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Optimal contracts with a risk-taking agent
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Consider an agent who can costlessly add mean-preserving noise to his output.
To deter such risk-taking, the principal optimally offers a contract that makes
the agent’s utility concave in output. If the agent is risk-neutral and protected by
limited liability, this concavity constraint binds and so linear contracts maximize
profit. If the agent is risk averse, the concavity constraint might bind for some
outputs but not others. We characterize the unique profit-maximizing contract
and show how deterring risk-taking affects the insurance-incentive trade-off. Our
logic extends to costly risk-taking and to dynamic settings where the agent can
shift output over time.
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1. Introduction

Contractual incentives motivate employees, suppliers, and partners to exert effort, but
improperly designed incentives can instead encourage excessive risk-taking. These risk-
taking motives are most obvious when they have dramatic consequences for society as
a whole. For instance, following the 2008 financial crisis, Federal Reserve Chairman Ben
Bernanke stated that “compensation practices at some banking organizations have led
to misaligned incentives and excessive risk-taking, contributing to bank losses and fi-
nancial instability” (The Federal Reserve 2009). Garicano and Rayo (2016) suggest that
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poorly designed incentives led the American International Group (AIG) to expose it-
self to massive tail risk in exchange for the appearance of stable earnings. Rajan (2011)
echoes these concerns and suggests that misaligned incentives worsened the effects of
the crisis.

Even without such disastrous outcomes, agents face opportunities to game their
incentives by engaging in risk-taking in many other settings. Portfolio managers can
choose riskier investments, as well as exert effort, to influence their returns (Brown
et al. 1996, Chevalier and Ellison 1997, de Figueiredo et al. 2015). Executives and en-
trepreneurs work hard to innovate, but also choose whether to pursue moonshot or in-
cremental projects (Matta and Beamish 2008, Rahmandad et al. 2018, Vereshchagina
and Hopenhayn 2009). In what we will see is a related phenomenon, salespeople can
both work to sell more products and choose when those sales count toward their quotas
(Oyer 1998, Larkin 2014).

In addition to the obvious social costs of excessive risk, the fact that agents can game
their incentives in this way has a second cost as well: the possibility of risk-taking makes
it harder for firms to motivate their agents to work hard. In this paper, we focus on this
incentive cost by exploring how risk-taking constrains optimal contracts in a canonical
moral hazard setting. We argue that the fact that the agent can game his incentives in
this way renders convex incentives ineffective. Consequently, the principal can do no
better than to offer a contract that makes the agent’s utility concave in output. This
simple but central result spurs us to analyze optimal concave contracts, with the goal of
exploring how this additional concavity constraint changes the structure of incentives,
profits, and productivity.

Our model considers a principal who offers an incentive contract to a potentially
liquidity-constrained and risk-averse agent. If the agent accepts the contract, then he
exerts costly effort that produces a noncontractible intermediate output, the distribu-
tion of which satisfies the increasing marginal likelihood ratio property. The key twist
on this canonical framework is that the agent can engage in risk-taking by costlessly
adding mean-preserving noise to this intermediate output, which in turn determines
the contractible final output.

Building on the arguments of Jensen and Meckling (1976) and others, Section 3
shows that the agent engages in risk-taking wherever the contract makes his utility con-
vex in output. In so doing, the agent makes his expected utility concave in intermediate
output. As long as both the principal and the agent are weakly risk-averse, the principal
finds it optimal to deter risk-taking entirely by offering an incentive scheme that directly
makes the agent’s utility concave in output. We refer to this additional constraint—that
utility be weakly concave in output—as the no-gaming constraint. Wherever the no-
gaming constraint binds, the optimal contract makes the agent’s utility linear in output.

In Section 4, we consider the case of a risk-neutral agent and a weakly risk-averse
principal. Absent the no-gaming constraint, the principal would like to offer a convex
contract in this setting so as to concentrate high pay on high outcomes and so inexpen-
sively motivate the agent while respecting his limited liability constraint. As a result,
we show that the no-gaming constraint binds everywhere, which means that a linear
(technically, affine) contract is optimal, remains so regardless of the principal’s attitude
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toward risk (even if she is risk-loving), and is uniquely optimal if the principal is risk-
averse. In particular, relative to any strictly concave contract, we show that there is a
linear contract that both better motivates the agent and better insures the principal.

