
j �=i

s
j
i

be the effect of player i’s report on the total payoff of all other players. Further, let

pi = Pr{si > 0} ·Eθi [si | si > 0]

or, equivalently,

pi = −Pr{si ≤ 0} ·Eθi [si | si ≤ 0]�
To show Theorem 1, consider the following strategies.

(A) In every period, players report their types truthfully.

(B) If θ is the reported type profile, players take action profile a(θ).

(C) Players make transfers. For all i� j ∈ {1� � � � � I}, player j transfers sji to player i.

That is, player i obtains (as a transfer) the difference between the sums of the in-
terim and ex ante expected payoffs of the other players. Player i’s expected payoff from



Theoretical Economics 13 (2018) Chip strategies in repeated games 957

reporting θ′
i, given truthful reporting of the other players, is then

Eθ−i

(
ui

(
θi�a

(
θ′
i� θ−i

))) +
∑
j �=i

[
Eθ−i

(
uj

(
θj�a

(
θ′
i� θ−i

))) −EθiEθ−i

(
uj

(
θj�a(θi� θ−i)

))]

−
∑
j �=i

Eθj

[
Eθ−j

(
ui

(
θi�a(θi� θ−i)

)) −EθjEθ−j

(
ui

(
θi�a(θi� θ−i)

))]
�

The first term in this expression is player i’s expected interim payoff given her actual
and reported types, the second term is the expected payment to player i from the other
players, and the third term is the expected payment of player i to the other players. The
third term is equal to zero, and the second part of the second term does not depend on
player i’s report, while the first term and the first part of the second term sum up to

I∑
j=1

Eθ−i

(
uj

(
θj�a

(
θ′
i� θ−i

)))
�

Thus, if the players other than i report truthfully, player i has incentives to maximize the
sum of the stage-game payoffs, which is attained by reporting her own type truthfully.

(D) An action profile other than a(θ) for any reported type profile θ or any refusal to
make the prescribed transfers triggers a permanent repetition of the bad stage-
game equilibrium.

This obviously disciplines the players to take action profile a(θ) given any report θ
and to make the prescribed transfers.

The prescribed strategies are incentive compatible and attain the efficient payoff.

4. Efficient chip strategies for two players with i.i.d. types

We now specify chip strategies that approximate the efficient outcome in an arbitrary
two-player game that satisfies our assumptions: At the beginning of each period, player
i holds ki ∈ {0� � � � �2n} chips, where k1 +k2 = 2n, with k1 = k2 = n at the beginning of the
repeated game. The number ki is the state of the game. The game is played as follows.

Strategy (A) is as in Section 3, that is, players report their types truthfully. Strategy
(B) is almost as in Section 3, that is, if θ is the reported type profile and ki �= 0�2n, then
players take action profile a(θ). We will specify in (E) what happens in states ki = 0�2n.

The state for the following period is determined at the end of the current period,
contingent on the realization of the public randomization device, by the following four-
component lottery. The first component describes the way in which player i’s report
affects the state. The second component describes the way in which the report of player
j affects the state. These two lotteries are independent. The third and fourth compo-
nents are adjustment terms, independent of the reports. Suppose player i currently
holds ki = k �= 0�2n chips. Then strategy (C) from Section 3 is replaced with (C1)–(C4):
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(C1) Player i obtains a chip from player j with probability αi
ksi1{si>0} and gives player

j a chip with probability −φi
ksi1{si≤0}.4 The coefficients αi

k and φi
k are specified

later. For now, it is important to know that they converge to 0 as the discount
factor converges to 1, which makes these probabilities well defined.

(C2) Player j gives player i a chip with probability −φ
j
2n−ksj1{sj≤0} and obtains a chip

from player i with probability α
j
2n−ksj1{sj>0}.

(C3) Player i gives player j a chip with probability

1
3

−φi
kpi − α

j
2n−kpj�

independent of the messages sent in the current period, and obtains a chip from
player j with probability

1
3

− αi
kpi −φ

j
2n−kpj�

independent of the messages sent in the current period.

(C4) The state in the following period is unaltered with the remaining probability.
That is, in the four-component lottery, the total probability of player i giving a
chip to player j (as well as receiving a chip from player j) is a sum of the corre-
sponding probabilities in (C1)–(C3). With the remaining probability, the state is
unaltered.

(D) As in Section 3, if an action profile other than a(θ) is observed, for any reported
type profile θ, in the following period players switch to permanently playing the
bad stage-game equilibrium.

(E) If player i is left with no chip, she goes on suspension. This means that for the
following M periods (where M is defined later), the players report their types
truthfully and play the action profile that is most preferred by i’s opponent. Af-
ter the M periods, player i comes back from suspension, which means that she
obtains one chip from the opponent.5�6

Theorem 2. In any two-player repeated game in which the players’ types are i.i.d. and
the stage game satisfies Assumptions I–III, the efficient payoff can be arbitrarily closely
approximated by chip-strategy strict equilibria when the discount factor δ is sufficiently
close to 1.

4The symbol 1{} denotes the characteristic function of the set {}. That is, αi
ksi1{si>0} = αi

ksi when si > 0
and αi

ksi1{si>0} = 0 when si ≤ 0; similarly, −φi
ksi1{si≤0} = −φi

ksi when si ≤ 0 and −φi
ksi1{si≤0} = 0 when si > 0.

5It is worth pointing out that truthful reporting is incentive compatible for players on suspension, since
their reports have no effect on the action profiles that are most preferred by their opponents (by the as-
sumption that each player’s payoffs are independent of the other players types).

6The suspension enlarges the number of states, since at k = 0 or k = 2n, the strategies depend on the
time spent in suspension. For the sake of brevity, we postpone the discussion of additional suspension
states to Section 5.2.
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The intuition behind our construction and this result is as follows. At the beginning
of each period, the transition probabilities between various states are exogenously spec-
ified, independently of the players’ reports. (In the particular case of our strategies, the
probability of transiting to each “neighbor” state is 1/3, as is the probability of remaining
in the current state.) These ex ante probabilities must have the property that the long-
run occupation probabilities of the extreme states, in which one of the players goes on
suspension, are negligible. This guarantees the approximate efficiency of our strategies.

