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Efficient multiunit auctions for normal goods

Brian Baisa
Department of Economics, Amherst College

I study multiunit auction design when bidders have private values, multiunit de-
mands, and non-quasilinear preferences. Without quasilinearity, the Vickrey auc-
tion loses its desired incentive and efficiency properties. I give conditions under
which we can design a mechanism that retains the Vickrey auction’s desirable in-
centive and efficiency properties: (1) individual rationality, (2) dominant strategy
incentive compatibility, and (3) Pareto efficiency. I show that there is a mechanism
that retains the desired properties of the Vickrey auction if there are two bidders
who have single-dimensional types. I also present an impossibility theorem that
shows that there is no mechanism that satisfies Vickrey’s desired properties and
weak budget balance when bidders have multidimensional types.

Keywords. Multiunit auctions, multidimensional mechanism design, wealth ef-
fects.

JEL classification. D44, D47, D61, D82.

1. Introduction

1.1 Motivation

Understanding how to design auctions with desirable incentive and efficiency proper-
ties is a central question in mechanism design. The Vickrey–Clarke–Groves (hereafter,
VCG) mechanism is celebrated as a major achievement in the field because it performs
well in both respects—agents have a dominant strategy to truthfully report their private
information and the mechanism implements an efficient allocation of resources. How-
ever, the VCG mechanism loses its desired incentive and efficiency properties without
the quasilinearity restriction. Moreover, there are many well-studied cases where the
quasilinearity restriction is violated: bidders may be risk averse, have wealth effects, face
financing constraints, or be budget constrained. Indeed, observed violations of quasi-
linearity are frequently cited as reasons for why we do not see multiunit Vickrey auctions
used in practice. For example, Ausubel and Milgrom (2006), Rothkopf (2007), and Nisan
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et al. (2009) all cite budgets and financing constraints as salient features of real-world
auction settings that inhibit the use of the Vickrey auctions. Che and Gale (1998) note
that bidders often face increasing marginal costs of expenditures when they have access
to imperfect financial markets.

In this paper, I study multiunit auctions for K indivisible homogenous goods when
bidders have private values, multiunit demands, and non-quasilinear preferences. I pro-
vide conditions under which we can construct an auction that retains the desired incen-
tive and efficiency properties of the Vickrey auction: (1) ex post individual rationality, (2)
dominant strategy incentive compatibility, and (3) ex post Pareto efficiency (hereafter,
efficiency). My results hold on a general preference domain. Instead of assuming that
bidders have quasilinear preferences, I assume only that bidders have positive wealth
effects; i.e., the goods being auctioned are normal goods. My environment nests well-
studied cases where bidders are risk averse, have budgets, or face financing constraints.

My first main result shows that there is a mechanism that satisfies the desired
properties of the Vickrey auction if there are two bidders and bidders have single-
dimensional types (Theorem 1). The mechanism implements an (ex post Pareto) ef-
ficient outcome, i.e., an outcome where there are no ex post Pareto improving trades
among bidders. The proof of Theorem 1 differs from proofs of positive implementa-
tion results in quasilinear settings. With quasilinearity, an efficient auction can be con-
structed in two steps. First, we note that there is a generically unique efficient assign-
ment of goods. Then we solve the efficient auction design problem by finding transfers
that implement the exogenously determined assignment rule. Without quasilinearity,
the space of efficient outcomes is qualitatively different because a particular assign-
ment of units can be associated with an efficient outcome for some levels of payments,
but not for others. This is because a bidder’s willingness to buy/sell an additional unit
to/from her rival depends on her payment. For this reason, I use a fixed-point argument
to determine the efficient mechanism’s payment rule and assignment rule, simultane-
ously. More precisely, I construct a transformation that maps an arbitrary mechanism
to a more efficient mechanism. The transformed mechanism specifies the efficient as-
signment of units in the case when payments are determined according to the arbitrary
mechanism’s payment rule. The transformed payment rule is the payment rule that
implements the transformed assignment rule. I show that a fixed point of the trans-
formation defines an efficient mechanism and I use Schauder’s fixed-point theorem to
show that a fixed point of the transformation exists. Thus, there is a mechanism that
retains the Vickrey auction’s desirable incentive and efficiency properties in the two-
bidder single-dimensional types case. Furthermore, I provide a constructive proof that
shows there is also a mechanism with the desired Vickrey properties when many bidders
compete to win two units (Theorem 2).

The positive implementation results for the single-dimensional types case do not
carry over to multidimensional settings though. I obtain an impossibility result because
wealth effects and multiunit demands combine to inhibit efficient implementation.1

1The prior literature shows that we get positive implementation results if we relax either assumption.
When there are no wealth effects, the Vickrey auction is efficient and dominant strategy implementable,
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These two modeling assumptions imply that in an efficient auction, a bidder’s demand
for later units of the good endogenously depends on her rivals’ reported types, even in
the private value setting. This is because a bidder’s demand for her second unit of the
good depends on the price she paid for her first unit, and in an efficient auction, the
price a bidder paid for her first unit necessarily varies with her rivals’ reported types.
Thus, positive wealth effects imply that in an efficient auction, there is endogenous in-
terdependence between a bidder’s demand for later units and her rivals’ types. Further-
more, the prior literature on efficient multiunit auction design without quasilinearity
has not noted this connection between private value models without quasilinearity and
interdependent value models with quasilinearity (like those, e.g., studied by Dasgupta
and Maskin 2000). I use this connection to motivate my proofs of the impossibility the-
orem for the multidimensional types case (Theorem 3).

The paper proceeds as follows. The remainder of the Introduction discusses the re-
lated literature. Section 2 presents my model for bidders with single-dimensional types.
Section 3 presents the results for the single-dimensional case. Section 4 presents the
impossibility theorem for bidders with multidimensional types. Proofs and additional
results are in the Appendix.

1.2 Related literature

Friedman (1960) proposed the uniform price auction for homogenous goods. If bidders
truthfully report their demands, the uniform price auction will allocate goods efficiently.
However, Ausubel et al. (2014) show that bidders have an incentive to underreport their
demand in the uniform price auction. In contrast, the Vickrey–Clarke–Groves mecha-
nism efficiently allocates goods and gives bidders a dominant strategy to truthfully re-
veal their private information to the mechanism designer. Holmström (1979) gives con-
ditions under which VCG is the unique mechanism that satisfies these two objectives.
In addition, Ausubel (2004) describes an ascending auction format, called the clinching
auction, that implements the VCG allocation and payment rule.

Two crucial assumptions are needed to obtain Vickrey’s positive implementation re-
sult: (1) agents have private values and (2) agents have quasilinear preferences. There
is a long literature that studies how Vickrey’s result generalizes without private values.
In this literature, Dasgupta and Maskin (2000), Jehiel and Moldovanu (2001), and Jehiel
et al. (2006) give impossibility results for when agents have multidimensional types.2 In
contrast, Bikhchandani (2006) shows that there are nontrivial social choice rules in in-
terdependent value settings where bidders compete to win private goods. He proves the
existence of a constrained efficient mechanism in a single unit auction setting where
bidders have multidimensional types.

even if bidders have multiunit demands and multidimensional types. Similarly, when bidders have unit
demands and non-quasilinear preferences, Saitoh and Serizawa (2008) and Morimoto and Serizawa (2015)
show that the minimum price Walrasian rule is the unique mechanism that is efficient and dominant strat-
egy implementable. See the related literature section for further discussion.

2Maskin (1992), Krishna (2003), and Perry and Reny (2002, 2005) give sufficient conditions for efficient
auction design in single-dimensional type settings.
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There is a relatively smaller literature on how Vickrey’s positive implementation re-
sult generalizes without (2), the quasilinearity restriction, and that is the question I study
in this paper.3 In particular, I study how Vickrey’s results extend to a multiunit auc-
tion setting with homogenous goods where bidders have multiunit demands and non-
quasilinear preferences. A subset of this literature studies efficient multiunit auction
design in settings where bidders have unit demands and non-quasilinear preferences.
Saitoh and Serizawa (2008) and Morimoto and Serizawa (2015) both show that Vickrey’s
positive implementation result can be extended to such settings. Saitoh and Serizawa
study the case where all objects are homogenous. That is the case studied in this pa-
per as well. Morimoto and Serizawa show that Vickrey’s positive implementation result
can be extended to a heterogeneous good setting where bidders have non-quasilinear
preferences. In particular, they show that Demange and Gale’s (1985) minimum price
Walrasian rule is dominant strategy implementable and efficient when bidders have
unit demands. Their positive implementation result holds in cases where bidders have
multidimensional private information. My paper is different from this line of research
because I study the case where goods are homogenous and bidders have multiunit de-
mands. My results show that the combination of multidimensional private information
and multiunit demands yield an impossibility result in a homogenous good setting.

Most other work on efficient multiunit auction design without quasilinearity focuses
on a particular violation of quasilinearity—bidders with hard budgets. Dobzinski et al.
(2012) study efficient multiunit auction design where bidders have multiunit demands,
constant and private marginal values for additional units, and hard budgets. They show
that the clinching auction (see Ausubel (2004)) is efficient if bidders have public budgets.
If bidders have private budgets, then they show that there is no efficient auction. Lavi
and May (2012) and Goel et al. (2015) follow Dobzinski et al.’s (2012) results and study ef-
ficient auction design with public budgets. These two papers relax Dobzinski, Lavi, and
Nisan’s constant marginal values assumption and both give impossibility results. In Lavi
and May, bidders have increasing marginal values, a two-dimensional type and a pub-
lic budget; and in Goel, Mirrokni, and Paes Leme, bidders have an infinite-dimensional
type and a public budget.

My paper expands on this line of research by similarly studying the efficient auction
design problem without quasilinearity. I add to the literature by removing the functional
form restriction of hard budget constraints. Rather than making functional form restric-
tions on bidder preferences, I only assume preferences satisfy positive wealth effects.
While the focus of the prior papers is on the publicity of the budget constraint and the
shape of the marginal values, my focus is on finding coarsest type space where we can
obtain on impossibility result and relating the impossibility results to the literature on

3Most of the literature on auctions without quasilinearity has studied revenue maximization and bid
behavior in commonly used auctions. Maskin and Riley (1984) study revenue maximization when bidders
have single-dimensional private information. Baisa (2017) studies revenue-maximizing auction design in
a similar setting to this paper where bidders have positive wealth effects. There is also a literature that
studies the performance of standard auction formats in certain non-quasilinear settings. Matthews (1987),
Hu et al. (2018), and Che and Gale (1996, 1998, 2006) study standard auctions when bidders have budgets,
face financial constraints, and are risk averse.
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implementation with interdependent values. Furthermore, my results also show that
the dimensionality of bidder’s private information that determines the scope of efficient
implementation, not the publicity of a bidders budget as has previously been assumed.4

Relatedly, Kazumura and Serizawa (2016) study efficient design with multiunit de-
mand in a non-quasilinear setting. In their setting, the goods are heterogeneous. All bid-
ders have unit demand preferences, except for one bidder who has multiunit demand
preferences. They show that including only single multiunit demand bidder inhibits ef-
ficient auction design when preferences are sufficiently rich. In particular, they allow
for bidders to have infinite-dimensional private information because their impossibility
theorem allows bidders to have any rational preference.

Maskin (2000) and Pai and Vohra (2014) study a related question of expected surplus
maximizing auctions in the budget case under the weaker solution concept of Bayesian
implementation for bidders with i.i.d. types. In contrast, this paper studies Vickrey’s
problem of efficient auction design in dominant strategies. My results are also related to
recent literature on value maximizing bidders (see Fadaei and Bichler 2016). Value max-
imization is a limiting case of my model where a bidder gets arbitrarily small disutility
from spending money up to their budget.

Outside of the auction literature, there is some work on the scope of implemen-
tation without quasilinearity. Kazumura et al. (2017) provide results on the scope of
dominant strategy implementation in a general mechanism design setting where agents
are not restricted to have quasilinear preferences. Garratt and Pycia (2016) investigate
how positive wealth effects influence the possibility of efficient bilateral trade in a My-
erson and Satterthwaite (1983) setting. In contrast to this paper, Garratt and Pycia show
that the presence of wealth effects may help induce efficient trade when there is two-
sided private information. Nöldeke and Samuelson (2018) also study implementation
in principal-agent problems and two-sided matching problems without quasilinearity.
They extend positive implementation results from the quasilinear domain to the non-
quasilinear domain by establishing a duality between the two settings.

2. Model

2.1 Bidder preferences—the single-dimensional types case

A seller has K ≥ 2 units of an indivisible homogenous good. There are N ≥ 2 bidders
who have private values and multiunit demands. Bidder i’s preferences are described by
her type θi ∈ [0� θ] := � ⊂ R+. If bidder i wins q ∈ {0�1� � � � �K} := K units and receives
m ∈ R in monetary transfers, her utility is u(q�m�θi) ∈ R. We assume that u is com-
monly known and θi ∈ � is bidder i’s private information. A bidder’s utility function is

4For example, Goel, Mirrokni, and Paes Leme write that an implication of Dobzinski et al. (2012) is the
public budgets are necessary for efficient implementation (see Footnote 2 of their paper). I show that this
is not the case. Instead the dimensionality of bidder’s private information determines whether efficient
implementation is possible. Toward this point, in a working paper version of this paper, Baisa (2019), gives
a numerical example of an efficient auction that is dominant strategy incentive compatible when bidders
have private budgets and single-dimensional private information.
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continuous in her type θi and continuous and strictly increasing in monetary transfers
m.5

If θi = 0, then bidder i has no demand for units,

u(q�m�0) = u
(
q′�m�0

)
� ∀q�q′∈K�m ∈R�

If θi ∈ (0� θ], then bidder i has positive demand for units,

q′ > q ⇐⇒ u
(
q′�m�θi

)
> u(q�m�θi)� ∀q�q′ ∈ K�m ∈R� θi ∈ (0� θ]�

Without loss of generality, assume that u(0�0� θi) = 0 ∀θi ∈ �. Bidders have bounded
demand for units of the good. Thus, assume that there exists a h> 0 such that

0 > u(q�−h�θi) ∀q ∈K� θi ∈��

I make three additional assumptions on bidders’ preferences. First, assume that bid-
ders have declining demand for additional units. Therefore, if a bidder is unwilling to
pay p for her qth unit, then she is unwilling to pay p for her (q + 1)st unit. This gener-
alizes the declining marginal values assumption imposed in the benchmark quasilinear
setting.

Assumption 1 (Declining demand). Bidders have declining demand for additional
units if u is such that

u(q− 1�m�θi) ≥ u(q�m−p�θi) =⇒ u(q�m�θi) > u(q+ 1�m−p�θi)�

for any m ∈ R� q ∈ {1� � � � �K − 1}, and θi ∈�.

Second, assume that bidders have positive wealth effects. This means a bidder’s de-
mand does not decrease as her wealth increases. To be more concrete, suppose that
bidder i was faced with the choice between two bundles of goods. The first bundle pro-
vides qh units of goods for a total price of ph, and the second bundle provides q� units
of goods for a total price of p�, where qh�q� ∈ K and ph�p� ∈ R are such that qh > q�
and ph > p�. If bidder i prefers the first bundle with more goods, then positive wealth
effects state that she also prefers the first bundle with more goods if we increased her
wealth prior to her purchasing decision. This is a multiunit generalization of Cook and
Graham’s (1977) definition of an indivisible, normal good. I define two versions of pos-
itive wealth effects, weak and strict. I assume that bidder preferences satisfy the weak
version, which nests quasilinearity, when I present the positive implementation result.
When I present the impossibility theorems, I assume the strict version of positive wealth

5It is without loss of generality to assume that a bidder has an initial wealth of 0, or measure wealth in
terms of deviation from initial wealth. A bidder with utility u and initial wealth w0, has the same preferences
over units and transfers as a bidder with initial wealth 0 and utility û where we define û as û(q�m�θi) =
u(q�m + w0� θi) ∀q ∈ {0�1� � � � �K}�m ∈ R� θi ∈ �. I study deviations from initial wealth because this allows
a more flexible interpretation of the model where we can also include wealth as an element of bidders’
private information. A working paper version of this paper, Baisa (2019), provides an example of an efficient
mechanism where a bidder’s wealth (her soft budget) varies with her private type.
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effects, because the strict version rules out the quasilinear setting where the benchmark
Vickrey auction solves the efficient auction design problem.

Assumption 2 (Positive wealth effects). Consider any qh�q��ph�p� where, qh > q�, ph >

p�, qh�q� ∈ K, and ph�p� ∈R. Bidders have weakly positive wealth effects if

u(qh�−ph�θi) ≥ u(q��−p��θi) =⇒
u(qh�m−ph�θi) ≥ u(q��m−p��θi) ∀m> 0� θi ∈ ��

and strictly positive wealth effects if

u(qh�−ph�θi) ≥ u(q��−p��θi) =⇒
u(qh�m−ph�θi) > u(q��m−p��θi) ∀m> 0� θi ∈ ��

Finally, assume that bidders with higher types have greater demands.

Assumption 3 (Single crossing). Suppose qh > q� and ph > p� where qh�q� ∈ K, and
ph�p� ∈ R. Then bidder preferences are such that

u(qh�−ph�θi) ≥ u(q��−p��θi) =⇒
u
(
qh�−ph�θ

′
i

)
> u

(
q��−p��θ

′
i

) ∀θi� θ′
i ∈� s.t. θ′

i > θi�

Let b1(θi) where b1 : �→ R+ be the amount that bidder i is willing to pay for her first
unit of the good. Thus, b1(θi) implicitly solves

0 = u
(
1�−b1(θi)� θi

)
�

for all θi ∈ �. It is without loss of generality to assume types are such that b1(θ) = θ ∀θ ∈
�.6 Thus, θi parameterizes the intercept of bidder i’s demand curve (assuming bidder i
pays no entry fee).

Similarly, define bk(θi�x) where bk : � × R → R+ as bidder i’s willingness to pay for
her kth unit, conditional on winning her first k − 1 units for a cost of x ∈ R. More pre-
cisely, bk(θi�x) is implicitly defined as solving

u(k− 1�−x�θi)= u
(
k�−x− bk(θi�x)�θi

)
�

for all k ∈ {2� � � � �K}, θi ∈ � and x ∈ R. Analogously, define sk(θi�x) as bidder i’s willing-
ness to sell her kth unit, conditional on having paid x in total. Thus, a bidder’s willing-
ness to sell her kth unit sk(θi�x) is implicitly defined as solving

u(k�−x�θi) = u
(
k− 1�−x+ sk(θi�x)�θi

)
�

6It is without loss of generality to assume that b1(θ) = θ ∀θ ∈ �, because (1) we assume that u(q�m�0) =
u(q′�m�0) which implies that b1(0) = 0, and (2) single crossing implies that b1(·) is strictly increasing.
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for all k ∈ {1� � � � �K}, θi ∈� and x ∈R. Note that by construction,

sk
(
θi�x+ bk(θi�x)

) = bk(θi�x) ∀k ∈ {1� � � � �K}� θi ∈��x ∈R�

In words, this means that bidder i is indifferent between buying/selling her kth unit at
price bk(θi�x), given that she paid x to win her first k− 1 units.

