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This paper aims to solve two fundamental problems on finite- or infinite-horizon
dynamic games with complete information. Under some mild conditions, we
prove the existence of subgame-perfect equilibria and the upper hemicontinuity
of equilibrium payoffs in general dynamic games with simultaneous moves (i.e.,
almost perfect information), which go beyond previous works in the sense that
stagewise public randomization and the continuity requirement on the state vari-
ables are not needed. For alternating move (i.e., perfect-information) dynamic
games with uncertainty, we show the existence of pure-strategy subgame-perfect
equilibria as well as the upper hemicontinuity of equilibrium payoffs, extending
the earlier results on perfect-information deterministic dynamic games.
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1. Introduction

Dynamic games with complete information, where players observe the history and
move simultaneously or alternately in a finite or infinite horizon, arise naturally in many
situations. As noted in Chapter 4 of Fudenberg and Tirole (1991) and Harris et al. (1995),
these games form a general class of regular dynamic games with many applications in
economics, political science, and biology. The associated notion of subgame-perfect
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equilibrium is a fundamental game-theoretic concept. For alternating move games with
finite actions, an early result on backward induction (subgame-perfect equilibrium) was
presented in Zermelo (1913). For simultaneous move games with finitely many actions
and stages, the existence of subgame-perfect equilibria was shown in Selten (1965),
while the infinite horizon but finite-action case was covered by Fudenberg and Levine
(1983) under the usual continuity at infinity condition.1

Since the agents in many economic models need to make continuous choices, it is
important to consider dynamic games with general action spaces. However, a simple
example without any subgame-perfect equilibrium was presented in Harris et al. (1995),
where the game has two players in each of the two stages with only one player having a
continuous choice set.2 Thus, the existence of subgame-perfect equilibria under some
suitable conditions remains an open problem even for two-stage dynamic games. The
purpose of this paper is to prove the existence of subgame-perfect equilibria for general
dynamic games with simultaneous or alternating moves in a finite or infinite horizon
under some suitable conditions. We adopt the general forms of intertemporal utilities,
requiring neither stationarity nor additive separability.3

For deterministic games with perfect information (i.e., the players move alternately),
the existence of pure-strategy subgame-perfect equilibria was shown in Börgers (1989,
1991), Fudenberg and Levine (1983), Harris (1985), Hellwig and Leininger (1987), and
Hellwig et al. (1990) with the model parameters being continuous in actions, extend-
ing the early work of Zermelo (1913).4 However, if the “deterministic” assumption is
dropped by introducing a passive player, Nature, then a pure-strategy subgame-perfect
equilibrium need not exist as shown by a four-stage game in Harris et al. (1995). In fact,
the nonexistence of a mixed-strategy subgame-perfect equilibrium in a five-stage alter-
nating move game was provided by Luttmer and Mariotti (2003).5 Thus, it is still an open
problem to show the existence of (pure or mixed strategy) subgame-perfect equilibria in
(finite or infinite horizon) perfect-information dynamic games with uncertainty under
some general conditions.

Continuous dynamic games with almost perfect information in the sense that the
players move simultaneously are considered in Harris et al. (1995). In such games, there
are a finite number of active players and a passive player (Nature), and all the relevant
model parameters are assumed to be continuous in both action and state variables (i.e.,

1Without the continuity at infinity condition, subgame-perfect equilibria may not exist in infinite-
horizon dynamic games with finitely many actions; see Solan and Vieille (2003) for a counterexample.

2As noted in Section 2 of Harris et al. (1995), such a dynamic game with continuous choices provides
a minimal nontrivial counterexample; see also Exercise 13.4 in Fudenberg and Tirole (1991) for another
counterexample of Harris.

3To be specific, we assume that players’s payoffs are functions of the whole histories endowed with the
product topology, which does not need to be the discounted summation of the stage payoffs. For details,
see Section 2.

4Alós-Ferrer and Ritzberger (2016) considered an alternative formulation of dynamic games with perfect
information and without Nature, and showed the existence of subgame-perfect equilibrium.

5All those counterexamples show that various issues arise when one considers general dynamic games;
see, for example, the discussions in Stinchcombe (2005). In the setting with incomplete information, even
the equilibrium notion needs to be carefully treated; see Myerson and Reny (2019).
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Nature’s moves). It was shown in Harris et al. (1995) that subgame-perfect equilibria ex-
ist in those extended games obtained from the original games by introducing stagewise
public randomization as a correlation device.6 As mentioned above, they also demon-
strated the possible nonexistence of subgame-perfect equilibrium through a simple ex-
ample.

The first aim of this paper is to resolve the above two open problems (in both finite
and infinite horizons) for the class of continuous dynamic games. We assume the state
transition in each period (except for those periods with one active player) to be an atom-
less probability measure for any given history.7 In Theorems 1 and 2 (and Proposition 1),
we present the existence results for subgame-perfect equilibria, and also present some
regularity properties of the equilibrium payoff correspondences, including compact-
ness and upper hemicontinuity.8 Note that our model allows the state history to fully
influence all the model parameters, and hence, covers the case with stagewise public
randomization in the sense that the state transition has an additional atomless compo-
nent that is independently and identically distributed across time, and does not enter
the payoffs, state transitions, and action correspondences. As a result, we obtain the
existence result in Harris et al. (1995) as a special case. In addition, we also provide a
new existence result for continuous stochastic games in Proposition 2; see Remark 3 for
discussions.

For dynamic games with almost perfect information, our results allow the players to
take mixed strategies. However, for the special class of continuous dynamic games with
perfect information,9 we obtain the existence of pure-strategy subgame-perfect equi-
libria in Theorem 2. When Nature is present, there has been no general result on the
existence of equilibria (even in mixed strategies) for continuous dynamic games with
perfect information. Our Theorem 2 provides a new existence result in pure strategy,
which extends the results of Börgers (1989), Fudenberg and Levine (1983), Harris (1985),
Hellwig and Leininger (1987), Hellwig et al. (1990), and Zermelo (1913) to the case when
Nature is present.

The condition of atomless transitions is minimal in the particular sense that the ex-
istence results for continuous dynamic games may fail to hold if (a) the passive player,
Nature, is not present in the model as shown in Harris et al. (1995), or (b) with the pres-
ence of Nature, the state transition is not atomless even at one point of history as shown
in Luttmer and Mariotti (2003).

The second aim of this paper is to consider an important extension in which the
relevant model parameters are assumed to be continuous in actions, but measurable

6See also Mariotti (2000) and Reny and Robson (2002).
7A probability measure on a separable metric space is atomless if every single point has measure zero.
8Such an upper hemicontinuity property in terms of correspondences of equilibrium payoffs, outcomes,

or correlated strategies is the key for proving the relevant existence results in Börgers (1989, 1991), Harris
(1985), Harris et al. (1995), Hellwig and Leininger (1987), Hellwig et al. (1990), and Mariotti (2000).

9Dynamic games with perfect information also have wide applications. For example, see Amir (1996)
and Phelps and Pollak (1968) for an intergenerational bequest game, and see Goldman (1980) and Peleg
and Yaari (1973) for intrapersonal games in which consumers have changing preferences.
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in states.10 In particular, we show the existence of a subgame-perfect equilibrium in a
general dynamic game with almost perfect information under some suitable conditions
on the state transitions. Theorems 3 and 4 below go beyond our results on continuous
dynamic games by dropping the continuity requirement on the state variables.11 We
work with the condition that the state transition in each period (except for those periods
with one active player) has a component with a suitable density function with respect to
some atomless reference measure.

In Appendix A, we provide a complete proof of Theorem 1 and point out those
changes that are needed to prove Theorem 2 and Proposition 1. We follow the stan-
dard three-step procedure in obtaining subgame-perfect equilibria of dynamic games,
namely, backward induction, forward induction, and approximation of the infinite hori-
zon by the finite horizon. Because we drop the stagewise public randomization, new
technical difficulties arise in the proofs. The main purpose of the step of backward in-
duction is to show that if the payoff correspondence at a given stage satisfies certain reg-
ularity properties, then the equilibrium payoff correspondence at the previous stage is
upper hemicontinuous. We notice that the condition of atomless transitions suffices for
this purpose, and hence the exogenous stagewise public randomization is not needed
for this step. For the step of forward induction, we need to obtain strategies that are
jointly measurable in history. When there is a public randomization device, the joint
measurability follows from the measurable version of Skorokhod’s representation theo-
rem and implicit function theorem as in Harris et al. (1995) and Reny and Robson (2002),
respectively. Here we need to work with the deep “measurable” measurable choice the-
orem of Mertens (2003).

In Appendix B, we prove Theorem 3 first, and then describe the changes needed to
prove Theorem 4 and Proposition B.1. The proofs for the results in measurable dynamic
games are much more difficult than those in the case of continuous dynamic games. In
the backward induction step, we obtain a new existence result for discontinuous games
with stochastic endogenous sharing rules that extends the main result of Simon and
Zame (1990) by allowing the payoff correspondence to be measurable (instead of upper
hemicontinuous) in states.12 So as to extend the results to the infinite-horizon setting,

10Since the agents need to make optimal choices, the continuity assumption in terms of actions is natu-
ral and widely adopted. However, the state variable is not a choice variable, and thus, it is unnecessary to
impose the state continuity requirement in a general model. Note that the state measurability assumption
is the minimal regularity condition one would expect for the model parameters. We may also point out that
the proof for the case with state continuity in Appendix A is much simpler than the proof for the general
case in Appendix B. For discussions on subgame-perfect ε-equilibria in dynamic games without the conti-
nuity conditions in actions, see Solan and Vieille (2003), Flesch et al. (2010), Laraki et al. (2013), Flesch and
Predtetchinski (2016), and the references therein.

11In Appendix B, we also present a new existence result on subgame-perfect equilibria for a general
stochastic game.

12In Simon and Zame (1990), the payoff is assumed to be a correspondence that is bounded and upper
hemicontinuous, with nonempty, convex, and compact values. Note that the upper hemicontinuity con-
dition on a correspondence is equivalent to the fact that the lower inverse of any closed set is closed; see
Aliprantis and Border (2006, Lemma 17.4). Furthermore, the measurability condition on a correspondence
means that the lower inverse of any closed set is measurable (see Appendix A.1). Thus, an upper hemicon-
tinuous correspondence is automatically measurable. For more discussions of the approach in Simon and
Zame (1990), see Harris et al. (2005) and Stinchcombe (2005).
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we need to handle various subtle measurability issues due to the lack of continuity in the
state variables in the more general model, which is the most difficult part of the proof
for Theorem 3. 13

The rest of the paper is organized as follows. The model is presented in Section 2. In
Section 3, we provide a variation of the counterexample in Luttmer and Mariotti (2003)
to demonstrate the key issues. The results for continuous dynamic games are given in
Section 4. Section 5 extends continuous dynamic games to the setting in which the
model parameters may only be measurable in the state variables. The proofs for the
results of continuous dynamic games and measurable dynamic games are left to Ap-
pendices A and B, respectively. (Appendix B is available in a supplementary file on the
journal website, http://econtheory.org/supp/2927/supplement.pdf.)

2. Model

In this section, we present the model for an infinite-horizon dynamic game with almost
perfect information.

The set of players is I0 = {0�1� � � � � n}, where the players in I = {1� � � � � n} are active and
player 0 is Nature. All the players move simultaneously. Time is discrete and is indexed
by t = 0�1�2� � � �.

The set of starting points is a product space H0 = X0 × S0, where X0 is a compact
metric space and S0 is a Polish space (i.e., a complete separable metric space).14 At stage
t ≥ 1, player i’s action will be chosen from a subset of a Polish space Xti for each i ∈ I,
and Xt = ∏

i∈I Xti. Nature’s action is chosen from a Polish space St . Let Xt = ∏
0≤k≤t Xk

and St = ∏
0≤k≤t Sk. The Borel σ-algebras on Xt and St are denoted by B(Xt) and B(St),

respectively. Given t ≥ 0, a history up to stage t is a vector15

ht = (x0� s0�x1� s1� � � � � xt� st) ∈Xt × St�
The set of all such possible histories is denoted byHt . For any t ≥ 0,Ht ⊆Xt × St .

For any t ≥ 1 and i ∈ I, let Ati be a measurable, nonempty and compact correspon-
dence16 fromHt−1 toXti such thatAti(ht−1) is the set of available actions for player i ∈ I
given the history ht−1. Let At = ∏

i∈I Ati. Then Ht = Gr(At) × St , where Gr(At) is the
graph ofAt .

For any x = (x0�x1� � � �) ∈ X∞, let xt = (x0� � � � � xt) ∈ Xt be the truncation of x up
to the period t. Truncations for s ∈ S∞ can be defined similarly. Let H∞ be the subset
of X∞ × S∞ such that (x� s) ∈ H∞ if (xt� st) ∈ Ht for any t ≥ 0. Then H∞ is the set of

13Because our relevant model parameters are only measurable in the state variables, the usual method of
approximating a limit continuous dynamic game by a sequence of finite games, as used in Börgers (1991),
Harris et al. (1995) and Hellwig et al. (1990), is not applicable in this setting.

14In each stage t ≥ 1, there will be a set of action profiles Xt and a set of states St . Without loss of gener-
ality, we assume that the set of initial points is also a product space for notational consistency.

15By abusing notation, we also view ht = (x0� s0�x1� s1� � � � � xt � st ) as the vector
(x0�x1� � � � � xt � s0� s1� � � � � st ) inXt × St .

16Suppose that Y and Z are both Polish spaces, and that � is a correspondence from Y to Z. Hereafter,
the measurability of �, unless specifically indicated, is assumed to be the weak measurability with respect
to the Borel σ-algebra B(Y) on Y . For definitions and detailed discussions, see Appendix A.1.

http://econtheory.org/supp/2927/supplement.pdf
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all possible histories in the game.17 Hereafter, let H∞ be endowed with the product
topology. For any t ≥ 1, Nature’s action is given by a Borel measurable mapping ft0 from
the historyHt−1 to M(St), where M(St) denotes the set of all Borel probability measures
on St and is endowed with the topology of weak convergence of measures on St .

For each i ∈ I, the payoff function ui is a bounded Borel measurable mapping from
H∞ to R++. Without loss of generality, we can assume that the payoff function ui is
bounded from above by some γ > 0 for each i ∈ I.

For player i ∈ I, a strategy fi is a sequence {fti}t≥1 such that fti is a Borel measurable
mapping from Ht−1 to M(Xti) with fti(Ati(ht−1)|ht−1) = 1 for all ht−1 ∈ Ht−1. That is,
player i can only take the mixed strategy concentrated on the available set of actions
Ati(ht−1) given the history ht−1. A strategy profile f = {fi}i∈I is a combination of strate-
gies of all active players.

In any subgame, a strategy combination generates a probability distribution over
the set of possible histories. This probability distribution is called the path induced by
the strategy combination in this subgame. Before describing (in Definition 1) how a
strategy combination induces a path, we need to define some technical terms. Given
a strategy profile f = {fi}i∈I , denote

⊗
i∈I0 f(t ′+1)i as a transition probability from the

set of histories Ht ′ to M(Xt ′+1). For notational simplicity later on, we assume that⊗
i∈I0 f(t ′+1)i(·|ht ′) represents the strategy profile in stage t ′ + 1 for a given history ht ′ ∈

Ht ′ , where
⊗
i∈I0 f(t ′+1)i(·|ht ′) is the product of the probability measures f(t ′+1)i(·|ht ′),

i ∈ I0. If λ is a finite measure on X and ν is a transition probability from X to Y , then
λ � ν is a measure onX ×Y such that λ � ν(A×B)= ∫

A ν(B|x)λ(dx) for any measurable
subsetsA⊆X and B⊆ Y .

Definition 1. Suppose that a strategy profile f = {fi}i∈I and a history ht ∈Ht are given
for some t ≥ 0. Let τt = δht , where δht is the probability measure concentrated at the
point ht . If τt ′ ∈ M(Ht ′) has already been defined for some t ′ ≥ t, then let

τt ′+1 = τt ′ �
(⊗
i∈I0

f(t ′+1)i

)
�

Finally, let τ ∈ M(H∞) be the unique probability measure on H∞ such that MargHt′ τ =
τt ′ for all t ′ ≥ t. Then τ is called the path induced by f in the subgame ht . For all i ∈ I,∫
H∞ ui dτ is the payoff of player i in this subgame.

3. An example

As mentioned in the Introduction, Luttmer and Mariotti (2003) presented a simple five-
stage alternating move game that does not possess any subgame-perfect equilibrium.
Below, we modify their counterexample to illustrate what could go wrong in a continu-
ous dynamic game and we use this example to demonstrate some key issues.