These initially specified transition probabilities are then adjusted contingent on
players’ reports. By imposing a positive externality on the opponent’s flow payoff, a
player increases her chance of obtaining a chip, and by imposing a negative external-
ity on the opponent’s flow payoff, she increases her chance of giving away a chip. As-
sumption II implies that players prefer having more chips to having fewer chips. More
specifically, the adjusted probabilities are specified to imitate the AGV transfers, which
guarantees that the players have incentives to maximize the aggregate payoff.

It is possible to find alternative chip strategies that achieve efficiency and induce
truth-telling. The adjustment terms in condition (C3) can be changed, making the prob-
ability with which a player obtains an additional chip or gives a chip to the opponent
different from 1/3. As we go through our analysis, we indicate two properties of α and φ

that are required for our construction (Properties 1 and 2). Similarly, Properties 3 and 4
indicate the required properties of the adjustment terms.

5. Analysis

5.1 Value functions

For two-player games, we adopt a slightly simpler notation. Namely, let vi denote the
(expected) stage-game payoff of player i when she is on suspension (i.e., vi = viR for R =
{1�2}−{i}), let wi

j denote the stage-game payoff of player i when player j is on suspension

(i.e., wi
j = wi

R for R = {1�2} − {j}), and let wi denote the stage-game payoff of player i

when both players are active (i.e., wi =w{1�2}).
Denote by V i

k the continuation payoff of player i in the state in which she has ki = k

chips. These payoffs are computed assuming that players play the prescribed strategies
and at the ex ante stage when players have not yet learned their current types. We often
call V i

ks value functions.
The coefficients αi

k and φi
k sometimes are called probabilities of control, since they

determine the chance that player i’s report affects the state in the following period. They
are defined in such a way that the following equations are satisfied:

αi
ksi(1 − ε)

[
V i
k+1 − V i

k

] = siε

for si > 0 and

φi
k(−si)(1 − ε)

[
V i
k−1 − V i

k

] = siε

for si ≤ 0.7

7The value of V i
k does not depend on the coefficients αi

k and φi
k, and will be determined beforehand.
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Property 1. This choice of αi
k and φi

k gives player i the incentives to maximize the
sum of the stage-game payoffs of both players in exactly the same way that transfers do
in Section 3.

Indeed, by (C1) and (C2) of the definition of strategies, player i’s report affects her
continuation payoff at the beginning of the following period through the left-hand sides
of the equations that define αi

k and φi
k. The right-hand sides of those equations are

equal to the sum of stage-game payoffs across all players other than i, which, together
with the effect of player i’s report on her own stage-game payoff, yields the desired in-
centives to maximize the sum of the stage-game payoffs of all players.

Of course, αi
k and φi

k may not necessarily imitate the d’Aspremont and Gérard-Varet
transfers exactly. Since by Assumption I, a unilateral misreport induces an inefficient
choice of the action profile, players have strict incentives to report truthfully under the
d’Aspremont and Gérard-Varet transfers.

Property 2. It is sufficient to imitate the d’Aspremont and Gérard-Varet transfers only
approximately, as long as players prefer reporting their types truthfully to reporting
other types.

In general, however, players may have many type profiles that induce payoffs close
to the payoffs induced by truthful reports, and then αi

k and φi
k must be chosen very close

to those that exactly imitate the d’Aspremont and Gérard-Varet transfers.
By dividing the equations for αi

k and φi
k by si, we obtain

αi
k(1 − ε)

[
V i
k+1 − V i

k

] = ε and φi
k(1 − ε)

[
V i
k − V i

k−1
] = ε� (1)

Given the prescribed strategies, value V i
k for k= 1�2� � � � �2n−1 satisfies the recursive

equation

V i
k = εwi + (1 − ε)

1
3
V i
k−1 + (1 − ε)

1
3
V i
k + (1 − ε)

1
3
V i
k+1� (2)

Indeed, player i’s current stage-game payoff is wi. By (C1) of the definition of strate-
gies, player i gives the opponent a chip with probability −siφ

i
k when si ≤ 0, in expecta-

tion, this yields φi
kpi. By (C2) of the definition, player i gives the opponent a chip with

probability sjα
j
2n−k when sj > 0; in expectation, this yields α

j
2n−kpj . Together with the

report-independent chance of giving the opponent a chip described in (C3), this yields
a probability of 1/3 for player i giving a chip; hence, the second term in the expression
for V i

k. In a similar manner, we compute the third term—the chance of staying in the
state with ki = k chips—and the fourth term—the chance of player i obtaining a chip
from the opponent.

For k= 0 (omitting terms of order smaller than ε),

V i
0 =Mεvi + (1 −Mε)V i

1 � (3)

and for k = 2n (again omitting terms of order smaller than ε),

V i
2n =Mεwi

j + (1 −Mε)V i
2n−1� (4)
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5.2 Efficiency

In this section, we show that the strategies described above approximate the efficient
outcome. The strategies induce a stochastic Markov chain over states k = 2n + M −
1� � � � �2n�2n−1� � � � �1�0� � � � �−M+1. States 2n+M−1� � � � �2n correspond to the periods
in which player 2 is on suspension; states 0� � � � �−M + 1 correspond to the periods in
which player 1 is on suspension; states 1� � � � �2n− 1 correspond to the periods in which
neither player is on suspension, and they indicate the number of chips held by player 1.
By the ergodic theorem (see, for example, Chapter 1, Section 12, Theorem 1 in Shiryaev
1996), there exists a probability distribution πk over states {k= 2n+M − 1� � � � �−M + 1}
such that the probability of being in state k after a sufficiently large number of periods is
arbitrarily close to πk, independent of the initial state. This probability distribution πk

is an eigenvector of the transition matrix

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1
· ·

· 1

0 0

1/3 0
1 · · 0

0 · · 0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1/3 1/3 0 · · · ·
1/3 1/3 1/3 · ·
0 1/3 1/3 · · ·
· · · · · · ·
· · · 1/3 1/3 0
· · 1/3 1/3 1/3
· · · · 0 1/3 1/3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

0 · · 1
0 1/3

0 0

0
1 ·

· ·
1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

that corresponds to eigenvalue 1, where the entry in row l and column m is the proba-
bility of transiting from state m to state l. It is easy to verify that the eigenvector corre-
sponding to eigenvalue 1 must have

πk = 3
2M + 3(2n− 1)

for k= 1� � � � �2n− 1, and

πk = 1
2M + 3(2n− 1)

for k= 2n+M − 1� � � � �2n and k= 0� � � � �−M + 1.
Since the expected payoff vector in any state k ∈ {1� � � � �2n− 1} is efficient, it follows

that when δ is sufficiently close to 1, the player’s payoff vector is efficient with probability
arbitrarily close to

3(2n− 1)
2M + 3(2n− 1)

�
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which is the sum of the ergodic occupation probabilities of states k= 1� � � � �2n− 1. This
probability converges to 1 when n converges to ∞ faster than M does.