Assumptions 1, 2, and 3 imply:

1. bk(θ�x) > bk+1(θ�x) and sk(θ�x) > sk+1(θ�x) for all k ∈ {1� � � � �K − 1}� θ ∈��x ∈R.

2. bk(θ�x) and sk(θ�x) are continuous and decreasing in the second argument x for
all x ∈R�k ∈ {1� � � � �K}� θ ∈�.7

3. bk(θ�x) and sk(θ�x) are continuous and strictly increasing in the first argument θ
for all θ ∈ ��k ∈ {1� � � � �K}�x ∈ R.

The first point is implied by declining demand. The second point is implied by positive
wealth effects. The final point is implied by single crossing.

2.2 Mechanisms

By the revelation principle, it is without loss of generality to consider direct revelation
mechanisms. I restrict attention to deterministic direct revelation mechanisms. A direct
revelation mechanism � maps the profile of reported types to an outcome. An outcome
specifies a feasible assignment of goods and payments. An assignment of goods y ∈ K

N

is feasible if
∑N

i=1 yi ≤ K. Let Y be the set of all feasible assignment. A direct revelation
mechanism � consists of an assignment rule q and a payment rule x. An assignment rule
q maps the profile of reported types to a feasible assignment q : �N → Y . Let qi(θi� θ−i)

denote the number of units won by bidder i when she reports type θi ∈ � and her ri-
vals report types θ−i ∈ �N−1. The payment rule maps the profile of reported types to
payments x : �N → R

N . Let xi(θi� θ−i) denote the payment of bidder i in mechanism �

when she reports type θi ∈� and her rivals report types θ−i ∈�N−1.
I study direct revelation mechanisms that satisfy the following properties.

Definition 1 (Ex post individual rationality). A mechanism � is ex post individually
rational if

u
(
qi(θi� θ−i)�−xi(θi� θ−i)� θi

) ≥ 0 ∀(θi� θ−i) ∈�N� i ∈ {1� � � � �N}�

Thus, a mechanism is ex post individually rational (hereafter, individually rational)
if a bidder’s utility never decreases from participating in the mechanism.

I study mechanisms that are dominant strategy incentive compatible (hereafter, in-
centive compatible). Thus, we say that � is incentive compatible, then bidder i’s payoff
from reporting her true type θi ∈� weakly exceeds her payoff from reporting any θ′

i ∈ �,
for any report by her rivals θ−i ∈ �N−1. This is stated in Definition 2.

7bk and sk are weakly decreasing under weakly positive wealth effects and strictly decreasing under
strictly positive wealth effects.
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Definition 2 (Dominant strategy incentive compatibility). A mechanism � is domi-
nant strategy incentive compatible if

u
(
qi(θi� θ−i)�−xi(θi� θ−i)� θi

) ≥ u
(
qi

(
θ′
i� θ−i

)
�−xi

(
θ′
i� θ−i

)
� θi

)
∀θi� θ′

i ∈ ��θ−i ∈�N−1� i ∈ {1� � � � �N}�
I look at mechanisms that satisfy ex post Pareto efficiency. This is the same efficiency

notion studied by Dobzinski et al. (2012) and Morimoto and Serizawa (2015).

Definition 3 (Ex post Pareto efficient). An outcome (y�x) ∈ Y × R
N is ex post Pareto

efficient if ∀(ỹ� x̃) ∈ Y ×R
N such that

u(ỹi�−x̃i� θi) > u(yi�−xi�θi)�

for some i ∈ {1� � � � �N}, then either
∑N

i=1 xi >
∑N

i=1 x̃i, or ∃j ∈ {1� � � � �N} such that
u(yj�−xj�θj) > u(ỹj�−x̃j� θj).

Thus, an outcome is ex post Pareto efficient, if any reallocation of resources that
makes bidder i strictly better off necessarily makes her rival strictly worse off, or strictly
decreases revenue. I say that the mechanism � is an ex post Pareto efficient mechanism
(hereafter, efficient) if (q(θ)�x(θ)) ∈ Y × R

N is an ex post Pareto efficient outcome ∀θ ∈
�N .

The weak budget balance condition is an individual rationality constraint on the
auctioneer.

Definition 4 (Weak budget balance). A mechanism � satisfies weak budget balance if

N∑
i=1

xi(θi� θ−i) ≥ 0 ∀(θ1� � � � � θN) ∈�N� i ∈ {1� � � � �N}�

A mechanism that satisfies weak budget balance always yields weakly positive rev-
enue.

When I study the single-dimensional types setting with N ≥ 3 bidders, I impose a
stronger but related requirement—no subsidies. A mechanism provides no subsidies if
it never pays a bidder a positive amount to participate. Morimoto and Serizawa (2015)
impose the same condition when studying efficient auctions in a setting where bidders
have unit demand.

Definition 5 (No subsidies). A mechanism � satisfies no subsidies if xi(θi� θ−i) ≥
0 ∀(θi� θ−i) ∈�N� i ∈ {1� � � � �N}.

3. Efficient auctions for bidders with single-dimensional types

In this section, I prove that there is a mechanism that has the Vickrey auction’s desirable
incentive and efficiency properties when there (1) are two bidders and K units, and (2)
N bidders and two units. I consider the two cases separately. In addition, I discuss the
challenges associated with extending my positive implementation results to the general
N ×K single-dimensional types setting.
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3.1 The two bidder K object case

In this subsection, I prove that there is a mechanism that has the Vickrey auction’s de-
sirable incentive and efficiency properties when there are two bidders and K units.
More precisely, assume that bidder i’s private information is described by a single-
dimensional parameter θi ∈�= [0� θ] and θi parameterizes bidder i’s commonly known
utility function u, where u satisfies the conditions described in Section 2.1. I show that
when there are two bidders, there is a symmetric mechanism that satisfies (1) individ-
ual rationality, (2) incentive compatibility, (3) efficiency, and (4) no subsidies. I use a
fixed-point proof to characterize the efficient mechanism. In particular, I form a trans-
formation that maps an arbitrary mechanism to a more efficient mechanism, and show
that the fixed point of the transformation corresponds to a mechanism that retains the
Vickrey auction’s desirable properties.

I describe an arbitrary symmetric mechanism by cut-off rule d : � → �K . The kth
dimension of the cut-off rule dk(θj) gives the lowest type that bidder i must report to
win at least k units when her rival reports type θj .8 Hence, a mechanism � has cut-off
rule d if expressions 1 and 2 hold for all k ∈ {1� � � � �K}, where

θi > dk(θj) =⇒ qi(θi� θj) ≥ k� (1)

dk(θj) > θi =⇒ k> qi(θi� θj)� (2)

Incentive compatibility implies that qi(θi� θj) is weakly increasing in θi for all θi� θj ∈
�. Incentive compatibility and efficiency imply that qi(θi� θj) weakly decreasing in θj for
all θi� θj ∈�.9 Thus, the cut-off rule dk(θ) is weakly increasing in θ and weakly increasing
in k for all θ ∈ � and k ∈ {1� � � � �K}. Let D ⊂ {d|d : � → �K} be the set of all cut-off rules
that are weakly increasing in θ and k. Note that a cut-off rule d ∈D does not necessarily
correspond to a feasible mechanism.

I use the taxation principle (see Rochet 1985) to find a pricing rule that implements
a mechanism described by cut-off rule d ∈ D. The pricing rule p is a mapping p : � ×
D → R

K+1 that states the price a bidder pays to win each additional unit of the good is
conditional on her rival’s type. We say that a pricing rule p implements a (symmetric)
cut-off rule d ∈ D if bidder i demands at least k units where k ∈ {1� � � � �K} if and only if
her type θi ∈� exceeds the kth unit cut-off dk(θj).

The pricing rule p(·� d) is such that bidder i demands at least one unit (θi >

p1(θj�d)) if and only if her type exceeds the first unit cut-off (θi > d1(θj)). Thus, the
pricing rule is such that p1(θj�d) = d1(θj) ∀θj ∈ �. I proceed inductively to find the
price a bidder pays to win a kth unit. The pricing rule is such that bidder i demands at
least k units of the good (bk(θi�

∑k−1
n=1 pn(θj�d)) > pk(θj�d)) if and only if her type ex-

ceeds the kth unit cut-off θi > dk(θj). Note that the term bk(θi�
∑k−1

n=1 pn(θj�d)) is bidder

8Note that if a direct revelation mechanism is such that qi(θi� θj) ≥ k, then dominant strategy incentive
compatibility implies that qi(θ′

i� θj)≥ k�∀θ′
i ≥ θi .

9Bidder i’s qi(θi� θj) is weakly decreasing in θj because efficiency implies qj(θi� θj) = K − qi(θi� θj) and
qj(θi� θj) is weakly increasing in θj for all θj ∈ �.
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i’s demand for her kth unit conditional on having paid
∑k−1

n=1 pn(θj�d) for her first k− 1
units. Therefore, the price of the kth unit is

pk(θj�d) = bk

(
dk(θj)�

k−1∑
n=1

pn(θj�d)

)
∀k ∈ {1� � � � �K}� θj ∈ ��d ∈ D�

This inductive construction shows that a symmetric cut-off rule d ∈ D is implemented
by the pricing rule p(·� d) described above. Lemma 1 shows bidder i pays a higher total
price for k units when bidder j has a higher type. To condense notation, let

Pk(θj�d)=
k∑

n=1

pn(θj�d)

be the total amount a bidder spends to win k units when she faces cut-off rule d.

Lemma 1. Pk(θj�d) is weakly increasing in θj for all k ∈ {1� � � � �K}� θj ∈�� and d ∈ D.

I construct a transformation that maps an arbitrary mechanism to a more efficient
mechanism. The transformed mechanism’s assignment rule is such that a bidder wins at
least k units of the good where k ∈ {1� � � � �K} if and only if her willingness to pay for her
kth unit ranks among the top K willingness to pay of both bidders. However, the ranking
of bidders’ willingness to pay for additional units depends on the pricing rule because
wealth effects imply that a bidder’s willingness to pay for her kth unit varies with the
amount she paid for her first k − 1 units.10 I obtain the ranking by calculating bidders’
willingness to pay for additional units under the pricing rule that corresponds to the
arbitrary mechanism. This ranking of bidders’ willingness to pay determines my trans-
formed mechanism’s assignment rule. In other words, the transformed assignment rule
is the efficient assignment rule if prices were determined by the untransformed mech-
anism’s pricing rule. The transformed pricing rule is the pricing rule that implements
the transformed assignment rule. I argue that a fixed point of this transformation cor-
responds to an efficient mechanism and I use Schauder’s fixed-point theorem to show
that such a fixed point exists.

To formalize the above argument, I calculate a bidder’s willingness to pay for her
kth unit conditional on her payment for her first k − 1 units under the untransformed
pricing rule that implements cut-off rule d ∈ D. This amount is

bk
(
θi�Pk−1(θj�d)

)
�

Similarly, bidder j’s willingness to pay for her K − k + 1st unit conditional on her pay-
ment for her first K − k units is

bK−k+1
(
θj�PK−k(θi�d)

)
�

10This is an important difference between my model where bidders have non-quasilinear preferences
and the quasilinear benchmark model. In the quasilinear setting, a bidder’s willingness to pay for her kth
unit is independent of the amount she paid to win her first k− 1 units because there are no wealth effects.
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I construct the transformed assignment rule by defining a function that compares the
above two quantities. In particular, define a function f : {1� � � � �K} ×�2 ×D →R, where
f is such that

f (k�θi� θj�d) := bk
(
θi�Pk−1(θj�d)

) − bK−k+1
(
θj�PK−k(θi�d)

)
�

for all k ∈ {1� � � � �K}� θi� θj ∈ ��d ∈ D. Thus, f (k�θi� θj�d) represents the amount that
bidder i’s willingness to pay for her kth unit exceeds her rival’s willingness to pay for her
K − k + 1st unit, when we evaluate bidders’ willingness to pay under the pricing rule
implementing the cut-off rule d ∈ D. Bidder i’s willingness to pay for her kth unit ranks
among the top K willingness to pay of both bidders when f (k�θi� θj�d) is positive.

Lemma 2. The function f (k�θi� θj�d) is (1) strictly decreasing in k, (2) strictly increasing
in θi, and (3) strictly decreasing in θj for all k ∈ {1� � � � �K}� θi� θj ∈��d ∈ D.

I define the transformed cut-off rule to be such that bidder i’s type exceeds kth cut-
off if and only if her willingness to pay for her kth unit ranks among the top K willingness
to pays. Formally, bidder i’s transformed cut-off rule is such that

Tk(d)(θj) :=
{

inf
{
θ ∈�|f (k�θ�θj�d)≥ 0

}
if f (k�θ�θj�d)≥ 0�

θ if f (k�θ�θj�d) < 0�

for all k ∈ {1� � � � �K}� θj ∈ ��d ∈ D.
Note that when f (k�θ�θj�d) > 0, then Lemma 2 implies that bidder i’s willingness

to pay for her kth unit exceeds her rival’s willingness to pay for her K − k + 1st unit
when θi is sufficiently large. In this case, the transformed cut-off rule Tk(d)(θj) states
the lowest type for which bidder i’s willingness to pay for her kth unit exceeds her rival’s
willingness to pay for her K−k+ 1st unit. If f (k�θ�θj�d) < 0, then bidder i’s willingness
to pay for her kth unit is always less than her rival’s willingness to pay for her K−k+ 1st
unit. In this case, the transformed assignment rule is such that bidder i wins fewer than
k units for any reported type. I calculate a bidder’s willingness to pay for her kth unit by
assuming that the price she paid for her first k − 1 units was determined by the pricing
rule corresponding to the (untransformed) cut-off rule d. This is stated in Remark 1
below.

Remark 1. If θi� θj ∈� and d ∈ D, then

bk
(
θi�Pk−1(θj�d)

) ≥ bK−k+1
(
θj�PK−k(θi�d)

) =⇒ θi ≥ Tk(d)(θj)�

and

bK−k+1
(
θj�Pk−k(θi�d)

) ≥ bk
(
θi�Pk−1(θj�d)

) =⇒ Tk(d)(θj)≥ θi�

My transformed cut-off rule is related to the assignment rule used by Perry and Reny
(2002, 2005). The papers by Perry and Reny study efficient auction design in an interde-
pendent value setting where there are two bidders and bidders have single-dimensional
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types and quasilinear preferences (see Section 3 of the 2002 paper, or Section 4 of the
2005 paper). In their papers, bidder i’s cut-off for her kth unit is the lowest signal
such that her marginal value for her kth unit exceeds her rival’s marginal value for her
K − k + 1st unit. In my private value non-quasilinear setting, a bidder’s willingness
to pay for her kth unit conditional on the amount she paid for her first k − 1 units,
bk(θi�Pk−1(θj�d)), takes the place of a bidder’s marginal value in interdependent value
settings studied by Perry and Reny.

Note that when preferences are quasilinear, there is a (generically) unique efficient
assignment of goods. Thus, in Perry and Reny’s quasilinear setting the efficient auction
design problem is solved by finding a pricing rule that implements the exogenously-
determined efficient assignment rule. However, there is not a unique efficient assign-
ment of goods in my non-quasilinear setting. That is because without quasilinearity a
bidder’s willingness to pay/sell for a unit of the good depends on her level of transfers.
My transformed cut-off rule is the efficient assignment rule for the case where prices
are determined by the pricing rule that implements the untransformed cut-off rule. Yet
the transformed assignment rule T(d) is implemented by the transformed pricing rule
p(·�T (d)).

The above argument implies that a fixed point of the transformation T defines an
efficient mechanism. To see this, suppose that the cut-off rule d∗ ∈ D is a fixed point of
T . The corresponding pricing rule p(·� d∗) is such that (1) bidder i demands k units if
and only if her rival demands K − k units, and (2) bidder i wins her kth unit if and only
if her willingness to pay for her kth unit exceeds her rival’s willingness to pay for her
K−k+1st unit. Both points follow from the implications of Remark 1 above. Thus, there
are no Pareto improving trades where bidder i sells units to bidder j and the auction
outcome is efficient.

Lemma 3. If d∗ ∈ D is a fixed point of the mapping T , then d∗ corresponds to a feasible
mechanism that satisfies (1) individual rationality, (2) incentive compatibility, (3) effi-
ciency, and (4) no subsidies.

I use Schauder’s fixed-point theorem to show that the mapping T has a fixed-point
d∗ ∈ D.11 In particular, I show that (1) d ∈ D =⇒ T(d) ∈ D, (2) T is a continuous
mapping, and (3) D is compact. These three conditions guarantee the existence of a
fixed point according to Schauder’s fixed-point theorem (see Aliprantis and Border 2006,
p. 583).

Theorem 1. There exists a cut-off rule d∗ ∈ D that is a fixed point of the mapping T .

Thus, Theorem 1 shows that in the 2 × K setting, there is a mechanism that retains
the desirable properties of the Vickrey auction. Furthermore, this efficient mechanism

11Schauder’s fixed-point theorem guarantees the existence of a fixed point of my mapping T . However,
it does not guarantee a unique fixed point. Thus, we can say that there is a mechanism that implements
an efficient outcome (Theorem 1), but we cannot say whether there is a unique efficient mechanism and
assignment rule.
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can be implemented by a multiunit Vickrey auction with a restricted bid space.12 To see
this, consider a cut-off rule d∗ where d∗ = T(d∗). We use d∗ to construct a multiunit
Vickrey auction where a bidder selects from a single-dimensional family of bid curves.
The bid curves are such that if bidder i bids θi for her first unit, then she also bids

βk(θi) := pK−k+1
(
θi�d

∗)
for her kth unit.

Note that if bidder i submits bid curve β(θi) and bidder j submits bid curve β(θj),
then by construction bidder i wins at least k units in the Vickrey auction only if

θi ≥ d∗
k(θj)�

and bidder i wins strictly fewer than k units only if

d∗
k(θj) ≥ θi�

Moreover, if bidder i wins k units in the Vickrey auction with restricted bid space, she
pays Pk(θj�d

∗). Thus, the multiunit Vickrey auction with restricted bid space imple-
ments the outcome of direct revelation mechanism that corresponds to cut-off rule d∗.13

Corollary 1. The Vickrey auction with restricted bid space satisfies (1) individual ratio-
nality, (2) incentive compatibility, (3) efficiency, and (4) no subsidies.

Note that the Vickrey auction without any restrictions on the bid space does not
satisfy the four aforementioned properties. Baisa (2016) shows that bidders with positive
wealth effects misreport their demand for later units in the multiunit Vickrey auction.