Fix 0 ≤ ε≤ 1. The gameGε proceeds in five stages.

17A finite-horizon dynamic game can be regarded as a special case of an infinite-horizon dynamic game
in the sense that the action correspondence Ati is point-valued for each player i ∈ I and t ≥ T for some
stage T ≥ 1; see, for example, Börgers (1989) and Harris et al. (1995).
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Figure 1. The subgame (a1� a2�x).

• In stage 1, player 1 chooses an action a1 ∈ [0�1].
• In stage 2, player 2 chooses an action a2 ∈ [0�1].
• In stage 3, Nature chooses some x ∈ [−2 − ε+a1 +a2�2 + ε−a1 −a2] based on the

uniform distribution ηε(a1�a2)
.

• After Nature’s choice, players 3 and 4 move sequentially. The subgame that follows
a history (a1� a2�x) and the associated payoffs for all four active players is shown
in Figure 1, where

γ(x�ε)=

⎧⎪⎪⎨
⎪⎪⎩
x+ ε� if x <−ε�
x− ε� if x > ε�

0� x ∈ [−ε� ε]�
In the following discussion, let α and β be the probabilities with which players 3 and

4 choose U and u, respectively. Consider a subgame (a1� a2�x). Let P̃ε3(a1� a2�x) (resp.
P̃ε2(a1� a2)) be the set of expected payoffs for players 1 and 2 in stage 3 (resp. stage 2).18

• If x < −ε, then the equilibrium continuation path is (U�u) (i.e., α = 1 and β = 1)
and P̃ε3(a1� a2�x)= {(2a1� a2)}.

• If x > ε, then the equilibrium continuation path is D (i.e., α = 0 and β = 0) and
P̃ε3(a1� a2�x)= {(a1�2a2)}.

• If x ∈ [−ε� ε], then the set of equilibrium continuation paths is characterized by
three segments of mixing probabilities: α = 0 and β ∈ [0� 1

2 ]; α ∈ [0�1] and β = 1
2 ;

α= 1 and β ∈ [ 1
2 �1]. Then

P̃ε3(a1� a2�x)=
{(
a1�

(
2 − 3

2
α

)
a2

)
|α ∈ [0�1]

}
∪

{
(2a1β�a2β)|β ∈

[
1
2
�1

]}
�

18For simplicity, we focus on the equilibrium payoffs of players 1 and 2.
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Figure 2. D.

Figure 3. Co(D).

which is not convex when a1 > 0 and a2 > 0.

Denote D = {(a1� (2 − 3
2α)a2)|α ∈ [0�1]} ∪ {(2a1β�a2β)|β ∈ [ 1

2 �1]} and Co(D) as the
convex hull of the setD. Below, for a1 > 0 and a2 > 0,D is the union of the two segments
in Figure 2 and Co(D) is the dashed area with boundaries in Figure 3.

Fix any ε > 0. Nature’s move x is uniformly distributed on the nondegenerate interval
[−2 − ε+ a1 + a2�2 + ε− a1 − a2], which is symmetric around zero for any (a1� a2). The
correspondence P̃ε3(a1� a2�x) is upper hemicontinuous, but is not convex-valued when
x ∈ [−ε� ε] and a1� a2 > 0 (the setD is not convex in this case). Given any (a1� a2), the set
of expected equilibrium continuation payoffs for players 1 and 2 is19

P̃ε2(a1� a2)=
∫ 3

−3
P̃ε3(a1� a2�x)η

ε
(a1�a2)

(dx)

=
∫ −ε

−3
P̃ε3(a1� a2�x)η

ε
(a1�a2)

(dx)+
∫ ε

−ε
P̃ε3(a1� a2�x)η

ε
(a1�a2)

(dx)

+
∫ 3

ε
P̃ε3(a1� a2�x)η

ε
(a1�a2)

(dx)

= ε

2 + ε− a1 − a2
Co(D)+ 2 − a1 − a2

2 + ε− a1 − a2

{(
3
2
a1�

3
2
a2

)}

=
∫ −ε

−3
Co

(
P̃ε3(a1� a2�x)

)
ηε(a1�a2)

(dx)+
∫ ε

−ε
Co

(
P̃ε3(a1� a2�x)

)
ηε(a1�a2)

(dx)

19Given two setsD1�D2 ⊆ Rl ,D1 +D2 = {d1 + d2 : di ∈Di� i= 1�2}; for c ∈ R, cD1 = {cd1 : d1 ∈D1}.
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+
∫ 3

ε
Co

(
P̃ε3(a1� a2�x)

)
ηε(a1�a2)

(dx)

=
∫ 3

−3
Co

(
P̃ε3(a1� a2�x)

)
ηε(a1�a2)

(dx)�

For x ∈ [−2−ε+a1 +a2�−ε) or (ε�2+ε−a1 −a2], P̃ε3(a1� a2�x) is a singleton and, hence,
is convex-valued and coincides with Co(P̃ε3(a1� a2�x)). For x ∈ [−ε� ε], P̃ε3(a1� a2�x) is
the set D. Its integration on [−ε� ε] under the uniform distribution is simply Co(D),
and hence it coincides with Co(P̃ε3(a1� a2�x)). It is also clear that P̃ε2(a1� a2) is upper
hemicontinuous in (a1� a2) ∈ [0�1] × [0�1].

There are two general observations: (a) the integral of a correspondence coincides
with the integral of the convex hull of the correspondence based on an atomless mea-
sure, and (b) the integral of a convex-valued, upper hemicontinuous correspondence
based on a continuous transition probability is still upper hemicontinuous.20 As a result,
the integral of an upper hemicontinuous correspondence is still upper hemicontinuous
and convex-valued based on an atomless continuous transition probability.21 In the par-
ticular case of this example, the above paragraph shows that even though P̃ε3(a1� a2�x)

is not always convex-valued on the nondegenerate set [−ε� ε], P̃ε2(a1� a2) is still convex-
valued and upper hemicontinuous. Such a result also follows from the general obser-
vations since Nature’s move ηε(a1�a2)

is atomless and continuous in (a1� a2). Here is a
pure-strategy subgame-perfect equilibrium in the game Gε for ε > 0: players 1 and 2
choose a1 = 1 and a2 = 1, players 3 and 4 chooseU and uwhen x < 0, and chooseD and
d when x≥ 0. In this equilibrium, both players 1 and 2 get the payoff 3

2 .
For the case ε = 0, the game G0 is the counterexample in Luttmer and Mariotti

(2003), which does not have any subgame-perfect equilibrium. If a1 + a2 < 2, then Na-
ture’s move x is uniformly distributed on the nondegenerate interval [−2 + a1 + a2�2 −
a1 −a2]. As x= 0 is drawn with probability 0, the nonconvexity of the set of continuation
payoffs for players 1 and 2 at x= 0 does not matter. The expected continuation payoffs
for players 1 and 2 are 3

2a1 and 3
2a2, respectively. That is, P̃0

2 (a1� a2)= {( 3
2a1�

3
2a2)} when

a1 +a2 < 2. If a1 +a2 = 2 (i.e., a1 = a2 = 1), then Nature’s move must be x= 0 and, hence,

P̃0
2 (1�1)= P̃0

3 (1�1�0)=
{(

1�
(

2 − 3
2
α

))∣∣∣∣α ∈ [0�1]
}

∪
{
(2β�β)|β ∈

[
1
2
�1

]}
�

Whenever a1 + a2 < 2, both players 1 and 2 have the incentive to choose their actions
as close to 1 as possible, which gives them the expected payoff arbitrarily close to 3

2 .
However, when both players 1 and 2 choose the action 1, some of them get a payoff no
more than 1. This implies that there does not exist any subgame-perfect equilibrium.

As shown above, for any ε > 0, both players 1 and 2 in the game Gε have 3
2 as their

equilibrium payoffs. Since ( 3
2 �

3
2) cannot be the equilibrium payoffs of players 1 and 2

in the game G0, the equilibrium payoff correspondence of the games Gε�ε ≥ 0, is not
upper hemicontinuous at ε= 0.

20See Lemma 7 in Appendix A.1.
21Note that when the transition probability has an atom in its values, both properties may not be true.

This is demonstrated in the case ε= 0 below.
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Note that Nature’s move η0
(a1�a2)

is continuous in (a1� a2) ∈ [0�1] × [0�1] and is atom-
less except for the one point (a1� a2) = (1�1). Footnote 21 indicates that the integral of
an upper hemicontinuous correspondence with respect to such a transition probability
may not be upper hemicontinuous and convex-valued. Indeed, even though P̃0

3 is an
upper hemicontinuous correspondence, P̃0

2 is neither upper hemicontinuous nor con-
vex at the point (1�1). In particular, ( 3

2a1�
3
2a2) ∈ P̃0

2 (a1� a2) when a1 + a2 < 2, while its
limit ( 3

2 �
3
2) /∈ P̃0

2 (1�1) when both a1 and a2 converge to 1.

4. Continuous dynamic games

In this section, we consider continuous dynamic games in the sense that all the model
parameters (the payoff functions, state transitions, and action correspondences) are
continuous in both action and state variables. We show that subgame-perfect equilib-
ria exist for continuous dynamic games under the condition of atomless transitions. In
Section 4.1, we first consider dynamic games with almost perfect information and show
the existence of subgame-perfect equilibria. In Section 4.2, we consider dynamic games
with perfect information in the sense that players move sequentially, and prove the exis-
tence of pure-strategy subgame-perfect equilibria. In Section 4.3, we provide a road map
for proving Theorems 1 and 2; the details of the proofs are left to Appendix A. In Sec-
tion 4.4, we extend the model so that the previous existence results for continuous dy-
namic games with perfect and almost perfect information are covered as special cases.
As a by-product, we provide a new existence result for continuous stochastic games.

4.1 Continuous dynamic games with almost perfect information

In this subsection, we study an infinite-horizon continuous dynamic game with almost
perfect information. Intuitively, we work with the class of games in which all the relevant
parameters of the game, including action correspondences, Nature’s move, and payoff
functions, vary smoothly with respect to the state and action variables. In particular, a
dynamic game is said to be continuous if for each t and i, the following statements hold.

(i) The action correspondenceAti is continuous onHt−1.22

(ii) The transition probability ft0 is a continuous mapping fromHt−1 to M(St), where
M(St) is endowed with the topology of weak convergence (also called the weak
star topology); that is, for any bounded continuous function ψ on St , the integral∫

St

ψ(st)ft0(dst |ht−1)

is continuous in ht−1.

(iii) The payoff function ui is continuous onH∞.

22A correspondence is said to be continuous if it is both upper hemicontinuous and lower hemicontinu-
ous. For definitions and detailed discussion, see Appendix A.1.
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Below we propose the condition of “atomless transitions” on the state space, which
means that Nature’s move is an atomless probability measure in any stage.

Assumption 1 (Atomless Transitions). For each t ≥ 1, ft0(ht−1) is an atomless Borel
probability measure for each ht−1 ∈Ht−1.

The notion of subgame-perfect equilibrium is given below. It requires each player’s
strategy to be optimal in every subgame given the strategies of all other players.

Definition 2 (Subgame-Perfect Equilibrium). A subgame-perfect equilibrium (SPE) is
a strategy profile f such that for all i ∈ I, t ≥ 0, and all ht ∈Ht , player i cannot improve
his payoff in the subgame ht by a unilateral change in his strategy.

Let Et(ht−1) be the set of subgame-perfect equilibrium payoffs in the subgame ht−1.
The following result shows that a subgame-perfect equilibrium exists, and the equilib-
rium correspondence Et satisfies certain desirable compactness and upper hemiconti-
nuity properties.

Theorem 1. If a continuous dynamic game with almost perfect information has atom-
less transitions, then it possesses a subgame-perfect equilibrium. In addition, Et is
nonempty and compact valued, and upper hemicontinuous onHt−1 for any t ≥ 1.

Remark 1. Theorem 1 goes beyond the main result of Harris et al. (1995) for continu-
ous dynamic games, where the existence of subgame-perfect equilibria was shown for
those extended games obtained from the original games by introducing stagewise pub-
lic randomization as a correlation device. Such a correlation device does not influence
the payoffs, transitions, or action correspondences. It is clear that the extended games
with stagewise public randomization as in Harris et al. (1995) automatically satisfy the
condition of atomless transitions. The states in our model are completely endogenous
in the sense that they can affect all the model parameters such as payoffs, transitions,
and action correspondences.

4.2 Continuous dynamic games with perfect information

In this subsection, we consider another important class of continuous dynamic games,
namely continuous dynamic games with perfect information (with or without Nature).
In such games, players move sequentially. We show the existence of pure-strategy
subgame-perfect equilibria. In particular, the condition of atomless transitions is im-
posed only when Nature moves.

In a continuous dynamic game with perfect information, there is only one player
moving in each stage. In stage t, ifAti is not point-valued for some player i ∈ I, thenAtj
is point-valued for any j ∈ I as long as j 
= i, and ft0(ht−1)≡ δst for some st ; that is, only
player i is active in stage t, while all the other players are inactive. If the state transition
ft0 does not put probability 1 on some point, thenAti must be point-valued for any i ∈ I;
that is, only Nature can move in stage t and all the players i ∈ I are inactive in this stage. A
continuous dynamic game with perfect information is said to have atomless transitions
if ft0(ht−1) is an atomless Borel probability measure when Nature moves only in stage t.
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Theorem 2. If a continuous dynamic game with perfect information has atomless tran-
sitions, then it possesses a pure-strategy subgame-perfect equilibrium. In addition, Et is
nonempty and compact valued, and upper hemicontinuous onHt−1 for any t ≥ 1.

Remark 2. As shown in Börgers (1989), Fudenberg and Levine (1983), Harris (1985),
Hellwig and Leininger (1987), Hellwig et al. (1990), and Zermelo (1913), pure-strategy
subgame-perfect equilibria exist in deterministic (i.e., without Nature) continuous dy-
namic games with perfect information. Theorem 2 extends those existence results to the
case with Nature. We may point out that the condition of atomless transitions in Theo-
rem 2 is minimal. In particular, the games in Section 3 can be viewed as an alternating
move game with a starting point ε ∈ [0�1], where the transition probability ηε(a1�a2)

in the

third period is continuous in (ε�a1� a2) ∈ [0�1]3 and is atomless except for the one point
(ε�a1� a2) = (0�1�1). The violation of our condition of atomless transitions at just one
point leads to the failure of the conclusions of Theorem 2. 23

4.3 A road map for proving Theorems 1 and 2

The existence results are established in three steps. The backward induction step aims
to show that if the equilibrium payoff correspondence Qt in stage t is well behaved
(bounded, nonempty and compact valued, and upper hemicontinuous), then these de-
sirable properties can be preserved for the equilibrium payoff correspondence Qt−1 in
the previous stage t − 1. As will be explained, the atomless transition condition plays an
important role in this step. Next, given the equilibrium payoff correspondences across
different periods, one needs to construct the equilibrium strategy profile stage by stage
that is consistent with the equilibrium payoff correspondences. This is done in the for-
ward induction step. The first two steps together prove the equilibrium existence results
for finite-horizon dynamic games. The last step relates finite-horizon dynamic games
to infinite-horizon dynamic games based on the condition of continuity at infinity. We
sketch the main ideas of the proof based on simultaneous-move games and point out
the modifications for alternating-move games whenever necessary.

Step 1. We explain the first (backward induction) step via a T -stage dynamic game.
Let Q(T+1)(hT ) be the singleton set with one element vector (u1(hT )� � � � � un(hT )) for
any T -stage history hT , where ui is the payoff function of player i at the last stage T (a
bounded continuous function from the space of complete histories HT to R). Hence,
Q(T+1)i is a bounded, nonempty and compact valued, and upper hemicontinuous cor-
respondence. Given a history hT−1 at stage T − 1, the state sT at stage T follows the
distribution fT0(·|hT−1). For an action profile xT and a state sT at stage T , (hT−1�xT � sT )

is a history at stage T . Let

PT (hT−1�xT )=
∫
ST

QT+1(hT−1�xT � sT )fT0(dsT |hT−1)�

Then PT (hT−1� ·) is the set of expected possible payoff vectors in the subgame hT−1.