Notice that the efficient outcome can be approximated only when the transition
probabilities are such that the following condition holds.

Property 3. The ergodic occupation probabilities of states 2n and 0 converge to 0.

5.3 Probabilities of control, incentives

The probabilities of control, αi
k and φi

k, are defined by the equations in (1), where the
value functions are determined recursively by (2)–(4). Notice that the value functions
determined by these equations may not be the actual value functions in the repeated
game, since we omitted terms of order smaller than ε in (3) and (4). In particular, the
probabilities of control imitate the d’Aspremont and Gérard-Varet transfers only in ap-
proximation. Nevertheless, due to Assumption I, players are induced to report truth-
fully for sufficiently small values of ε, since they would have strict incentives under the
d’Aspremont and Gérard-Varet transfers. Note that the issue of providing incentives
concerns only deterring on equilibrium path deviations, that is, that players have incen-
tives to report truthfully. “Off-path deviations” are deterred by the threat of switching to
the bad equilibrium.

All that remains to be shown is that the coefficients αi
k and φi

k are positive but small.
This is achieved by considering the value of having one more chip,

�i
k := V i

k+1 − V i
k

for k = 2n − 1�2n − 2� � � � �0, and proving that all �i
ks are much larger than ε when M is

sufficiently large.
By (2),

�i
k = (1 − ε)

1
3
�i
k+1 + (1 − ε)

1
3
�i
k + (1 − ε)

1
3
�i
k−1

for k= 2n− 2� � � � �1, and by (3) and (4),

�i
2n−1 =Mεwi

j −Mεwi

and

�i
0 =Mεwi −Mεvi�

where we use the fact that V i
2n−1 and V i

1 converge to wi as ε converges to 0.
For ε = 0, this system of equations is satisfied by all �s that are equal to 0. By the

implicit function theorem, �s are differentiable functions of ε. By taking the derivatives
of the equations for �s with respect to ε, and plugging in 0 for ε and all �s, we obtain a
system of equations for the derivatives of �s at ε = 0. This implies that if we replace each
�i
k by its derivative ∂�i

k/∂ε at ε = 0, then our system of equations must be satisfied for
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ε = 0, and for the free terms Mεwi
j −Mεwi and Mεwi −Mεvi replaced with Mwi

j −Mwi

and Mwi − Mvi, respectively. In matrix notation, this new system of linear equations

can be expressed as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · ·
−1/3 2/3 −1/3 · ·

0 −1/3 2/3 −1/3 · ·
· · · · · · ·
· · ·
· · −1/3 2/3 −1/3
· · · · 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂�i
2n−1/∂ε

∂�i
2n−2/∂ε

·
·
·

∂�i
0/∂ε

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Mwi
j −Mwi

0
·
·
·
0

Mwi −Mvi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

By using the Gauss–Jordan elimination method, we reduce the system to

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · ·
0 2/3 −1/3 · ·
0 0 1/2 −1/3 · ·
0 0 0 4/9 −1/3 · ·
· · ·
· · 0 (2n− 1)/3(2n− 2) −1/3
· · · · 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂�i
2n−1/∂ε

∂�i
2n−2/∂ε

·
·
·

∂�i
0/∂ε

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M
(
wi
j −wi

)
M

(
wi
j −wi

)
/3

M
(
wi
j −wi

)
/6

M
(
wi
j −wi

)
/9

·
M

(
wi
j −wi

)
/3(2n− 2)

M
(
wi − vi

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

Let u be the smaller of the two numbers wi
j −wi and wi − vi; both of these numbers are

positive by Assumption II. This implies by recursion (beginning from k = 0) that

∂�i
k/∂ε ≥Mu/2

for all k. This implies, in turn, that �i
k is larger than Muε/4 for all k when ε is sufficiently

small.

Notice that players can be provided incentives to maximize the total payoff only

when the transition probabilities are such that the following statement holds.

Property 4. The value of having one more chip is high enough compared to ε.
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6. Efficient chip strategies for two players with Markov types

In this section, we generalize the result from the previous section to players’ types being
independently distributed across players but evolving over time according to homoge-
neous, aperiodic irreducible Markov chains. We denote the limiting (ergodic) distribu-
tion of type profiles by η; that is, independently of the initial type profile, the distribution
of type profiles at time t converges to η (at an exponential rate) as t → ∞.

To construct the efficient chip strategies for players with Markov types, we modify
the chip strategies constructed in the i.i.d. case for players’ types being distributed ac-
cording to η. Recall the intuition from the i.i.d. case. The transition probabilities (that
is, the probabilities of chip transfers between players) were first defined independently
of players’ reports and then adjusted contingent on players’ reports to make players in-
ternalize the externality they impose on the opponents’ flow payoffs.

In the Markov case, players’ expected stage-game payoffs depend on the reports
from the previous period. Thus, to align the players’ individual incentives with the ob-
jective of maximizing the total payoff of the two players, the transition probabilities must
be adjusted contingent on the reports from the previous period. This causes players’
current reports to have an effect on the strategies and payoffs in the following period,
and by iterating this argument, in any number of future periods.

However, this effect vanishes at an exponential rate. When δ is close to 1, the tran-
sition probabilities can still be adjusted to make players internalize the effect of their
reports on other players’ payoffs for any given number of future periods. The effects in
more remote periods have, however, negligible impact on the current incentives. Notice
that strict incentives of each player to report truthfully, guaranteed by Assumption I, are
essential for this argument: if a(θR) = a(θ′

R) for two profiles θR and θ′
R that differ only

by the type of player i, then player i could be given incentives to misreport her type even
by small differences in her payoff coming from remote periods.

Notice also that the transition probabilities cannot be adjusted to make players in-
ternalize the effect of their reports on other players’ payoffs in all future periods. The
adjustment in the transition probabilities for a finite number of periods is an expres-
sion of order O(ε), while if the effects in all periods were included, then the adjustment
would be an expression of order O(1).