Finally, note that we assume that bidders are ex ante symmetric when we proved
Theorem 1. Thus, it is natural to ask whether the positive result from Theorem 1 extends
to a setting without symmetry of bidder preferences. In the Appendix of a working paper
version of this paper, Baisa (2019), I show that it is a straightforward exercise to extend
Theorem 1 to a setting where bidders are ex-ante asymmetric. In particular, I show that
we can construct a nearly identical transformation maps that arbitrary cut-off rule for
bidder 1 to a more efficient cut-off rule for bidder 1. In addition, I show that any feasible
mechanism that allocates all units and is described by its cut-off rule for bidder 1 could
also be described by its corresponding cut-off rule for bidder 2. Thus, my transformation
that maps bidder 1’s arbitrary cut-off rule to a transformed cut-off rule, also implicitly
maps the corresponding cut-off rule for bidder 2 to a transformed cut-off rule for bidder
2. The fixed point of this mapping defines an efficient auction in this asymmetric setting
as well.

12See Chapter 12 of Krishna (2009) for a formal description of the standard multiunit Vickrey auction for
homogenous goods.

13A working paper version of this paper, Baisa (2019), gives a numerical example to show how we can
explicitly construct such an efficient mechanism for the case where bidders have soft budgets.
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3.1.1 Note on restriction to deterministic mechanisms Like the prior literature on ef-
ficient multiunit auctions without quasilinearity, I restrict attention to deterministic
mechanisms. Alternatively, one could also consider the problem of designing an effi-
cient and dominant strategy implementable auction when we can use randomization.
Garratt (1999) shows that randomization can increase the gains from trade of associated
with exchanging an indivisible good. In addition, Baisa (2017) shows that the efficient
stochastic mechanism sells the indivisible good like a perfectly divisible normal good
in net supply one.14 Therefore, the problem of designing an efficient stochastic auction
in a single unit setting is equivalent to studying a divisible good version of the problem
studied in this subsection. We can then use Theorem 1 to show that there is an ap-
proximately efficient stochastic mechanism that sells a single indivisible good, and the
approximately efficient stochastic mechanism is dominant strategy implementable. In
particular, Theorem 1 shows that there is an efficient auction for K ∈N indivisible goods
when there are two bidders who have single-dimensional types. Let the K indivisible
homogenous goods each be a lottery ticket that provides a 1

K probability of winning the
indivisible good. When K is large, the mechanism is dominant strategy implementable
and also approximately efficient. Thus, selling the good as discrete lottery tickets, each
with an arbitrarily small probability of winning allows us to construct a mechanism that
implements an approximately efficient outcome.15

3.2 The N bidder two units case

In this subsection, I show that we can characterize an efficient mechanism when there
are two units. The proof is constructive. The mechanism is symmetric and its first-unit
cut-off rule implicitly defines the assignment rule, because we construct the mechanism
to be such that a bidder wins both units (i.e., her type exceeds her second unit cut-off)
if and only if all other bidders have a type below their first unit cut-off. That simplifi-
cation allows us to characterize the efficient mechanism using a single equation which

14It is less clear what the efficient assignment rule looks like in the homogenous good multiunit setting
with randomization. In the single unit case, an assignment rule is described by the probability each bidder
wins the good conditional on a type realization. Furthermore, an assignment rule is feasible if and only if
each bidders probability of winning adds up to (less than or equal to) one. In the same way, a divisible good
setting, an assignment rule is feasible if and only if all the quantities assigned add up to (less than or equal
to) the total supply. It is without loss of generality to extend results on divisible good auctions from a case
where supply is 1 to a case where supply is x > 0. The same is not true about extending results from the
single indivisible unit case to the multiunit indivisible case with randomization. That is because the range
of the stochastic assignment rule is not isomorphic to [0�1] in the multiunit case. For example, if we assign
a bidder 1�2 units of the good in expectation, it is not clear whether this means assigning her 0 units with
probability 0�4 and 2 units with probability 0�6, or 1 unit with probability 0�8 and 2 units with probability
0�2. Thus, it is not clear what the equivalent divisible good setting would be that corresponds to the efficient
indivisible good multiunit setting where we allow for randomization.

15Baisa (2017) also shows that the stochastic mechanism must also structure a bidder’s expected pay-
ment efficiently. An efficient payment scheme is such that any bidder that wins the good with positive
probability must have the same marginal utility of money in the win state and in the loss state. If this did
not hold, the auctioneer could offer the bidder a Pareto improving insurance contract that allows her to
equalize her marginal utility of income across the win state and the lose state.
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describes the first unit cut-off. This differs from how results presented in the prior sec-
tion, where we needed to construct multiple cut-off rules simultaneously in order to
define an efficient mechanism.

I let qi : �N → {0�1�2} be the assignment rule for bidder i in the mechanism, �.
Incentive compatibility implies that qi(·� θ−i) is weakly increasing ∀θ−i ∈ �N−1. I let
d : �N−1 →� be the bidders’ symmetric first unit cut-off in mechanism �. Specifically,

d(θ−i)=
{

inf
{
θ ∈�|qi(θi� θ−i) ≥ 1

}
if qi(θ�θ−i) ≥ 1�

θ if qi(θ�θ−i) = 0�

If bidder i’s type is below her first unit cut-off, then she wins no units. Bidder i wins at
least one unit if her type exceeds the first unit cut-off, and bidder i wins both units if her
type exceeds the first unit cut-off and none of her rivals have a type that exceeds their
first unit cut-off. Thus,

qi(θi� θ−i) =

⎧⎪⎪⎨
⎪⎪⎩

0 if d(θ−i) > θi�

1 if θi > d(θ−i) and θj > d(θ−j) for some j ∈ {1� � � � �N} where j = i�

2 if θi > d(θ−i) and d(θ−j) > θj ∀j ∈ {1� � � � �N} where j = i�

Mechanism � has a pricing rule p : �N−1 → R
2. The pricing rule states the price a bid-

der pays for each unit of the good given her rivals’ reported types. The pricing rule p

implements assignment rule q. The pricing rule is such that bidder i pays nothing if she
does not win any units. In addition, bidder i wins at least one unit if and only if her type
type exceeds her first unit cut-off. Thus, we set the price of bidder i’s first unit to be her
first unit cut-off. And finally, the pricing rule is such that bidder i wins both units if and
only if her willingness to pay for her second unit exceeds her highest demand rival’s will-
ingness to pay for her first unit. Thus we have that for any θ−i ∈ �N−1, p : �N−1 → R

2 is
such that

p1(θ−i)= d(θ−i)�

p2(θ−i)= max
j∈{1�����i−1�i+1�����N}

θj�

Equation (3) implicitly defines bidder i’s first unit cut-off d(θ−i). It is without loss of
generality to define the first unit cut-off for bidder 1 and to assume that that θ ≥ θ2 ≥
θ3 ≥ θj ≥ 0 ∀j ∈ {4� � � � �N} because mechanism � is symmetric. The mechanism’s cut-off
rule d is implicitly defined by the equation below

d(θ−1) = max
{
θ3� b2

(
θ2� d

(
d(θ−1)�θ−1�2

))}
∀θ−1 ∈ �N−1 s.t. θ2 ≥ θ3 ≥ θj ∀j ∈ {4� � � � �N}� (3)

Equation (3) implies that bidder 1 wins her first unit if and only if her demand for her first
unit exceeds both her highest rival’s demand for her second unit and her second highest
rival’s demand for her first unit. The first term on the right-hand side of equation (3) is
bidder 3’s willingness to pay for her first unit. Bidder 3 is the second highest demand
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rival of bidder 1. The second term is bidder 2’s willingness to pay for her second unit
conditional on paying d(d(θ−1)�θ−1�2). Recall that the price bidder 2 pays for her first
unit is p1(θ−2) = d(θ−2). Thus, d(d(θ−1)�θ−1�2) is the price bidder 2 pays to win her first
unit when bidder 1’s type is exactly at the first unit cut-off.

Equation (3) is the analog of the demand reduction term in Section 4 of Perry and
Reny’s (2005) quasilinear interdependent value multiunit auction model. In the two-
unit version of their model, they find a cut-off rule by fixing a bidder’s rivals type and
finding the signal where the bidder’s value for her first unit equals her rival’s value for
her second unit. My cut-off rule similarly finds the cut-off by finding the type of bidder
1 where her willingness to pay for her first unit equals the second highest willingness
to pay of her rivals. In my case, the second highest willingness to pay of bidder 1’s ri-
vals is the maximum of bidder 2’s willingness to pay for her second unit and bidder 3’s
willingness to pay for her first unit.

Lemma 4 shows that equation (3) implicitly defines a unique and continuous cut-off
rule d :�N−1 →�.

Lemma 4. There is a unique function d : �N−1 →� that is continuous and satisfies equa-
tion (3).

Lemma 4 shows that we can use the cut-off rule d to construct a mechanism that
satisfies Properties (1)–(4). The mechanism satisfies individual rationality and no subsi-
dies by construction. Incentive compatibility is satisfied because the mechanism is such
that a bidder does not misreport her type because she wins a unit if and only if her de-
mand for the unit exceeds the price of a unit. The mechanism is efficient because it only
assigns to a bidder if she has one of the two highest types. Moreover, one bidder wins
both units if and only if her demand for both units exceeds her highest rival’s demand
for her first unit. Thus, the mechanism’s outcome is such that there are no ex post Pareto
improving trades among bidders.

Theorem 2. There exists a mechanism � that satisfies (1) individual rationality, (2) in-
centive compatibility, (3) efficiency, and (4) no subsidies. The mechanism has first unit
cut-off rule d that is the unique solution to equation (3) and pricing rule p, where for any
θ−i ∈�N−1,

p1(θ−i)= d(θ−i)�

p2(θ−i)= max
j =i

θj�

While it is straightforward to extend the implications of Theorem 1 to a setting where
bidders are asymmetric, that is not true when we consider Theorem 2. To see why, note
that we construct the efficient auction in the N bidder two object setting by character-
izing a bidder’s first unit cut-off using equation (3). We are able to use equation (3) to
implicitly characterize the cut-off rule by comparing a bidder’s willingness to pay for her
first unit with her highest demand rivals willingness to pay for her second unit, among
other competing bids. We calculate the highest demand rival’s willingness to pay for
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her second unit, conditional on the price she paid for her first unit, by assuming that
the price her rival paid to win her first unit was determined using the same cut-off rule.
If bidders were asymmetric, then naturally, the efficient auction should be asymmetric
and have different first unit cut-offs for each bidder. In this case, we would be unable
to use a single expression, like equation (3), to characterize the efficient mechanism’s
cut-off rule. In the next section, I discuss similar challenges associated with extending
my two positive results to the general N ×K setting.

3.3 The N bidder K object case

I use different approaches to prove the existence of a mechanism with Vickrey’s desired
properties in the two-bidder K ≥ 2 object case, and the N ≥ 3 bidder 2 object case. In the
latter case, I give a constructive argument. I form a single equation (equation (3)) that
implicitly describes a bidder’s first unit cut-off rule. I form the equation by noting that
bidder i wins a unit if and only if her willingness to pay for her first unit exceeds: (1) her
second-highest rival’s demand for her first unit, and (2) her highest rival’s demand for
her second unit, when bidder i’s type equals her first unit cut-off. The efficient auction
design problem simplifies down to finding bidder i’s first unit cut-off, because we know
her second unit cut-off will be defined to be such that she wins both units if and only if
her willingness to pay for her second unit, conditional on buying the first, exceeds her
highest rival’s willingness to pay for her first unit.

We cannot use that same constructive approach and form a single equation that
characterizes an efficient auction in the N bidder and K ≥ 3 unit case. To see this, con-
sider the three-unit case. We need two cut-off rules for each bidder to define an effi-
cient mechanism—a bidder’s first unit cut-off, and her second unit cut-off; the third is
implicitly defined by the case where only one bidder exceeds her first unit cut-off. How-
ever, with three or more units, there is a simultaneity problem when we determine the
cut-off rules. This is because we would need to know the bidders’ second unit cut-off
rule to determine their first unit cut-off rule and vice versa. In particular, we determine
a bidder’s first unit cut-off by comparing her willingness to pay for her first unit with
her highest demand rival’s willingness to pay for her third unit, among other compet-
ing bids. However, bidder i’s highest demand rival’s willingness to pay for her third unit
depends on how much that rival paid to win her first and second units. We determine
those two prices using the first and second unit cut-off rules. Similarly, when we de-
termine bidder i’s second unit cut-off, we compare her conditional willingness to pay
for her second unit with higher highest demand rival’s willingness to pay for her second
unit. And her highest rival’s conditional willingness to pay for her second unit depends
on the first unit cut-off. Thus, we need to simultaneously determine the first and second
unit cut-off rules that each satisfy a version of equation (3).

In Section 3.1, we assumed there were only two bidders and we faced an equivalent
simultaneity problem. In our efficient auction, bidder i’s first unit cut-off depends on the
amount her rival pays to win her first K − 1 units. And the amount her rival pays to win
her earlier units depends on the earlier unit’s cut-off rules. We were able to overcome
this simultaneity issue in the two-bidder case by using a fixed-point approach.
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In this subsection, I present an impossibility result that explains why the fixed-point
proof approach taken in Section 3.1 does not extend to a setting with three or more bid-
ders. We cannot use an analogous fixed-point proof because we cannot construct an
analog to our cut-off rule d(·) that is (coordinatewise) monotone when there are at least
three bidders. Recall, in the two-bidder case, we use the monotonicity d to show that the
space of all cut-off rules D is compact. The compactness of D is a necessary condition to
use Schauder’s fixed-point theorem. In contrast, when there are at least three bidders,
there is no mechanism that satisfies Vickrey’s desired properties and also has a cut-off
rule that is monotone in the coordinatewise sense. More precisely, there is no Vickrey-
like mechanism where a bidder wins a weakly greater number of units if her demand
increases and her rivals’ reported demands decrease (in the coordinatewise sense). We
define this notion of strong monotonicity below. We then present an impossibility result
(Proposition 1) that illustrates why no such mechanism exists. The impossibility result
is shown for the case where there are N bidders and two units, but it is straightforward
to extend the impossibility result to the K object case.

Definition 6 (Strong monotonicity). A mechanism � satisfies strong monotonicity if
bidder i’s assignment rule qi : �N → {0�1� � � � �K} is such that for all θhi � θ

�
i ∈ � and

θh−i� θ
�
−i ∈ �N−1 where θhi ≥ θ�i � and θh−i ≥ θ�−i, then

qi
(
θhi � θ

�
−i

) ≥ qi
(
θ�i � θ

h
−i

) ∀i ∈ {1� � � � �N}�

Strong monotonicity is related to other practical constraints that have been stud-
ied in mechanism design. For example, any mechanism that is nonbossy in the sense of
Satterthwaite and Sonnenschein’s (1981) and assigns all units also satisfies strong mono-
tonicity.16

Consider the single-dimensional types setting and suppose that N ≥ 3 bidders that
compete to win two units. Proposition 1 shows that in any such setting no mechanism
satisfies (1) individual rationality, (2) incentive compatibility, (3) efficiency, (4) no subsi-
dies, and (5) strong monotonicity.

Proposition 1. No mechanism satisfies (1) individual rationality, (2) incentive compat-
ibility, (3) efficiency, (4) no subsidies, and (5) strong monotonicity.

The proof of Proposition 1 is by contradiction. If there is a mechanism that satis-
fies the five properties, then there is endogenous interdependence in bidders’ demands,
even in my private value model. I note two important features of the implied endoge-
nous interdependence in my proof. First, the interdependence in bidder demands is
only present in bidders’ demands for later units. A bidder’s willingness to pay for her

16Recall nonbossiness requires that a change in bidder i’s type changes one of her rival’s assignment
only if it changes her assignment. Borgs et al. (2005) also study an auction design problem with a similar
property that they call independence of irrelevant alternatives. In a quasilinear setting with private values,
strong monotonicity is implied by efficiency. Strong monotonicity is implied by efficiency and incentive
compatibility in the two-bidder case.
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first unit is her private type θi, and this quantity does not vary with her rivals’ types. Sec-
ond, the interdependence is negative. When a bidder’s rivals increase their demands, the
price a bidder pays for her first unit increases. Positive wealth effects then imply that the
bidder has a lower demand for later units. The presence of negative interdependence
leads to the violation of strong monotonicity. There is an identical tension between ef-
ficiency and strong monotonicity in a quasilinear setting where bidders’ demands for
later units are negatively interdependent on rivals’ types. To be more concrete, consider
a modified version of Perry and Reny’s (2005) quasilinear multi-unit auction setting.17

However, suppose that a bidder’s marginal value for her first unit is independent of her
rivals’ (single-dimensional) types and her marginal value for later units is decreasing in
her rivals’ types. Negative interdependence in bidder demands for later units makes the
efficient assignment rule inconsistent with strong monotonicity.

While my paper does not determine whether there is a mechanism that satisfies
Vickrey’s desirable properties: (1) individual rationality, (2) incentive compatibility, (3)
efficiency, and (4) no subsidies—for the general N × K single-dimensional types case,
Proposition 1 tells us about any such mechanism’s assignment rule, assuming the mech-
anism exists. It also shows that the fixed-point proof that used Schauder’ fixed-point
theorem to establish existence in the two bidder setting does not extend to the many
bidder setting because the assignment rule violates monotonicity.

Also related to Proposition 1, in the Section A.2 of the Appendix, I show that we
can construct a mechanism that uses subsidies and satisfies (1) individual rationality,
(2) incentive compatibility, (3) efficiency, and (4) strong monotonicity in the two-unit
case. That mechanism uses the subsidy to avoid the violation of monotonicity described
above. Recall, we violate monotonicity without subsidies when bidder i’s two highest de-
mand rivals have types that are relatively close together. In that case, the price bidder i
pays for her first unit is her second highest demand rival’s willingness to pay for her first
unit, and the price she pays for her second unit is her highest demand rival’s willingness
to pay for her first unit. Thus, an increase in i’s second highest demand rival’s type low-
ers bidder i’s willingness to pay for her second unit, because it raises the amount she
pays to win her first unit. In the mechanism with subsidies, we pay bidder i an upfront
subsidy that is set to be such that her willingness to pay for her second unit, conditional
on purchasing the first unit, is independent of her second highest rival’s type. Therefore,
as bidder i’s second highest rival’s type increases bidder i must pay more to win her first
unit of the good, but she is also compensated with a larger subsidy so that her willing-
ness to pay for her second unit, conditional on buying the first unit, is independent of
her second highest rival’s type. The amount of the subsidy depends on the elasticity of
bidder’s price and wealth elasticities of demand. Also, the total amount paid in subsi-
dies increases when there are more bidders, and the mechanism violates weak budget
balance when there are sufficiently many bidders.18

17In my notation, this would be a case where θi ∈ R
+, and ui(q�m�θi� θ−i) = ∑q

j=1 vj(θi� θ−i)+m, where

v : �N →R
K+ .