23Remark 4 indicates that Theorem 2 can be generalized to the case when the state transitions either are
atomless, or have the support inside a fixed finite set irrespective of the history at a particular stage.
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Let �(QT+1)(hT−1) be the set of all mixed-strategy Nash equilibrium payoffs for the
game with the action setATi(hT−1) and the payoff function PT (hT−1� ·). Then �(QT+1)

is a bounded, nonempty and compact valued, and upper hemicontinuous correspon-
dence from HT−1 to Rn. Intuitively, �(QT+1)(hT−2�xT−1� sT−1) represents the set of all
possible payoff vectors in the subgame hT−2 when Nature’s move is sT−1 and the players
choose the action profile xT−1 in stage T − 1.24 Note that in the subgame hT−2,

PT−1(hT−2�xT−1)=
∫
ST−1

�(QT+1)(hT−2�xT−1� sT−1)f(T−1)0(dsT−1|hT−2)

is the set of payoff vectors. It is shown in Simon and Zame (1990) that if a payoff corre-
spondence PT−1 is bounded, nonempty, convex and compact valued, and upper hemi-
continuous, then it possesses a Borel (possibly discontinuous) selection such that there
exists an equilibrium in mixed strategy by taking this selection as the payoff function.25

The difficulties here are that (a) the correspondence PT−1 is no longer single-valued and
may not be convex-valued; (b) even though �(QT+1) is an upper hemicontinuous cor-
respondence, it is not clear whether PT−1 is upper hemicontinuous.26 By introducing
the condition of “atomless transition,” we show that (a) even though �(QT+1) may not
be convex-valued, if f(T−1)0(hT−2) is atomless, then∫

ST−1

�(QT+1)(hT−2�xT−1� sT−1)f(T−1)0(dsT−1|hT−2)

=
∫
ST−1

co�(QT+1)(hT−2�xT−1� sT−1)f(T−1)0(dsT−1|hT−2);

hence, PT−1(hT−2�xT−1) is convex; (b) PT−1(hT−2�xT−1) is upper hemicontinuous be-
cause the correspondence co�(QT+1) under the integral is convex-valued and upper
hemicontinuous. We can then repeat this backward induction argument from �(QT+1)

until the first stage.
Note that the key in the backward induction step is to preserve the convexity and

upper hemicontinuity of the correspondences. As one arrives at the first stage, there
is no need to conduct the backward induction again. Thus, our result can be strength-
ened by relaxing the condition of atomless transitions in the first stage. In simultaneous-
move games, the argument in the previous paragraph requires that Nature be active and

24For hT−1 = (hT−2�xT−1� sT−1), �(QT+1) is a correspondence fromHT−1 to Rn. Given (hT−2�xT−1), we
slightly abuse the notation by viewing �(QT+1)(hT−2�xT−1� ·) as a correspondence from ST−1 to Rn.

25It was demonstrated in Stinchcombe (2005, Example 2.2) that given an exogenous payoff correspon-
dence with two measurable selections v and u, an equilibrium strategy of a player for the game with v as
the payoff functions may be a strictly dominated strategy for the game with u as the payoff functions. Such
an issue does not arise in our setting. Our primitives for the payoffs are the payoff functions (not payoff
correspondences) of the players. When a full history is given, the players have a unique payoff vector in our
setting. The payoff correspondence in our backward induction step is endogenous. As explained in Steps
2 and 3, each payoff vector given by the payoff correspondence corresponds to a subgame-perfect equilib-
rium in the original dynamic game. It is clear that any subgame-perfect equilibrium strategy of a player in
a dynamic game cannot be a strictly dominated strategy of that game.

26As illustrated in Section 3, the upper hemicontinuity property may not be preserved if the transition
probability has an atom in its value.
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have an atomless transition in every stage (except the first stage). In alternating-move
games, we require only that Nature’s move be atomless whenever Nature is active (ex-
cept the first stage). In particular, when Nature is inactive in some stage t, Pt−1 is indeed
�(Qt+1), a bounded, nonempty and compact valued, and upper hemicontinuous cor-
respondence. The one who is the only active player in that stage faces a single-player
decision problem. The key observation is that the only active player must possess an
optimal choice in pure strategy even though Pt−1 may not be convex-valued. When Na-
ture is active, the reason why the backward induction argument holds is the same as that
in the previous paragraph.

Step 2. We now describe the second (forward induction) step. Suppose that qt is a
measurable selection of �(Qt+1) in some stage t. Given the construction in the back-
ward induction step, qt(ht−1) represents a possible payoff vector in the subgame ht−1
if all the players follow some equilibrium strategy in the subsequent stages. The aim of
this step is to identify those subsequent equilibrium strategies and the corresponding
payoff functions.

Based on the construction of �(Qt+1), one can expect that in every subgame ht−1,
there exists a strategy profile ft(ht−1) and a payoff profile gt(ht−1� ·) ∈ Pt(ht−1� ·) such
that for all ht−1 ∈Ht−1, (i) qt(ht−1)= ∫

At(ht−1)
gt(ht−1�x)ft(dx|ht−1); (ii) ft(ht−1) is a Nash

equilibrium in the subgame ht−1 with the payoff gt(ht−1� ·) and action spaceAt(ht−1).
The key technical difficulties here are that (a) the payoff function gt needs to be

jointly measurable in (ht−1�x) and (b) one needs to further construct a jointly measur-
able selection qt+1 ofQt+1 (in (ht−1�xt� st)) such that gt(ht−1�xt)= ∫

St
qt+1(ht−1�xt� st)×

ft0(dst |ht−1) for all ht−1 ∈ Ht−1 and xt ∈ At(ht−1). We solve the first issue by carefully
modifying the argument in Reny and Robson (2002). For the second difficulty, we show
that a deep “measurable” measurable choice theorem of Mertens (2003) can be used to
address this issue.27

By completing this step, we establish the relationship between the equilibrium pay-
off correspondence in stage t + 1 and the equilibrium payoff correspondence in stage t
if all players play some equilibrium strategy in the subsequent stage. Together with the
first step, the forward induction helps us obtain the equilibrium existence result in dy-
namic games with finite stages as follows. We can start with backward induction from
the last period and stop at the initial period, and then run forward induction from the
initial period to the last period.

Step 3. This step proves the equilibrium existence result in infinite-horizon dynamic
games via Lemmas 11–15.

Since there is no last stage in the infinite-horizon setting, it is not clear where one
should start with the backward induction argument. We pick an arbitrary stage τ ≥ 1
and let Qττ+1 be the expected payoff correspondence in stage τ if the players are free
to choose any (not necessarily equilibrium) strategies in the future stages. Then run
backward induction based onQττ+1 from stage τ, and denoteQτt as the equilibrium pay-
off correspondence in stage t for t ≤ τ. For t ≥ τ + 1, let Qτt = Qττ+1. Lemmas 11 and

27In Harris et al. (1995) and Reny and Robson (2002), the joint measurability follows from the measur-
able version of Skorokhod’s representation theorem and implicit function theorem, respectively. These
arguments are not applicable here.
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12 show that the set of possible equilibrium payoff vectors satisfy desirable properties.
In particular, Qτt is bounded, measurable, nonempty and compact valued, and upper
hemicontinuous.

It is easy to see that Qτt (ht−1) ⊆ Qτ−1
t (ht−1) for any ht−1; that is, {Qτt }τ≥1 is a de-

creasing sequence in terms of τ. Denote Q∞
t = ⋂

τ≥1Q
τ
t . Lemma 13 shows that Q∞

t =
�(Q∞

t+1). By induction,Q∞
t =�τ−t (Q∞

τ ) for any τ > t; that is, given the payoff correspon-
dence Q∞

τ in stage τ for τ > t, Q∞
t is the equilibrium payoff correspondence in stage t

due to the construction of backward induction. Because of the assumption of continuity
at infinity, the strategies in the far future are not important. For fixed t, it means thatQ∞

t

will be very close to the set by running backward induction from stage τ to stage t based
on the actual equilibrium payoff correspondence in stage τ if τ is sufficiently large. Since
Q∞
t is the intersection of all such Q∞

τ , it is natural to expect that Q∞
t is indeed the equi-

librium payoff correspondence in stage t. Recall that Et(ht−1) is the set of payoff vectors
of subgame-perfect equilibria in the subgame ht−1. Given a measurable selection ct of
�(Q∞

t+1), Lemma 14 shows that ct(ht−1) is a subgame-perfect equilibrium payoff vec-
tor in the subgame ht−1 by constructing the subsequent equilibrium strategies based on
the forward induction; that is, �(Q∞

t+1)(ht−1) ⊆ Et(ht−1). In Lemma 15, we show that
Et(ht−1) ⊆ Q∞

t (ht−1). Then we have Q∞
t (ht−1) = �(Q∞

t+1)(ht−1) = Et(ht−1). This com-
pletes the sketch for the infinite-horizon case.

4.4 An extension

In this subsection, we extend the model of continuous dynamic games as specified in
the previous two subsections. The aim is to combine the models of dynamic games with
perfect and almost perfect information, and cover an important class of dynamic games,
namely stochastic games. We show the existence of a subgame-perfect equilibrium such
that whenever there is only one active player at some stage, the player can play pure
strategy as part of the equilibrium strategies. As a by-product, we obtain a new existence
result for continuous stochastic games.

For concreteness, we allow for the case in which (a) the state transition depends
on the action profile in the current stage as well as on the previous history, and (b) the
players may have perfect information in some stages. The first modification covers the
model of stochastic games as a special case. The second change allows us to combine
the models of dynamic games with perfect and almost perfect information.

Step 1. For each t ≥ 1, the choice of Nature depends not only on the history ht−1, but
also on the action profile xt in this stage. For any t ≥ 1, suppose that At0 is a con-
tinuous, nonempty and closed valued correspondence from Gr(At) to St . Then
Ht = Gr(At0), andH∞ is the subset ofX∞ ×S∞ such that (x� s) ∈H∞ if (xt� st) ∈Ht
for any t ≥ 0.

Step 2. Nature’s action is given by a continuous mapping ft0 from Gr(At) to M(St)

such that ft0(At0(ht−1�xt)|ht−1�xt)= 1 for all (ht−1�xt) ∈ Gr(At).
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Step 3. For each t ≥ 1, we use the notationNt to track whether there is a unique active
player in stage t. In particular, let

Nt =

⎧⎪⎪⎨
⎪⎪⎩

1� if ft0(ht−1�xt)≡ δst for some st and∣∣{i ∈ I : Ati is not point-valued}∣∣ = 1�

0� otherwise�

where |K| represents the number of points in the set K. Thus, if Nt = 1, then the
player who is active in the period t is the only active player and has perfect infor-
mation. IfNt = 0, then Nature moves in this stage.

Similarly as in Section 4.2, we can drop the condition of atomless transition in those
periods with only one active player in I.

Assumption 2 (Atomless Transitions′). (i) For any t ≥ 1 withNt = 1, St is a singleton set
{śt}.

(ii) For each t ≥ 1 with Nt = 0, ft0(ht−1�xt) is an atomless Borel probability measure
for each ht−1 ∈Ht−1 and xt ∈At(ht−1).

The result on the equilibrium existence is presented below.

Proposition 1. If a continuous dynamic game (as described above) satisfies the condi-
tion of atomless transitions′, then it possesses a subgame-perfect equilibrium f . In par-
ticular, for j ∈ I and t ≥ 1 such that Nt = 1 and player j is the only active player in this
period, ftj can be chosen to be deterministic. In addition, Et is nonempty and compact
valued, and upper hemicontinuous onHt−1 for t ≥ 1.

As the extension above covers the model of continuous stochastic games, a new
equilibrium existence result can be stated below for continuous stochastic games.

Proposition 2. If a continuous stochastic game has atomless transitions′, then it pos-
sesses a subgame-perfect equilibrium.

Remark 3. Consider a standard stochastic game with uncountable states as in Mertens
and Parthasarathy (2003), where the existence of a subgame-perfect equilibrium was
shown by assuming the state transitions (not necessarily atomless) to be norm contin-
uous (in the norm topology on the space of Borel measures) with respect to the actions
in the previous stage.28 It is noted in Maitra and Sudderth (2007 p. 712) that “[t]his is
a very strong condition.” Maitra and Sudderth (2007) also indicated on the same page
the desirability to weaken such a norm continuity condition: “it would be preferable to
assume some sort of weak continuity....” By restricting our result on general dynamic
games to the setting of stochastic games, we obtain the existence of subgame-perfect
equilibria in stochastic games whose state transitions are atomless and continuous in

28For detailed discussions on general stochastic games, see Jaśkiewicz and Nowak (2016).
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the weak star topology on the space of Borel measures. Our result cannot be covered by
the result in Mertens and Parthasarathy (2003) and vice versa.

We provide a simple example to demonstrate that our continuity condition on
the state transitions is indeed weaker than the norm continuity condition required by
Mertens and Parthasarathy (2003). Consider the following state transitions.

• The action space isA1 =A2 = [0�1].
• The state space in stage t is a product space: St = St1 × St2 = [0�1] × [0�1].
• Given st−1 = (s(t−1)1� s(t−1)2) and at−1 = (a(t−1)1� a(t−1)2), the stage transition
ft0(·|st−1� at−1) induces a product probability measure ψt1(·|st−1� at−1) ⊗
ψt2(·|st−1� at−1) on St1 × St2, where ψt2(·|st−1� at−1) is the uniform distribution on
St2 = [0�1] regardless of (st−1� at−1), and

ψt1

(
st1 = s(t−1)1 + s(t−1)2 + a(t−1)1 + a(t−1)2

4
|st−1� at−1

)
= 1;

that is, given (st−1� at−1), ψt1(·|st−1� at−1) puts probability 1 on their average.

Since ψt2 gives the uniform distribution on St2, the state transition is atomless. In addi-
tion, the state transition ft0 is continuous as ψt1 is continuous and ψt2 is constant.

The state transition ft0 is clearly not norm continuous. For example, we fix st−1 =
(s(t−1)1� s(t−1)2) and a sequence {ant−1}n≥0 such that s(t−1)1 +s(t−1)2 = 1

2 , (an(t−1)1� a
n
(t−1)2)→

(a0
(t−1)1� a

0
(t−1)2) as n→ ∞, and an(t−1)1 + an(t−1)2 = 1

2 − 1
2n for any n≥ 1. Then

ft0

({
1
4

}
× [0�1]|st−1� a

n
t−1

)
= 0 � 1 = ft0

({
1
4

}
× [0�1]|st−1� a

0
t−1

)
�

5. Measurable dynamic games

In this section, we consider the more general setting in which the model parameters are
jointly measurable in the action and state variables, but continuity is only required for
the action variables. The proofs of the results in this section are left to Appendix B.

In Section 5.1, we adopt the model specified in Section 4.1, but relax the conti-
nuity requirement to measurability in the state variables. To obtain the existence of
subgame-perfect equilibria, we strengthen the condition “atomless transitions” to the
condition “atomless reference measure” (ARM) on the state transitions. The latter con-
dition means that in each stage, there is an atomless reference measure and the state
transitions are absolutely continuous with respect to this reference measure. In Sec-
tion 5.2, we consider dynamic games with perfect information. The ARM-type condition
is imposed only when Nature moves. We show the existence of pure-strategy subgame-
perfect equilibria. In Section 5.3, we provide a road map for proving Theorems 3 and 4.
To omit the repetitive descriptions, we follow the argument in Section 4.3 and highlight
only the necessary changes.

In Appendix B, we present a further extension by partially relaxing the ARM con-
dition in two ways. First, we allow the possibility that there is only one active player
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(but no Nature) at some stages, where the ARM-type condition is dropped. Second, we
introduce an additional weakly continuous component on the state transitions at any
other stages. In addition, we allow the state transition in each period to depend on the
current actions as well as on the previous history. As the generalization of the model
in Section 4.4, (a) we combine the models for measurable dynamic games with perfect
and almost perfect information, (b) we show the existence of subgame-perfect equilib-
ria such that whenever there is only one active player at some stage, the player can play
pure strategy as part of the equilibrium, and (c) a new existence result is obtained for
stochastic games.

5.1 Measurable dynamic games with almost perfect information

We follow the setting and notation in Section 4.1 as closely as possible, and describe only
the changes we need to make on the model. In Section 4.1, we assume that the relevant
model parameters (action correspondences, Nature’s move, and payoff functions) are
continuous in both actions and states. Here, we work with the class of games with sec-
tionally continuous model parameters in the following sense. Suppose that Y1, Y2, and
Y3 are all Polish spaces, and Z ⊆ Y1 × Y2. Denote Z(y1)= {y2 ∈ Y2 : (y1� y2) ∈ Z} for any
y1 ∈ Y1. A function (resp. correspondence) f : Z → Y3 is said to be sectionally continu-
ous on Y2 if f (y1� ·) is continuous on Z(y1) for all y1 with Z(y1) 
= ∅. Similarly, one can
define the sectional upper hemicontinuity for a correspondence.

Compared with continuous dynamic games with almost perfect information, the
changes we need to make to describe measurable dynamic games are as follows.