In the Markovian case, we retain Assumptions I–III and we use the notations viR and
wi
R for the payoffs as defined for players’ types being i.i.d. according to the limiting

distribution η. However, we modify Assumption III as follows.

Assumption III′ (In the Markov case). The repeated game has an equilibrium in which
the payoff of every player i is less than wi

R for R = {1� � � � � I}.

When types are Markov, we no longer have a repeated-game equilibrium, which
would be a repetition of the stage-game strategies. This problem is pointed out in ear-
lier papers (see, for example, Athey and Bagwell 2008 and Escobar and Toikka 2013).
Thus, we need to assume the existence of a bad equilibrium in the repeated game. It
is relatively easy to explicitly construct bad repeated-game equilibria in many concrete
settings (such equilibria, called worst carrot-and-stick equilibria, are constructed for the
repeated version of Spulber’s oligopoly by Athey and Bagwell 2008).
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6.1 Modified strategies

Assumptions I–III allow for construction of chip-strategy equilibria in the case when
players’ types are i.i.d. according to η. As before, we use the notation wi, vi, and wi

j for
the expected stage-game payoffs of player i when players’ types are distributed accord-
ing to η and when no player, player i, or player j, respectively, is on suspension. Further,
we denote by V i

k the value functions in this i.i.d. case, and denote by αi
k and φi

k the
probabilities of control. We now adapt these strategies to the Markovian case.

First, we make a more specific assumption about the values of M and n: we no longer
merely require M to tend to infinity more slowly than n; we also require n/M to tend to
infinity more slowly than M . For concreteness, assume that n tends to ∞ at the same
rate as M3/2:

M3/2 ∼ n� (5)

We keep the same probabilities of control, αi
k and φi

k, as in the case with i.i.d. types
distributed according to η. The only change we make in the construction of strategies
is that we define si and pi differently. To define them, we need to estimate the effect of
player i’s current report on player j’s flow payoff over the next T periods, where T is large
enough that any dependence of j’s flow payoff on i’s report can essentially be neglected
after those T periods. The variable si is defined as the change in the aforementioned
effect from its expected value.

The expected payoff of player j over the next T periods depends on j’s previous type
θ−1
j , which coincides with j’s previous report and i’s current report θi. This payoff is

evaluated when j’s current type is still unknown. Denote this payoff by

Bi
k�T

(
θ−1
j � θi

) =
T∑
t=0

(1 − ε)tE
[
u+t
j | θi� θ−1

j

]
�

where u+t
j is j’s payoff in t periods after the current one.8 We take the value of T to

be large enough that the effect of i’s report on j’s payoff after T periods depends only
marginally on θi.

Claim 1. For any � > 0 and any types θ′
i, θ

′′
i , and θ−1

j , there exists a number T such that
for any t > T , we have

∣∣E[
u+t
j | θ′

i� θ
−1
j

] −E
[
u+t
j | θ′′

i � θ
−1
j

]∣∣<��

If players never went on suspension, this claim would follow directly from the con-
vergence of a Markov chain to its limiting distribution η. Since players may go on sus-
pension, with probability depending on their reports, the value of u+t

j may be affected
not only by the expectation of the actions that are going to be played, but also by the

8The formula for Bi
k�T (θ

−1
j � θi) includes the possibility that players can be on suspension within the next

T periods. Thus, Bi
k�T (θ

−1
j � θi) and sik(θ

−1� θi) depend on the number of chips k currently held by player i,
in contrast to the case when players had i.i.d. types.
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probability of going on suspension. However, the probability of a player’s report af-
fecting the possibility of going on suspension in a remote period is of O(1/M) and is,
therefore, negligible if M is sufficiently large.

We can now define T as the number that satisfies Claim 1 for any � less than the
difference in the total payoff,

[
u1

(
θ1� a(θ)

) + u2
(
θ2� a(θ)

)] − [
u1(θ1� a)+ u2(θ2� a)

]

for all profiles θ = (θ1� θ2) and all actions a = a(θ′) for θ′ �= θ. By Assumption I, this
difference is positive.

We define sik(θ
−1� θi) as the difference between Bi

k�T (θ
−1
j � θi) and its expectation,

which is estimated based on i’s report θ−1
i in the previous period:9

sik
(
θ−1� θi

) = Bi
k�T

(
θ−1
j � θi

) −Eθi

[
Bi
k�T

(
θ−1
j � θi

) | θ−1
i

]
�

We omit T in the notation for sik. The variable pi is defined as in the i.i.d. case:

pi
k

(
θ−1) = Pr

{
sik

(
θ−1� θi

)
> 0

} ·Eθi

[
sik

(
θ−1� θi

) | sik
(
θ−1� θi

)
> 0

]
�

6.2 Efficiency and incentives

In this section, we show that the “Markovian” chip strategies approximate efficient out-
comes and are incentive compatible.

Theorem 3. In any two-player repeated game in which the players’ types are Markov and
the stage game satisfies Assumptions I, II, III′, the efficient payoff can be arbitrarily closely
approximated by chip-strategy strict equilibria when the discount factor δ is sufficiently
close to 1.

The transition probabilities between various chip structures in the chip strategies
are the same as in the i.i.d. case. Thus, the ergodic distribution over chip structures is
also the same as in the i.i.d. case, and the probability of being in an inefficient state, that
is, of some player being on suspension, vanishes as n → ∞.10 Therefore, players’ payoffs
are approximately efficient.

To check that players have incentives to report truthfully, we show that the value of
having one more chip in the Markovian case is very close to the corresponding value in
the i.i.d. case when types are distributed according to η. Then we conclude that the
effect of player i’s report on her payoff is very close to that in the d’Aspremont–Gérard-
Varet mechanism.

9When player x ∈ {i� j} is returning from suspension, we use type θ−M
x that was reported M periods ago,

just before the suspension. For the other player −x, we use type θ−1−x that was reported in the previous
period.

10In the Markovian case, the state is characterized not only by the number of chips each player has, but
also by the type profile θ−1 in the previous period, since the transition probabilities depend on this type
profile.
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If players report truthfully, the value function of player i, estimated at the beginning
of the period, depends on the state, i.e., the number k of chips she holds, and on the
previous type profile θ−1. Thus, the value function is denoted by V i

k�θ−1 .11 We first claim

that the continuation payoff of player i with k chips depends only in a limited way on
the previous type profile θ−1.