18We rarely see auctions that use subsidies in practice. As Morimoto and Serizawa (2015) state, imposing
no subsidies is a useful practical constraint for the mechanism designer because “this property prevents
agents who do not need objects from flocking to auctions only to sponge subsidies.”
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Lastly, note that when we compare that results from Sections 3.2 and A2, we see that
there is not a unique assignment rule that corresponds to the efficient mechanism. This
is different from the benchmark quasilinear setting where the efficient assignment rule
is uniquely determined by bidder preferences. The assignment rules of the mechanisms
described in Sections 3.2 and A2 differ, but both are efficient.

4. Bidders with multidimensional types

4.1 Bidder preferences

In this section, I argue that the positive result from Theorem 1 does not extend to any
setting where bidders have multidimensional types. I study a setting where there are
two bidders and two homogenous goods. A bidder’s private information is described by
a two-dimensional variable γi = (θi� ti) ∈ [0� θ] × {s� f }. If bidder i has type γi = (θi� ti),
wins q ∈ {0�1�2} units, and receives transfer m, then her utility is u(q�m�γi) ∈ R, where u

is continuous in θi and continuous and strictly increasing in m for all θi ∈ � and m ∈ R.
Again, assume that bidder i has no demand for units if the first dimension of her type
θi = 0,

u
(
q�−x� (0� ti)

) = u
(
q′�−x� (0� ti)

) ∀q�q′ ∈ {0�1�2}�x ∈R� ti ∈ {s� f }�

and a bidder has positive demand if θi > 0,

u
(
q�−x� (θi� ti)

)
> u

(
q′�−x� (θi� ti)

)
�

for all θi ∈ (0� θ]� q�q′ ∈ {0�1�2}� s.t. q > q′�x ∈ R�and ti ∈ {s� f }. Thus, it is without loss
of generality to assume that θi represents bidder i’s willingness to pay for her first unit of
the good. I refer to θi as bidder i’s intercept.

The second dimension of bidder i’s type ti ∈ {s� f } represents the steepness of her
demand curve—it can either be steep (s) or flat (f ). Bidders with steeper demand curves
have relatively lower demand for their second unit. Thus, assume that

u
(
2�−x−p�(θi� s)

) ≥ u
(
1�−x� (θi� s)

) =⇒ u
(
2�−x−p�(θi� f )

)
> u

(
1�−x� (θi� f )

)
�

for all θi ∈ (0� θ]�x�p ∈ R+. Therefore, if b2(γi�x) is bidder i’s willingness to pay for her
second unit when she has type γi ∈ �× {s� f } and paid x ∈ R for her first unit, then b2 is
such that

b2
(
(θi� f )�x

)
> b2

(
(θi� s)�x

)
> 0 ∀θi ∈ (0� θ]�x ∈R�

I assume bidder preferences satisfy (1) declining demand, (2) strictly positive wealth
effects, and (3) single-crossing in θ (Assumptions 1–3, from Section 2). Thus,

1. θi > b2(γi�x) > 0, and s1(γi�x) > s2(γi�x)�∀x ∈R+�γi = (θi� ti) ∈ (0� θ] × {s� f }.

2. b2(γi�x) is continuous and strictly decreasing in the amount a bidder has paid
x ∀x ∈R�γi ∈ �× {s� f }.
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3. b2((θi� ti)�x) is continuous and strictly increasing in θi ∀θi ∈��x ∈R� ti ∈ {s� f }.

Points 1, 2, and 3 above are direct implications of Assumptions 1, 2, and 3, respectively.
A mechanism � satisfies incentive compatibility in a multidimensional type where

bidder preferences are described by the utility function u if

u
(
qi(γi�γj)�−xi(γi�γj)�γi

) ≥ u
(
qi

(
γ′
i� γj

)
�−xi

(
γ′
i� γj

)
�γi

)
�

for all γi�γ′
i� γj ∈�× {s� f }� i� j ∈ {1�2}� i = j.

4.2 An impossibility theorem for the multidimensional type case

I prove that there is no mechanism that has the Vickrey auction’s desirable incentive and
efficiency properties, as well as weak budget balance, in any setting where bidders have
multi-dimensional types. More precisely, assume that bidder i’s private information is
described by the multidimensional parameter γi ∈ �×{s� f } and I assume that γi param-
eterizes bidder i’s commonly known utility function u, where u satisfies the conditions
described in Section 4.1. Theorem 3 shows that in any such case, there is no mechanism
that satisfies (1) individual rationality, (2) incentive compatibility, (3) efficiency, and (4)
weak budget balance. In other words, there is no mechanism that satisfies these four
properties for any multidimensional type space and for any choice of utility function
that satisfies the conditions described in Section 4.1.

Theorem 3 also implies that efficient auction design is impossible on any richer
type space because the increase in the dimensionality of bidder private information in-
creases the number of incentive constraints we must satisfy to solve the efficient auction
design. It is relevant to note that the prior impossibility results in this literature assume
richer type spaces relative to the one studied here and also make specific function form
restrictions on bidder preferences.19

Theorem 3. There is no mechanism that satisfies (1) individual rationality, (2) incen-
tive compatibility, (3) efficiency, and (4) weak budget balance when bidders have multi-
dimensional types.

The proof of Theorem 3 is by contradiction. Note that a bidder wins at least one unit
if and only if her willingness to pay for her first unit exceeds her rival’s willingness to pay
for her second unit. Thus, a bidder’s first unit cut-off is independent of her steepness ti.
Additionally, if bidder i reports a flat demand, then bidder j pays more for her first unit
relative to the case where i reports a steep demand. When bidder j pays more to win
her first unit, she has a lower willingness to pay for her second unit, and that lowers the
price i pays to win her first unit. Since bidder i’s first unit cut-off is independent of ti, we
have a contradiction.

19See the discussion of Dobzinski et al. (2012), Lavi and May (2012), and Goel et al. (2015) in the related
literature section. Relatedly, Kazumura and Serizawa’s (2016) impossibility theorem requires that only one
bidder has multiitem demand, but their type space is again rich relative to the type space studied here.
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The formal proof of Theorem 3 follows from Lemma 5, Proposition 2, and Corol-
lary 2 which are explained below. Suppose there exists a mechanism � that satisfies (1)
individual rationality, (2) incentive compatibility, (3) efficiency, and (4) weak budget bal-
ance. Mechanism � has assignment rule q and payment rule x. The taxation principle
states that a change in bidder i’s reported type only changes her payment if it changes
her assignment.

Remark 2. (Taxation principle) If � satisfies (1) individual rationality, (2) incentive com-
patibility, (3) efficiency, and (4) weak budget balance, then there exists pricing rules p1

and p2 such that

pi : �× {s� f } →R
3 ∀i = 1�2�

and

xi(γi�γj)=
k∑

n=0

pi�n(γj) ⇐⇒ qi(γi�γj) = k ∀k ∈ {0�1�2}�

Lemma 5 further simplifies the proof. It shows that mechanisms that satisfy Proper-
ties (1)–(4) must also satisfy the no subsidy condition. The proof of Lemma 5 shows that
we violate weak budget balance if a bidder is paid a positive amount to participate in the
auction pi�0(γj) < 0. Moreover, individual rationality ensures that pi�0(γj) ≤ 0, because
a bidder never regrets participating in the mechanism, even if she wins zero units. Thus,
it is the case that pi�0(γj)= 0 ∀γj ∈�× {s� f }.

Lemma 5. If � satisfies (1) individual rationality, (2) incentive compatibility, (3) effi-
ciency, and (4) weak budget balance, then

qi(γi�γj) = 0 =⇒ xi(γi�γj) = 0 ∀γi�γj ∈�× {s� f }� i� j = 1�2� i = j�

I derive a contradiction by placing necessary conditions on a mechanism’s assign-
ment rule, and consequently on the mechanism’s pricing rule. It is useful to describe a
mechanism’s assignment rule by cut-off rules. Let dtii�k : � × {s� f } → � be the intercept
cut-off for bidder i’s to win unit k ∈ {1�2} when she has steepness ti ∈ {s� f }. Bidder i’s
nth unit cut-off is then

d
ti
i�k(γj) :=

{
inf

{
θ ∈�|qi

(
(θ� ti)�γj

) ≥ k
}

if ∃θ ∈� s.t. qi
(
(θ� ti)�γj

) ≥ k�

θ else�

where k ∈ {1�2}, ti ∈ {s� f }, and γj ∈ �× {s� f }. Remark 3 gives restrictions on the cut-off
rules for mechanisms satisfying Properties (1)–(4).

Remark 3. If � satisfies (1) individual rationality, (2) incentive compatibility, (3) effi-
ciency, and (4) weak budget balance, then

(1) d
ti
i�1(0� tj) = d

ti
i�2(0� tj) = 0 ∀ti� tj ∈ {s� f }.
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(2) d
ti
i�2(θj� tj), and d

ti
i�1(θj� tj) are weakly increasing in θj�∀θj ∈ �� ti� tj ∈ {s� f }.

(3) d
ti
i�2(γj) ≥ d

ti
i�1(γj) ∀γj ∈ �× {s� f }� ti ∈ {s� f }.

The first point states that a bidder wins both units if she reports positive demand and her
rival reports no demand. The second point states that a bidder faces a greater intercept
cut-off when her rival reports greater demand. The final point states that the cut-off
intercept for winning both units is weakly greater than the cut-off intercept for winning
a single unit. The first point follows from efficiency, and the latter two points follow from
incentive compatibility.

Proposition 2 places further restrictions on the cut-off rules associated with a mech-
anism that satisfies Properties (1)–(4).

Proposition 2. If � satisfies (1) individual rationality, (2) incentive compatibility, (3)
efficiency, and (4) weak budget balance, then

(1) d
ti
i�1(θj� tj) is continuous and strictly increasing in θj ∀ti� tj ∈ {s� f }.

(2) d
ti
i�2(θj� tj) > d

ti
i�1(θj� tj) ∀θj > 0� tj ∈ {s� f }.

(3) pi�1(γj) = d
f
i�1(γj) = dsi�1(γj) ∀γj ∈�× {s� f }.

(4) d
ti
i�1(θj� f ) > d

ti
i�1(θj� s) ∀θj > 0� ti ∈ {s� f }.

The first point states that bidder i’s first unit cut-off intercept is continuous and strictly
increasing in her rival’s intercept. The second point states that bidder i has a strictly
greater cut-off intercept for her second unit than she does for her first unit. This follows
from efficiency and declining demand.

The third point states that a bidder i’s first unit cut-off intercept is independent of her
reported steepness. This is because bidder i wins her first unit if and only if her demand
for her first unit exceeds the price she pays for her first unit θi > pi�1(γj). Thus, bidder i’s

first unit cut-off is independent of her reported steepness as pi�1(γj) = dsi�1(γj)= d
f
i�1(γj).

Given this result, drop the superscript on a bidder’s first unit cut-off for the remainder
of the section. That is, let di�1(γj)= dsi�1(γj) = d

f
i�1(γj).

The final point of Proposition 2 states that a bidder’s first unit cut-off is greater when
her rival has flat demand. This is an intuitive consequence of incentive compatibility
and efficiency. If bidder j has a flat demand, then bidder j has a relatively higher de-
mand for her second unit. Incentive compatibility thus implies that bidder j has a lower
second unit cut-off when her type is flat because the infimum intercept types where
b2((θj� tj)�pi�1(γi)) > pi�2(γi) is lower when tj = f versus when tj = s. A direct conse-
quence of this observation is that bidder i faces a higher first unit cut-off when her rival,
bidder j, reports a flat demand type versus steep demand type.

Corollary 2. If � satisfies (1) individual rationality, (2) incentive compatibility, (3) effi-
ciency, and (4) weak budget balance, then if γi�γj ∈ �× {s� f } are such that θi = di�1(γj),
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Figure 1. First unit cut-off rules for a fixed tj ∈ {s� f }.

then

θi = b2
(
γj�pi�1(γi)

) ∀γi�γj ∈�× {s� f }�

Corollary 2 shows that if bidder i’s is indifferent between winning 0 and 1 units
(θi = di�1(γj)), then bidder i’s willingness to pay for her first unit must equal her rival’s
(conditional) willingness to pay for her second unit. If the two quantities were unequal,
then there would be a Pareto improving trade where the bidder with the higher respec-
tive willingness to pay buys a unit from the bidder with the lower willingness to pay.

I use Corollary 2 to obtain the contradiction that proves the impossibility theorem.
To see the contradiction, fix bidder i’s intercept type θi and suppose again that bidder i’s
is indifferent between winning 0 and 1 units (i.e., θi is such that θi = di�1(γj); see point a.
in Figure 1 below). Let’s compare the case where bidder i reports a steep demand type
(ti = s) with a case where bidder i reports a flat demand curve (ti = f ). Proposition 2
shows that bidder j pays more for her first unit of the good in the latter case relative to
the former case (i.e., dj�1(θi� f ) = pj�1(θi� f ) > pj�1(θi� s) = dj�1(θi� s); see points b. and c.
and Figure 1 below). This is intuitive, because bidder j pays more for her first unit when
bidder i has higher demand for her second unit. Positive wealth effects then imply that
bidder j is willing to pay less for her second unit when bidder i has a flat demand versus
a steep demand,

b2
(
γj�pj�1(θi� f )

)
< b2

(
γj�pj�1(θi� s)

)
� (4)

However, the above inequality contradicts the implication of Corollary 2 because

θi = di�1(γj) =⇒ θi = b2
(
γj�pj�1(θi� f )

) = b2
(
γj�pj�1(θi� s)

)
� (5)

The contradiction between expressions (3) and (4) proves the impossibility theorem.
Thus, there is no mechanism that retains the Vickrey auction’s desirable incentive

and efficiency properties on any type space that satisfies the conditions given in Sec-
tion 4.1. Moreover, there is no mechanism that retains the Vickrey auction’s desirable
incentive and efficiency properties on any richer type space—the increase in dimen-
sionality only increases the number of incentive constraints that our mechanism must
satisfy.
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The proof of Theorem 3 illustrates how the combination of wealth effects and mul-
tiunit demands inhibits efficient auction design. In contrast, in the quasilinear setting,
there are no wealth effects and the Vickrey auction is the unique auction that satisfies
Properties (1)–(4) (see Holmström 1979). In a 2 × 2 quasilinear setting, a Vickrey auc-
tion is such that the price a bidder pays for her first unit equals her rival’s willingness
to pay for her second unit. Corollary 2 shows that this is also a necessary condition for
efficient auction design in the non-quasilinear setting. Yet, in the non-quasilinear set-
ting, the presence of wealth effects implies that the price a bidder pays for her first unit
influences her demand for her second unit. By stating a high demand for her second
unit, a bidder forces her rival to pay more for her first unit. This deviation can benefit
a bidder in a non-quasilinear setting because when the bidder’s rival pays more for her
first unit, the rival has lower demand for her second unit. Moreover, a bidder pays less to
win her first unit when her rival has lower demand for her second unit. Thus, no mecha-
nism can simultaneously satisfy Properties (1)–(4) when we introduce wealth effects and
multidimensional heterogeneity.

Finally, note we can extend the above proof to where only one bidder has multidi-
mensional private information. In particular, Proposition 2 and Corollary 2 would be
unchanged if we instead assume that tj was common knowledge, and thus bidder j’s
private information is one-dimensional. Thus, we get the same contradiction between
Expressions (4) and (5) when tj is common knowledge, and bidder i is the only bidder
with multidimensional private information.20

Appendix

A.1 Proofs

Proof of Lemma 1. The proof is by induction. When k = 1, p1(θj�d) is weakly increas-
ing in θj because p1(θj�d) = d1(θj) and d1(θj) is weakly increasing in θj for all θj ∈ �,
d ∈ D.

Before showing the inductive step, it is useful to note that

z ≥ y ≥ 0 =⇒ bk(θ� z)+ z ≥ bk(θ� y))+ y ∀k ∈ {1� � � � �K}�

This is because

z ≥ y ≥ 0 =⇒
u
(
k− 1�−y − bk(θ� y)�θ

) = u(k�−y�θ)≥ u(k�−z�θ) = u
(
k− 1�−z − bk(θ� z)�θ

)
�

The final inequality implies that

z ≥ y ≥ 0 =⇒ z + bk(θ� z)≥ y + bk(θ� y)� (6)

because u is increasing in the second argument.

20I credit Hongyao Ma and an anonymous referee, both of whom suggested this extension.
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Returning to the proof, suppose that Pk−1(θj�d) is weakly increasing in θj ∀θj ∈
��d ∈ D and some k ∈ {1� � � � �K}. I show that this implies that Pk(θj�d) is weakly in-
creasing in θj ∀θj ∈��d ∈ D.

Let θ ≥ θhj > θ�j ≥ 0. Then

Pk

(
θhj �d

) = Pk−1
(
θhj �d

) + bk
(
dk

(
θhj

)
�Pk−1

(
θhj �d

))
≥ Pk−1

(
θhj �d

) + bk
(
dk

(
θ�j

)
�Pk−1

(
θhj �d

))
�

where the equality follows from the definition of pk, and the inequality follows because
bk is increasing in the first argument and dk(θ

h
j )≥ dk(θ

�
j ). Then

Pk−1
(
θhj �d

) + bk
(
dk

(
θ�j

)
�Pk−1

(
θhj �d

)) ≥ Pk−1
(
θ�j � d

) + bk
(
dk

(
θ�j

)
�Pk−1

(
θ�j � d

))
= Pk

(
θ�j � d

)
�

where the inequality is implied by equation (6) where we let z = Pk−1(θ
h
j �d) ≥ y =

Pk−1(θ
�
j � d) ≥ 0. The final equality holds from the definition of pk. Thus, if d ∈ D and

Pk−1(θj�d) is weakly increasing in θj ∀θj ∈ �, then Pk(θj�d) is weakly increasing in
θj ∀θj ∈�.

Proof of Lemma 2. Note f (k�θi� θj�d) is strictly increasing in θi ∈ � for all k ∈
{1� � � � �K}� θj ∈ ��d ∈ D, because single crossing implies that bk(θi�Pk−1(θj�d)) is
strictly increasing in θi for all k ∈ {1� � � � �K}� θj ∈ ��d ∈ D. In addition, bK−k+1(θj�

PK−k(θi�d)) is weakly decreasing in the second argument and Lemma 1 shows PK−k(θi�

d) is increasing in θi for all k ∈ {1� � � � �K}� θj ∈ ��d ∈ D. An identical argument shows
that f is strictly decreasing in θj ∈ � for all k ∈ {1� � � � �K}� θi ∈ ��d ∈ D. Declining de-
mand and positive wealth effects imply that f is strictly decreasing in k ∈ {1� � � � �K} for
all θi� θj ∈��d ∈ D.