Section 5 explores the consequences of risk-taking in the case of a risk-averse agent
and a risk-neutral principal. In this setting, the no-gaming constraint implies that the
agent’s utility must be concave in output. Similar to Section 4, the optimal contract
makes the agent’s utility linear wherever this constraint binds. Unlike that section, how-
ever, the no-gaming constraint does not necessarily bind everywhere, so the agent’s pay-
off under the optimal contract might have both linear and strictly concave regions.

We develop a set of necessary and sufficient conditions that characterize the unique
profit-maximizing contract in this setting. We cannot directly apply the techniques of
Mirrlees (1976) and Holmström (1979) because the resulting contract might violate the
no-gaming constraint. Instead, we identify two perturbations of a candidate contract
that respects this constraint while changing either the level or the slope of the agent’s
utility over appropriate intervals of output. Perhaps surprisingly, we prove that it suffices
to consider these two perturbations so that a contract is profit-maximizing if, and only
if, it cannot be improved by them.

We use this characterization to identify how the constraint that incentives be con-
cave shapes the optimal contract. If the limited liability constraint binds and the par-
ticipation constraint is slack in this setting, then the optimal contract follows a logic
similar to the case with a risk-neutral agent. The principal would like to offer a con-
tract that makes the agent’s payoff convex over any output that suggests less than the
desired effort. The profit-maximizing contract therefore makes the agent’s utility linear
over low outputs. Unlike the case with a risk-neutral agent, however, the optimal incen-
tive scheme might make the agent’s utility strictly concave following high output, since
the principal finds it increasingly expensive to give the agent higher and higher utility.

If the limited liability constraint is slack, then the optimal contract is shaped by the
same trade-off between incentives and insurance that arises in classic moral hazard
problems. In the absence of risk-taking, the optimal contract would equate output-
by-output the principal’s marginal cost of paying the agent to the marginal benefit of
relaxing his participation and incentive constraints (as in Mirrlees 1976 and Holmström
1979). Where this constraint binds, however, optimizing output-by-output would vio-
late the no-gaming constraint. Over such regions, we show that the optimal contract is
ironed, in the sense that it is linear in utility over an interval. Expected marginal benefits
equal expected marginal costs on that interval. For instance, if the no-gaming constraint
binds for low output but not for high output, then the optimal contract makes the agent’s
utility linear for low outputs and otherwise sets marginal benefits equal to marginal
costs output-by-output. If no-gaming is slack everywhere, then the contract charac-
terized by Mirrlees (1976) and Holmström (1979) is optimal; if it binds everywhere, then
the optimal contract makes the agent’s utility linear in output.

The final part of this section presents simulations of the optimal contract in a dis-
crete approximation of the model. We show that optimal incentives are characterized
by a standard convex optimization program, and we consider examples that illustrate
how parameters of the model influence the optimal contract.
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The unifying idea behind all of our results is that the possibility of risk-taking renders
convex incentives ineffective. Section 6 extends this intuition to three other settings, all
of which assume that both the principal and the agent are risk-neutral. First, we modify
the agent’s payoff so that he incurs a cost that is increasing in the variance of his risk-
taking distribution. It turns out that this extension can be reformulated as a variant of
our analysis in Section 4. We show that the unique optimal contract is strictly convex
in output, but not so convex as to induce gaming, and that this contract converges to a
linear contract as gaming becomes costless.

Second, we alter the timing of the model so that the agent engages in risk-taking
before he observes intermediate output. We show that the possibility of ex ante risk-
taking leads optimal incentives to be a concave function of the agent’s effort, rather than
a concave function of intermediate output. This modified no-gaming constraint binds
under mild conditions, in which case a linear contract is optimal.