Claim 2. For any k and two type profiles in the previous period, θ−1 = θ and θ−1 = θ′,
there is a constant C > 0, independent of ε, M , and n, such that |V i

k�θ − V i
k�θ′ |<Cε.

This claim follows from two facts concerning the prescribed strategies: (a) for any
two current type profiles θ−1 = θ and θ−1 = θ′, the probability that the type profiles t pe-
riods from now coincide tends to 1 at an exponential rate, independent of the discount
factor; (b) for any current number of chips k, the probability of player i having one less
(more) chip in the following period (in M periods from now, when k = 0 or 2n) is inde-
pendent of the previous type profile. More precisely, the probability of having one less
(more) chip is 1/3 (1/3) if 1 ≤ k ≤ 2n− 1, and is 0 (1) and 1 (0) when k = 0 or 2n, respec-
tively). This probability depends on the current type profile when 1 ≤ k ≤ 2n − 1, but
in the expectation over all current type profiles, and contingent on any previous type
profile, is equal to 1/3.

Let

V̄ i
k =

∑
θ−1

η
(
θ−1)V i

k�θ−1

be the expected value of player i with k chips, where the expectations are taken with
respect to the limiting distribution η over θ−1. Then the recursive equation for V̄ i

k for
1 ≤ k≤ 2n− 1 is

V̄ i
k = εwi + (1 − ε)

1
3
V̄ i
k−1 + (1 − ε)

1
3
V̄ i
k+1 + (1 − ε)

1
3
V̄ i
k + εXk� (6)

where Xk is an expression of O(1/M). Indeed, if the number of chips held by player i

in the next period were independent of the current type profile θ, then (6) would not
even have the term εXk. However, there is a correlation between the number of chips
that player i will have in the next period and the current type profile θ. This correlation
introduces terms of V i

k�θ − V i
k�θ′ to expression (6) (compared to the case with i.i.d. types)

that are multiplied by some coefficients. By Claim 2, each term V i
k�θ−V i

k�θ′ is of order Cε,
and its multiplying coefficient depends on the probability of players’ reports affecting
the state, which is of O(1/M). Hence, term Xk in expression (6) is of O(1/M).

Therefore, the recursive equation for V̄ i
k for 1 ≤ k ≤ 2n − 1 differs from its i.i.d. ana-

logue, with types distributed according to η, by the term εXk. Moreover, the expression
for V̄ i

k coincides with that in the i.i.d. case for k= 0�2n, since the transitions in the states
with k = 0�2n are independent of types.

11When player x ∈ {i� j} is returning from suspension, the value function depends on θ−M
x (the type pro-

file player x had M periods ago, just before the suspension) and it depends on θ−1−x.
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We now estimate player i’s average future benefit from having one more chip,

�̄i
k := V̄ i

k+1 − V̄ i
k�

and show that this term is of O(Mε). As in the i.i.d. case, we evaluate the derivative of
�̄i
k with respect to ε by the implicit function theorem, which yields the system of linear

equations

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · ·
−1/3 2/3 −1/3 · ·

0 −1/3 2/3 −1/3 · ·
· · · · · · ·
· · ·
· · −1/3 2/3 −1/3
· · · · 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂�̄i
2n−1/∂ε

∂�̄i
2n−2/∂ε

·
·
·

∂�̄i
0/∂ε

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Mwi
j −Mwi

X2n−1 −X2n−2

X2n−2 −X2n−3

·
·

X2 −X1

Mwi −Mvi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

The solution to the system is obtained by Gauss–Jordan elimination method. The dif-
ference between this system and that for the i.i.d. case comes from the presence of the
expressions Xk, which are of O(1/M). Thus, the difference between the solutions in the
Markov case and those in the i.i.d. case,

∂�i
k/∂ε− ∂�̄i

k/∂ε�

is of O(n/M). Since we assumed that n ∼ M3/2 (see (5)), the difference ∂�i
k/∂ε− ∂�̄i

k/∂ε

is of O(M1/2).
Since terms V i

k�θ − V i
k�θ′ are of order ε, so are terms V i

k�θ − V̄ i
k, and terms �i

k − �̄i
k are

of εO(M1/2). Thus, by (1) and the fact that terms αi
k and φi

k are of O(1/M), we have that
for any k, θ,

αi
k(1 − ε)

[
V i
k+1�θ − V i

k�θ

] = ε
(
1 +O

(
1/M1/2))�

φi
k(1 − ε)

[
V i
k�θ − V i

k−1�θ
] = ε

(
1 +O

(
1/M1/2))�

It follows from these formulas that any change dsik(θ
−1� θi) in the value of sik(θ

−1� θi)

affects i’s continuation payoff by ε(1 + O(1/M1/2))dsik(θ
−1� θi), while in the i.i.d. case,

any change dsi in the value of si affects i’s continuation payoff by εdsi.
To check players’ incentives to report truthfully, we must examine the effect of each

player i’s current report θ̂′
i on her continuation payoff. By referring to the one-stage

deviation principle, we can assume that player i always reports truthfully starting from
the next period. By inspecting the prescribed strategies, we see that player i’s current
report θ̂′

i affects the current flow payoff, the value of sik(θ
−1� θ̂′

i) in the current period,

and the value of si
k+1(θ̂

′� θ+1
i ) in the next period, where θ̂′ is the type profile reported in

the current period.12 The former value is affected through the value of Bi
k�T (θ

−1
j � θ̂′

i), and

the latter value is affected through the value of E
θ+1
i

[Bi
k+1�T

(θj� θ
+1
i ) | θ̂′

i].
12In the next period, the number of chips held by player i may differ from k. We denote that number by

k+1.
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In total, the effect of player i’s report θ̂′
i on her continuation payoff is

Bi
k�T

(
θ−1
j � θ̂′

i

)(
ε+O

(
ε/M1/2)) − (1 − ε)EθjEθ+1

i

[
Bi
k+1�T

(
θj�θ

+1
i

) | θ̂′
i� θ

−1
j

](
ε+O

(
ε/M1/2))