Proof of Lemma 3. I construct a mechanism �∗ that follows from the symmetric cut-
off rule d∗ ∈ D. Assume ties (in terms of willingness to pays for additional units) are
broken in favor of bidder 1. Thus, the mechanism �∗ has an assignment rule for bidder
1 where

q1(θ1� θ2)= max
{
k ∈ {0�1� � � � �K}|bk

(
θ1�Pk−1

(
θ2� d

∗)) ≥ bK−k+1
(
θ2�PK−k

(
θ1� d

∗))}�
and q2(θ1� θ2) = K − q1(θ1� θ2) for all θ1� θ2 ∈ �. The mechanism has transfer rule
xi(θ1� θ2) = Pqi(θi�θj)(θj� d

∗). By construction, the mechanism is feasible, satisfies no
subsidies, and individual rationality. In the remainder of the proof, I show that the
mechanism satisfies incentive compatibility and efficiency.

Incentive compatibility: I show that mechanism �∗ is incentive compatible by study-
ing two cases.

Case 1: Suppose that θ1� θ2 ∈ � are such that qi(θi� θj) ≥ k for some number k ∈
{1� � � � �K}. Then the construction of mechanism �∗ implies that

bk
(
θi�Pk−1

(
θj�d

∗)) ≥ bK−k+1
(
θj�PK−k

(
θi�d

∗)) =⇒ θi ≥ d∗
k(θj)�
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where the implication follows from Remark 1. And since bk is increasing in the first
argument, θi ≥ d∗

k(θj) implies that

bk
(
θi�Pk−1

(
θj�d

∗)) ≥ bk
(
d∗
k(θj)�Pk−1

(
θj�d

∗)) = pk

(
θj�d

∗)�
In other words, the price of bidder i’s kth unit is below her willingness to pay for her kth
unit. Thus, bidder i has no incentive to deviate by reporting a lower type and winning
fewer units.

Case 2: Suppose θ1� θ2 ∈ � are such that k > qi(θi� θj) for number k ∈ {1� � � � �K}.
Then the construction of mechanism �∗ implies that

bK−k+1(θj�PK−k

(
θi�d

∗) ≥ bk
(
θi�Pk−1

(
θj�d

∗)) =⇒ d∗
k(θj)≥ θi�

In addition, d∗
k(θj)≥ θi implies that

pk

(
θj�d

∗) = bk
(
d∗
k(θj)�Pk−1

(
θj�d

∗)) ≥ bk
(
θi�Pk−1

(
θj�d

∗))�
Thus, the price of winning a kth unit where k> qi(θi� θj) exceeds bidder i’s willingness to
pay for her kth unit, conditional on having won k− 1 units under pricing rule p(θj�d

∗).
Therefore, bidder i does not increase her utility by reporting a type θ′

i that allows her to
win more units. Thus, the two cases show that the mechanism is incentive compatible.

Efficiency: Lastly, I show that mechanism �∗ is efficient. Fix θ1� θ2 ∈ �. In addition,
let q∗

i ∈ {0�1� � � � �K} be such that q∗
i = qi(θ1� θ2) for i = 1�2. Similarly, let x∗

i ∈R+ be such
that x∗

i = xi(θ1� θ2) for i = 1�2. Also, let ρ > 0 be such that

ρ := max
{
bq∗

1+1
(
θ1�x

∗
1
)
� bq∗

2+1
(
θ2�x

∗
2
)}
�

I show that there is no feasible outcome that Pareto dominates the outcome {q∗
i � x

∗
i }2

i=1.
I refer to the outcome {q∗

i � x
∗
i }2

i=1 as the ‘star’ bundle. I prove this by showing that there
is no bundle of the form {q̃i� x̃i}2

i=1 (a ‘tilde’ bundle)—where q̃1� q̃2 ∈ {0�1�2}, and q̃1 +
q̃2 ≤ K, and x̃1� x̃2 ∈ R —that Pareto dominates outcome {q∗

i � x
∗
i }2

i=1. I show that the
mechanism satisfies efficiency by again considering two cases.

Case 1: First, suppose that q̃i ≤ q∗
i for i = 1�2. Then if the tilde bundle Pareto dom-

inates the star bundle, it must be the case that x̃i ≤ x∗
i for i = 1�2, because no bidder is

made strictly worse by consuming the tilde bundle. No bidder is strictly better off un-
less she makes a strictly lower payment. In addition, if any bidder makes a strictly lower
payment, the auctioneer gets strictly lower revenue. Thus, the outcome {q∗

i � x
∗
i }2

i=1 is not
Pareto dominated by any outcome of the form {q̃i� x̃i}2

i=1 where q̃i ≤ q∗
i for all i = 1�2.

Case 2: Next, suppose that the tilde bundle is such that q∗
i < q̃i for some i = 1�2.

Then feasibility implies that q∗
j < q̃j where j = 1�2 and j = i. In addition, it must be the

case that bidder i is made no worse off by consuming the tilde bundle outcome (q̃i� x̃i).
Note that bidder i’s willingness to pay for an additional unit when she consumes the star
bundle outcome (q∗

i � x
∗
i ) is bq∗

i +1(θi�x
∗
i ) where ρ ≥ bq∗

i +1(θi�x
∗
i ) by construction. Thus,

we have that

u
(
q∗
i �−x∗

i � θi
) ≥ u

(
q∗
i + 1�−x∗

i − ρ�θi
) ≥ u

(
q∗
i + k�−x∗

i − kρ�θi
) ∀k ∈ {

1� � � � �K − q∗
i

}
�
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where the first inequality holds because ρ ≥ bq∗
i +1(θi�x

∗
i ) and the second inequality

holds because bidders have declining demand and positive wealth effects. Hence,

ρ≥ bq∗
i +1

(
θi�x

∗
i

) =⇒ ρ > bq(θi�x) ∀q ∈ {
q∗
i + 1� � � � �K

}
�x > x∗

i �

Thus, if bidder i is made no worse off by the reallocation, we must have that

x̃i ≤ x∗
i + (

q̃i − q∗
i

)
ρ�

In other words, bidder i pays less than ρ for each additional unit when we move from
allocation {q∗

i � x
∗
i }2

i=1 to allocation {q̃i� x̃i}2
i=1. Moreover, if bidder i is made strictly better

off under the latter outcome, then the above expression holds with a strict inequality.
When we assume that q∗

i < q̃i for some i = 1�2, then feasibility implies that q∗
j ≤

q̃j − (q̃i − q∗
i ) where j = 1�2, and j = i. In addition, it must be the case that bidder j is

made no worse off by consuming the quantity and payment outcome of (q̃j� x̃j). Note
that

sk
(
θj�x−p+ bk(θj�x−p)

) − bk(θj�x−p) = 0� ∀k ∈ {1� � � � �K}� θj ∈��x�p > 0�

Thus,

bk(θj�x−p)−p ≥ 0 =⇒
sk(θj�x)− bk(θj�x−p)≥ 0� ∀k ∈ {1� � � � �K}� θj ∈��x�p > 0�

because

bk(θj�x−p)−p≥ 0 =⇒ sk(θj�x)≥ sk
(
θj�x−p+ bk(θj�x−p)

) = bk(θj�x−p)

for all k ∈ {1� � � � �K}� θj ∈ ��x�p > 0. Furthermore, recall that bidder j wins q∗
j units in

mechanism � with cut-off rule d∗ ∈ D where T(d∗) = d∗. Remark 1 then implies that

bq∗
j

(
θj�x

∗
j −pq∗

j

(
θj�d

∗)) ≥ bq∗
i +1

(
θi�x

∗
i

)
�

Thus,

bq∗
j

(
θj�x

∗
j −pq∗

j

(
θj�d

∗)) ≥ ρ = max
{
bq∗

i +1
(
θi�x

∗
i

)
� bq∗

j +1
(
θj�x

∗
j

)}
�

This implies that

sq∗
j

(
θj�x

∗
j

) ≥ ρ�

because we showed that bq∗
j
(θj�x

∗
j − pq∗

j
(θj� d

∗)) ≥ pq∗
j
(θj� d

∗) =⇒ sq∗
j
(θj�x

∗
j ) ≥ bq∗

j
(θj�

x∗
j −pq∗

j
(θj� d

∗)). We then have that

u
(
q∗
j �−x∗

j � θj
) ≥ u

(
q∗
j − 1�−x∗

j + ρ�θj
) ≥ u

(
q∗
j − k�−x∗ + kρ�θj

) ∀k ∈ {
1� � � � � q∗

j

}
�
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The final inequality holds because declining demand and positive wealth effects com-
bine to imply that

sk(θj�x) ≥ sq∗
j

(
θj�x

∗
j

) ≥ ρ ∀k ∈ {
1� � � � � q∗

j − 1
}
�x ≤ x∗

j �

In other words, bidder j’s utility does not increase if she sells a unit at price ρ. This
implies that

u
(
q∗
j �−x∗

j � θj
) ≥ u

(
q̃j�−x∗

j + ρ
(
q∗
j − q̃j

)
� θj

)
�

Therefore, if bidder j is made no worse off by winning q̃j units and paying x̃j , then

x̃j ≤ x∗
j − ρ

(
q∗
j − q̃j

)
�

where the above inequality is strict if bidder i is made strictly better off under the tilde
outcome.

Thus, we have that

x̃1 ≤ x∗
1 + (

q̃1 − q∗
1
)
ρ� and x̃2 ≤ x∗

2 − ρ
(
q∗

2 − q̃2
)
�

which implies

x̃1 + x̃2 ≤ x∗
1 + x∗

2�

where the above holds with a strict inequality if at least one bidder is made strictly better
off under the tilde outcome. Thus, {q̃i� x̃i}2

i=1 does not Pareto dominate the outcome
{q∗

i � x
∗
i }2

i=1 when the tilde bundle is such that q∗
i < q̃i for some i = 1�2.

Therefore, our analysis of Case 1 and Case 2 shows that there is no outcome that
Pareto dominates outcome {q∗

i � x
∗
i }2

i=1, and hence the outcome of mechanism �∗ is an
efficient outcome for all (θ1� θ2) ∈�2.

Proof of Theorem 1. I prove the theorem in three steps: (1) show that if d ∈ D, then
T(d) ∈ D; (2) show that T is a continuous mapping; and (3) show that D is compact.

(1) In order to show that d ∈ D =⇒ T(d) ∈ D, I first show that Tk(d)(θ) is weakly
increasing in θ for any θ ∈ ��d ∈ D�k ∈ {1� � � � �K}. Then I show that Tk(d)(θ) is also
weakly increasing in k for any k ∈ {1� � � � �K}� θ ∈��d ∈ D.

If Tk(d)(θ
h
j ) = θ, then Tk(d)(θ

�
j ) ≤ θ because Tk(d)(θ) ∈ [0� θ] ∀θ ∈ ��d ∈ D. If

Tk(d)(θ
h
j ) < θ, then

inf
{
θ|f (

k�θ�θhj �d
)
> 0

} ≥ inf
{
θ|f (

k�θ�θ�j � d
)
> 0

}
�

because Lemma 2 shows f is strictly increasing in the first argument, and thus θhj > θ�j
implies that

f
(
k�θi� θ

�
j � d

)
> f

(
k�θi� θ

h
j �d

) ∀k ∈ {1� � � � �K}� θi ∈��d ∈ D�
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Thus,

Tk(d)
(
θhj

) ≥ Tk(d)
(
θ�j

) ∀k ∈ {1� � � � �K}� θ ≥ θhj > θ�j ≥ 0� d ∈ D�

Next, I show that

Tk+1(d)(θj) ≥ Tk(d)(θj) ∀k ∈ {1� � � � �K − 1}� θj ∈ ��d ∈ D�

If k ∈ {1� � � � �K − 1}� θj ∈��d ∈ D are such that Tk+1(d)(θj) = θ, then the above inequal-
ity holds because Tk(d)(θ) ∈ [0� θ] ∀k ∈ {1� � � � �K − 1}� θ ∈��d ∈ D.

Next, suppose that k ∈ {1� � � � �K − 1}� θ ∈�� andd ∈ D are such that Tk+1(d)(θj) < θ.
Note that Lemma 2 shows that

f (θi� θj�k�d) > f(θi� θj�k+ 1� d) ∀k ∈ {1� � � � �K − 1}� θi� θj ∈ ��d ∈ D�

In addition, f is strictly increasing in the first argument. Therefore,

inf
{
θ|f (θ�θj�k+ 1� d) > 0

} ≥ inf
{
θ|f (θ�θj�k�d) > 0

} =⇒ Tk+1(d)(θj) ≥ Tk(d)(θj)�

∀k ∈ {1� � � � �K − 1}� θj ∈ ��d ∈ D. Thus, T(d) ∈ D ∀d ∈ D, because Tk(d)(θ) is weakly
increasing in θ ∀k ∈ {1� � � � �K}� θ ∈�, and

d ∈ D =⇒ Tk+1(d)(θ) ≥ Tk(d)(θ) ∀k ∈ {1� � � � �K − 1}� θ ∈��

(2) Next, I show that T is a continuous mapping. Since D is a metric space (un-
der the uniform norm), it suffices to show that if {dn}∞n=1 is such that dn ∈ D ∀n ∈ N

and limn→∞ dn = d, then limn→∞ T(dn) = T(d) (see Aliprantis and Border 2006, p. 36).
More formally, assume there is a sequence {dn}∞n=1 such that dn ∈ D� ∀n ∈ N and
limn→∞ dn(θj) = d(θj) ∀θj ∈ � where d ∈ D. I show that this implies that T satisfies
limn→∞ T(dn)(θj) = T(d)(θj) ∀θj ∈�, where T(d) ∈ D.

First, I show that

lim
n→∞Pk

(
θj�d

n
) = Pk(θj�d) ∀k ∈ {1� � � � �K}� θj ∈��

The proof is by induction. The above equality is true if k = 1 because

P1
(
θj�d

n
) = p1

(
θj�d

n
) = dn1 (θj)� ∀n ∈N� θj ∈��

Thus, limn→∞ p1(θj�d
n)= limdn1 (θj) = d1(θj) = p1(θj�d) ∀θj ∈�.

For the inductive step of the proof, suppose that there is k ∈ {1� � � � �K} is such that

lim
n→∞Pk−1

(
θj�d

n
) = Pk−1(θj�d) ∀θj ∈ ��

I show that this implies that the above expression holds when k − 1 is replaced by k.
Note that

Pk

(
θj�d

n
) = bk

(
dnk(θj)�Pk−1

(
θj�d

n
)) + Pk−1

(
θj�d

n
) ∀n ∈ N� θj ∈��
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Since bk is continuous in both arguments, and limn→∞ dnk(θj) → dk(θj) ∀θj ∈ �, and
limn→∞ Pk−1(θj�d

n)= Pk−1(θj�d) ∀θj ∈�, then we have that

lim
n→∞bk

(
dnk(θj)�Pk−1

(
θj�d

n
)) + Pk−1

(
θj�d

n
)

= bk
(
dk(θj)�Pk−1(θj�d)

) + Pk−1(θj�d)= Pk(θj�d)�

for all θj ∈�. Thus, we have proven that

lim
n→∞dn(θj) = d(θj) ∀θj ∈� =⇒

lim
n→∞Pk

(
θj�d

n
) = Pk(θj�d) ∀k ∈ {1� � � � �K}� θj ∈ ��

Recall that

f (k�θi� θj�d)= bk
(
θi�Pk−1(θj�d)

) − bK−k+1
(
θj�PK−k(θi�d)

)
∀k ∈ {1� � � � �K}� θi� θj ∈��d ∈ D�

Since limn→∞ Pk(θj�d
n) = Pk(θj�d) ∀k ∈ {1� � � � �K}� θj ∈ � and bk is continuous in the

second argument, it follows that

lim
n→∞dn(θj)= d(θj) ∀θj =⇒

lim
n→∞ f

(
k�θi� θj�d

n
) = f (k�θi� θj�d) ∀k ∈ {1� � � � �K}� θi� θj ∈��

I use the above expression to show that it is also the case that limn→∞ T(dn)(θj) =
T(d)(θj) ∀θj .

I separate the remainder of the proof that T is continuous into two cases. First,
I show that if θj ∈ � and k ∈ {1� � � � �K} are such that limn→∞ f (k�θ�θj�d

n) = f (k�θ�

θj�d)≤ 0, then

lim
n→∞Tk

(
dn

)
(θj)= Tk(d)(θj) = θ�

Then I show that if θj ∈ � and k ∈ {1� � � � �K} are such that limn→∞ f (k�θ�θj�d
n) =

f (k�θ�θj�d)≤ 0, then

lim
n→∞Tk

(
dn

)
(θj)= Tk(d)(θj) ≤ θ�

For the first case, if θj ∈ � and k ∈ {1� � � � �K} are such that limn→∞ f (k�θ�θj�d
n) =

f (k�θ�θj�d)≤ 0, then for any ε > 0, there exists an n∗ ∈ N such that for all n > n∗,

f
(
k�θ− ε�θj�d

n
)
< 0 =⇒ θ− ε ≥ Tk

(
dn

)
(θj) =⇒ lim

n→∞Tk

(
dn

)
(θj) ≥ θ− ε�

where the first inequality holds because f is strictly decreasing in the second argument.
Since ε > 0 is arbitrary, this implies that limn→∞ Tk(d

n)(θj) = θ when θj ∈ � and k ∈
{1� � � � �K} are such that limn→∞ f (k�θ�θj�d

n) = f (k�θ�θj�d)≤ 0.



Theoretical Economics 15 (2020) Efficient multiunit auctions 393

If θj ∈� and k ∈ {1� � � � �K} are such that f (k�θ�θj�d) > 0, then Tk(d)(θj) < θ, and

lim
n→∞Tk

(
dn

)
(θj)= lim inf

{
θ|f (

k�θ�θj�d
n
)
> 0

} = inf
{
θ|f (k�θ�θj�d) > 0

} = Tk(d)(θj)�

where the second equality holds because (1) f is strictly increasing in the second ar-
gument and (2) f (k�θ�θj�d

n) → f (k�θ�θj�d) ∀θj ∈ �. Thus, we conclude that T is a
continuous mapping over the domain of D because

lim
n→∞dn(θj)= d(θj) ∀θj ∈� =⇒ lim

n→∞T
(
dn

)
(θj) = T(d)(θj) ∀θj ∈��

(3) Finally, I show that D is compact. Or equivalently, I show that D is complete
and totally bounded. The set D is complete because every Cauchy sequence {dn}∞n=1
converges to an element d ∈ D when I use the L1 norm as our metric.

In addition, the set D is totally bounded. This is because under the L1 norm any
weakly increasing and bounded function can be approximated by a sequence of simple
functions and D is a subset of the set of all weakly increasing and bounded functions.
Thus, for any ε > 0, I can construct a finite set of simple functions {d1� � � � � dn}, where for
any d ∈ D, there is an i such that |d − di| < ε according to the L1 norm. Thus, the set of
admissible cut-off rules D is covered by a finite number of ε measure balls. Thus, D is
compact (see Theorem 3.28 in Aliprantis and Border 2006).