• For any t ≥ 1 and i ∈ I,Ati is sectionally continuous onXt−1.29

• For any t ≥ 1, ft0 is sectionally continuous onXt−1.

• For each i ∈ I, the payoff function ui is sectionally continuous onX∞.

For each t ≥ 0, suppose that λt is a Borel probability measure on St and λt is atomless
for t ≥ 1. Let λt = ⊗

0≤k≤t λk for t ≥ 0. We assume the following condition on the state
transitions.

Assumption 3 (Atomless Reference Measure). A dynamic game is said to satisfy the
atomless reference measure (ARM) condition if for each t ≥ 1, the following statements
hold.

(i) The probability ft0(·|ht−1) is absolutely continuous with respect to λt on St with the
Radon–Nikodym derivative ϕt0(ht−1� st) for all ht−1 ∈Ht−1.30

29Note that a history mixes the multiple components of states and actions in different periods. As noted
in footnote 15, one can also view a history ht−1 as an element inXt−1 × St−1 by abusing the notation.

30It is common to have a reference measure when one considers a game with uncountable states. For
example, if St is a convex subset of Rl , then the uniform distribution on the convex set is a natural reference
measure. In particular, the condition that the state transitions are absolutely continuous with respect to a
reference measure is widely adopted in the literature on stochastic games; see, for example, Nowak (1985),
Nowak and Raghavan (1992), Duffie et al. (1994), and He and Sun (2017).
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(ii) The mapping ϕt0 is Borel measurable and sectionally continuous on Xt−1, and in-
tegrably bounded in the sense that there is a λt-integrable function φt : St → R+
such that ϕt0(ht−1� st)≤φt(st) for any ht−1 ∈Ht−1 and st ∈ St .

When one considers a dynamic game with infinite horizon, the following “continuity
at infinity” condition in (1) is standard.31 This condition means that the actions and
states in the far future do not matter that much for any player’s payoff. In particular, all
discounted repeated games or stochastic games satisfy this condition.

For any T ≥ 1, let

wT = sup
i∈I

(x�s)∈H∞
(x�s)∈H∞
xT−1=xT−1

sT−1=sT−1

∣∣ui(x� s)− ui(x� s)
∣∣� (1)

Assumption 4 (Continuity at Infinity). A dynamic game is said to be continuous at in-
finity if wT → 0 as T → ∞.

We modify the notion of subgame-perfect equilibrium slightly. In particular, when
the state space is uncountable and has a reference measure, it is natural to consider the
optimality for almost all subhistories in the probabilistic sense:32 a property is said to
hold for λt-almost all ht = (xt� st) ∈ Ht if it is satisfied for λt-almost all st ∈ St and all
xt ∈Ht(st).

Definition 3 (SPE). A subgame-perfect equilibrium is a strategy profile f such that
for all i ∈ I, t ≥ 0, and λt-almost all ht ∈ Ht , player i cannot improve his payoff in the
subgame ht by a unilateral change in his strategy.

The theorem below shows the existence of a subgame-perfect equilibrium under
the conditions of ARM and continuity at infinity. Recall that Et(ht−1) is the set of all
subgame-perfect equilibrium payoffs in the subgame ht−1. The theorem also shows the
compactness and upper hemicontinuity properties of the correspondence Et . In par-
ticular, we work with the upper hemicontinuity property also in the probabilistic sense.
Suppose that Y1, Y2, and Y3 are all Polish spaces, and Z ⊆ Y1 ×Y2 and η is a Borel prob-
ability measure on Y1. Denote Z(y1)= {y2 ∈ Y2 : (y1� y2) ∈Z} for any y1 ∈ Y1. A function
(resp. correspondence) f : Z → Y3 is said to be essentially sectionally continuous on
Y2 if f (y1� ·) is continuous on Z(y1) for η-almost all y1. Similarly, one can define the
essential sectional upper hemicontinuity for a correspondence.

Theorem 3. If a dynamic game with almost perfect information satisfies the ARM con-
dition and is continuous at infinity, then it possesses a subgame-perfect equilibrium. In
addition, Et is nonempty and compact valued, and essentially sectionally upper hemi-
continuous onXt−1.

31See, for example, Fudenberg and Levine (1983).
32See, for example, Abreu et al. (1990) and footnote 4 therein.
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5.2 Measurable dynamic games with perfect information

In this subsection, we consider dynamic games with perfect information (with or with-
out Nature). We follow the setting and notation in Section 4.2, and make the same
changes as those in Section 5.1. In particular, the continuity requirement in the state
variables is dropped.

In dynamic games with perfect information where players move sequentially, we
show the existence of pure-strategy subgame-perfect equilibria. The ARM condition is
imposed when Nature moves and is dropped in those periods with one active player
from the set I.33

Theorem 4. If a dynamic game with perfect information satisfies the ARM condition
and is continuous at infinity, then it possesses a pure-strategy subgame-perfect equilib-
rium. In addition, Et is nonempty and compact valued, and essentially sectionally upper
hemicontinuous onXt−1 for any t ≥ 1.

5.3 A road map for proving Theorems 3 and 4

The logic for the proofs of Theorems 3 and 4 is similar to that for the proofs of Theorems
1 and 2. The existence results are also established in three steps. However, new subtle
difficulties arise. In this subsection, we summarize the main changes for proving The-
orems 3 and 4. For simplicity, we omit the repetitive descriptions and adopt the same
notation as in Section 4.3.

In the first (backward induction) step, following the same argument as in Section 4.3,
one can construct the correspondence Pt . Recall that the key role of the atomless tran-
sition condition is to guarantee that Pt is convex-valued and upper hemicontinuous.
With the condition of atomless reference measure, one is still able to show that Pt is
convex-valued. However, though the correspondence Pt remains upper hemicontinu-
ous in actions, it is only measurable with respect to the states. As a result, the existence
result in Simon and Zame (1990) is not readily applicable. We extend their existence re-
sult by allowing the payoff correspondence to be upper hemicontinuous in actions, but
measurable in states. The key to this extension is to approximate the measurable corre-
spondence by continuous correspondences based on Lusin’s theorem (see Lemma 3).

In the forward induction step, an important observation is that the set of histories
Ht−1 at stage t can be divided into countably many Borel subsets {Hm

t−1}m≥0 with desir-
able properties. In particular, we have the following relationships:

• We have Ht−1 = ⋃
m≥0H

m
t−1 and

λt−1(
⋃
m≥1 proj

St−1 (H
m
t−1))

λt−1(proj
St−1 (Ht−1))

= 1, where projSt−1(Hm
t−1)

and projSt−1(Ht−1) are projections ofHm
t−1 andHt−1 on St−1.

• For m≥ 1, Hm
t−1 is compact, �t is upper hemicontinuous on Hm

t−1, and Pt is upper
hemicontinuous on {

(ht−1�xt) : ht−1 ∈Hm
t−1�xt ∈At(ht−1)

}
�

33As noted in Remark 4, Theorem 4 can be generalized to the case when the state transitions either satisfy
the ARM condition or have the support inside a fixed finite set irrespective of the history at a particular
stage.
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Note that within each compact subset Hm
t−1 for m ≥ 1, the correspondences �t and Pt

are well behaved. One can apply the forward induction argument from the proof for
continuous dynamic games to each Hm

t−1, which enables us to obtain a strategy defined
on this subset Hm

t−1. The forward induction step for measurable dynamic games is then
completed by combining the equilibrium strategies obtained on Hm

t−1,m≥ 0 (subject to
slight modifications).

The last step (extending the finite-horizon setting to the infinite-horizon setting) fol-
lows a logic similar to that explained in Step 3 in Section 4.3. The main challenge is
to handle various subtle measurability issues due to the lack of continuity in the state
variables. As described in Section 4.3, the idea of this step is to show the upper hemi-
continuity of equilibrium payoff correspondences in an infinite horizon. In the case of
continuous dynamic games, this property is shown, based on a few technical lemmas on
upper hemicontinuous correspondences. For the class of measurable dynamic games as
considered here, we need to extend those technical lemmas to the more difficult case of
measurable correspondences.

Appendix A

In Appendix A.1, we present several lemmas as the mathematical preparations for prov-
ing Theorems 1 and 2, and Proposition 1. Since correspondences are used extensively in
the proofs, we collect, for the convenience of the reader, several known results on various
properties of correspondences.34 One can skip Appendix A.1 first and go to the proofs in
Appendices A.2–A.4 directly, and then refer to those technical lemmas in Appendix A.1
whenever necessary.

The proof of Theorem 1 is provided in Appendix A.2. In Appendices A.3 and A.4,
we give the proofs of Theorem 2 and Proposition 1, respectively. We describe only the
necessary changes in comparison with the proofs presented in Appendices A.2.1–A.2.3.

A.1 Technical preparations

Let (S�S) be a measurable space and letX be a topological space with its Borelσ-algebra
B(X). A correspondence � from S to X is a function from S to the space of all subsets
of X . A mapping ψ is said to be a selection of � if ψ(s) ∈�(s) for any s ∈ S. The upper
inverse�u of a subsetA⊆X is

�u(A)= {
s ∈ S : �(s)⊆A}

�

The lower inverse�l of a subsetA⊆X is

�l(A)= {
s ∈ S : �(s)∩A 
= ∅

}
�

The correspondence� is

(a) weakly measurable if�l(O) ∈ S for each open subset O ⊆X
34These technical lemmas are stated in a general form so that they can still be used in the proofs in

Appendix B for the case of measurable dynamic games.
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(b) measurable if�l(K) ∈ S for each closed subsetK ⊆X .

The graph of � is denoted by Gr(�) = {(s�x) ∈ S ×X : s ∈ S�x ∈�(s)}. The correspon-
dence� is said to have a measurable graph if Gr(�) ∈ S ⊗B(X).

If S is a topological space, then� is

(i) upper hemicontinuous if�u(O) is open for each open subset O ⊆X
(ii) lower hemicontinuous if�l(O) is open for each open subset O ⊆X

(iii) continuous if it is both upper hemicontinuous and lower hemicontinuous.

The following two lemmas present some basic measurability and continuity proper-
ties for correspondences.

Lemma 1. Let (S�S) be a measurable space, X a Polish space endowed with the Borel
σ-algebra B(X), and K the space of nonempty compact subsets of X endowed with its
Hausdorff metric topology. Suppose that � : S → X is a nonempty and closed valued
correspondence.

(i) If� is weakly measurable, then it has a measurable graph.

(ii) If� is compact-valued, then the following statements are equivalent.

(a) The correspondence� is weakly measurable.

(b) The correspondence� is measurable.

(c) The function f : S→ K, defined by f (s)=�(s), is Borel measurable.

(iii) Suppose that S is a topological space. If � is compact-valued, then the function
f : S → K, defined by f (s)=�(s), is continuous if and only if the correspondence
� is continuous.

(iv) Suppose that (S�S�λ) is a complete probability space. Then � is S-measurable if
and only if it has a measurable graph.

(v) For a correspondence � : S → X between two Polish spaces, the following state-
ments are equivalent.

(a) The correspondence � is upper hemicontinuous at a point s ∈ S and �(s) is
compact.

(b) If a sequence (sn�xn) in the graph of � satisfies sn → s, then the sequence {xn}
has a limit in�(s).

(vi) For a correspondence � : S → X between two Polish spaces, the following state-
ments are equivalent.

(a) The correspondence� is lower hemicontinuous at a point s ∈ S.

(b) If sn → s, then for each x ∈ �(s), there exist a subsequence {snk} of {sn} and
elements xk ∈�(snk) for each k such that xk → x.
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(vii) Given correspondences F : X → Y and G : Y → Z, the composition F and G is
defined by

G
(
F(x)

) =
⋃

y∈F(x)
G(y)�

The composition of upper hemicontinuous correspondences is upper hemicon-
tinuous. The composition of lower hemicontinuous correspondences is lower
hemicontinuous.

Properties (i), (ii), (iii), (v), (vi), and (vii) are, respectively, Theorems 18.6, 18.10, 17.15,
17.20, 17.21, and 17.23 of Aliprantis and Border (2006). Property (iv) follows from Propo-
sition 4 on page 61 of Hildenbrand (1974).

Lemma 2. (i) A correspondence � from a measurable space (S�S) into a topological
spaceX is weakly measurable if and only if its closure correspondence� is weakly
measurable, where�(s) is the closure of the set�(s) inX for each s ∈ S.

(ii) For a sequence {�m} of correspondences from a measurable space (S�S) into a
Polish space, the union correspondence�(s)= ⋃

m≥1�m(s) is weakly measurable
if each�m is weakly measurable. If each�m is weakly measurable and compact-
valued, then the intersection correspondence �(s)= ⋂

m≥1�m(s) is weakly mea-
surable.

(iii) A weakly measurable, nonempty and closed valued correspondence from a mea-
surable space into a Polish space admits a measurable selection.

(iv) A correspondence with a closed graph between compact metric spaces is measur-
able.

(v) A nonempty and compact valued correspondence � from a measurable space
(S�S) into a Polish space is weakly measurable if and only if there exists a se-
quence {ψ1�ψ2� � � �} of measurable selections of � such that �(s) = �(s), where
�(s)= {ψ1(s)�ψ2(s)� � � �} for each s ∈ S.

(vi) The image of a compact set under a compact-valued upper hemicontinuous cor-
respondence is compact.35 If the domain is compact, then the graph of a compact-
valued upper hemicontinuous correspondence is compact.

(vii) The intersection of a correspondence with closed graph and an upper hemicon-
tinuous compact-valued correspondence is upper hemicontinuous.

(viii) If the correspondence � : S→ Rl is compact-valued and upper hemicontinuous,
then the convex hull of� is also compact-valued and upper hemicontinuous.

35Given a correspondence F : X → Y and a subset A of X , the image of A under F is defined to be the
set

⋃
x∈A F(x).
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Properties (i)–(vii) are, respectively, Lemmas 18.3 and 18.4, Theorems 18.13 and
18.20, Corollary 18.15, Lemma 17.8, and Theorem 17.25 in Aliprantis and Border (2006).
Property (viii) is Proposition 6 on page 26 of Hildenbrand (1974).

Parts (i) and (ii) of the following lemma are the standard Lusin theorem and Michael’s
continuous selection theorem, while the other two parts are about properties that in-
volve mixture of measurability and continuity of correspondences.

Lemma 3. (i) Lusin’s theorem: Suppose that S is a Borel subset of a Polish space, λ is a
Borel probability measure on S, and S is the completion of B(S) under λ. LetX be
a Polish space. If f is an S-measurable mapping from S to X , then for any ε > 0,
there exists a compact subset S1 ⊆ S with λ(S \ S1) < ε such that the restriction of f
to S1 is continuous.

(ii) Michael’s continuous selection theorem: Let S be a metrizable space, and X be
a complete metrizable closed subset of some locally convex space. Suppose that
F : S → X is a lower hemicontinuous, nonempty, convex and closed valued cor-
respondence. Then there exists a continuous mapping f : S →X such that f (s) ∈
F(s) for all s ∈ S.

(iii) Let (S�S�λ) be a finite measure space, X be a Polish space, and Y be a locally
convex linear topological space. Let F : S→X be a closed-valued correspondence
such that Gr(F) ∈ S ⊗ B(X), and f : Gr(F)→ Y be a measurable function that
is sectionally continuous on X . Then there exists a measurable function f ′ : S ×
X → Y such that (a) f ′ is sectionally continuous on X , (b) for λ-almost all s ∈ S,
f ′(s�x)= f (s�x) for all x ∈ F(s) and f ′(s�X)⊆ co f (s�F(s)).36

(iv) Let (S�S) be a measurable space, and X and Y be Polish spaces. Let � : S ×X →
M(Y) be an S ⊗B(X)-measurable, nonempty, convex and compact valued corre-
spondence that is sectionally continuous on X , where the compactness and con-
tinuity are with respect to the weak∗ topology on M(Y). Then there exists an
S ⊗B(X)-measurable selection ψ of� that is sectionally continuous onX .

Lusin’s theorem is Theorem 7.1.13 in Bogachev (2007). Michael’s continuous selec-
tion theorem can be found in Michael (1966) and the last paragraph on page 228 of Bo-
gachev (2007). Property (iii) is Theorem 2.7 in Brown and Schreiber (1989). Property (iv)
follows from Theorem 1 and the main lemma of Kucia (1998).

The following lemma presents the convexity, compactness, and continuity proper-
ties on integration of correspondences.