Finally, we exhibit a close connection between risk-taking and another type of gam-
ing: manipulating the timing of output. To do so, we study a dynamic setting in which
the principal offers a stationary contract that the agent can game by choosing when out-
put is realized over an interval of time. For example, Oyer (1998) and Larkin (2014) docu-
ment how salespeople accelerate or delay sales so as to game convex incentive schemes
over a sales cycle. We show that this setting is equivalent to our risk-taking model. Thus,
a linear contract is optimal, since a strictly convex contract would induce the agent to
bunch sales over short time intervals and a strictly concave contract would provide sub-
par effort incentives.

Our analysis is inspired by Diamond (1998) and Garicano and Rayo (2016). The lat-
ter includes a model of risk-taking that is similar to ours, but it fixes an exogenous (non-
concave) contract to focus on the social costs of excessive risk. The former is a seminal
exploration of optimal contracts when the agent can both exert effort and make other
choices that affect the output distribution. In particular, part of Diamond (1998) argues
that linear contracts are (nonuniquely) optimal in an example with risk-neutral parties,
binary effort, and an agent who can choose any mean-preserving spread of output. Our
Proposition 2 expands this result to settings with a risk-averse principal as well as more
general effort choices and output distributions. In doing so, we identify an additional
advantage of linear contracts with a risk-neutral agent: relative to any strictly concave
contract, they better insure the principal and so are uniquely optimal if the principal is
even slightly risk-averse.

The rest of our analysis departs further from Diamond (1998). Section 3 shows that
the fundamental consequence of agent risk-taking is to constrain incentives to be con-
cave, not necessarily linear. Linear contracts are instead a consequence of this concavity
constraint binding everywhere, as it does if the agent is risk-neutral. However, as Sec-
tion 5 demonstrates, the concavity constraint need not necessarily bind everywhere if
the agent is risk-averse, in which case the optimal contract may make utility strictly con-
cave in output. Our analysis shows how risk-taking affects contracts in a classic moral
hazard setting. Section 6 explores how a similar logic shapes optimal contracts in several
related settings.
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Our model of risk-taking is embedded in a classic moral hazard problem. With a
risk-neutral agent, our model builds on Innes (1990), Poblete and Spulber (2012), and
other papers in which limited liability is the central contracting friction. With a risk-
averse agent, we build on Mirrlees (1976) and Holmström (1979) if the limited liabil-
ity constraint is slack, and on Jewitt et al. (2008) if it binds. Within the classic agency
literature, our analysis is conceptually related to papers that study principal–agent re-
lationships in which the agent both exerts effort and makes other decisions. Classic
examples include Lambert (1986) on how agency problems in information-gathering
can lead to inefficient investment in risky projects and Holmström and Ricart i Costa
(1986) on project selection under career concerns. Malcolmson (2009) presents a gen-
eral model of such settings, but differs from our analysis by assuming that decisions are
contractible. Other papers consider settings in which the principal also chooses actions
other than the agent’s wage contract, such as an endogenous performance measure; see,
for example, Halac and Prat (2016) and Georgiadis and Szentes (2019).

A growing literature studies agent risk-taking. Some papers in this literature assume
that an agent chooses from a parametric class of risk-taking distributions in either static
(Palomino and Prat 2003, Hellwig 2009) or dynamic (DeMarzo et al. 2013) settings. We
differ by allowing our agent to choose any mean-preserving spread of output, which
means that our optimal contract must deter a more flexible form of gaming. Therefore,
we join other papers that study nonparametric risk-taking, again in either static (Robson
1992, Diamond 1998, Hébert 2018) or dynamic (Ray and Robson 2012, Makarov and
Plantin 2015) settings. We differ from these papers by identifying concavity as the key
constraint on the optimal incentive scheme if the agent can costlessly take on risk and
then characterizing optimal incentives given this constraint.1

More broadly, our work is related to a longstanding literature that argues that op-
timal contracts must both induce effort and deter gaming. A seminal example is
Holmström and Milgrom (1987), who display a dynamic environment in which lin-
ear contracts are optimal. Ederer et al. (2018) show how opacity (i.e., randomization
over compensation schemes) can be used to deter gaming. Others, including Chassang
(2013), Carroll (2015), and Antić (2016), depart from a Bayesian framework and prove
that simple contracts perform well under min-max or other non-Bayesian preferences.
In contrast, our paper considers contracts that deter gaming in a setting that lies firmly
within the Bayesian tradition.