Thus, I have shown that T : D → D is a continuous mapping from a compact space
D into itself. Schauder’s fixed-point theorem then states that the mapping T has a fixed-
point d∗ ∈ D.

Proof of Lemma 4. Recall we consider the decision problem of bidder 1 and suppose
that θ ≥ θ2 ≥ θ3 ≥ θj ≥ 0 ∀j = 1�2�3. We show there is a unique d(·) where

d(θ−1) = max
{
θ3� b2

(
θ2� d

(
d(θ−1)�θ−1�2

))}
∀θ−1 ∈�N−1 s.t. θ2 ≥ θ3 ≥ θj ∀j ∈ {4� � � � �N}� (7)

When b2(θ2� θ3) ≤ θ3, then equation (7) implies that

d(θ−1) = θ3 = max
{
θ3� b2

(
θ2� d

(
d(θ−1)�θ−1�2

))}
�

because

θ3 ≥ b2(θ2� θ3) ≥ b2
(
θ2� d

(
d(θ−1)�θ−1�2

))
�

Thus, there is a θ̃2 ∈ � where θ̃2 > θ3 and a unique d(θ̃2� θ−1�2) that solves equation (7).
Let θ∗ ≥ θ̃2 be the supremum θ̃2 such that d is uniquely defined by equation (7) over the
interval [θ3� θ

∗)⊂ �.
I separate the remainder proof into three steps. (1) show that the cut-off rule d de-

fined by equation (7) is weakly in θ2 for all θ2 in the interval (θ3� θ
∗) ⊂ �. (2) show that

the cut-off rule d is continuous in θ2 over the interval (θ3� θ
∗) ⊂ �. (3) show that we can

set θ∗ = θ. Thus, the cut-off rule d defined by equation (7) is continuous and weakly
increasing for all θ2 ∈ (θ3� θ].
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(1) I show that the cut-off rule d that is defined by equation (7) is weakly increasing in
θ2 for all θ2 ∈ [θ3� θ

∗). I prove this by contradiction. Suppose d was not weakly increasing
in θ2 when θ2 ∈ [θ3� θ

∗). Then ∃θ̂ ∈ [θ3� θ
∗) such that

θ̂ = inf
{
θ|∃θ′ > θ s.t. d

(
θ′� θ−1�2

)
< d(θ�θ−1�2)

}
�

Thus, for any ε > 0 there exists a θ��θh ∈� such that θ� ≤ θ̂ ≤ θh, θh�θ� ∈ (θ̂− ε� θ̂+ ε) ⊂
[θ3� θ

∗), and d(θ��θ−1�2) > d(θh�θ−1�2) ≥ θ3. Moreover,

d(θ��θ−1�2) > θ3 =⇒ θ� > d(θ��θ−1�2)= b2
(
θ��d

(
d(θ��θ−1�2)�θ−1�2

))
> θ3�

In addition, d(θ��θ−1�2) > d(θh�θ−1�2) implies that

b2(θh�d
(
d(θh�θ−1�2)�θ−1�2

)
< b2

(
θ��d

(
d(θ��θ−1�2)�θ−1�2

))
�

Since b2 is increasing in the first argument and θh > θ�, then it must be the case that

d
(
d(θh�θ−1�2)�θ−1�2

)
> d

(
d(θ��θ−1�2)�θ−1�2

)
�

However, the above inequality cannot hold because

d(θh�θ−1�2) < d(θ��θ−1�2) < θ� ≤ θ̂ =⇒
d
(
d(θh�θ−1�2)�θ−1�2

) ≤ d
(
d(θ��θ−1�2)�θ−1�2

)
�

where the final inequality holds because d is weakly increasing when θ < θ̂. Thus, we
have a contradiction that shows d is weakly increasing.

(2) A similar proof by contradiction shows that d is continuous in θ2 ∈ � over
(θ3� θ

∗) ⊂ �. If d is not continuous over this interval, then there is a θ̂ ∈ (θ3� θ
∗)

that is the first discontinuity in d. By construction, d is continuous when θ is such
that b2(θ�0) < θ3. Thus, limθ→+θ̂ d(θ�θ−1�2) > θ3. Yet, d is continuous in θ2 when
θ2 < θ̂. Thus, when ε is sufficiently small, d(θ̂ − ε�θ−1�2) ≈ d(θ̂ + ε�θ−1�2) because
d(d(θ̂ − ε�θ−1�2)�θ−1�2) ≈ d(d(θ̂ + ε�θ−1�2)�θ−1�2) ≤ d(θ̂ − ε�θ−1�2). Since b2 is contin-
uous in both arguments, this implies that d(θ̂+ ε�θ−1�2)≈ d(θ̂− ε�θ−1�2), which contra-
dicts our assumption that d is discontinuous at θ̂.

(3) I show that θ∗ = θ by contradiction. Suppose that θ∗ ∈ (θ3� θ). Thus, for any ε > 0
there exists a θ̃ ∈ [θ∗� θ∗ + ε) such that d(θ̃� θ−1�2) is not uniquely defined by equation
(7). Note that θ̂− b2(θ̃� d(x�θ−1�2)) is strictly increasing in θ̂ when θ̂ ∈ [θ3� θ

∗) ⊂�.
If

θ̂− b2
(
θ̃� d(θ̂� θ−1�2)

) ≥ 0 when θ̂ = θ3�

then equation (7) implies that d(θ̂� θ−1�2) = θ3, because

b2
(
θ̃� d(θ̂� θ−1�2)

) = b2(θ̃� θ3) < θ3�

Yet this contradicts our assumption that θ∗ < θ. Thus, it must be the case that

θ̂− b2
(
θ̃� d(θ̂� θ−1�2)

)
< 0 when θ̂ = θ3�



Theoretical Economics 15 (2020) Efficient multiunit auctions 395

In addition,

θ̂− b2
(
θ̃� d(θ̂� θ−1�2)

)
> 0

when θ̂ = θ∗ −ε where ε > 0 is sufficiently small. This is because by construction θ̃−θ∗ <
2ε and when ε is sufficiently small,

θ̃ ≈ θ∗ > b2(θ̃�0) > b2
(
θ̃� d(θ̂� θ−1�2)

)
�

Since θ̂ − b2(θ̃� d(x�θ−1�2)) is strictly increasing and continuous in θ̂, then there exists a
unique θ̂ ∈ (θ3� θ

∗) such that

θ̂− b2
(
θ̃� d

(
x∗� θ−1�2

))
�

In addition, if we let θ̂ = d(θ̃� θ−1�2), then d(θ̃� θ−1�2) satisfies equation (7).

Proof of Theorem 2. Because mechanism � is symmetric, it is without loss of gen-
erality to assume that θ ≥ θ2 ≥ θ3 ≥ θj ≥ 0 ∀j = 1�2�3 and study the problem from the
perspective of bidder 1. By construction, mechanism � satisfies (1) IR and (2) no subsi-
dies.

Next, I show that the mechanism is incentive compatible. If (θ1� � � � � θN) ∈ �N are
such that d(θ−1) > θ1, then q1(θ1� θ−1) = x1(θ1� θ−1) = 0. Bidder 1 does not have a prof-
itable deviation in reporting her type because the price of one unit exceeds bidder 1’s
demand for her first unit p1(θ−1) > θ1. Moreover, the price of the second unit exceeds
the price of the first unit.

Incentive compatible: I consider two cases to prove incentive compatibility.
Case 1: If (θ1� � � � � θN) ∈ �N are such that θ1 > d(θ−1) and θ2 > d(θ−2), then

q1(θ1� θ−1) = 1. Bidder 1 has no incentive to report a lower type that does not win any
units because her willingness to pay for the first unit θ1 weakly exceeds the price she
pays for the first unit d(θ−1) = p1(θ−1). In addition, θ2 > d(θ−2) implies

p2(θ−1) = θ2 > d(θ−2)≥ b2
(
θ1� d

(
d(θ−2)�θ−1�2

)) ≥ b2
(
θ1� d(θ2� θ−1�2)

) = b2
(
θ1�p1(θ−1)

)
�

where the first equality holds from the definition of p2, the first inequality holds by as-
sumption, the second inequality holds by the construction of d, the third inequality fol-
lows because d is weakly increasing in the first argument and b2 is decreasing in the sec-
ond argument, and the final equality holds by the construction of p1. Thus, we see that
bidder 1’s willingness to pay for her second unit is below the price she must pay to win
a second unit. Thus, bidder 1 does not gain by overreporting her type and winning an
additional unit. Moreover, we can see that the mechanism satisfies feasibility because
bidder 1 and bidder 2 each wins and demands exactly one unit under the mechanism’s
pricing rule. All other bidders win no units and demand no units.

Case 2: If (θ1� � � � � θN) ∈ �N are such that θ1 > d(θ−1) and d(θ−2) > θ2, then
q1(θ1� θ−1) = 2. Bidder 1 has no incentive to report a lower type that does not win any
units because her willingness to pay for the first unit θ1 weakly exceeds the price she
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pays for the first unit d(θ−1) = p1(θ−1). Bidder 1 has no incentive to report a lower type
that wins only one unit because d(θ−2) > θ2 implies that

b2
(
θ1�p1(θ−1)

) = b2
(
θ1� d(θ2� θ−1�2)

) ≥ b2(θ1� d
(
d(θ−2)�θ−1�2

) = d(θ−2) > θ2 = p2(θ−1)�

where the first equality holds from the definition of p1. The first inequality holds be-
cause d is weakly increasing in the first argument and b2 is decreasing in the sec-
ond argument. The second equality holds because d(θ−2) > θ2 ≥ θ3 =⇒ d(θ−2) =
b1(θ1� d(d(θ−2)�θ−1�2)). Thus, bidder 1’s conditional willingness to pay for her sec-
ond unit exceeds the price of her second unit and, therefore, bidder 1 does not want
to deviate and report a type that ensures that she only wins one unit. In addition,
qj(θ1� θ−1) = 0 ∀j = 1 if θ1 ≥ d(θ−1) and d(θ−2) > θ2. This holds for bidder 2 by as-
sumption. This holds for bidders j = 1�2 because d(θ−j) ≥ θ3 ≥ θj . Thus, the above
construction specifies a mechanism that is feasible and incentive compatible.

Efficiency: I consider two cases to prove efficiency.
Case 1: Consider an outcome that is such that two bidders each win one unit. That

is, (θ1� � � � � θN) ∈ �N is such that qi(θi� θ−i) = 2 ∀i ∈ {1� � � � �N}. Again, it is without loss
of generality to assume the two bidders are bidders 1 and 2 and that θ1� θ2 ≥ θ3 ≥ θj ∀j =
1�2�3. Because bidders 1 and 2 each win exactly one unit, we know that θ1 ≥ d(θ−1)

and θ2 ≥ d(θ−2). There are no Pareto improving trades between a winning bidder (with-
out loss of generality, bidder 1) and a losing bidder (without loss of generality, bidder 3)
because

s1
(
θ1�p1(θ−1)

) ≥ s1(θ1� θ1) = θ1 ≥ θ3�

where the first inequality holds because θ1 ≥ d(θ−1)= p1(θ−1) and a bidder’s willingness
to sell her first unit s1 is decreasing in the second argument (her payment) by positive
wealth effects. The first equality holds from the definition of s1. Thus, there are no ex
post Pareto improving trades between a winning bidder and a losing bidder because the
winning bidder’s willingness to sell exceeds the losing bidder’s willingness to pay. There
are no ex post Pareto improving trades where bidder 2 buys a unit from bidder 1 because

s1
(
θ1�p1(θ−1)

) ≥ θ1 = p2(θ−2) ≥ b2
(
θ2�p1(θ−2)

)
�

where the first inequality was shown above, and the second inequality is because the
mechanism is incentive compatible, and hence the price bidder 2 pays for her second
unit exceeds her willingness to pay for her second unit when she wins one unit. Thus,
bidder 1’s willingness to sell a unit exceeds bidder 2’s willingness to pay for a unit and
there is no ex post Pareto improving trades where bidder 1 sells a unit to bidder 2. A sym-
metric argument shows there are no ex post Pareto improving trades where bidder 2 sells
a unit to bidder 1. Thus, there are no ex post Pareto improving trades when two bidders
each wins one unit.

Case 2: Consider an outcome where one bidder (without loss of generality, bidder
(1) wins both units. That is, (θ1� � � � � θN) ∈ �N is such that q1(θ1� θ−1) = 2. I show that
there are no ex post Pareto improving trades where bidder 1 sells a unit to a losing bid-
der. Incentive compatibility implies that bidder 1’s conditional willingness to pay for
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her second unit exceeds the price of her second unit. If we continue to assume that
θ ≥ θ2 ≥ θj ≥ 0 ∀j = 1�2, this implies that

b2
(
θ1�p1(θ−1)

) ≥ p2(θ−1) = θ2�

From the above expression, we then have that

s2
(
θ1�p1(θ−1)+p2(θ−1)

) ≥ s2
(
θ1�p1(θ−1)+ b2

(
θ1�p1(θ−1)

))
= b2

(
θ1�p1(θ−1)

) ≥ θ2 ≥ θj ∀j = 1�2�

where the first inequality holds because positive wealth effects imply that s2 is decreas-
ing in the second argument. The first equality holds from the definition of s2 and b2. The
second inequality holds from incentive compatibility. Thus, there are no ex post Pareto
improving trades between bidder 1 and bidder j = 1 because bidder 1’s willingness to
sell her second unit exceeds any of her rival’s willingness to pay for a single unit.

Proof of Proposition 1. Without loss of generality, I construct the proof by placing
necessary restrictions on the assignment rule of bidder 1 when her rivals have types
θ−1 ∈ �N−1 where θ−1 is such that θ ≥ θ2 ≥ θ3 ≥ θj ≥ 0 ∀j = 1�2�3. The proof of Propo-
sition 1 is by contradiction. I assume that there exists a mechanism that satisfies Prop-
erties (1)–(5), and then obtain a contradiction. I obtain Lemmas A1–A3 under this as-
sumption. I then use these three lemmas to draw a contradiction.

Lemma A1 shows that bidder 1 wins a unit only if her demand is among the two
highest demands reported.

Lemma A1. Bidder 1’s first unit cut-off rule is such that d1�1(θ−1) ≥ θ3.

Proof. I show that d1�1(θ−1) ≥ θ3. The proof is by contradiction. Suppose that there
exist θ2� θ3 such that θ3 > d1�1(θ−1). This implies that if θ1 = d1�1(θ−1) + ε, then
q1(θ1� θ−1) ≥ 1 and if θ1 = d1�1(θ−1) − ε, then q1(θ1� θ−1) = 0. Thus, as θ1 approaches
d1�1(θ−1) from above, bidder 1 is willing to sell one of her units for at most θ1 (if bidder 1
wins 2 units when θ1 > d1�1(θ−1), then her willingness to sell an additional unit is lower).
Thus, there is a Pareto improving trade where bidder 1 sells one unit to bidder 3 for a
price in the interval (θ1� θ3).

Lemma A2. If θ3 ≥ b2(θ2�0), then bidder 1’s first unit cut-off rule is d1�1(θ−1) = θ3.

Proof. The proof is by contradiction. Suppose d1�1(θ−1) > θ3. Let θ1 be such that θ1 ∈
(θ3� d1�1(θ−1)). Then q2(θ1� θ2� θ3� θ−1�2�3) = 2. This holds because (1) q1(θ1� θ−1) = 0
since d1�1(θ−1) > θ1 and (2) qi(θi� θ−i) = 0 ∀i = 1�2 because Lemma A1 shows di�1(θ−i)≥
min{θ1� θ2} and min{θ1� θ2}> θi. Thus,

θ2 ≥ d2�2(θ−2) ≥ d2�1(θ−2)≥ θ3�
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Let θ̃2 = d2�2(θ−2)+ ε, and θ̂2 = d2�2(θ−2)− ε. Incentive compatibility and continuity of
bidder 2’s preferences imply that when ε > 0 is sufficiently small,

s2
(
θ̃2�x2(θ1� θ3)

) ≈ b2
(
θ̂2� d2�1(θ1� θ3)

) ≤ b2(θ2�0) < θ1�

Thus, s2(θ̃2�x2(θ1� θ3) < θ1. This implies that there is a Pareto improving trade when
bidder 2 is type θ̃2. Namely, bidder 2 sells one unit to bidder 1 for a price in the interval
(s2(θ̃2�x2(θ2� θ−2))�θ1).

Lemma A3. If θ2� θ3 ∈� are such that b2(θ2�0) < θ3 < θ2, it follows that

d1�2(θ−1) = θ∗
1�

where θ∗
1 ∈� is defined as solving

b2
(
θ∗

1� θ3
) = θ2�

Proof. The proof is by contradiction. Suppose that there exist a mechanism � satisfy-
ing Properties (1)–(5) and θ2� θ3 ∈ � with b2(θ2�0) < θ3 < θ2, and d1�2(θ−1) = θ∗

1. I sepa-
rate the proof into two cases.

Case 1: Suppose that d1�2(θ−1) > θ∗
1. Then

q1(θ1� θ−1) = 1 if θ1 ∈ (
θ∗

1� d1�2(θ−1)
)
�

because θ1 > θ∗
1 > θ2 > θ3 = d1�1(θ−1) where the final equality holds because Lemma A2

shows that θ3 = d1�1(θ−1) if θ3 ∈ (b2(θ2�0)�θ2). In addition, q2(θ1� θ2� θ3� θ−1�2�3) = 1 be-
cause both units are sold and bidder i = 1�2 wins zero units when her type is not among
the two highest types reported. Thus, θ2 ≥ d2�1(θ−2).

Let θ̃2 = min{θ2� d2�1(θ−2) + ε} where ε > 0 is small. Note that θ̃2 > θ3 because
d2�1(θ−1) ≥ θ3 and θ2 > θ3. Thus, θ2 ≥ θ̃2 > θ3 =⇒ θ3 ∈ (b2(θ̃2�0)� θ̃2), which follows
because I assume θ3 ∈ (b2(θ2�0)�θ2). Thus, Lemma A2 shows d1�1(θ̃2� θ−1�2) = θ3, and
bidder 1 is willing to pay b2(θ1� θ3) for an additional unit. Note that

b2(θ1� θ3) > b2
(
θ∗

1� θ3
) = θ2 ≥ θ̃2�

where the first inequality holds because θ1 > θ∗
1 and the equality holds from the defini-

tion of θ∗
1 .

In addition, since θ̃2 − 2ε < d2�1(θ−2) ≤ θ̃2, where ε > 0 is arbitrarily small, incen-
tive compatibility implies that bidder 2’s willingness to sell her first unit is such that
s1(θ̃2� d2�1(θ−2)) ≈ d2�1(θ−2) because θ̃2 ≈ d2�1(θ−2). Yet q2(θ̃2� θ−2) = 1 by construction.
Thus, there is a Pareto improving trade where bidder 1 buys the unit from bidder 2 for a
price in the interval (θ̃2� b2(θ1� θ3)). Thus, if d1�2(θ−1) > θ∗

1 , there exists a Pareto improv-
ing trade and the mechanism does not satisfy Properties (1)–(5).