= ε
[
Bi
k�T

(
θ−1
j � θ̂′

i

) − (1 − ε)EθjEθ+1
i

[
Bi
k+1�T

(
θj�θ

+1
i

) | θ̂′
i� θ

−1
j

]] +O
(
ε/M1/2)�

The term O(ε/M1/2) does not affect incentives and, hence, can be omitted. Recalling
the definition of Bi

k�T (θ
−1
j � θ̂′

i), we obtain

Bi
k�T

(
θ−1
j � θ̂′

i

) − (1 − ε)EθjEθ+1
i

[
Bi
k+1�T

(
θj�θ

+1
i

) | θ̂′
i� θ

−1
j

]

=
T∑
t=0

(1 − ε)tE
[
u+t
j | θ̂′

i� θ
−1
j

] − (1 − ε)

T∑
t=0

(1 − ε)tE
[
u+t+1
j | θ̂′

i� θ
−1
j

]

=E
[
uj | θ̂′

i� θ
−1
j

] − (1 − ε)T+1E
[
u+T+1
j | θ̂′

i� θ
−1
j

]
�

(7)

The first term in (7) is equal to

Eθj

[
uj

(
θj�a

(
θ̂′
i� θj

)) | θ̂′
i� θ

−1
j

]
�

and together with the effect of player i’s report on her current flow payoff, it gives her
incentives to maximize the total payoff. The second term in (7) depends on θ̂′

i up to
some value less than � and, therefore, is inessential to player i’s incentives.

7. Efficient chip strategies for games with any number of players

We modify the chip strategies constructed previously for two-player games to accom-
modate games with any number of players. Under some assumptions on the stage
game, the modified chip strategies also constitute an (approximately) efficient equilib-
rium. The chip strategies in games with more than two players prescribe several stages.
In each stage, there is a nonempty subset R ⊂ I of active players, and the total payoff
of set R is maximized. Over time, some players may become active and other players
may have to leave set R by going on suspension. As a result, the stage of the game may
change. At the beginning, all the players are active.

In this section, we describe chip strategies only in the stage in which all players are
active; we postpone describing strategies in other stages (in which some players are on
suspension) to Section 7.1. We modify the strategies from Section 4 as follows.

Before the game begins, every player is given n chips. Then one player is selected
at random and has a chip taken away (the chip is shared equally by the remaining I − 1
players). In each period, players exchange chips, and given that all players are still active
(i.e., no player goes on suspension), exactly one player will have fewer than n chips.
All her missing chips are always shared equally among the other (active) players. If it
happens at the end of some period that each player has exactly n chips, then a player is
selected randomly from the set of all players in an equal-chance lottery, and one chip is
taken away from the selected player.

We denote the state in which player i has 0 <k< n chips by �i
k. We modify (C1)–(C3)

in the definition of the chip strategies from Section 4 as follows:
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(K1) In state �i
k, player i obtains a chip from the opponents (a fraction of 1/(I − 1)

from each opponent) with probability αi
ksi1{si>0}, and player i gives the op-

ponents a chip (a fraction of 1/(I − 1) to each opponent) with probability
−φi

ksi1{si≤0}, where αi
k and φi

k are defined as in the two-player case.

(K2) In state �i
k, player i obtains a chip from the opponents with probability

−∑
j �=i φ

j
i�ksj1{sj≤0}, and player i gives the opponents a chip with probability∑

j �=i α
j
i�ksj1{sj>0}, where α

j
i�k and φ

j
i�k will be defined shortly.

(K3) In state �i
k, player i gives the opponents a chip with probability

1
3

−φi
kpi −

∑
j �=i

α
j
i�kpj�

independent of the messages sent in the current period, and player i obtains
from the opponents a chip with probability

1
3

− αi
kpi −

∑
j �=i

φ
j
i�kpj�

independent of the messages sent in the current period.

Part (D) is as in Section 4, and part (E) is discussed in the next section.
Intuitively, a player with fewer than n chips is provided incentives to maximize the

total payoff by a higher chance of obtaining a chip versus having a chip taken away, as
in the two-player case. In turn, players with more than n chips are provided incentives
(player by player) by a higher chance that the player with fewer than n chips will have
one more chip taken away (versus the chance that she will obtain a chip back).

The coefficients αi
k and φi

k for 0 < k < n, and the coefficients α
j
i�k and φ

j
i�k for j �= i

and 0 <k< n are defined in such a way that satisfies (1) and the equations

α
j
i�k(1 − ε)

[
W

j
i�k −W

j
i�k+1

] = ε and φ
j
i�k(1 − ε)

[
W

j
i�k−1 −W

j
i�k

] = ε�

where W
j
i�k stands for the continuation payoff of player j in state �i

k. These two last

equations guarantee that in state �i
k, player j maximizes the total (across all players)

stage-game payoff. As in Section 4, the V s and the W s are determined by recursive ex-
pressions: (2)–(4) for the V s, the corresponding equations for the W s, and the equation

W i
j�n = V i

n = 1
I

[
V i
n−1 +

∑
j �=i

W i
j�n−1

]
�

This last equation must hold because our strategies prescribe that when each player has
exactly n chips, a player is selected randomly from the set of all players in an equal-
chance lottery, and a chip is taken away from the selected player.

These chip strategies are approximately efficient when n is sufficiently large, but the
incentive constraints are satisfied only under the following additional assumption.
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Assumption IV. For any i� j ∈ {1� � � � � I} and any R such that i� j ∈R,

1
|R|

( ∑
R�l �=i

wi
R−{l} + viR−{i}

)
<wi

R−{j}�

The assumption says that any player i prefers the suspension of any player j other
than herself to the suspension of a randomly chosen player (including herself). Assump-
tion IV is satisfied in many applications, including all anonymous stage games. However,
Assumption IV is strong. In particular, it implies that the payoff of any player i when
some player l �= i is on suspension cannot be much larger than player i’s payoff when
another player j �= i� l is on suspension. The assumption seems necessary for the mod-
ified construction. Intuitively, if player j is currently holding fewer than n chips, then
player i must be willing to sacrifice some flow payoff to increase the chance that one
more chip is taken away from player j as opposed to the chance that player j will obtain
one chip back. The former event increases the chance that player j goes on suspension,
and the latter event increases the chance that some random player (including player i)
goes on suspension. This is exactly what is guaranteed by Assumption IV.