While Carroll’s paper considers a max-min rather than a Bayesian solution concept,
its intuition is related to ours. In that paper, Nature selects a set of actions available to
the agent so as to minimize the principal’s expected payoffs. As in our setting, Nature
might allow the agent to take on additional risk to game a convex incentive scheme.
However, Nature might also allow the agent to choose a distribution with less risk to
game a concave incentive scheme, while we allow the agent to add risk but not reduce
it. That is, we model a moral hazard problem in which output is intrinsically risky and
that risk cannot be completely hedged away. This difference is most striking if the agent

1In Ray and Robson (2012), Condition R2 is a version of a concavity constraint. However, that paper
analyzes how risk-taking by status-conscious customers affects the intergenerational wealth distribution
and, in particular, it studies neither moral hazard nor optimal contracts.
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is risk-averse, in which case Carroll’s optimal contract makes the agent’s utility linear in
output, while ours might make utility strictly concave. One advantage of our approach
is that our model results in a canonical contracting problem with an additional con-
cavity constraint. Consequently, our technology would be straightforward to embed in
Bayesian models of other applications.

2. Model

We consider a game between a principal (P , “she”) and an agent (A, “he”). The agent has
limited liability, so he cannot pay more than M ∈ R to the principal. Let [y� y] ≡ Y ⊆ R

be the set of contractible outputs, with y < 0. The timing is as follows.

(i) The principal offers an upper semicontinuous contract s(y) : Y → [−M�∞).2

(ii) The agent accepts or rejects the contract. If he rejects, the game ends, he receives
u0 and the principal receives 0.

(iii) If the agent accepts, he chooses effort a ≥ 0.

(iv) Intermediate output x is realized according to F(·|a) ∈ �(Y).

(v) The agent chooses a distribution Gx ∈ �(Y) subject to EGx[y] = x.

(vi) Final output y is realized according to Gx, and the agent is paid s(y).

The principal’s and agent’s payoffs are equal to π(y − s(y)) and u(s(y)) − c(a), respec-
tively.

We assume that π(·) and u(·) are strictly increasing and weakly concave, with u(·)
onto, and that c(·) is infinitely differentiable, strictly increasing, and strictly convex. We
also assume that F(·|a) has full support for all a ∈ [0� y), satisfies EF(·|a)[x] = a, and is
infinitely differentiable with a density f (·|a) that is strictly monotone likelihood ratio
property- (MLRP-) increasing in a, with fa(·|a)/f (·|a) uniformly bounded for all a.3

This game is similar to a canonical moral hazard problem, with the twist that the
agent can engage in risk-taking by choosing a mean-preserving spread Gx of intermedi-
ate output x. Let

G = {G : Y → �(Y) | EGx[y] = x for all x ∈ Y
}

denote the set of mappings x �→ Gx. Without loss, we can treat the agent as choosing a

and G ∈ G simultaneously.
Intermediate output has different interpretations in different settings. For instance,

chief executive officers (CEOs) typically have advance information about whether they

2One can show that the restriction to upper semicontinuous contracts is without loss: if the agent has an
optimal action given a contract s(·), then there exists an upper semicontinuous contract that induces the
same equilibrium payoffs and distribution over final output.

3We assume that y is sufficiently large such that the principal never offers a contract that induces the
agent to choose a = y . Together with y < 0 and a ≥ 0, this also ensures that the agent can always choose a
nondegenerate distribution Gx.
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will hit their earnings targets in a given quarter, and they can cut maintenance or re-
search and development expenditures if they are likely to fall short, taking on tail risk for
the appearance of higher earnings (Rahmandad et al. 2018). Similarly, portfolio man-
agers are typically compensated based on their annual returns and can adjust the risk-
iness of their investments over the course of the year so as to game those incentives
(Chevalier and Ellison 1997).