Case 2: Suppose that θ∗
1 > d1�2(θ−1). Then d1�2(θ−1) ≥ d1�1(θ−1) = θ3, where the final

inequality holds by Lemma A2. Let θ̃1 = d1�2(θ−1) + ε, where ε > 0 is sufficiently small.
Thus, q1(θ̃1� θ−1) = 2. Incentive compatibility implies that bidder 1 is approximately in-
different between buying her second unit when her type is near d1�2(θ−1). Thus, bidder
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1 is willing to sell her second unit for approximately b2(θ̃1� θ3) (this follows from Re-
mark A2). In addition, bidder 2 is willing to pay θ2 for her first unit and θ2 > b2(θ̃1� θ3) be-
cause I assumed that θ∗

1 > θ̃1 ≈ d1�2(θ−1). Thus, there is a Pareto improving trade where
bidder 1 sells her second unit to bidder 2 for a price in the interval (b2(θ̃1� θ3)�θ2).

To complete the proof Proposition 1, note that strong monotonicity implies that
qi(θi� θ−i) is weakly decreasing in θ−i ∀θ−i ∈ �N−1. Thus, di�k(θ−i) is weakly increas-
ing in θ−i ∀θ−i ∈ �� i ∈ {1� � � � �N}�k ∈ {1�2}. Suppose that (θ1� � � � � θN) ∈ �N is such that
θ > θ1 > θ2 > θ3 > θj ∀j = 1�2�3. In addition, suppose that, θ1� θ3 are such that

b2(θ1� θ3) ∈ (θ3� θ3 + ε)�

where ε > 0 is sufficiently small. I show that this implies that d2�1(θ−2) = b2(θ1� θ3). To
show d2�1(θ−2) = b2(θ1� θ3) note that if θ2 ∈ (θ3� b2(θ1� θ3)) then θ1 > θ∗

1 where θ∗
1 is such

that

θ2 = b1
(
θ∗

1� θ3
)
�

Thus, Lemma A3 implies that q1(θ1� θ−1)= 2 =⇒ q2(θ2� θ−2)= 0. If θ2 ∈ (b2(θ1� θ3)�θ3 +
ε), then θ1 < θ∗

1 and Lemma A3 implies that q1(θ1� θ2� θ3� θ−1�2�3) ≤ 1. In addition,

qj(θj� θ−j) = 0 for all j = 3� � � � �N by Lemma A1, because θ1� θ2 > θj . Since
∑N

i=1 qi(θi�

θ−i) = 2, then q2(θ2� θ−2) ≥ 1. Since q2(·� θ−2) is weakly increasing ∀θ−2 ∈ �N−1 by in-
centive compatibility, I then have that d2�1(θ−2) = b2(θ1� θ3).

Now suppose bidder 3 increases her report to θ′
3 where θ′

3 > θ3 is such that

b2
(
θ1� θ

′
3
) ∈ (

θ′
3� θ

′
3 + ε

)
�

Again, the same argument shows that d2�1(θ
′
−2) = b2(θ1� θ

′
3) where θ′

−2 = (θ1� θ
′
3� � � � �

θN) ∈ �N−1. In addition, d2�1(θ
′
−2) = b2(θ1� θ

′
3) < b2(θ1� θ3) = d2�1(θ−2) because θ′

3 > θ3
and bidders have strictly positive wealth effects. Yet θ−2 ≤ θ′

−2 in the coordinatewise
sense. This contradicts with strong monotonicity because strong monotonicity implies
that d2�1(θ−2) is weakly increasing in θ−i. Thus, there is no mechanism � that satisfies
Properties (1)–(5).

Proof of Lemma 5. Individual rationality implies that if γi�γj ∈ � × {s� f } are such
that qi(γi�γj) = 0, then xi(γi�γj) = pi�0(γj) ≤ 0. When γi�γj ∈ � × {s� f } are such that
qi(γi�γj) = 0, individual rationality implies that

u
(
2�−xj(γi�γj)�γj

) ≥ u(0�0�γj)�

The above expression gives us that

xj(γi�γj) ≤ θj + b2(γj� θj) < 2θj ∀γi�γj ∈�× {s� f } s.t. qi(γi�γj) = 0� (8)

The first inequality in equation (8) holds because qi(γi�γj) = 0 =⇒ qj(γi�γj) ≤ 2, and
hence individual rationality gives us that

u(0�0�γj) = u(1�−θj�γj) = u
(
2�−θj − b2(γj� θj)�γj

) ≤ u
(
2�−xj(γi�γj)�γj

)
�
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The second inequality in equation (8) holds because of declining demand and positive
wealth effects.

If γi = (0� ti) ∈ � × {s� f } and γj = (θj� tj) ∈ � × {s� f } is such that θj > 0, then effi-
ciency requires that qj(γi�γj) = 2. In addition, the equation (8) shows that

γi = (0� ti) ∈�× {s� f } =⇒ xj(γi�γj) = pj�0(γi)+pj�1(γi)+pj�2(γi) < 2θj�

for all γj ∈ �×{s� f } s.t. θj > 0. Since the above expression must hold for arbitrarily small
θj > 0, we have that

pj�0(γi)+pj�1(γi)+pj�2(γi) ≤ lim
θj→+0

2θj = 0�

Thus, if γi = (0� ti) and γj = (θj� tj) where θj > 0, then weak budget balance implies

xi(γi�γj)+ xj(γi�γj) = pi�0(γj)+ (
pj�0(γi)+pj�1(γi)+pj�2(γi)

) ≥ 0�

However, I have already shown that (pj�0(γi) + pj�1(γi) + pj�2(γi)) ≤ 0 and pi�0(γj) ≤ 0.
Thus,

pi�0(γj)+ (
pj�0(γi)+pj�1(γi)+pj�2(γi)

) ≥ 0 =⇒ pi�0(γj)= 0 if θj > 0�

Thus, the price bidder i pays to win no units is zero because pi�0(γj) = 0∀γj ∈ � ×
{s� f } s.t. θj > 0. We combine this with the taxation principle to get the result. If γi�γj ∈
� × {s� f } and γi and γj are such that qi(γi�γj) = 0, then the taxation principle implies
xi(γi�γj)= pi�0(γj) = 0, where the final equality follows by the above argument.

Proof of Proposition 2 When I prove the first two bullet points of Proposition 2, I pro-
ceed with an abuse of notation by dropping ti and tj from the description of bidder types.
I study the incentives that bidders have to truthfully report their steepness, given that
mechanism � provides the bidders with an incentive to truthfully report their steepness
type. Thus, fix ti� tj ∈ {s� f } and suppose that a bidder truthfully reports her steepness
type. I then find necessary conditions on mechanism � that ensure that a bidder truth-
fully reports her intercept type under the assumption that she truthfully reports her
steepness type. Thus, for simplicity, when I prove the first two bullet points of Propo-
sition 2, the domain of bidder i’s assignment rule qi is �2, because I only study bid-
der incentives to report their intercept type. Thus, qi(θi� θj) is bidder i’s assignment in
mechanism � that satisfies Properties (1)–(4) when we take as given that bidders i and j

truthfully reported their steepness type. Similarly, write the cut-off rules d
ti
i�1 and d

ti
i�2 as

di�1 and di�2 to condense notation. Remark A1 below gives necessary conditions that a
mechanism � must satisfy if � satisfies Properties (1)–(4).

Remark A1. Suppose that mechanism � satisfies Properties (1)–(4). Then

qi(θi� θj) = 2 ⇐⇒ s2
(
θi�xi(θi� θj)

) ≥ θj�
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and

qi(θi� θj) = 1 ⇐⇒ b2
(
θi�xi(θi� θj)

) ≤ s1
(
θj�xj(θi� θj)

)
�

If di�2(θj) > di�1(θj), then

pi�1(θj)= di�1(θj)

and

di�1(θj) = lim
θi→−di�1(θj)

s1
(
θi�pi�1(θj)

)
�

The first two statements in Remark A1 are direct implications of Lemma 5. Lemma 5
implies that if bidder j wins zero units, she makes zero payment. Thus, bidder j is willing
to pay θj ∈ � for an additional unit if she wins zero units in mechanism � if mechanism
� satisfies Properties (1)–(4). Efficiency then implies that bidder i willingness to sell her
final unit must weakly exceed bidder j’s willingness to pay for her first unit. Similarly, if
bidder i wins exactly one unit in mechanism �, then efficiency requires that the outcome
of mechanism � is such that bidder i’s conditional willingness to pay for an additional
(second) unit is below her rival’s willingness to sell her first unit.

The latter two statements in Remark A1 hold if the θj ∈ � is such that mechanism
� has a cut-off rule where bidder i has a strictly higher cut-off for her second unit than
she does for her first unit di�2(θj) > di�1(θj). We will later prove that this is a necessary
condition for mechanism �’s assignment rule if and only if θj > 0. Here, I show that if
this condition holds, then the price bidder i pays for her first unit is her intercept cut-
off. This is a direct consequence of incentive compatibility. The final point states that
incentive compatibility implies that bidder i is indifferent between buying and selling
her first unit of the good when her intercept type equals her first unit cut-off type.

Lemma A4 below proves that if mechanism � is such that bidder i’s intercept type
approximately equals her second unit cut-off type given her rival’s intercept θj ∈�, then
bidder i’s willingness to sell her second unit if she wins both units (and pays for both
units) equals her willingness to pay for her second unit conditional on buying a sin-
gle unit for price di�1(θj). If this condition does not hold, then mechanism � violates
incentive compatibility. This is because incentive compatibility implies that bidder i

is approximately indifferent between buying or selling her second unit for a price of
b2(di�2(θj)�di�1(θj)) when her intercept type is approximately di�2(θj) and bidder i paid
di�1(θj) to win her first unit. If this indifference does not hold, then bidder i has a strict
incentive to misreport her intercept type when her intercept type is near di�2(θj).

Lemma A4. Suppose that mechanism � satisfies properties (1)–(4). Then

lim
θi→+di�2(θj)

s2
(
θi�xi(θi� θj)

) = lim
θi→−di�2(θj)

b2
(
θi�di�1(θj)

)
�

for all θj ∈ �.
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Proof. Fix θj ∈ �. Let θ∗
1 := di�1(θj) ∈ �, θ∗

2 := di�2(θj) ∈ �. Thus, θ∗
2 ≥ θ∗

1. Similarly,
let x∗

1�x
∗
2 ∈ R+ be such that x∗

1 := xi(θi� θj) ∀θi s.t. qi(θi� θj) = 1 and x∗
2 := xi(θi� θj) ∈ R+

∀θi ∈� s.t. qi(θi� θj)= 2. Thus, x∗
2 ≥ x∗

1.
Consider two cases. First, suppose that mechanism � is such that θ∗

2 = θ∗
1 . Then

bidder i gets utility u(2�−x∗
2� θi) in mechanism � if her intercept type θi ∈ � is such

that θi > θ∗
2 . If bidder i’s intercept type is instead such that θ∗

2 > θi, then bidder i has
utility u(0�0� θi). Incentive compatibility implies that bidder i utility is continuous and
increasing in her type θi because u is continuous in the third argument. Thus,

θ∗
2 = θ∗

1 =⇒ u
(
2�−x∗

2� θ
∗
2
) = lim

θi→+θ∗
2

u
(
2�−x∗

2� θi
) = lim

θi→−θ∗
2

u(0�0� θi) = u
(
0�0� θ∗

2
)
�

Furthermore, u(2�−x∗
2� θ

∗
2) = u(0�0� θ∗

2) implies that x∗
2 = θ∗

2 + b2(θ
∗
2� θ

∗
2) because

u
(
0�0� θ∗

2
) = u

(
1�−θ∗

1� θ
∗
2
) = u

(
2�−(

θ∗
1 + b2

(
θ∗

2� θ
∗
1
))
� θ∗

2
)
�

Thus,

θ∗
2 = θ∗

1 =⇒ lim
θi→+di�2(θj)

s2
(
θi�−xi(θi� θj)

) = s2
(
θ∗
i �−x∗

i

) = b2
(
θ∗

2� θ
∗
1
)

= lim
θi→−di�2(θj)

b2
(
θi�di�1(θj)

)
�

For the second case, suppose that mechanism � is such that θ∗
2 > θ∗

1 . Recall, incen-
tive compatibility implies that a bidder’s utility is continuous in her type,

u
(
2�−x∗

2� θ
∗
2
) = lim

θi→+di�2(θj)
u
(
2�−xi(θi� θj)� θi

)
= lim

θi→−di�2(θj)
u
(
1�−xi(θi� θj)� θi

) = u
(
1�−x∗

1� θ
∗
2
)
�

Thus,

u
(
2�−x∗

2� θ
∗
2
) = u

(
1�−x∗

1� θ
∗
2
) =⇒ s2

(
θ∗

2�x
∗
2
) = x∗

2 − x∗
1 = b2

(
θ∗

2�x
∗
1
)
�

Remark A2 follows from combining the implications of Remark A1 and Lemma A4.

Remark A2. Suppose that mechanism � satisfies Properties (1)–(4). Remark A1 and
Lemma A4 show

b2
(
di�2(θj)�di�1(θj)

) = lim
θi→−di�2(θj)

b2
(
θi�di�1(θj)

) = lim
θi→+di�2(θj)

s2
(
θi�xi(θi� θj)

) ≥ θj�

Lemma A5 proves the first bullet point in Proposition 2.

Lemma A5. Suppose that mechanism � satisfies Properties (1)–(4). Then di�2(θj) >

di�1(θj) for all θj > 0.
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Proof. The proof of Lemma A5 is by contradiction. Suppose that there is a mechanism
� such that di�2(θ′

j) = di�1(θ
′
j) for some θ ≥ θ′

j > 0. Let θ̃i := di�2(θ
′
j)= di�1(θ

′
j). Then

qi
(
θi� θ

′
j

) =
{

2 if θi > θ̃i�

0 if θi < θ̃i�

Thus, Remark A2 implies

b2(θ̃i� θ̃i) ≥ θ′
j ∀θ′

j s.t. di�1
(
θ′
j

) = di�2
(
θ′
j

) = θ̃i� (9)

Let θ∗
j ∈ (0� θ) be such that θ∗

j := inf{θj : di�1(θj) = di�2(θj) = θ̃i}. Then di�1(θj) < θ̃i for all
θj < θ∗

j , because di�1 and di�2 are weakly increasing in θj ∀θj ∈ �. Thus, for any ε > 0, the

construction of θ∗
i implies that if θi ∈ (di�1(θ

∗
j − ε)� θ̃i) then

qi(θi� θj) =
{

≥ 1 if θj ≤ θ∗
j − ε�

0 if θj > θ∗
j �

Thus,

qj(θi� θj) = 2 − qi(θi� θj) =
{

≤ 1 if θj < θ∗
j − ε�

2 if θj > θ∗
j �

Hence we get that dj�2(θi) ∈ [θ∗
j − ε�θ∗

j ] if θi ∈ (di�1(θ
∗
j − ε)� θ̃i). Then Remark A2 implies

that

b2
(
dj�2(θi)�dj�1(θi)

) ≥ θi�

Recall that equation (9) implies that

b2(θ̃i� θ̃i) ≥ θ′
j ≥ θ∗

j ∀θ′
j s.t. di�1

(
θ′
j

) = di�2
(
θ′
j

)
�

where the final inequality follows from the definition of θ∗
j . Combining the above two

expressions gives

b2(θ̃i� θ̃i) ≥ θ∗
j ≥ dj�2(θi)≥ b2

(
dj�2(θi)�dj�1(θi)

) ≥ θi ∀θi ∈
(
di�1

(
θ∗
j − ε

)
� θ̃i

)
�

where the second inequality holds because dj�2(θi) ∈ [θ∗
j − ε�θ∗

j ] if θi ∈ (di�1(θ
∗
j − ε)� θ̃i),

and the third inequality holds because of declining demand. Thus,

b2(θ̃i� θ̃i) ≥ θi ∀θi ∈
(
di�1

(
θ∗
j − ε

)
� θ̃i

) =⇒ b2(θ̃i� θ̃i) ≥ θ̃i�

Yet b2(θ̃i� θ̃i) ≥ θ̃i, and this contradicts our declining demand assumption. Thus, we
have shown that if � satisfies Properties (1)–(4), then di�2(θj) > di�1(θj) ∀θj ∈ (0� θ].

Lemma A6 below uses a nearly identical proof to the one above to show the second
assertion in Proposition 2.



404 Brian Baisa Theoretical Economics 15 (2020)

Lemma A6. Suppose that mechanism � satisfies Properties (1)–(4). Then di�1(θj) is con-
tinuous and strictly increasing in θj ∀θj ∈�.