Lemma 4. Let (S�S�λ) be an atomless probability space, X be a Polish space, and F be a
correspondence from S to Rl. Denote∫

S
F(s)λ(ds)=

{∫
S
f (s)λ(ds) : f is an integrable selection of F on S

}
�

36For any setA in a linear topological space, coA denotes the convex hull ofA.
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(i) If F is measurable, nonempty and closed valued, and λ-integrably bounded by
some integrable function ψ : S → R+ in the sense that for λ-almost all s ∈ S,
‖y‖ ≤ ψ(s) for any y ∈ F(s), then

∫
S F(s)λ(ds) is nonempty, convex, and compact,

and ∫
S
F(s)λ(ds)=

∫
S

coF(s)λ(ds)�

(ii) IfG is a measurable, nonempty and closed valued correspondence from S×X →Rl

such that (a)G(s� ·) is upper (resp. lower) hemicontinuous onX for all s ∈ S and (b)
G is λ-integrably bounded by some integrable functionψ : S→R+ in the sense that
for λ-almost all s ∈ S, ‖y‖ ≤ψ(s) for any x ∈X and y ∈G(s�x), then

∫
S G(s�x)λ(ds)

is upper (resp. lower) hemicontinuous onX .

For the proof, see Theorems 2, 3, and 4, Propositions 7 and 8, and Problem 6 in
Section D.II.4 of Hildenbrand (1974).

The following result proves a measurable version of Lyapunov’s theorem, which is
taken from Mertens (2003). Let (S�S) and (X�X ) be measurable spaces. A transition
probability from S to X is a mapping f from S to the space M(X) of probability mea-
sures on (X�X ) such that f (B|·) : s→ f (B|s) is S-measurable for each B ∈ X .

Lemma 5. Let f (·|s) be a transition probability from a measurable space (S�S) to another
measurable space (X�X ) (X is separable).37 Let Q be a measurable, nonempty and com-
pact valued correspondence from S ×X to Rl, which is f -integrable in the sense that for
any measurable selection q of Q, q(s� ·) is f (·|s)-absolutely integrable for any s ∈ S. Let∫
Qdf be the correspondence from S to subsets of Rl defined by

M(s)=
(∫

Qdf

)
(s)=

{∫
X
q(s�x)f (dx|s) : q is a measurable selection ofQ

}
�

Denote the graph ofM by J. Let J be the restriction of the product σ-algebra S ⊗B(Rl) to
J. Then the following statements hold.

(i) The termM is a measurable, nonempty and compact valued correspondence.

(ii) There exists a measurable, Rl-valued function g on (X × J�X ⊗ J ) such that
g(x�e� s) ∈Q(x� s) and e= ∫

X g(x�e� s)f (dx|s).

The proof of Lemma 6 in Reny and Robson (2002) leads to the following result.

Lemma 6. Suppose thatH andX are Polish spaces. Let P : H×X →Rn be a measurable,
nonempty and compact valued correspondence, and let the mappings f : H → M(X) and
μ : H → �(X) be measurable, where �(X) is the set of all finite Borel measures on X . In
addition, suppose that μ(·|h)= p(h� ·) ◦ f (·|h) such that p(h� ·) is a measurable selection
of P(h� ·) for each h.38 Then there exists a jointly Borel measurable selection g of P such
that μ(·|h)= g(h� ·) ◦ f (·|h); that is, g(h�x)= p(h�x) for f (·|h)-almost all x.

37A σ-algebra is said to be separable if it is generated by a countable collection of sets.
38The finite measure μ(·|h)= p(h� ·) ◦ f (·|h) if μ(E|h)= ∫

E p(h�x)f (dx|h) for any Borel set E.
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Suppose that (S1�S1) is a measurable space, S2 is a Polish space endowed with the
Borel σ-algebra, and S = S1 × S2, which is endowed with the product σ-algebra S . LetD
be an S-measurable subset of S such thatD(s1) is compact for any s1 ∈ S1. The σ-algebra
D is the restriction of S on D. Let X be a Polish space, and let A be a D-measurable,
nonempty and closed valued correspondence fromD toX that is sectionally continuous
on S2. The following lemma considers the property of upper hemicontinuity for the
correspondenceM as defined in Lemma 5.

Lemma 7. Let f (·|s) be a transition probability from (D�D) to M(X) such that f (A(s)|
s)= 1 for any s ∈D, which is sectionally continuous on S2. Let G be a bounded, measur-
able, nonempty, convex and compact valued correspondence from Gr(A) to Rl, which is
sectionally upper hemicontinuous on S2 ×X . Let

∫
Gdf be the correspondence fromD to

subsets of Rl defined by

M(s)=
(∫

Gdf

)
(s)=

{∫
X
g(s�x)f (dx|s) : g is a measurable selection ofG

}
�

Then M is S-measurable, nonempty and compact valued, and sectionally upper hemi-
continuous on S2.

Proof. Define a correspondence G̃ : S×X →Rl as

G̃=
{
G(s�x)� if (s�x) ∈ Gr(A)�

{0}� otherwise�

Then M(s) = (
∫
G̃df )(s) = (

∫
Gdf)(s). The measurability, nonemptiness, and com-

pactness follow from Lemma 5. Given s1 ∈ S1 such that (a) D(s1) 
= ∅, (b) f (s1� ·), and
G(s1� ·� ·) is upper hemicontinuous. The upper hemicontinuity of M(s1� ·) follows from
Lemma 2 in Simon and Zame (1990) and Lemma 4 in Reny and Robson (2002).

From now on, whenever we work with mappings taking values in the space M(X)

of Borel probability measures on some separable metric space X , the relevant continu-
ity or convergence is assumed to be in terms of the topology of weak convergence of
measures on M(X) unless otherwise noted.

In the following lemma, we state some properties for transition correspondences.

Lemma 8. Suppose that Y and Z are Polish spaces. Let G be a measurable, nonempty,
convex and compact valued correspondence from Y to M(Z). Define a correspondence
G′ from M(Y) to M(Z) as

G′(ν)=
{∫

Y
g(y)ν(dy) : g is a Borel measurable selection ofG

}
�39

39The integral
∫
Y g(y)ν(dy) defines a Borel probability measure τ onZ such that for any Borel set C inZ,

τ(C)= ∫
Y g(y)(C)ν(dy). The measure τ is also equal to the Gelfand integral of gwith respect to the measure

ν on Y , when M(Z) is viewed as a set in the dual space of the space of bounded continuous functions on
Z; see Definition 11.49 of Aliprantis and Border (2006).



Theoretical Economics 15 (2020) Dynamic games with (almost) perfect information 837

(i) The correspondenceG′ is measurable, nonempty, convex and compact valued.

(ii) The correspondenceG is upper hemicontinuous if and only ifG′ is upper hemicon-
tinuous. In addition, ifG is continuous, thenG′ is continuous.

Proof. Part (i) is Lemma 19.29 of Aliprantis and Border (2006). By Theorem 19.30
therein,G is upper hemicontinuous if and only ifG′ is upper hemicontinuous. We need
to show thatG′ is lower hemicontinuous ifG is lower hemicontinuous.

Let Z be endowed with a totally bounded metric, and U(Z) the space of bounded,
real-valued, and uniformly continuous functions on Z endowed with the supremum
norm, which is obviously separable. Pick a countable set {fm}m≥1 ⊆U(Z) such that {fm}
is dense in the unit ball of U(Z). It follows from Theorem 15.2 of Aliprantis and Border
(2006) that the weak∗ topology of M(Z) is metrizable by the metric dz , where

dz(μ1�μ2)=
∞∑
m=1

1
2m

∣∣∣∣
∫
Z
fm(z)μ1(dz)−

∫
Z
fm(z)μ2(dz)

∣∣∣∣
for each pair of μ1�μ2 ∈ M(Z).

Suppose that {νj}j≥0 is a sequence in M(Y) such that νj → ν0 as j→ ∞. Pick an arbi-
trary point μ0 ∈G′(ν0). By the definition ofG′, there exists a Borel measurable selection
g ofG such that μ0 = ∫

Y g(y)ν0(dy).
For each k≥ 1, by Lemma 3 (Lusin’s theorem), there exists a compact subsetDk ⊆ Y

such that g is continuous onDk and ν0(Y \Dk) < 1
3k . Define a correspondenceGk : Y →

M(Z) as

Gk(y)=
{{
g(y)

}
� y ∈Dk

G(y)� y ∈ Y \Dk�
Then Gk is nonempty, convex and compact valued, and lower hemicontinuous. By
Theorem 3.22 in Aliprantis and Border (2006), Y is paracompact. Then by Lemma 3
(Michael’s selection theorem), it has a continuous selection gk.

For each k, since νj → ν0 and gk is continuous,
∫
Y gk(y)νj(dy)→ ∫

Y gk(y)ν0(dy) in
the sense that for anym≥ 1,∫

Y

∫
Z
fm(z)gk(dz|y)νj(dy)→

∫
Y

∫
Z
fm(z)gk(dz|y)ν0(dy)�

Thus, there exists a point νjk such that {jk} is an increasing sequence and

dz

(∫
Y
gk(y)νjk(dy)�

∫
Y
gk(y)ν0(dy)

)
<

1
3k
�

In addition, since gk coincides with g onDk and ν0(Y \Dk) < 1
3k ,

dz

(∫
Y
gk(y)ν0(dy)�

∫
Y
g(y)ν0(dy)

)
<

2
3k
�
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Thus,

dz

(∫
Y
gk(y)νjk(dy)�

∫
Y
g(y)ν0(dy)

)
<

1
k
�

Let μjk = ∫
Y gk(y)νjk(dy) for each k. Then μjk ∈ G′(νjk) and μjk → μ0 as k → ∞. By

Lemma 1,G′ is lower hemicontinuous.

The next lemma presents some properties for the composition of two transition cor-
respondences in terms of the product of transition probabilities.

Lemma 9. LetX ,Y , andZ be Polish spaces, andG a measurable, nonempty and compact
valued correspondence fromX to M(Y). Suppose that F is a measurable, nonempty, con-
vex and compact valued correspondence from X × Y to M(Z). Define a correspondence
� fromX to M(Y ×Z) as

�(x)= {
g(x) � f (x) : g is a Borel measurable selection ofG�

f is a Borel measurable selection of F
}
�

(i) If F is sectionally continuous on Y , then � is a measurable, nonempty and com-
pact valued correspondence.

(ii) If there exists a function g fromX to M(Y) such thatG(x)= {g(x)} for any x ∈X ,
then� is a measurable, nonempty and compact valued correspondence.

(iii) If both G and F are continuous correspondences, then � is a nonempty and com-
pact valued, and continuous correspondence.40

(iv) If G(x) ≡ {λ} for some fixed Borel probability measure λ ∈ M(Y) and F is sec-
tionally continuous onX , then � is a continuous, nonempty and compact valued
correspondence.

Proof. (i) Define three correspondences F̃ : X × Y → M(Y × Z), F̂ : M(X × Y) →
M(Y ×Z), and F̌ : X ×M(Y)→ M(Y ×Z) as

F̃(x� y)= {
δy ⊗μ : μ ∈ F(x� y)}�

F̂(τ)=
{∫

X×Y
f (x� y)τ

(
d(x� y)

) : f is a Borel measurable selection of F̃
}
�

F̌(x�μ)= F̂(δx ⊗μ)�

Since F is measurable, nonempty, convex and compact valued, F̃ is measurable,
nonempty, convex and compact valued. By Lemma 8, the correspondence F̂ is mea-
surable, nonempty, convex and compact valued, and F̌(x� ·) is continuous on M(Y) for
any x ∈X .

40In Lemma 29 of Harris et al. (1995), they showed that � is upper hemicontinuous if both G and F are
upper hemicontinuous.
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Since G is measurable and compact-valued, there exists a sequence of Borel mea-
surable selections {gk}k≥1 of G such that G(x) = {g1(x)�g2(x)� � � �} for any x ∈ X by
Lemma 2(v). For each k≥ 1, define a correspondence�k fromX to M(Y ×Z) by letting
�k(x) = F̌(x�gk(x)) = F̂(δx ⊗ gk(x)). Then �k is measurable, nonempty, convex and
compact valued.

Fix any x ∈X . It is clear that �(x) = F̌(x�G(x)) is nonempty-valued. Since G(x) is
compact, and F̌(x� ·) is compact-valued and continuous, �(x) is compact by Lemma 2.
Thus, the closure

⋃
k≥1�

k(x) of
⋃
k≥1�

k(x) is a subset of �(x).

Fix any x ∈X and τ ∈�(x). There exists a point ν ∈G(x) such that τ ∈ F̌(x� ν). Since
{gk(x)}k≥1 is dense in G(x), it has a subsequence {gkm(x)} such that gkm(x) → ν. As
F̌(x� ·) is continuous, F̌(x�gkm(x))→ F̌(x� ν). That is,

τ ∈
⋃
k≥1

F̌
(
x�gk(x)

) =
⋃
k≥1

�k(x)�

Therefore,
⋃
k≥1�

k(x) = �(x) for any x ∈X . Lemma 2(i) and (ii) imply that � is mea-
surable.

(ii) As in (i), the correspondence F̂ is measurable, nonempty, convex and compact
valued. If G= {g} for some measurable function g, then �(x) = F̂(δx ⊗ g(x)), which is
measurable, nonempty and compact valued.

(iii) We continue to work with the two correspondences F̃ : X ×Y → M(Y ×Z) and
F̂ : M(X×Y)→M(Y×Z) as in part (i). By the condition on F , it is obvious that the cor-
respondence F̃ is continuous, nonempty, convex and compact valued. Lemma 8 implies
the properties for the correspondence F̂ . Define a correspondence Ĝ : X → M(X ×Y)
as Ĝ(x) = δx ⊗ G(x).41 Since Ĝ and F̂ are both nonempty-valued, �(x) = F̂(Ĝ(x))

is nonempty. As Ĝ is compact-valued and F̂ is continuous, � is compact-valued by
Lemma 2. As Ĝ and F̂ are both continuous, � is continuous by Lemma 1(vii).

(iv) Let Y ′ = Y and define a correspondence F̆ : X ×Y →M(Y ′ ×Z) as

F̆(x� y)= δy ⊗ F(x� y)= {
δy ⊗μ : μ ∈ F(x� y)}�

Then F̆ is also measurable, nonempty, convex and compact valued, and sectionally up-
per hemicontinuous onX .

Let d be a totally bounded metric onY ′ ×Z, andU(Y ′ ×Z) be the space of bounded,
real-valued, and uniformly continuous functions on Y ′ × Z endowed with the supre-
mum norm, which is obviously separable. It follows from Theorem 15.2 of Aliprantis
and Border (2006) that the space of Borel probability measures on Y ′ ×Z with the topol-
ogy of weak convergence of measures can be viewed as a subspace of the dual space of
U(Y ′ ×Z) with the weak* topology. By Corollary 18.37 of Aliprantis and Border (2006),
�(x)= ∫

Y F̆(x� y)λ(dy) is nonempty, convex, and compact for any x ∈X .42

41Given a finite measure ν on X and a set D of finite measures on Y , ν ⊗ D denotes the set of finite
measures {ν⊗μ : μ ∈D}.

42Note that the integral
∫
Y F̆(x� y)λ(dy) can be viewed as the Gelfand integral of the correspondence in

the dual space of U(Y ′ ×Z); see Definition 18.36 of Aliprantis and Border (2006).
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Now we show the upper hemicontinuity. If xn → x0 andμn ∈�(xn), we need to prove
that there exists some μ0 ∈ �(x0) such that a subsequence of {μn} weakly converges
to μ0. Suppose that for n ≥ 1, fn is a Borel measurable selection of F(xn� ·) such that
μn = λ � fn.

Fix any y ∈ Y and let J(y)= co{fn(y)⊗δxn}n≥1, which is the closure of the convex hull
of {fn(y)⊗ δxn}n≥1. It is obvious that J(y) is nonempty and convex. It is also clear that
J(y) is the closure of the countable set{

n∑
i=1

αifi(y)⊗ δxi : n≥ 1�αi ∈ Q+� i= 1� � � � � n�
n∑
i=1

αi = 1

}
�

where Q+ is the set of nonnegative rational numbers. Let F ′(x)= {μ⊗ δx : μ ∈ F(x� y)}
for any x ∈ X . Then F ′ is continuous on X . Since {xn : n ≥ 0} is a compact set,
Lemma 2(vi) implies that

⋃
n≥0 F

′(xn) is compact. Hence, {fn(y)⊗ δxn}n≥1 is relatively
compact. By Theorem 5.22 of Aliprantis and Border (2006), {fn(y)⊗δxn}n≥1 is tight. That
is, for any positive real number ε, there is a compact set Kε in Z ×X such that for any
n≥ 1, fn(y)⊗ δxn(Kε) > 1 − ε. Thus,

∑n
i=1 αifi(y)⊗ δxi(Kε) > 1 − ε for any n≥ 1 and for

any αi ∈ Q+, i = 1� � � � � n with
∑n
i=1 αi = 1. Hence, J(y) is compact by Theorem 5.22 of

Aliprantis and Border (2006) again.
For any n ≥ 1 and for any αi ∈ Q+, i = 1� � � � � n with

∑n
i=1 αi = 1, it is clear that∑n

i=1 αifi(y)⊗δxi is measurable in y ∈ Y . Lemma 2(v) implies that J is also a measurable
correspondence from Y to M(Z ×X). By the argument in the second paragraph of the
proof of part (iv), the set

�= {λ � ζ : ζ is a Borel measurable selection of J}
is compact.