After the agent observes x but before y is realized, we have a setting with both a hid-
den type and a hidden action. The principal might therefore benefit from asking the
agent to report x before y is realized. By punishing differences between this report and
y, the principal might be able to dissuade at least some gambling.4 We do not allow
such mechanisms in our analysis. This restriction makes sense if the principal cannot
intervene between the realization of x and the outcome of gambling, as is the case if x
is realized at a random time and gambling is instantaneous. We think that this is the
economically correct modeling assumption in many settings. For instance, financial
advisors realize their expected returns and choose their investment strategies over time,
rendering it impossible to identify a single moment at which intermediate output has
been realized but final output has not. The spirit of the model is that the principal can-
not catalog the precise moments or ways in which an agent might engage in risk-taking.

3. Risk-taking and optimal incentives

This section explores how the agent’s ability to engage in risk-taking constrains the con-
tract offered by the principal.

We find it convenient to rewrite the principal’s problem in terms of the utility v(y) ≡
u(s(y)) that the agent receives for each output y. If we define u ≡ u(−M), then an opti-
mal contract solves the following constrained maximization problem:

max
a�G∈G�v(·)

EF(·|a)
[
EGx

[
π
(
y − u−1(v(y)))]] (ObjF )

subject to a�G ∈ arg max
ã�G̃∈G

{
EF(·|ã)

[
EG̃x

[
v(y)

]]− c(ã)
}
� (ICF )

EF(·|a)
[
EGx

[
v(y)

]]− c(a) ≥ u0� (IRF )

v(y)≥ u for all y� (LLF )

The main result of this section is Proposition 1, which characterizes how the threat
of gaming affects the incentive schemes v(·) that the principal offers. The principal op-
timally offers a contract that deters risk-taking entirely, but doing so constrains her to
incentive schemes that are weakly concave in output. Define GD so that for each x ∈ Y ,
GD

x is degenerate at x.

4Allowing these types of mechanisms does not necessarily eliminate the agent’s gaming incentives. The
the supplementary file on the journal website, http://econtheory.org/supp3660/supplement.pdf, includes
a supplemental section that studies this case and shows that gaming continues to constrain incentives.
Indeed, if both parties are risk-neutral, then linear contracts are optimal.

http://econtheory.org/supp3660/supplement.pdf
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Proposition 1 (The no-gaming constraint). Suppose (a�G�v(·)) satisfies (ICF)–(LLF).
Then there exists a weakly concave v̂(·) such that (a�GD� v̂(·)) satisfies (ICF)–(LLF) and
gives the principal a weakly higher expected payoff.

The proof of Proposition 1 is in Appendix A. For an arbitrary incentive scheme v(·),
define vc(·) : Y →R as its concave closure:

vc(x) = sup
w�z∈Y�p∈[0�1] s.t. (1−p)w+pz=x

{
(1 −p)v(w)+pv(z)

}
� (1)

At any outcome x such that the agent does not earn vc(x), he can engage in risk-taking
to earn that amount in expectation (but no more). But then the principal can do at least
as well by directly offering a concave contract, and if either the agent or the principal
is strictly risk-averse, then offering a concave contract is strictly more profitable than
inducing risk-taking.

Given Proposition 1, we can write the optimal contracting problem as one without
risk-taking but with a no-gaming constraint that requires the agent’s utility to be concave
in output, with the caveat that our solution is one of many if (but only if) both parties
are risk-neutral over the relevant payments:

max
a�v(·) EF(·|a)

[
π
(
y − u−1(v(y)))] (Obj)

subject to a ∈ arg max
ã

{
EF(·|ã)

[
v(y)

]− c(ã)
}
� (IC)

EF(·|a)
[
v(y)

]− c(a) ≥ u0� (IR)

v(y)≥ u for all y ∈ Y� (LL)

v(·) weakly concave. (NG)

For a fixed effort a ≥ 0, we say that v(·) implements a if it satisfies (IC)–(NG) for a, and it
does so at maximum profit if it maximizes (Obj) subject to (IC)–(NG). An optimal v(·)
implements the optimal effort level a∗ ≥ 0 at maximum profit.