Theorem 4. If the players’ types are i.i.d. (or more generally Markov) and the stage game
satisfies Assumptions I–IV (Assumptions I, II, III′, IV in the Markov case), then the efficient
payoff can be approximated by chip-strategy strict equilibria when the discount factor δ
approaches 1.

Of course, we still need to specify the strategies at histories in which some players
are on suspension. Such histories, except those in which only one player is active, are
specific for the games with more than two players. We discuss “the play on suspension”
in the following section. Once the strategies at histories in which some players are on
suspension are specified, it will become clear that the proof of Theorem 4 closely mimics
the proofs of Theorems 2 and 3, so we omit the details of this proof.

Remark 1. Of course, there are many other ways to define transitions between various
states. They need to have only Properties 1–4 in Section 5. Perhaps some alternative
transitions would allow us to prove Theorem 4 under a different set of assumptions or
even under a somewhat relaxed version of Assumption IV. We have not explored all of
the alternatives. We conjecture, however, that it would be necessary to assume a bound
on the payoffs of a player i when the opponent j is suspended by a function of player i’s
payoff when the opponent l is suspended.

7.1 Play on suspension

To complete the analysis, we need to specify the play at stages when some players are
on suspension. First, notice that our analysis of the two-player case is valid if we assume
that players go on suspension not for a deterministic number of periods, M , but for a
random number of periods. That is, in every period, a player on suspension is allowed
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to come back and become active with probability μ, such that the expected length of
suspension is

M =
∞∑
t=1

tμ(1 −μ)t−1 = 1
μ
�

We define the repeated-game strategies as follows.
For each number J < I of active players, denote the values n[J] and M[J] as the num-

ber of chips per player and the expected length of suspension at any stage with J active
players. If all the players are active, we have n[I] = n and M[I] = M .

Recall that �i
k denotes the state in which all players are active and i is the player

with k< n chips. Once player i1 goes on suspension, the play moves to state �
i1�i
n[I−1]−1 in

which player i, who is randomly chosen from the players other than i1, gives away one
chip. In states �i1�i

k with 0 <k< n[I − 1], players maximize the total payoff of the players
other than i1, and the transitions between states are defined as in the repeated game in
which there are I−1 players and they are all active. In any state �

i1�i
k , player i1 can return

from suspension, in which case the play moves to state �
i1
1 , that is, one chip is returned

to player i1 (so she holds one chip). What happened in states �i1�i
k becomes irrelevant: If

player i1 goes on suspension again, then the play moves to state �
i1�i
n[I−1]−1 for the player

i who is randomly selected from the players other than i1.
If player i1 is on suspension and the game reaches the stage in which another player

i2 goes on suspension (for an expected length of M[I−1] periods), a player i is randomly
selected from the players other than i1 and i2, and the play moves to state �

i1�i2�i
n[I−2]−1. In

state �
i1�i2�i
n[I−2]−1, the players maximize the total payoff of the active players, that is, all

players but i1 and i2, and the transitions between states are defined as in the repeated
game in which there are I − 2 players and they are all active. In each period, either of
players i1 or i2 may return from suspension. We impose the following condition: If a
player returns from suspension, all the players who went on suspension after her return
to the game as well. That is, if player i1 returns, then player i2 returns to the game as
well, and the play moves to state �

i1
1 . One chip is returned to player i1, and whatever

happened after the period in which i1 went on suspension becomes irrelevant. If player
i2 returns from suspension before player i1, then the play moves to state �

i1�i2
1 . That is,

one chip is returned to player i2, and whatever happened after the time that player i2
went on suspension becomes irrelevant.

More generally, for any sequence of players i1� i2� � � � � il on suspension, the total pay-
off of the active players is maximized in states �

i1�i2�����il�i
k with 0 < k < n[I − l], and the

transitions between states are defined as in the repeated game in which there are I − l

players and they are all active.13 If an active player il+1 goes on suspension, the play

moves to state �
i1�i2�����il�il+1�i
n[I−l−1]−1 in which a randomly selected player i �= i1� i2� � � � � il� il+1

begins with n[I − l − 1] − 1 chips. If player im, m = 1� � � � � l, returns from suspension,
then the players im+1� � � � � il return as well, and the play moves to state �

i1�i2�����im
1 .

13In particular, if player i is the only active player, then players take the actions that maximize i’s payoff,
given i’s reported type.
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We now present a concrete example of chip strategies in a game with three players.
The outcome implemented by these strategies is inefficient. The purpose of this exam-
ple is rather to exhibit the simplest possible strategies representing our construction. In
particular, the length of suspension periods will be deterministic and the rules govern-
ing the chip transition will also be deterministic, contingent on the choice of the player
whose report determines the chip transition.

Example. Consider the following model of favor exchange. In each period, each player
can provide a favor to the two other players, whose benefit from receiving the favor is
1 per player. The cost to the provider is i.i.d., taking values 2 + ϑ or ϑ with a fifty–fifty
chance. If ϑ< 2, the efficient action of each player is to provide the favor only if the cost
is equal to ϑ, and if ϑ> 0, no player ever has an incentive to provide a favor in the stage
game.

Consider now the following chip strategies. Each player begins with n = n[3] = 2
chips and each player is initially active. Then one player is selected at random, and a
chip is taken away. Next, players truthfully announce their costs and play the efficient
actions. After that, one of them is selected randomly. If this is the player with one chip
and she reported the cost of ϑ, she obtains a second chip; if she reported the cost of
2 +ϑ, her only chip is taken away and she goes on suspension. If this is the player with
more than one chip and she reported the cost of 2 +ϑ, the player with one chip obtains
a second chip; if she reported the cost of ϑ, the player with one chip has her only chip
taken away and she goes on suspension.

The suspension of any player lasts M[3] = 1 period, in which each active player has
n[2] = 1 chip. In this state, one of the two active players is selected at random and her
chip is taken away. This means that the selected player goes on immediate suspension.
The suspension lasts M[2] = 1 period. In other words, when one of the three players
goes on suspension because of losing both chips, another player (selected randomly)
also goes on suspension as well. After one period of suspension both players return and
the game is continued with the player who went on suspension first having one chip.
Players on suspension provide favors, independently of their costs, while the only active
player provides no favors, also independently of the cost being equal to 2 +ϑ or ϑ.