Since λ � (fn ⊗ δxn) ∈� for each n, there exists some Borel measurable selection ζ of
J such that a subsequence of {λ � (fn ⊗ δxn)}, say itself, weakly converges to λ � ζ ∈ �.
Let ζX(y) be the marginal probability of ζ(y) on X for each y. Since xn converges to x0,
ζX(y)= δx0 for λ-almost all y ∈ Y . As a result, there exists a Borel measurable function
f0 such that ζ = f0 ⊗ δx0 , where f0(y) ∈ co Lsn{fn(y)} for λ-almost all y ∈ Y . Since F
is convex and compact valued, and upper hemicontinuous on X , f0 is a measurable
selection of F(x0� ·). Let μ0 = λ� f0. Then μn weakly converges to μ0, which implies that
� is upper hemicontinuous.

Next we show the lower hemicontinuity of �. Suppose that xn → x0 and μ0 ∈�(x0).
Then there exists a Borel measurable selection f0 of F(x0� ·) such that μ0 = λ � f0. Since
F is sectionally lower hemicontinuous on X and compact-valued, for each n ≥ 1, there
exists a measurable selection fn for F(xn� ·) such that fn(y)weakly converges to f0(y) for
each y ∈ Y .43 Denote μn = λ � fn. For any bounded continuous function ψ on Y × Z,∫
Z ψ(y� z)fn(dz|y) converges to

∫
Z ψ(y� z)f0(dz|y) for any y ∈ Y . Thus, we have∫

Y×Z
ψ(y� z)μn

(
d(y� z)

) =
∫
Y

∫
Z
ψ(y� z)fn(dz|y)λ(dy)

43See Proposition 4.2 in Sun (1997). Note that the atomless Loeb probability measurable space assump-
tion is not needed for the result of lower hemicontinuity as in Theorem 10 therein.
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→
∫
Y

∫
Z
ψ(y� z)f0(dz|y)λ(dy)

by the dominated convergence theorem. Therefore, � is lower hemicontinuous. The
proof is thus complete.

The following lemma is taken from Simon and Zame (1990) (see also Lemma 4 in
Reny and Robson (2002)).

• The S and Y are Polish spaces, and D is a closed subset of S × Y , where D(s) is
compact for all s ∈ S.

• We haveX = ∏
1≤i≤nXi, where eachXi is a Polish space.

• For each i, Ai is a nonempty and compact valued continuous correspondence
fromD toXi,A= ∏

1≤i≤nAi, and E = Gr(A).

• The P is a bounded, nonempty, convex and compact valued upper hemicontinu-
ous correspondence from E to Rn.

Lemma 10. Consider the correspondence � : D → Rn × M(X) × �(X) defined as
(v�α�μ) ∈ �(s� y) if p is a selection of P such that p(s� y� ·) is Borel measurable for any
(s� y) and the following relationships hold:

(i) We have v= ∫
X p(s� y�x)α(dx).

(ii) We have that α ∈ ⊗
i∈IM(Ai(s� y)) is a Nash equilibrium in the subgame (s� y)

with payoff profile p(s� y� ·) and action spaceAi(s� y) for each player i.

(iii) We have μ= p(s� y� ·) ◦ α.

Then� is nonempty and compact valued, and upper hemicontinuous onD.

A.2 Proof of Theorem 1

A.2.1 Backward induction As explained in Section 4.3, the backward induction step
aims to show that some desirable properties of the equilibrium payoff correspondences
can be preserved when one works backward along the game tree.

Given t ≥ 1, letQt+1 be a bounded, nonempty and compact valued, and upper hemi-
continuous correspondence fromHt to Rn. For any ht−1 ∈Ht−1 and xt ∈At(ht−1), let

Pt(ht−1�xt)=
∫
St

Qt+1(ht−1�xt� st)ft0(dst |ht−1)�

Since ft0(·|ht−1) is atomless andQt+1 is nonempty and compact valued, by Lemma 4,

Pt(ht−1�xt)=
∫
St

coQt+1(ht−1�xt� st)ft0(dst |ht−1)�

where coQt+1(ht−1�xt� st) is the convex hull of Qt+1(ht−1�xt� st). By Lemma 4, Pt is
bounded, nonempty, convex and compact valued. To show that Pt is upper hemicontin-
uous on Gr(At), by Lemma 1(v), it is sufficient to show that Pt is upper hemicontinuous
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on {(hkt−1�x
k
t )}k≥0, where {(hkt−1�x

k
t )}k≥0 is a sequence such that (hkt−1�x

k
t )→ (h0

t−1�x
0
t )

as k→ ∞. Note that {(hkt−1�x
k
t )}k≥0 is indeed a compact set. Then the upper hemicon-

tinuity of Pt on {(hkt−1�x
k
t )}k≥0 follows from Lemma 7.

By Lemma 10, there exists a bounded, measurable, nonempty and compact valued
correspondence �t from Ht−1 to Rn × M(Xt)× �(Xt) such that �t is upper hemicon-
tinuous, and for all ht−1 ∈ Ht−1, (v�α�μ) ∈ �t(ht−1) if pt is a selection of Pt such that
pt(ht−1� ·) is Borel measurable and we have the following relationships:

• We have v= ∫
At(ht−1)

pt(ht−1�x)α(dx).

• We have that α ∈ ⊗
i∈IM(Ati(ht−1)) is a Nash equilibrium in the subgame ht−1

with payoff pt(ht−1� ·) and action space
∏
i∈I Ati(ht−1).

• We have μ= pt(ht−1� ·) ◦ α.

Denote the restriction of�t on the first component Rn as�(Qt+1), which is a correspon-
dence from Ht−1 to Rn. By Lemma 10, �(Qt+1) is bounded, nonempty and compact
valued, and upper hemicontinuous.

A.2.2 Forward induction If one views Qt as some payoff correspondence for the play-
ers in stage t, then the correspondence�t obtained in the backward induction step col-
lects all the equilibrium strategies, the corresponding payoff vectors, and the induced
probabilities in stage t − 1. The issue here is that one needs to construct jointly measur-
able payoff functions (as selections ofQt ) and strategy profiles in stage t that induce the
equilibrium payoffs in �t . This is done in the forward induction step. Specifically, we
prove the following proposition.

Proposition 3. For any t ≥ 1 and any Borel measurable selection qt of �(Qt+1),
there exists a Borel measurable selection qt+1 of Qt+1 and a Borel measurable mapping
ft : Ht−1 → ⊗

i∈IM(Xti) such that for all ht−1 ∈ Ht−1, we have the following relation-
ships:

(i) We have ft(ht−1) ∈ ⊗
i∈IM(Ati(ht−1)).

(ii) We have qt(ht−1)= ∫
At(ht−1)

∫
St
qt+1(ht−1�xt� st)ft0(dst |ht−1)ft(dxt |ht−1).

(iii) We have that ft(·|ht−1) is a Nash equilibrium in the subgame ht−1 with action
spaces {Ati(ht−1)}i∈I and payoff functions∫

St

qt+1(ht−1� ·� st)ft0(dst |ht−1)�

Proof. We divide the proof into three steps. In Step 1, we show that there exist
Borel measurable mappings ft : Ht−1 → ⊗

i∈IM(Xti) and μt : Ht−1 → �(Xt) such that
(qt� ft�μt) is a selection of �t . In Step 2, we obtain a Borel measurable selection gt of Pt
such that for all ht−1 ∈Ht−1, we have the following relationships.

• We have qt(ht−1)= ∫
At(ht−1)

gt(ht−1�x)ft(dx|ht−1).
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• We have that ft(ht−1) is a Nash equilibrium in the subgame ht−1 with payoff
gt(ht−1� ·) and action spaceAt(ht−1).44

In Step 3, we show that there exists a Borel measurable selection qt+1 of Qt+1 such that
for all ht−1 ∈Ht−1 and xt ∈At(ht−1),

gt(ht−1�xt)=
∫
St

qt+1(ht−1�xt� st)ft0(dst |ht−1)�

Combining Steps 1–3 completes the proof.
Step 1. Let�t : Gr(�(Qt+1))→ M(Xt)× �(Xt) be

�t(ht−1� v)= {
(α�μ) : (v�α�μ) ∈�t(ht−1)

}
�

For any {(hkt−1� v
k)}1≤k≤∞ ⊆ Gr(�(Qt+1)) such that (hkt−1� v

k) converges to (h∞
t−1� v

∞),
pick (αk�μk) such that (vk�αk�μk) ∈ �t(hkt−1) for 1 ≤ k <∞. Since �t is upper hemi-
continuous and compact-valued, there exists a subsequence of (vk�αk�μk), say itself,
such that (vk�αk�μk) converges to some (v∞�α∞�μ∞) ∈ �t(h∞

t−1) due to Lemma 1(v).
Thus, (α∞�μ∞) ∈ �t(h∞

t−1� v
∞), which implies that �t is also upper hemicontinuous

and compact-valued. By Lemma 2(iii), �t has a Borel measurable selection ψt . Given
a Borel measurable selection qt of �(Qt+1), let φt(ht−1)= (qt(ht−1)�ψt(ht−1� qt(ht−1))).
Then φt is a Borel measurable selection of �t . Let ft and μt be the second and third di-
mensions of φt , respectively. By the construction of �t , for all ht−1 ∈Ht−1, the following
relationships hold:

• We have that qt(ht−1) = ∫
At(ht−1)

pt(ht−1�x)ft(dx|ht−1) such that pt(ht−1� ·) is a
Borel measurable selection of Pt(ht−1� ·).

• We have that ft(ht−1) ∈ ⊗
i∈IM(Ati(ht−1)) is a Nash equilibrium in the subgame

ht−1 with payoff pt(ht−1� ·) and action space
∏
i∈I Ati(ht−1).

• We have μt(·|ht−1)= pt(ht−1� ·) ◦ ft(·|ht−1).

Step 2. Since Pt is upper hemicontinuous on {(ht−1�xt) : ht−1 ∈Ht−1�xt ∈At(ht−1)},
due to Lemma 6, there exists a Borel measurable mapping g such that (a) g(ht−1�xt) ∈
Pt(ht−1�xt) for any ht−1 ∈Ht−1 and xt ∈At(ht−1), and (b) g(ht−1�xt) = pt(ht−1�xt) for
ft(·|ht−1)-almost all xt .

In a subgame ht−1 ∈Ht−1, let

Bti(ht−1)=
{
yi ∈Ati(ht−1) :∫
At(−i)(ht−1)

gi(ht−1� yi� xt(−i))ft(−i)(dxt(−i)|ht−1)

>

∫
At(ht−1)

pti(ht−1�xt)ft(dxt |ht−1)

}
�

44One cannot simply use pt in the previous subsection instead of gt here. Note that pt may not be jointly
Borel measurable in (ht−1�x) even though pt(ht−1� ·) is Borel measurable for each fixed ht−1.



844 He and Sun Theoretical Economics 15 (2020)

Since g(ht−1�xt)= pt(ht−1�xt) for ft(·|ht−1)-almost all xt ,∫
At(ht−1)

g(ht−1�xt)ft(dxt |ht−1)=
∫
At(ht−1)

pt(ht−1�xt)ft(dxt |ht−1)�

Thus, Bti is a measurable correspondence from Ht−1 to Ati(ht−1). Then Bti has a
Borel graph. As ft(ht−1) is a Nash equilibrium in the subgame ht−1 ∈Ht−1 with payoff
pt(ht−1� ·), fti(Bti(ht−1)|ht−1)= 0.

Denote βi(ht−1�xt) = minPti(ht−1�xt), where Pti(ht−1�xt) is the projection of
Pt(ht−1�xt) on the ith dimension. Then the correspondence Pti is measurable and
compact-valued, and βi is Borel measurable. Let�i(ht−1�xt)= {βi(ht−1�xt)}× [0�γ]n−1,
where γ > 0 is the upper bound of Pt . Denote �′

i(ht−1�xt) = �i(ht−1�xt) ∩ Pt(ht−1�xt).
Then �′

i is a measurable and compact-valued correspondence, and hence has a Borel
measurable selection β′

i. Note that β′
i is a Borel measurable selection of Pt . Let

gt(ht−1�xt)

=
{
β′
i(ht−1�xt) if ht−1 ∈Ht−1�xti ∈ Bti(ht−1) and xtj /∈ Btj(ht−1)�∀j 
= i�
g(ht−1�xt) otherwise.

Note that{
(ht−1�xt) ∈ Gr(At) : ht−1 ∈Ht−1�xti ∈ Bti(ht−1) and xtj /∈ Btj(ht−1)�∀j 
= i;}

= Gr(At)∩
⋃
i∈I

((
Gr(Bti)×

∏
j 
=i
Xtj

)∖(⋃
j 
=i

(
Gr(Btj)×

∏
k
=j

Xtk

)))
�

which is a Borel set. As a result, gt is a Borel measurable selection of Pt . Moreover,
gt(ht−1�xt)= pt(ht−1�xt) for all ht−1 ∈Ht−1 and ft(·|ht−1)-almost all xt .

Fix a subgame ht−1 ∈Ht−1. We verify that ft(·|ht−1) is a Nash equilibrium given the
payoff gt(ht−1� ·) in the subgame ht−1. Suppose that player i deviates to some action x̃ti.

If x̃ti ∈ Bti(ht−1), then player i’s expected payoff is∫
At(−i)(ht−1)

gti(ht−1� x̃ti� xt(−i))ft(−i)(dxt(−i)|ht−1)

=
∫

∏
j 
=i Bctj(ht−1)

gti(ht−1� x̃ti� xt(−i))ft(−i)(dxt(−i)|ht−1)

=
∫

∏
j 
=i Bctj(ht−1)

βi(ht−1� x̃ti� xt(−i))ft(−i)(dxt(−i)|ht−1)

≤
∫

∏
j 
=i Bctj(ht−1)

pti(ht−1� x̃ti� xt(−i))ft(−i)(dxt(−i)|ht−1)

=
∫
At(−i)(ht−1)

pti(ht−1� x̃ti� xt(−i))ft(−i)(dxt(−i)|ht−1)

≤
∫
At(ht−1)

pti(ht−1�xt)ft(dxt |ht−1)
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=
∫
At(ht−1)

gti(ht−1�xt)ft(dxt |ht−1)�

The first and the third equalities hold since ftj(Btj(ht−1)|ht−1) = 0 for each j, and
hence ft(−i)(

∏
j 
=i Bctj(ht−1)|ht−1) = ft(−i)(At(−i)(ht−1)|ht−1). The second equality and

the first inequality are due to the fact that gti(ht−1� x̃ti� xt(−i)) = βi(ht−1� x̃ti� xt(−i)) =
minPti(ht−1� x̃ti� xt(−i)) ≤ pti(ht−1� x̃ti� xt(−i)) for xt(−i) ∈ ∏

j 
=i Bctj(ht−1). The second in-
equality holds since ft(·|ht−1) is a Nash equilibrium given the payoff pt(ht−1� ·) in the
subgame ht−1. The fourth equality follows from the fact that gt(ht−1�xt) = pt(ht−1�xt)

for ft(·|ht−1)-almost all xt .
If x̃ti /∈ Bti(ht−1), then player i’s expected payoff is∫

At(−i)(ht−1)
gti(ht−1� x̃ti� xt(−i))ft(−i)(dxt(−i)|ht−1)

=
∫

∏
j 
=i Bctj(ht−1)

gti(ht−1� x̃ti� xt(−i))ft(−i)(dxt(−i)|ht−1)

=
∫

∏
j 
=i Bctj(ht−1)

gi(ht−1� x̃ti� xt(−i))ft(−i)(dxt(−i)|ht−1)

=
∫
At(−i)(ht−1)

gi(ht−1� x̃ti� xt(−i))ft(−i)(dxt(−i)|ht−1)

≤
∫
At(ht−1)

pti(ht−1�xt)ft(dxt |ht−1)

=
∫
At(ht−1)

gti(ht−1�xt)ft(dxt |ht−1)�

The first and the third equalities hold since

ft(−i)
(∏
j 
=i
Bctj(ht−1)|ht−1

)
= ft(−i)

(
At(−i)(ht−1)|ht−1

)
�

The second equality is due to the fact that gti(ht−1� x̃ti� xt(−i)) = gi(ht−1� x̃ti� xt(−i)) for
xt(−i) ∈ ∏

j 
=i Bctj(ht−1). The first inequality follows from the definition of Bti, and the
fourth equality holds since gt(ht−1�xt)= pt(ht−1�xt) for ft(·|ht−1)-almost all xt .