Mathematically, the set of concave contracts is well behaved. Consequently, we can
show that for any a ≥ 0, a contract that implements a at maximum profit exists and is
unique if either π(·) or u(·) is strictly concave.

Lemma 1 (Existence and uniqueness). Fix a ≥ 0 and suppose that u > −∞. Then there
exists a contract that implements a at maximum profit and does so uniquely if either π(·)
or u(·) is strictly concave.

This result, which follows from the theorem of the maximum, is an implication of
Proposition 9 in Appendix D. Existence is guaranteed by (NG); for example, without
this constraint, no profit-maximizing contract would exist with risk-neutral parties.5 If

5With risk-neutral parties, the principal wants to pay the agent only after an arbitrarily narrow range of
the highest outputs, since those outputs are most indicative of high effort. See, e.g., Innes (1990).
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at least one player is strictly risk-averse, then Jensen’s inequality implies that a convex
combination of two different contracts that implement a also implements a and gives
the principal a strictly higher payoff, which proves uniqueness.

4. Optimal contracts for a risk-neutral agent

Suppose the agent is risk-neutral, so u(y) = y, v(·) = s(·), and u= −M . In this setting, the
key friction is the agent’s limited liability constraint, which might prevent the principal
from simply “selling the firm” to the agent.

For any effort level a, define

sL
a(y) = c′(a)(y − y)−wa�

where wa := min{M�c′(a)(a − y) − c(a) − u0}. Intuitively, sL
a(y) is the least costly linear

contract that implements a. Note that for a linear contract, (IC) can be replaced by its
first-order condition because expected output is linear in effort and the cost of effort is
convex.

Define the first-best effort aFB ∈ R+ as the unique effort that maximizes y − c(y) and
so satisfies c′(aFB) = 1. We prove that an optimal contract is linear and implements no
more than first-best effort.

Proposition 2 (Risk-neutral agent). Let u(s) ≡ s. If a∗ is optimal, then a∗ ≤ aFB and
sL
a∗(·) is optimal.

The proofs for all results in this section can be found in Appendix A. To see the in-
tuition for Proposition 2, consider sL

aFB(·), which both implements aFB and provides full
insurance to the principal. If sL

aFB(·) satisfies (IR) with equality, then it is clearly optimal.
Suppose instead that (IR) is slack for sL

aFB(·), in which case (LL) must bind. Suppose
that (a∗� s∗(·)) is optimal and s∗(y) �= sL

a∗(y) for at least some y. To prove the result, we
construct a linear contract that satisfies (IC)–(NG) and performs better than s∗(·). To-
ward this goal, define ŝ(·) to be the linear contract that agrees with s∗(·) at y and gives
the agent the same utility as s∗(·) if he optimally responds to that contract. As shown in
Figure 1, ŝ(·) must single-cross s∗(·) from below, effectively moving payments from low
to high outputs. Since F(·|a) satisfies MLRP, this shift in pay from low to high outputs
motivates more effort: ŝ(·) implements some â≥ a∗.

The effort â might be either larger or smaller than first-best effort, aFB. If â ≥ aFB,
then it must be that ŝ(·) ≥ sL

aFB(·). But then sL
aFB(·) implements aFB, perfectly insures the

principal, and entails smaller payments than ŝ(·). The principal therefore prefers sL
aFB(·)

to s∗(·).
If instead â < aFB, then the slope of ŝ(·) must be strictly less than 1, which means that

the principal’s wealth under ŝ(·), y − ŝ(y), is increasing in y. Consequently, the principal
prefers high outputs and so she likes that â ≥ a∗. Moreover, ŝ(y) > s∗(y) exactly when
output is high and so her marginal utility is low (and vice versa), which means that ŝ(·)
also insures the principal better than s∗(·). Therefore, the principal prefers ŝ(·) to s∗(·).
She a fortiori prefers sL

â
(·), which lies weakly below ŝ(·), to s∗(·). We conclude that any
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Figure 1. Intuition for the proof of Proposition 2.

optimal contract s∗(·) must coincide with the the linear contract that implements a∗,
s∗(·) ≡ sL

a∗(·).
Lemma 1 implies that sL

a∗(·) is uniquely optimal if the principal is even slightly risk-
averse. If she is risk-neutral, then sL

a∗(·) is optimal but not uniquely so; in particular, any
contract with a concave closure equal to sL

a∗(·) would give the same expected payoff as
sL
a∗(·).