Continuity proof. The proof is by contradiction. Incentive compatibility implies that
di�1(θj) is weakly increasing. Thus, if di�1(θj) is discontinuous, then there exists a θ∗

j > 0
such that

lim
θj→−θ∗

j

di�1(θj) < lim
θj→+θ∗

j

di�1(θj)�

Let θ�i � θ
h
i ∈ � be such that θ�i := limθj→−θ∗

j
di�1(θj) and θhi := limθj→+θ∗

j
di�1(θj). Thus,

θi ∈ (θ�i � θ
h
i ) implies that

qj(θi� θj) = 2 − qi(θi� θj) =
{

≤ 1 if θj < θ∗
j �

2 if θj > θ∗
j �

Therefore, dj�2(θi)= θ∗
j ∀θi ∈ (θ�i � θ

h
i ), and Remark A2 shows

b2
(
θ∗
j � dj�1(θi)

) ≥ θi ∀θi ∈
(
θ�i � θ

h
i

) =⇒ lim
θi→−θhi

b2
(
θ∗
j � dj�1(θi)

) ≥ θhi � (10)

Similarly, Lemmas A4 and Remark A2 show that

lim
θi→+di�1(θj)

b2
(
θj�dj�1(θi)

) ≤ lim
θi→+di�1(θj)

s1
(
θi�di�1(θj)

) = di�1(θj)

≤ lim
θj→−θ∗

j

di�1(θj)= θ�i ∀θj < θ∗
j � (11)

where the final inequality follows because di�1(θj) is weakly increasing. Thus, positive
wealth effects imply that

b2
(
θj�dj�1

(
θ�i

)) ≤ lim
θi→+di�1(θj)

b2
(
θj�dj�1(θi)

) ≤ θ�i ∀θj < θ∗
j � (12)

where the final inequality from equation (11). Combining equations (10) and (11) give

lim
θi→−θhi

b2
(
θ∗
j � dj�1(θi)

) ≥ θhi > θ�i ≥ b2
(
θ∗
j � dj�1

(
θ�i

))
�

This yields a contradiction because limθi→−θhi
dj�1(θi) ≥ dj�1(θ

�
i ) and positive wealth ef-

fects imply

b2
(
θ∗
j � dj�1

(
θ�i

)) ≥ lim
θi→−θhi

b2
(
θ∗
j � dj�1(θi)

)
�

Thus, if � satisfies Properties (1)–(4) then di�1(θj) is continuous in θj ∀θj ∈ �.
Strictly increasing : I prove that di�1(θj) is strictly increasing in θj ∀θj ∈ �. Again,

the proof is by contradiction. Incentive compatibility requires that di�1(θj) is weakly
increasing θj ∀θj ∈ �. If di�1(θj) is not strictly increasing, there exists an interval (θ�j � θ

h
j )
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such that di�1(θ′
j) = di�1(θ

′′
j ) ∀θ′

j� θ
′′
j ∈ (θ�j � θ

h
j ). Let θ̃i := di�1(θj) ∀θj ∈ (θ�j � θ

h
j ), θ�j := inf{θj :

θ̃i = di�1(θj)}, and θhj := sup{θj : θ̃i = di�1(θj)}. If θj ∈ (θ�j � θ
h
j ),

θ̃i = di�1(θj) = lim
θi→+di�1(θj)

s1
(
θi�di�1(θj)

) ≥ lim
θi→+di�1(θj)

b2
(
θj�dj�1(θi)

) = b2
(
θj�dj�1(θ̃i)

)
�

where the second equality and the inequality holds from Remark A1, and final equality
holds because we showed that dj�1 is continuous. Using the above expression, we see
that

θ̃i ≥ b2
(
θj�dj�1(θ̃i)

) ∀θj ∈ (
θ�j � θ

h
j

) =⇒ θ̃i ≥ b2
(
θhj �dj�1(θ̃i)

)
� (13)

In addition, if θj > θ�j , then di�1(θj) ≥ θ̃. Thus, if θj > θ�j and θi < θ̃i, then qi(θi� θj) =
0 =⇒ qj(θi� θj)= 2. Thus, if θi < θ̃i, then dj�2(θi) ≤ θ�j and Remark A2 implies

b2
(
dj�2(θi)�dj�1(θi)

) ≥ θi ∀θi < θ̃i =⇒ lim
θi→+θ̃i

b2
(
dj�2(θi)�dj�1(θi)

) ≥ lim
θi→+θ̃i

θi�

Recall that dj�1(θi) is continuous and dj�2(θi) ≤ θ�j ∀θi < θ̃i. As such,

lim
θi→+θ̃i

b2
(
dj�2(θi)�dj�1(θi)

) ≥ lim
θi→+θ̃i

θi =⇒ b2
(
θ�j � dj�1(θ̃i)

) ≥ θ̃i�

I combine this with equation (13) to show that

b2
(
θ�j � dj�1(θ̃i)

) ≥ θ̃i ≥ b2
(
θhj �dj�1(θ̃i)

) =⇒ θ�j ≥ θhj �

However, this contradicts the fact that θhj > θ�j . Thus, if � satisfies Properties (1)–(4) then
di�1(θj) is strictly increasing in θj ∀θj ∈�.

The first two implications of Proposition 2 relate to a bidder’s incentive to truthfully
report the intercept dimension of her type, given that the bidder truthfully reports her
steepness. The final two points of Proposition 2 relate to a bidder’s incentive to truthfully
report her steepness dimension in a mechanism � that satisfies Properties (1)–(4). Now
that I study a bidder’s incentive to report the second dimension of her type, again write
bidder i’s multidimensional type as γi where γi ∈�× {s� f }.

The final two implications of Proposition 2 follow as corollaries of the first two im-
plications proven above.

Corollary A1. If � satisfies Properties (1)–(4), then

d
f
i�1(γj) = dsi�1(γj)= pi�1(γj) ∀γj ∈�× {s� f }�

Proof. Note that dfi�1(γj) = dsi�1(γj) = 0 for all γj ∈�× {s� f } where γj = (0� tj).

Lemma A5 shows that dtii�2(γj) > d
ti
i�1(γj) for all γj ∈ � × {s� f } where θj > 0. Thus, if

θj > 0 and θi ∈ (d
ti
i�1(γj)�d

ti
i�2(γj)), then

qi
(
(θi� ti)� (θj� tj)

) = 1�
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The taxation principle states that for all γi�γj ∈�× {s� f },

qi
(
(θi� ti)� (θj� tj)

) ≥ 1 =⇒ θi ≥ pi�1(γj)�

Similarly,

qi
(
(θi� ti)� (θj� tj)

) = 0 =⇒ pi�1(γj) ≥ θi�

Thus, bidder i wins at least one unit if γi and γj are such that θi > pi�1(γj), and only if θi ≥
pi�1(γj). This implies that bidder i’s first unit cut-off equals pi�1(γj) ∀γj ∈�× {s� f }.

Corollary A2 shows the final implication of Proposition 2.

Corollary A2. If mechanism � satisfies Properties (1)–(4), then

di�1(θj� f ) > di�1(θj� s) ∀θj > 0�

Proof. The proof is by contradiction. Suppose that there exists θ∗
j ∈ � such that θ∗

j > 0
and

di�1
(
θ∗
j � f

) ≤ di�1
(
θ∗
j � s

)
�

Suppose that θ̃i ∈ � is such that θ̃i ∈ [di�1(θ∗
j � f )�di�1(θ

∗
j � s)]. Then we have that

d
f
j�2(θ̃i� ti) ≥ θ̃i ≥ dsj�2(θ̃i� ti)

because θ̃i ∈ [di�1(θ∗
j � f )�di�1(θ

∗
j � s)] and qj(γi�γj) = 2 − qi(γi�γj) ∀γi�γj ∈ � × {s� f } im-

plies that

qj
(
(θ̃i� ti)� (θj� f )

) ≤ 1 if θi > θ̃i�

and

qj
(
(θ̃i� ti)� (θj� s)

) = 2 if θ̃i > θi�

The taxation principle implies that if bidder j has type (θj� tj) ∈ � × {s� f } where (θj� tj)

is such that θj = d
tj
j�2(θ̃i� ti), then

b2
(
(θj� tj)�pi�1(θ̃i� ti)

) = pi�2(θ̃i� ti)� (14)

This yields a contradiction because

pi�2(θ̃i� ti) = b2
((
dsj�2(θ̃i� ti)� s

)
�pi�1(θ̃i� ti)

)
< b2

((
d
f
j�2(θ̃i� ti)� f

)
�pi�1(θ̃i� ti)

) = pi�2(θ̃i� ti)�
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The first and last equalities follow from equation (14) above. The inequality follows be-

cause (1) we showed that dfj�2(θ̃i� ti) ≥ dsj�2(θ̃i� ti) and (2) by construction b2((θj� s)�x) <

b2((θj� f )�x) ∀θj ∈ (0� θ]�x ∈R. Thus, we have that

di�1(θj� f ) > di�1(θj� s) ∀θj > 0�

if mechanism � satisfies Properties (1)–(4).

A.2 An efficient mechanism with subsidies

In this section, I consider a setting where there are two homogenous goods and N ≥ 3
bidders with single-dimensional types. I present a mechanism �sub that satisfies (1) IR,
(2) incentive compatibility, (3) efficiency, and (4) strong monotonicity (for the remainder
of this subsection, Properties (1)–(4)). The example shows that we can derive a mecha-
nism that satisfies properties (1)–(4), but the mechanism violates the no subsidies con-
dition.

Recall, in Section 3.2 we constructed a mechanism � that satisfied (1) IR, (2) IC,
(3) efficiency, and (4) no subsidies. As Proposition 1 implies, the mechanism violates
strong monotonicity. To see one example of a strong monotonicity violation, consider
the mechanism � and suppose that θ ≥ θ1 > θ2 > θ3 ≥ θj ≥ 0 ∀j ∈ {4� � � � �N}. In addition,
suppose that d(θ−2) = θ2 + ε2 = θ3 + 2ε, where ε > 0 is sufficiently small. Thus, we are
considering an example where bidder 2’s type is ε2 below her first unit cut-off. Moreover,
bidder 2’s rival, bidder 3 has a type that is just below her type. Bidder 1 wins both units
because bidder 2 wins no units when bidder 2’s type is below her first unit cut-off. Thus,
q1(θ1� θ−1) = 2. We construct �nm to be such that bidder 1 pays p1(θ−1)= θ3 for her first
unit and p2(θ−1) = θ2 for her second unit. Thus, if θ3 increases by a small amount ε > 0,
then bidder 1 pays more to win her first unit, and thus she is willing to pay less for her
second unit because of positive wealth effects. Thus, the increase in bidder 3’s type im-
plies that bidder 2 now wins one unit. This is because bidder 2’s willingness to pay for
her first unit is greater than bidder 1’s (now lower) willingness to pay for her second unit.
Therefore, we see that mechanism � violates strong monotonicity because bidder 2 wins
strictly more units even though her rival bidder 3 increased her type.

The violation of strong monotonicity occurs in mechanism � because there is in-
terdependence between bidder 1’s willingness to pay for her second unit and bidder 3’s
type. The increase in bidder 3’s type causes a drop in bidder 1’s willingness to pay for her
second unit, but not bidder 2’s willingness to pay for her first unit. Thus, the two quanti-
ties can reverse in rank, and this reversal means that bidder 2 wins more units (she goes
from winning zero units to winning one unit) when bidder 3 increases her type.

In this section, I show that we can remedy the above violation of strong monotonicity
by giving bidders upfront subsidies that depend on their rivals’ types. The upfront sub-
sidies are constructed to be such that a bidder’s willingness to pay for her second unit
conditional on winning her first unit depends only on her demand and her highest rival’s
demand. In the context of the above example, this would imply that the increase in bid-
der 3’s demand would increase the subsidy given to bidder 1. The increase in bidder 3’s
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demand increases the price bidder 1 pays to win her first unit. The increase in the price
of bidder 1’s first unit is offset by an increase in her subsidy. In other words, the sub-
sidy is constructed to be such that bidder 1’s demand for her second unit is unchanged
by the change in bidder 3’s demand. This avoids the violation of strong monotonicity
described above.

The mechanism �sub is symmetric. The assignment rule is such that a bidder wins
a unit only if her demand type is one of the top two demands of all bidders. The top
two bidders are given the same assignment that they are given in the two-bidder mech-
anism, which we call �2. Recall mechanism �2 is the two-bidder version of mechanism �

that was defined in Section 3.2. Note that we show that the mechanism � violates strong
monotonicity if and only if N ≥ 3. Because mechanism �sub is symmetric, it is without
loss of generality to present the mechanism from the perspective of bidder 1. Further-
more, it is without loss of generality to assume that θ ≥ θ2 ≥ θ3 ≥ θj ≥ 0 ∀j ∈ {4� � � � �N}.
I let d1 and d2 be the first and second unit cut-offs in mechanism �2, where d1� d2 : � →
�. In other words, d1(θ2) and d2(θ2) would be the first and second unit cut-offs for
bidder 1 if she competed in an auction with only one rival, bidder 2. This implies that
assignment rule for bidder 1 is such that

q1(θ1� θ−1) =

⎧⎪⎪⎨
⎪⎪⎩

0 if θ1 < max
{
θ3� d1(θ2)

}
�

1 if max
{
θ3� d1(θ2)

}
< θ1 < d2(θ2)�

2 if d2(θ2) < θ1�

Therefore, bidder 1 wins both units if and only if she wins both units in mechanism �2

where her highest demand rival, bidder 2, is her only rival. In addition, bidder 1 wins
at least one unit if both (1) bidder 1 is among the two highest demand bidders and (2)
bidder 1’s demand exceeds her first unit cut-off in mechanism �2 where bidder 2 is the
only rival.

I implement the mechanism with pricing rule p : �N−1 → R
3 where p is implicitly

described by the three equations below

p0(θ−1) = d1(θ2)−p1(θ−1)�

p1(θ−1) = b1
(
max

{
θ3� d1(θ2)

}
�p0(θ−1)

)
�

p2(θ−1) = b2
(
d2(θ2)�p0(θ−1)+p1(θ−1)

) = b2
(
d2(θ2)�d1(θ2)

)
�

Note that the subsidy is constructed to be such that a bidder’s demand for her second
only varies with θ2. Thus, bidder 1’s demand for her second unit conditional on buying
her first unit is b2(θ1� d1(θ2)).

Proposition A2. There is a mechanism �sub that satisfies (1) IR, (2) IC, (3) efficiency,
and (4) strong monotonicity.

By construction, the mechanism satisfies IR, IC. The subsidy allows us to avoid the
violation of strong monotonicity seen in the prior section. This is because there is no
interdependence between a winning bidder’s demand for later units and any of her rivals
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who have sufficiently low demand. The mechanism is efficient because the mechanism
only assigns goods to the bidders with the two highest willingness to pays. Moreover, we
show in the proof that the payment rule is such that bidder i wins both units if and only
if her demand for her second unit exceeds any of her rivals’ willingness to pay for her
first unit, conditional on receiving an upfront subsidy.

Proof. Because mechanism �sub is symmetric, it is without loss of generality to con-
tinue to study the decision problem of bidder 1 where θ−1 ∈ �N−1 is such that θ2 ≥ θ3 ≥
θj ∀j = 1�2�3. I assume this inequality holds for the remainder of the proof.

IR: To show that the mechanism satisfies IR, it suffices to show that p0(θ2� θ3) ≤ 0. If
θ3 ≤ d1(θ2), then p0(θ2� θ3)= 0, because

p1(θ2� θ3)= b1
(
d1(θ2)�0

) = d1(θ2) =⇒ p0(θ2� θ3) = 0�

If θ3 > d1(θ2), then we find that p0(θ2� θ3) is the p0 that solves

p0 = d1(θ2)− b1(θ3�p0) =⇒ p0 + b1(θ3�p0)= d1(θ2)�

In the proof of Lemma 1, we show that x+ bk(θ�x) is strictly increasing for all x ∈R�k ∈
{1� � � � �K}� θ ∈ �. Thus, the left-hand side of the above equation is strictly increasing in
p0. Moreover, when p0 = 0, θ3 > d1(θ2) implies that

b1(θ3�0)+p0 = θ3 > d1(θ2) =⇒ p0 < 0�

Hence the mechanism satisfies IR because p0(θ2� θ3) ≤ 0.
IC : The mechanism is incentive compatible because

u

(
q1(θ1� θ−1)�−

q1(θ1�θ−1)∑
n=0

pn(θ−1)�θ1

)

≥ u

(
q1

(
θ′

1� θ−1
)
�−

q1(θ
′
1�θ−1)∑
n=0

pn(θ−1)�θ1

)
∀θi� θ′

i� θ−i�

This is shown below the expressions below:

q1(θ1� θ−1)= 0 =⇒ θ1 ≤ max
{
d1(θ2)�θ3

}
⇐⇒ b1

(
θ1�p0(θ2� θ3)

)
<p1(θ2� θ3)�

q1(θ1� θ−1) ≥ 1 =⇒ θ1 ≥ max
{
θ3� d(θ2)

}
⇐⇒ b1

(
θ1�p0(θ2� θ3)

) ≥ p1(θ2� θ3)�

q1(θ1� θ−1)= 2 =⇒ θ1 ≥ d2(θ2)

⇐⇒ b2
(
θ1�p0(θ2)+p1(θ2)

) = b2
(
θ1� d1(θ2)

) ≥ p2(θ2� θ3)�

and lastly, q1(θ1� θ−1) = 1 =⇒ θ1 ≤ d2(θ2) and

θ1 ≤ d2(θ2)

⇐⇒ b2
(
θ1�p0(θ−1)+p1(θ−1)

) = b2
(
θ1� d1(θ2)

) ≤ b2
(
d2(θ2)�d1(θ2)

) = p2(θ2� θ3)�
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Each of the above four expressions follow from the construction of �Sub.
Strong monotonicity: The mechanism satisfies strong monotonicity because the

construction is such that

q1
(
θh1 � θ

�
−1

) ≥ q1
(
θ�1� θ

h
−1

) ∀θh1 > θ�1� θ
h
−1 ≥ θ�−1�

because bidder 1’s first and second unit cut-off types are weakly increasing in θ2 and θ3.
Efficiency: I consider two cases.
Case 1: Suppose that bidders 1 and 2 each win one unit. First, I show that there are

no Pareto improving trades between bidders 1 and 2. Recall that the outcome of the
mechanism �sub is such that bidder one wins one unit and pays p0(θ−1) + p1(θ−1) =
d1(θ2) in total. This is the same as the outcome for in the efficient mechanism �2 where
there are only two bidders, namely bidders 1 and 2 with types θ1 and θ2. Hence, there
are no ex post Pareto improving trades between bidders 1 and 2, because there are no
ex post Pareto improving trades between bidders 1 and 2 under the efficient outcome
implemented by mechanism �2.

Next, I show that there are no ex post Pareto improving trades between a winning
bidder and a losing bidder. Without loss of generality, suppose that θ1 ≥ θ2. I show that
there are no Pareto improving trades between bidder 2 and a losing bidder whom we
assume to be bidder 3. By assumption, θ2 ≥ θ3. If θ2 = θ3, then incentive compatibility
implies that both players are indifferent between winning and losing because their type
equals the first unit cut-off. Thus, efficiency implies that bidder 2’s willingness to sell her
first unit equals her rival’s willingness to pay when θ2 = θ3,

s1
(
θ2� d1(θ1)

) = s1
(
θ2�p0(θ1� θ3)+p1(θ1� θ3)

) = b1
(
θ3�p0(θ1� θ2)

)
�

In addition, if bidder 3’s type falls to θ′
3 < θ2, then bidder 2 willingness to sell her unit is

unchanged and bidder 3’s willingness to pay falls. Thus, there are no Pareto improving
trades between bidders 2 and 3. There are no Pareto improving trades between bidder 1
and bidder 3 because bidder 1’s willingness to sell exceeds bidder 2’s as

θ1 ≥ θ2� d1(θ1)≥ d1(θ2) =⇒ s1
(
θ1� d1(θ2)

) ≥ s1
(
θ2� d1(θ1)

)
�

where the implication follows because s1 is increasing in the first argument and decreas-
ing in the second.

Case 2: Suppose that bidder 1 wins both units. I show that there are no Pareto
improving trades between bidder 1 and all other bidders. Note that p0(θ1� θ2) =
p0(θ1� θ3) = 0 because d1(θ1) ≥ θ2 ≥ θ3. Thus, no losing bidder receives a subsidy. The
losing bidder with the highest willingness to pay is bidder 2 who is willing to pay θ2 for
her first unit. The outcome for bidders 1 and 2 is equivalent to the outcome for bidders 1
and 2 in the efficient mechanism �2 where there are only two bidders, namely bidders 1
and 2. Thus, there are no ex post Pareto improving trades between bidder 1 and bidder 2
in mechanism �sub because the outcome for bidders 1 and 2 is the same as the outcome
for bidders 1 and 2 in the efficient mechanism �2.
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