Thus, player i cannot improve his payoff in the subgame ht by a unilateral change
in his strategy for any i ∈ I, which implies that ft(·|ht−1) is a Nash equilibrium given the
payoff gt(ht−1� ·) in the subgame ht−1.

Step 3. For any (ht−1�xt) ∈ Gr(At),

Pt(ht−1�xt)=
∫
St

Qt+1(ht−1�xt� st)ft0(dst |ht−1)�

By Lemma 5, there exists a Borel measurable mapping q from Gr(Pt)×St to Rn such that
we have the following relationships:

• We have q(ht−1�xt� e� st) ∈Qt+1(ht−1�xt� st) for any (ht−1�xt� e� st) ∈ Gr(Pt)× St .
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• We have e = ∫
St
q(ht−1�xt� e� st)ft0(dst |ht−1) for any (ht−1�xt� e) ∈ Gr(Pt), where

(ht−1�xt) ∈ Gr(At).

Let

qt+1(ht−1�xt� st)= q(ht−1�xt� gt(ht−1�xt)� st
)

for any (ht−1�xt� st) ∈Ht . Then qt+1 is a Borel measurable selection ofQt+1.
For (ht−1�xt) ∈ Gr(At),

gt(ht−1�xt)=
∫
St

q
(
ht−1�xt� gt(ht−1�xt)� st

)
ft0(dst |ht−1)

=
∫
St

qt+1(ht−1�xt� st)ft0(dst |ht−1)�

Therefore, we have a Borel measurable selection qt+1 ofQt+1 and a Borel measurable
mapping ft : Ht−1 → ⊗

i∈IM(Xti) such that for all ht−1 ∈ Ht−1, properties (i)–(iii) are
satisfied. The proof is complete.

If a dynamic game has only T stages for some positive integer T ≥ 1, then let
QT+1(hT ) = {u(hT )} for any hT ∈HT and Qt = �(Qt+1) for 1 ≤ t ≤ T − 1. We can start
with the backward induction from the last period and stop at the initial period, and
then run the forward induction from the initial period to the last period. We obtain the
following corollary.

Corollary 1. If a finite-horizon continuous dynamic game with almost perfect infor-
mation satisfies the condition of atomless transitions, then it has a subgame-perfect equi-
librium.45

A.2.3 Infinite-horizon case Pick a sequence ξ = (ξ1� ξ2� � � �) such that (a) ξm is a tran-
sition probability from Hm−1 to M(Xm) for any m≥ 1, and (b) ξm(Am(hm−1)|hm−1)= 1
for any m ≥ 1 and hm−1 ∈Hm−1. Denote the set of all such ξ by ϒ. Intuitively, ξ can be
viewed as a correlated strategy profile with each ξt being the correlated strategy in stage
t, and ϒ is the set of all such correlated strategies.

Fix any t ≥ 1 and define a correspondence �tt as follows: in the subgame ht−1,

�tt(ht−1)= M
(
At(ht−1)

) ⊗ ft0(ht−1)�

Then �tt(ht−1) is the set of probability measures on the space of action profiles of stage
t, which is induced by all the possible correlated strategies among the active players and
Nature’s move in the subgame ht−1. Inductively, we define the set of possible paths for
correlated strategies in any subgame between stages t andm1 for t <m1 ≤ ∞.

For any integer m1 > t, suppose that the correspondence �m1−1
t has been defined.

The correspondence �m1
t : Ht−1 → M(

∏
t≤m≤m1

(Xm × Sm)) is defined as

�
m1
t (ht−1)= {

g(ht−1) � (
ξm1(ht−1� ·)⊗ fm10(ht−1� ·)

) :
45The condition of atomless transition is not needed at the last stage.
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g is a Borel measurable selection of �m1−1
t �

ξm1 is a Borel measurable selection of M(Am1)
}
�

where the correspondence M(Am1) takes value M(Am1(hm1−1)) at subgame hm1−1. For
any m1 ≥ t, let �m1

(ht−1�ξ)
∈ �m1

t be the probability measure on
∏
t≤m≤m1

(Xm × Sm) in-
duced by Nature’s moves {fm0}t≤m≤m1 and the correlated strategies {ξm}t≤m≤m1 . Then
�
m1
(ht−1�ξ)

is a possible path induced by ξ in the subgame ht−1 before stage m1, and

�
m1
t (ht−1) is the set of all such possible paths �m1

(ht−1�ξ)
in the subgame ht−1. Note that

�
m1
(ht−1�ξ)

can be regarded as a probability measure onHm1(ht−1)= {(xt� st� � � � � xm1� sm1) :
(ht−1�xt� st� � � � � xm1� sm1) ∈ Hm1}. Similarly, let �(ht−1�ξ) be the probability measure
on

∏
m≥t(Xm × Sm) induced by Nature’s moves {fm0}m≥t and the correlated strategies

{ξm}m≥t after the subgame ht−1. The correspondence

�t : Ht−1 → M
(∏
m≥t

(Xm × Sm)
)

collects all the possible paths �(ht−1�ξ).
We show that the correspondence �t(ht−1), which contains all the possible paths

induced by correlated strategies in the subgame ht−1, is nonempty and compact valued,
and continuous. The claim is proved by showing that �m1

t has such properties and that
�t can be approximated by �m1

t whenm1 is sufficiently large.

Lemma 11. (i) For any t ≥ 1, the correspondence �m1
t is nonempty and compact valued,

and continuous for anym1 ≥ t.
(ii) For any t ≥ 1, the correspondence �t is nonempty and compact valued, and contin-

uous.

Proof. (i) Consider the casem1 = t ≥ 1, where

�
m1
t (ht−1)= M

(
At(ht−1)

) ⊗ ft0(ht−1)�

Since At is nonempty and compact valued, and both At and ft0 are continuous, �m1
t is

nonempty compact valued, and continuous.
Suppose that �m2

t is nonempty and compact valued, and continuous for some m2 ≥
t ≥ 1. Note that

�
m2+1
t (ht−1)= {

g(ht−1) � (
ξm2+1(ht−1� ·)⊗ f(m2+1)0(ht−1� ·)

) :
g is a Borel measurable selection of �m2

t �

ξm2+1 is a Borel measurable selection of M(Am2+1)
}
�

By Lemma 9(iii), �m2+1
t is nonempty and compact valued, and continuous.

(ii) It is obvious that �t is nonempty-valued. We first prove that it is upper hemicon-
tinuous and compact-valued.
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Given sequences {hkt−1} and τk ⊆ �t(h
k
t−1), there exists a sequence of {ξk}k≥1 such

that ξk = (ξk1 � ξ
k
2 � � � �) ∈ ϒ and τk = �(hkt−1�ξ

k) for each k ≥ 1. Suppose that hkt−1 → h∞
t−1.

By (i), �tt is compact-valued and upper hemicontinuous. Then there exists a mea-
surable mapping gt such that (a) gt = (ξ1

1� � � � � ξ
1
t−1� gt� ξ

1
t+1� � � �) ∈ ϒ and (b) a sub-

sequence of {�t
(hkt−1�ξ

k)
}, say {�t

(h
k1l
t−1�ξ

k1l )
}l≥1, that weakly converges to �t

(h∞
t−1�g

t)
. Note

that {ξkt+1} is a Borel measurable selection of M(At+1). By Lemma 9(iii), there is
a Borel measurable selection gt+1 of M(At+1) such that there is a subsequence of
{�t+1

(h
k1l
t−1�ξ

k1l )
}l≥1, say {�t+1

(h
k2l
t−1�ξ

k2l )
}l≥1, that weakly converges to �t+1

(h∞
t−1�g

t+1)
, where gt+1 =

(ξ1
1� � � � � ξ

1
t−1� gt� gt+1� ξ

1
t+2� � � �) ∈ϒ. Repeating this procedure, one can construct a Borel

measurable mapping g such that �
(h
k11
t−1�ξ

k11 )
��

(h
k22
t−1�ξ

k22 )
��

(h
k33
t−1�ξ

k33 )
� � � � weakly con-

verges to �(h∞
t−1�g)

. That is, �(h∞
t−1�g)

is a convergent point of {�(hkt−1�ξ
k)}. By Lemma 1(v),

�t is compact-valued and upper hemicontinuous.
Next we consider the lower hemicontinuity of �t . Suppose that τ0 ∈ �t(h0

t−1). Then

there exists some ξ ∈ ϒ such that τ0 = �(h0
t−1�ξ)

. Denote τ̃m = �m
(h0
t−1�ξ)

∈ �mt (h0
t−1)

for m ≥ t. As �mt is continuous, for each m, there exists some ξm ∈ ϒ such that
d(�m

(hkmt−1�ξ
m)
� τ̃m) ≤ 1

m for km sufficiently large, where d is the Prokhorov metric. Let

τm = �
(hkmt−1�ξ

m)
. Then τm weakly converges to τ0, which implies that �t is lower hemi-

continuous.

Below, we define a correspondence Qτt from Ht−1 to Rn++ inductively for any stages
t� τ ≥ 1. When τ < t,Qτt (ht−1) is the set of all the payoffs based on correlated strategies in
the subgame ht−1, which does not depend on τ. As a result, for any stage τ,Qττ+1 can be
defined. Then for τ ≥ t, Qτt is the correspondence obtained by repeating the backward
induction from the correspondenceQττ+1. Specifically,

Qτt (ht−1)

=

⎧⎪⎨
⎪⎩

{∫
∏
m≥t (Xm×Sm)

u(ht−1�x� s)�(ht−1�ξ)

(
d(x� s)

) : �(ht−1�ξ) ∈ �t(ht−1)

}
� τ < t�

�
(
Qτt+1

)
(ht−1)� τ ≥ t�

The lemma below presents several desirable properties ofQτt .

Lemma 12. For any t� τ ≥ 1,Qτt is bounded, measurable, nonempty and compact valued,
and upper hemicontinuous.

Proof. For t > τ, Qτt is bounded, measurable, nonempty and compact valued, and up-
per hemicontinuous because of the corresponding properties of u and �t .

For t ≤ τ, we can start with Qττ+1. Repeating the backward induction in Ap-
pendix A.2.1, Qτt is bounded, measurable, nonempty and compact valued, and upper
hemicontinuous.
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Denote Q∞
t = ⋂

τ≥1Q
τ
t . Recall that Qτt is the payoff correspondence of correlated

strategies when τ < t and the correspondence obtained by repeating the backward in-
duction from Qττ+1 when τ ≥ t. Given some t, when τ is sufficiently large, it is expected
that Qττ+1 should be close to the payoff correspondence of all the mixed strategies, as
the game is continuous at infinity. Given the correspondence Qττ+1, players play some
equilibrium strategies in each backward induction step. As a result, it is expected that
Qτt would be close to the actual equilibrium payoff correspondence Et for sufficiently
large τ. The following three lemmas show thatQ∞

t (ht−1)=�(Q∞
t+1)(ht−1)=Et(ht−1) for

all ht−1 ∈Ht−1.46

Lemma 13. (i) The correspondenceQ∞
t is bounded, measurable, nonempty and compact

valued, and upper hemicontinuous.

(ii) For any t ≥ 1,Q∞
t (ht−1)=�(Q∞

t+1)(ht−1) for all ht−1 ∈Ht−1.

Proof. (i) It is obvious that Q∞
t is bounded. By the definition of Qτt , for all ht−1 ∈Ht−1,

Q
τ1
t (ht−1) ⊆ Q

τ2
t (ht−1) for τ1 ≥ τ2. Since Qτt is nonempty and compact valued, Q∞

t =⋂
τ≥1Q

τ
t is nonempty and compact valued. By Lemma 2(ii),

⋂
τ≥1Q

τ
t is measurable,

which implies thatQ∞
t is measurable.

Since Qτt is upper hemicontinuous for any τ, by Lemma 2(vii), it has a closed graph
for each τ, which implies that Q∞

t has a closed graph. Referring to Lemma 2(vii) again,
Q∞
t is upper hemicontinuous.

(ii) For any τ ≥ 1 and ht−1 ∈Ht−1, �(Q∞
t+1)(ht−1) ⊆ �(Qτt+1)(ht−1) ⊆ Qτt (ht−1), and,

hence, �(Q∞
t+1)(ht−1)⊆Q∞

t (ht−1).
Let {1�2� � � �∞} be a countable compact space endowed with the metric d(k�m) =

| 1
k − 1

m | for 1 ≤ k�m ≤ ∞. The sequence {Qτt+1}1≤τ≤∞ can be regarded as a corre-
spondence Qt+1 from Ht × {1�2� � � � �∞} to Rn, which is measurable, nonempty and
compact valued, and upper hemicontinuous on Ht × {1�2� � � � �∞}. The step of back-
ward induction in Appendix A.2.1 shows that �(Qt+1) is measurable, nonempty and
compact valued, and upper hemicontinuous on Ht × {1�2� � � � �∞}. For ht−1 ∈ Ht−1

and a ∈ Q∞
t (ht−1), by its definition, a ∈ Qτt (ht−1) = �(Qτt+1)(ht−1) for τ ≥ t. Thus,

a ∈�(Q∞
t+1)(ht−1).

As a result,Q∞
t (ht−1)=�(Q∞

t+1)(ht−1) for all ht−1 ∈Ht−1.

Though the definition of Qτt involves correlated strategies for τ < t, the following
lemma shows that one can work with mixed strategies in terms of equilibrium payoffs.
In Lemma 13, it is shown that Q∞

t =�(Q∞
t+1) for any t ≥ 1. Then one can apply the for-

ward induction recursively to obtain the mixed strategies {fki}i∈I and a selection ck of
Q∞
k for each k ≥ 1 such that fki is an equilibrium and ck is the corresponding equilib-

rium payoff given the payoff function ck+1. Lemma 14 shows that {fki}k≥1�i∈I is indeed
an equilibrium and ck is the equilibrium payoff of the game in stage k. The key here
is that since Q∞

k ⊆ Qτk = �τ−k+1(Qττ+1) for k ≤ τ, one can obtain ck via the strategies

46The proofs of Lemmas 13 and 15 follow the standard argument with various modifications; see, for
example, Harris (1990), Harris et al. (1995), and Mariotti (2000).
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{fki}k≤k′≤τ�i∈I between stages k and τ, and the correlated strategies {ξk′ }k′>τ after stage
τ. Because of the assumption of the continuity at infinity, the latter payoff converges to
ck as τ → ∞. To check the equilibrium property, one can rely on the same asymptotic
argument to check the payoff for any deviation. Then we show that ck is an equilibrium
payoff without using the correlated strategies.

Lemma 14. If ct is a measurable selection of �(Q∞
t+1), then ct(ht−1) is a subgame-perfect

equilibrium payoff vector for any ht−1 ∈Ht−1.

Proof. Without loss of generality, we prove only the case t = 1.
Suppose that c1 is a measurable selection of�(Q∞

2 ). Apply Proposition 3 recursively
to obtain Borel measurable mappings {fki}i∈I for k ≥ 1. That is, for any k ≥ 1, there
exists a Borel measurable selection ck of Q∞

k such that for all hk−1 ∈Hk−1, we have the
following relationships:

• We have that fk(hk−1) is a Nash equilibrium in the subgame hk−1, where the action
space isAki(hk−1) for player i ∈ I, and the payoff function is given by∫

Sk

ck+1(hk−1� ·� sk)fk0(dsk|hk−1)�

• We have

ck(hk−1)=
∫
Ak(hk−1)

∫
Sk

ck+1(hk−1�xk� sk)fk0(dsk|hk−1)fk(dxk|hk−1)�

We need to show that c1(h0) is a subgame-perfect equilibrium payoff vector for all h0 ∈
H0.