For any a > 0, the agent’s promised utility under sL
a(·) depends on y, the worst pos-

sible outcome over which the agent can gamble. In particular, sL
a(·) starts at y and has

a strictly positive slope, so that the agent’s expected compensation increases without
bound as y decreases. That is, as the agent’s ability to take on left-tail risk becomes ar-
bitrarily severe, motivating effort while deterring risk-taking becomes arbitrarily costly
to the principal. Consequently, the optimal effort level converges to 0 as y becomes
arbitrarily negative.6

The possibility of risk-taking unambiguously harms the principal. However, the
agent might either benefit or be harmed by risk-taking. The reason is that risk-taking
both increases the agent’s rent for a fixed effort level and changes the optimal effort
level, which changes the agent’s rent. Consequently, we can find examples in which the
agent earns higher rent when we impose (NG) as well as examples in which he earns
strictly lower rent.

In some applications, the principal might have risk-seeking preferences over output,
for instance because she also faces convex incentives. For example, Rajan (2011) argues
that, anticipating the possibility of bailouts, shareholders of financial institutions might
have had an incentive to encourage risk-taking prior to the 2008 financial crisis. We
can model such settings by allowing π(·) to be any strictly increasing and continuous
function. Proposition 1 does not directly apply in this case because the principal might

6If the principal is risk-neutral, then we can prove the stronger result that effort is strictly increasing in
y: as the agent’s ability to take left-tail risks becomes more severe, the principal responds by inducing lower
effort. See the supplementary file on the journal website, http://econtheory.org/supp3660/supplement.
pdf.

http://econtheory.org/supp3660/supplement.pdf
http://econtheory.org/supp3660/supplement.pdf
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strictly prefer the agent to at least sometimes engage in risk-taking. Nevertheless, we
can modify the argument from Proposition 2 to show that a linear contract is optimal.

Corollary 1 (Risk-neutral agent, risk-loving principal). Let u(s) ≡ s and let π(·) be an
arbitrary continuous and strictly increasing function that has concave closure πc(·). If a∗
is optimal, then a∗ ≤ aFB and sL

a∗(·) is optimal.

To see the proof of Corollary 1, note that the principal’s expected payoff cannot ex-
ceed πc(·) for reasons similar to Proposition 1. Therefore, the contract that maximizes
EF(·|a)[πc(x − s(x))] subject to (IC)–(NG) provides an upper bound on the principal’s
payoff. But Proposition 2 asserts that sL

a∗(·) is optimal in this problem because πc(·) is
concave. Given sL

a∗(·), the agent is indifferent among distributions G ∈ G, so he is willing
to choose G such that the principal’s expected payoff equals πc(·).

5. Optimal contracts if the agent is risk-averse

This section characterizes the unique contract that implements a given a > 0 at max-
imum profit in a setting with a risk-averse agent and a risk-neutral principal. In Sec-
tion 5.1, we develop necessary and sufficient conditions that characterize the profit-
maximizing contract in this setting. We explore the implications of this characterization
in Section 5.2; in Section 5.3, we show how to numerically derive the optimal contract in
a discrete approximation of the model.