In this game, wi
R = 1 − 0�5ϑ when |R| = 2 and i ∈ R, and viR = −ϑ when |R| = 2 and

i /∈ R. That is, the expected flow payoff of a player who is not on suspension is 1 − 0�5ϑ,
and it is only −ϑ for the player on suspension. By symmetry of payoffs and strategies,
W

j
i�k,the continuation payoff of player j �= i when player i has k = 0�1�2 chips, is the

same for all i and j, and is denoted by Wk; similarly, V i
k, the continuation payoff of player

i when player i has k = 0�1�2 chips, is the same for all i and is denoted by Vk. Both W0
and V0 refer to the states such that |R| = 2. Notice that W2 = V2 and is denoted by U .

Then

W0 = (1 − δ) · (1 − 0�5ϑ)+ δW1�

W1 = (1 − δ) · (1 − 0�5ϑ)+ 1
2
δU + 1

2
δW0�

U = 1
3
V1 + 2

3
W1�
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V1 = (1 − δ) · (1 − 0�5ϑ)+ 1
2
δU + 1

2
δV0�

V0 = (1 − δ) · (−ϑ)+ δV1�

These equations determine Wks and Vks.
To show that the prescribed strategies constitute an equilibrium, we must check that

players have incentives to report their types truthfully when one of the players has one
chip. This means that

(1 − δ)ϑ ≤ 1
3
δ(U − V0) ≤ (1 − δ)(2 +ϑ)

for the player who has one chip, and that

(1 − δ)ϑ ≤ 1
3
δ(W0 −U) ≤ (1 − δ)(2 +ϑ)

for the opponents of that player. These inequalities are satisfied, for example, for δ = 0�9
and ϑ = 0�1. ♦

It seems useful to explain some relation between our equilibria and the equilibria
from some closely related papers. Our construction is in a way similar to the construc-
tions used in Fudenberg et al. (1994) (henceforth FLM), and Hörner et al. (2015) (hence-
forth HTV). In those papers, players always maximize a certain weighted average of their
payoffs. On the equilibrium paths of our equilibria, players maximize the total payoff of
a subset of players. So they maximize only specific weighted averages. In addition, the
weighted averages of players’ payoffs that are maximized in FLM and HTV keep actively
changing over time, while chip strategies use only some fixed set of weighted averages.
This feature allows for providing a more detailed description of players’ behavior com-
pared to these two other papers, since one only needs to know the set of active players
to prescribe actions (reports) for the current period.

The changes in weights are used in FLM and HTV to provide players incentives to
play the prescribed actions by using player-specific punishments. This requires assum-
ing that the set of stage-game payoff vectors is full dimensional. The corresponding
role is played in our setting by Assumption IV. Actually, Assumption IV together with
the existence of a bad equilibrium imply that the set of stage-game payoff vectors is full
dimensional. Similarly, Assumption IV is related to the nonempty interior assumption
in Escobar and Toikka (2013), although it is used in a slightly different way. Escobar
and Toikka use nonempty interior to impose player-specific punishments only off equi-
librium path. In chip strategies, the inefficient stages are used to deter players from
misreporting their types and occur on the equilibrium path.

It should be almost clear that we can prove Theorem 4 by analogous arguments to
those used to prove Theorems 2 and 3. Only some additional comments seem important
and necessary.

(i) From the perspective of a state with I − l active players, the probability of return-
ing to a state with a higher number of active players, that is, when one of the players
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i1� i2� � � � � il comes back from suspension, can be thought of as additional discount-
ing. This probability and, hence, the additional discounting, vanishes when the dis-
counting in the repeated game vanishes and when all expected lengths of suspension
M�M[I − 1]� � � � �M[I − l + 1] tend to infinity at an appropriate rate. More precisely, we

require that at any stage with x active players, the ratios n[x]
M[x] , M2[x]

n[x] , and M[x]
n[x−1] tend to

infinity. Under these conditions, we can use an inductive argument, working backward
with respect to the number of players on suspension, and show that the expected payoff
of every player i in every state in which all the players are active converges to the efficient
payoff wi.

(ii) Among any set of active I− l players, there is exactly one player i who holds fewer
chips than anyone else and is thus more likely to go on suspension. Our assumptions
guarantee that each of active I − l players assigns a positive value to having more chips.
More specifically, Assumption II guarantees that player i does not want to go on sus-
pension, and Assumption IV guarantees that any other active player j �= i prefers player
i to go on suspension to some random player (including player j) going on suspension.
These two assumptions enable us to find an appropriate probability in which a player’s
report affects the state such that the player has incentives to report truthfully. In addi-
tion, players have incentives for not deviating from the prescribed actions, because the
continuation payoff of each player, whether on suspension or not, is arbitrarily close
to an efficient payoff. Additionally, Assumption III in the i.i.d. case (Assumption III′ in
the Markov case) enables us to discipline players with the prospect of playing the bad
equilibrium.

(iii) Finally, we need to justify the recursive formulas for V i
n and W i

j�n for the game
in which all the players are active. For the two-player game, those formulas were ob-
tained under the assumption that when a player is on suspension, player i obtains the
stage-game payoff of vi or wi

j (depending on whether i or j �= i is on suspension) for M
consecutive periods. Note that this is true in approximation for any number of play-
ers, because the probability of any other player going on suspension when one player is
already on suspension tends to 0 when n → ∞.

8. Advantages of chip strategies

One advantage of chip strategies over other strategies used for similar purposes in the
existing literature (such as review strategies) is that players condition their actions on
only a simple statistics of the past play, especially when the number of players is small.
In the case of two players, for example, if the play is in the cooperation phase (i.e., no
player is on suspension), they condition only on the number of chips each player has,
and—when types are Markov—the type profile reported in the previous period. If a
player is on suspension, the players condition on the number of periods in which that
player has already been suspended.

In particular, chip strategies depend only minimally (and indirectly) on the space
of types and actions. Therefore, they seem particularly attractive in games with large
numbers of types and actions. Indeed, repeated-game strategies typically prescribe dif-
ferent actions for different types, and must give players incentives to play such actions.
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For example, review strategies do so by dividing the time horizon into long blocks and
performing a test at the end of each block to check whether the frequency of actions
taken within that block is close to the frequency that would be expected if the players
had taken the prescribed actions. If the numbers of both types and actions are large,
then review strategies require performing a large number of frequency tests, making
chip strategies a relatively simple and attractive alternative.
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