Step 1. We show that for any k≥ 1 and all hk−1 ∈Hk−1,

ck(hk−1)=
∫

∏
m≥k(Xm×Sm)

u(hk−1�x� s)�(hk−1�f )

(
d(x� s)

)
�

Fix a positive integer M > k. By Lemma 13, ck(hk−1) ∈ Q
∞(hk−1)=

⋂
τ≥1Q

τ
k

k ×
(hk−1) for allhk−1 ∈Hk−1. SinceQτk =�τ−k+1(Qττ+1) fork≤ τ, ck(hk−1) ∈ ⋂

τ≥k �τ−k+1 ×
(Qττ+1)(hk−1) ⊆ �M−k+1(QMM+1)(hk−1) for all hk−1 ∈ Hk−1. Thus, there exists a Borel
measurable selectionw ofQMM+1 and some ξ ∈ϒ such that for all hM−1 ∈HM−1, we have
the following relationships:

(i) We have that fM(hM−1) is a Nash equilibrium in the subgame hM−1, where the
action space isAMi(hM−1) for player i ∈ I and the payoff function is given by∫

SM

w(hM−1� ·� sM)fM0(dsM |hM−1)�

(ii) We have

cM(hM−1)=
∫
AM(hM−1)

∫
SM

w(hM−1�xM� sM)fM0(dsM |hM−1)fM(dxM |hM−1)�
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(iii) We have w(hM)= ∫∏
m≥M+1(Xm×Sm) u(hM�x� s)�(hM�ξ)(d(x� s)).

Then for hk−1 ∈Hk−1,

ck(hk−1)=
∫

∏
m≥k(Xm×Sm)

u(hk−1�x� s)�(hk−1�fM)

(
d(x� s)

)
�

where fMk is fk if k≤M and is ξk if k≥M + 1. Since the game is continuous,

∫
∏
m≥k(Xm×Sm)

u(hk−1�x� s)�(hk−1�fM)

(
d(x� s)

)

converges to ∫
∏
m≥k(Xm×Sm)

u(hk−1�x� s)�(hk−1�f )

(
d(x� s)

)
whenM goes to infinity. Thus, for all hk−1 ∈Hk−1,

ck(ht−1)=
∫

∏
m≥k(Xm×Sm)

u(hk−1�x� s)�(hk−1�f )

(
d(x� s)

)
� (2)

Step 2. Below, we show that {fki}i∈I is a subgame-perfect equilibrium.
Fix a player i and a strategy gi = {gki}k≥1. For each k≥ 1, define a new strategy f̃ ki as

f̃ ki = (g1i� � � � � gki� f(k+1)i� f(k+2)i� � � �); that is, we simply replace the initial k stages of fi
by gi. Denote f̃ k = (f̃ ki � fk(−i)).

Fix k≥ 1. For any hk = (xk� sk), we have∫
∏
m≥k+1(Xm×Sm)

u(hk�x� s)�(hk�f )
(
d(x� s)

)

=
∫
Ak+1(hk)

∫
Sk+1

c(k+2)i(hk�xk+1� sk+1)f(k+1)0(dsk+1|hk)fk+1(dxk+1|hk)

≥
∫
Ak+1(hk)

∫
Sk+1

c(k+2)i(hk�xk+1� sk+1)

f(k+1)0(dsk+1|hk)(f(k+1)(−i) ⊗ g(k+1)i)(dxk+1|hk)

=
∫
Ak+1(hk)

∫
Sk+1

∫
Ak+2(hk�xk+1�sk+1)

∫
Sk+2

c(k+3)i(hk�xk+1� sk+1�xk+2� sk+2)

f(k+2)0(dsk+2|hk�xk+1� sk+1)f(k+2)(−i) ⊗ f(k+2)i(dxk+2|hk�xk+1� sk+1)

f(k+1)0(dsk+1|hk)f(k+1)(−i) ⊗ g(k+1)i(dxk+1|hk)

≥
∫
Ak+1(hk)

∫
Sk+1

∫
Ak+2(hk�xk+1�sk+1)

∫
Sk+2

c(k+3)i(hk�xk+1� sk+1�xk+2� sk+2)

f(k+2)0(dsk+2|hk�xk+1� sk+1)f(k+2)(−i) ⊗ g(k+2)i(dxk+2|hk�xk+1� sk+1)

f(k+1)0(dsk+1|hk)f(k+1)(−i) ⊗ g(k+1)i(dxk+1|hk)
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=
∫

∏
m≥k+1(Xm×Sm)

u(hk�x� s)�(hk�f̃ k+2)

(
d(x� s)

)
�

The first and the last equalities follow from (2) in the end of Step 1. The second equality
is due to (ii) in Step 1. The first inequality is based on (i) in Step 1. The second inequality
holds since by the choice of hk and (i) in Step 1, for f(k+1)0(hk)-almost all sk+1 ∈ Sk+1
and all xk+1 ∈Xk+1, we have∫

Ak+2(hk�xk+1�sk+1)

∫
Sk+2

c(k+3)i(hk�xk+1� sk+1�xk+2� sk+2)

f(k+2)0(dsk+2|hk�xk+1� sk+1)f(k+2)(−i) ⊗ f(k+2)i(dxk+2|hk�xk+1� sk+1)

≥
∫
Ak+2(hk�xk+1�sk+1)

∫
Sk+2

c(k+3)i(hk�xk+1� sk+1�xk+2� sk+2)

f(k+2)0(dsk+2|hk�xk+1� sk+1)f(k+2)(−i) ⊗ g(k+2)i(dxk+2|hk�xk+1� sk+1)�

Repeating the above argument, one can show that∫
∏
m≥k+1(Xm×Sm)

u(hk�x� s)�(hk�f )
(
d(x� s)

)

≥
∫

∏
m≥k+1(Xm×Sm)

u(hk�x� s)�(hk�f̃ M̃+1)

(
d(x� s)

)

for any M̃ > k. Since ∫
∏
m≥k+1(Xm×Sm)

u(hk�x� s)�(hk�f̃ M̃+1)

(
d(x� s)

)
converges to ∫

∏
m≥k+1(Xm×Sm)

u(hk�x� s)�(hk�(gi�f−i))
(
d(x� s)

)
as M̃ goes to infinity, we have∫

∏
m≥k+1(Xm×Sm)

u(hk�x� s)�(hk�f )
(
d(x� s)

)

≥
∫

∏
m≥k+1(Xm×Sm)

u(hk�x� s)�(hk�(gi�f−i))
(
d(x� s)

)
�

Therefore, {fki}i∈I is a subgame-perfect equilibrium.

By Lemmas 10 and 13, the correspondence �(Q∞
t+1) is measurable, nonempty and

compact valued. By Lemma 2(iii), it has a measurable selection. Then the equilibrium
existence result in Theorem 1 follows from the above lemma.

For t ≥ 1 and ht−1 ∈Ht−1, recall that Et(ht−1) is the set of payoff vectors of subgame-
perfect equilibria in the subgame ht−1. The following lemma shows that Et(ht−1) is the
same asQ∞

t (ht−1).
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Lemma 15. For any t ≥ 1, Et(ht−1)=Q∞
t (ht−1) for all ht−1 ∈Ht−1.

Proof. Step 1. We first prove the following claim: for any t and τ, if Et+1(ht)⊆Qτt+1(ht)

for all ht ∈Ht , then Et(ht−1)⊆Qτt (ht−1) for all ht−1 ∈Ht−1. We only need to consider the
case that t ≤ τ.

By the construction of�(Qτt+1) in Appendix A.2.1, for any ct and ht−1 = (xt−1� st−1) ∈
Ht−1, if the following relationships hold, then ct ∈�(Qτt+1)(ht−1).

• We have ct = ∫
At(ht−1)

∫
St
qt+1(ht−1�xt� st)ft0(dst |ht−1)α(dxt), where qt+1(ht−1� ·)

is measurable and qt+1(ht−1�xt� st) ∈ Qτt+1(ht−1�xt� st) for all st ∈ St and xt ∈
At(ht−1).

• We have that α ∈ ⊗
i∈IM(Ati(ht−1)) is a Nash equilibrium in the subgame ht−1

with payoff
∫
St
qt+1(ht−1� ·� st)ft0(dst |ht−1) and action space

∏
i∈I Ati(ht−1),

Fix a subgame ht−1 = (xt−1� st−1). Pick a point ct ∈ Et(ht−1). There exists a strat-
egy profile f such that f is a subgame-perfect equilibrium in the subgame ht−1 and the
payoff is ct . Let ct+1(ht−1�xt� st) be the payoff vector induced by {fti}i∈I in the subgame
(ht−1�xt� st) ∈ Gr(At)× St . Then we have the following relationships:

• We have that ct =
∫
At(ht−1)

∫
St
ct+1(ht−1�xt� st)ft0(dst |ht−1)ft(dxt |ht−1).

• We have that nft(·|ht−1) is a Nash equilibrium in the subgame ht−1 with action
spaceAt(ht−1) and payoff

∫
St
ct+1(ht−1� ·� st)ft0(dst |ht−1).

Since f is a subgame-perfect equilibrium in the subgame ht−1, ct+1(ht−1�xt� st) ∈
Et+1(ht−1�xt� st) ⊆Qτt+1(ht−1�xt� st) for all st ∈ St and xt ∈At(ht−1), which implies that
ct ∈�(Qτt+1)(ht−1)=Qτt (ht−1).

Therefore, Et(ht−1)⊆Qτt (ht−1) for all ht−1 ∈Ht−1.
Step 2. For any t > τ, Et ⊆ Qτt . If t ≤ τ, we can start with Eτ+1 ⊆ Qττ+1 and repeat

the argument in Step 1. Then we can show that Et(ht−1)⊆Qτt (ht−1) for all ht−1 ∈Ht−1.
Thus, Et(ht−1)⊆Q∞

t (ht−1) for all ht−1 ∈Ht−1.
Suppose that ct is a measurable selection from �(Q∞

t+1). Apply Proposition 3 recur-
sively to obtain Borel measurable mappings {fki}i∈I for k ≥ t. By Lemma 14, ct(ht−1)

is a subgame-perfect equilibrium payoff vector for all ht−1 ∈ Ht−1. Consequently,
�(Q∞

t+1)(ht−1)⊆Et(ht−1) for all ht−1 ∈Ht−1.
By Lemma 13, Et(ht−1)=Q∞

t (ht−1)=�(Q∞
t+1)(ht−1) for all ht−1 ∈Ht−1.

Therefore, we complete the proof of Theorem 1.

A.3 Proof of Theorem 2

Step 1: Backward induction. For any t ≥ 1, suppose that the correspondence Qt+1 from
Ht to Rn is bounded, measurable, nonempty and compact valued, and upper hemicon-
tinuous onXt .
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If player j is the active player in stage t, then we assume that St = {śt}. Thus,
Pt(ht−1�xt) = Qt+1(ht−1�xt� śt), which is nonempty and compact valued, and upper
hemicontinuous. Note that Pt may not be convex-valued. Then define the correspon-
dence�t fromHt−1 to Rn×M(Xt)× �(Xt) as (v�α�μ) ∈�t(ht−1) if we have the follow-
ing relationships:

• We have v = pt(ht−1�At(−j)(ht−1)�x
∗
tj) such that pt(ht−1� ·) is a measurable selec-

tion of Pt(ht−1� ·).
• We have that x∗

tj ∈ Atj(ht−1) is a maximization point of player j given the payoff
function ptj(ht−1�At(−j)(ht−1)� ·) and the action spaceAtj(ht−1), αi = δAti(ht−1) for
i 
= j and αj = δx∗

tj
.

• We have μ= pt(ht−1�At(−j)(ht−1)�x
∗
tj) ◦ α.

If Pt is nonempty, convex and compact valued, and upper hemicontinuous, then we
can use Lemma 10, the main result of Simon and Zame (1990), to prove the nonempti-
ness, compactness, and upper hemicontinuity of �t . In Simon and Zame (1990), the
only step they need the convexity of Pt for the proof of their main theorem is Lemma
2 therein. However, the one-player pure-strategy version of their Lemma 2, stated in
the following paragraph, directly follows from the upper hemicontinuity of Pt without
requiring the convexity.

Let Z be a compact metric space, and {zn}n≥0 ⊆ Z. Let P : Z → R+ be a bounded, upper
hemicontinuous correspondence with nonempty and compact values. For each n ≥ 1, let
qn be a Borel measurable selection of P such that qn(zn)= dn. If zn converges to z0 and dn
converges to some d0, then d0 ∈ P(z0).

Repeating the argument in the proof of the main theorem of Simon and Zame
(1990), one can show that �t is nonempty and compact valued, and upper hemicon-
tinuous.

Next we consider the case that Nature moves in stage t; that is, there is no active
player in I moving in this stage and At(ht−1) is a singleton set. Suppose that the corre-
spondenceQt+1 fromHt to Rn is bounded, measurable, nonempty and compact valued,
and upper hemicontinuous. Let

Pt(ht−1�xt)=
∫
St

Qt+1(ht−1�xt� st)ft0(dst |ht−1)�

where At(ht−1) = {xt}. Since ft0(·|ht−1) is atomless, as in Appendix A.2.1, Pt is
nonempty, convex and compact valued, and upper hemicontinuous. The rest of the
step remains the same as in Appendix A.2.1.

In summary,�t is nonempty and compact valued, and upper hemicontinuous.
Steps 2 and 3: Forward induction and the infinite-horizon case. These two steps

are the same as those in Appendix A.2, except the corresponding notation need to be
changed to be consistent with the perfect information environment whenever neces-
sary.
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Remark 4. Theorem 2 remains true if the state transitions either are atomless or have
the support inside a fixed finite set irrespective of the history at a particular stage. In the
backward induction step, at the stage t that Nature is active and concentrates inside a
fixed finite set {st1� � � � � stK}, we have

Pt(ht−1�xt)=
∑

stk∈{st1�����stK}
Qt+1(ht−1�xt� stk)ft0

({stk}|ht−1
)
�

where At(ht−1) = {xt}. Note that Pt is also nonempty and compact valued, and upper
hemicontinuous. The proof is the same in other cases. Similarly, Theorem 4 still holds if
the state transitions either satisfy the ARM condition or have the support inside a fixed
finite set irrespective of the history at a particular stage.

A.4 Proof of Proposition 1

The proof is essentially a combination of the proofs in Appendices A.2 and A.3. That is,
when there is only one active player, we refer to the argument in Appendix A.3. When
there is more than one active player or Nature is the only player that moves, we modify
the argument in Appendix A.2.

Step 1: Backward induction. For any t ≥ 1, suppose that the correspondence Qt+1

from Ht to Rn is bounded, measurable, nonempty and compact valued, and upper
hemicontinuous onXt .

If Nt = 1, then St = {śt}. Thus, Pt(ht−1�xt) = Qt+1(ht−1�xt� śt), which is nonempty
and compact valued, and upper hemicontinuous. Then define the correspondence �t
from Ht−1 to Rn × M(Xt)× �(Xt) as (v�α�μ) ∈ �t(ht−1) if we have the following rela-
tionships:

• We have v = pt(ht−1�At(−j)(ht−1)�x
∗
tj) such that pt(ht−1� ·) is a measurable selec-

tion of Pt(ht−1� ·).
• We have that x∗

tj ∈ Atj(ht−1) is a maximization point of player j given the payoff
function ptj(ht−1�At(−j)(ht−1)� ·) and the action spaceAtj(ht−1), αi = δAti(ht−1) for
i 
= j and αj = δx∗

tj
.

• We have μ= pt(ht−1�At(−j)(ht−1)�x
∗
tj) ◦ α.

As discussed in Appendix A.3, �t is nonempty and compact valued, and upper hemi-
continuous.

WhenNt = 0, for any ht−1 ∈Ht−1 and xt ∈At(ht−1),

Pt(ht−1�xt)=
∫
At0(ht−1�xt )

Qt+1(ht−1�xt� st)ft0(dst |ht−1�xt)�

Let coQt+1(ht−1�xt� st) be the convex hull ofQt+1(ht−1�xt� st). BecauseQt+1 is bounded,
nonempty and compact valued, coQt+1 is bounded, nonempty, convex and compact
valued. By Lemma 2(viii), coQt+1 is upper hemicontinuous.
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Note that ft0(·|ht−1�xt) is atomless and Qt+1 is nonempty and compact valued. We
have

Pt(ht−1�xt)=
∫
At0(ht−1�xt )

coQt+1(ht−1�xt� st)ft0(dst |ht−1�xt)�

By Lemma 7, Pt is bounded, nonempty, convex and compact valued, and upper hemi-
continuous. Then by Lemma 10, one can conclude that �t is bounded, nonempty and
compact valued, and upper hemicontinuous.

Steps 2 and 3: Forward induction and the infinite-horizon case. These two steps are
the same as that in Appendix A.2. The only change is to modify the notations corre-
spondingly.
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