We impose two simplifying assumptions to make the analysis tractable. First, let-
ting w denote the infimum of the domain of u(·), we assume that limw↓w u′(w) = ∞ and
limw↑∞ u′(w) = 0. Second, we replace (IC) with the weaker condition that local incen-
tives are slack at the implemented effort level a > 0:

d

dã

{
EF(·|ã)

[
v(y)

]− c(ã)
}∣∣∣∣

ã=a

≥ 0� (IC-FOC)

Replacing (IC) with (IC-FOC) entails no loss under mild regularity conditions on F(·|·).
Given (NG), Proposition 5 of Chade and Swinkels (2016) shows that the agent’s expected
utility is concave in effort as long as expected output is concave in effort and Faa(·|a)
is never first negative and then positive. For a fixed effort a ≥ 0, define the principal’s
problem

max
v(·)
{

(Obj) subject to (IC-FOC), (IR), (LL), and (NG)
}
� (P)

For a ≥ 0 and y ∈ Y , define the likelihood function

l(y|a) = fa(y|a)
f (y|a) �

Define ρ(·) as the function that maps 1/u′(·) into u(·); that is, for every z in the range of
1/u′(·), ρ(z) = u((u′)−1(1/z)). Then ρ−1(v(y)) equals the marginal cost to the principal
of giving the agent extra utility at y.
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If u >−∞, then Lemma 1 implies that a unique solution to (P) exists. If u= −∞, then
one can show that a unique solution exists as long as u′(·) is not too convex. In particular,
we can define the concavity of a positive function h(·), con(h), as the largest number t
such that ht

t is concave. If h is concave, then con(h) ≥ 1, while if h is log concave, then
con(h) ≥ 0. For the case u = −∞, an optimal contract exists as long as con(u′) ≥ −2,
which is weaker than u′(·) being log concave.7 Our results in this section apply in either
setting. Unless otherwise noted, proofs for this section can be found in Appendix B.

Given the program (P), let λ and μ be the shadow values on (IR) and (IC-FOC), re-
spectively. For a fixed a ≥ 0 and an incentive scheme v(·) that implements a, define

n(y)≡ ρ−1(v(y))− λ−μl(y|a)

as the net cost of increasing v(·) at y, taking into account how that increase affects
(IR) and (IC-FOC). In particular, increasing v(y) increases the principal’s cost at rate
ρ−1(v(y))f (y|a), relaxes (IR) at rate f (y|a), which has implicit value λ, and relaxes (IC-
FOC) at rate fa(y|a), which has implicit value μ. Taking the difference between these
costs and benefits, and dividing by f (y|a) yields n(y).

Let us ignore (LL) for the moment. Absent (NG), the optimal contract would set
n(y) = 0 output-by-output and so v(·) = ρ(λ + μl(·|a)). Indeed, this incentive scheme
(with the appropriate λ and μ) is the Holmström–Mirrlees (HM) contract characterized
in Mirrlees (1976) and Holmström (1979). However, setting n(y) = 0 at each y might
violate (NG). In the following section, we develop necessary and sufficient conditions
for a profit-maximizing contract. These conditions guarantee that the contract cannot
be improved by a set of perturbations that respect (NG) and affect an interval of an in-
centive scheme. We show that these perturbations are enough to pin down the optimal
contract.

5.1 A characterization

We begin our characterization by defining several features of v(·) that will be useful for
our construction.

Definition 1. Given v(·):

(i) An interval [yL� yH] is a linear segment if v(·) is linear on [yL� yH] but not on any
strictly larger interval. Point y is free if it is not in the interior of any linear segment.

(ii) A free y ∈ (y� y) is a kink point of v(·) if two linear segments meet at y and is a point
of normal concavity otherwise.

Consider the following two perturbations, formally defined in Appendix B and illus-
trated in Figure 2. Raise increases the level of v(·) by a constant over an interval, while

7For a (rather complicated) proof of existence for u = −∞, available in a supplementary file on the jour-
nal website, http://econtheory.org/supp3660/supplement.pdf. This condition is satisfied for, for instance,
u(w) =wα for α< 1

2 . See Prékopa (1973) and Borell (1975) for details.

http://econtheory.org/supp3660/supplement.pdf
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Figure 2. Raise and tilt. These perturbations require care around yL and yH to ensure that
concavity is preserved. For this reason, we need both yL and yH to be free for raise. For tilt up,
we need yL to be free, while yH must be free for tilt down.

tilt increases the slope of v(·) by a constant over an interval. Raising an interval typ-
ically introduces nonconcavities into v(·) at both endpoints of the interval. Tilting it a
positive amount may introduce a nonconcavity at the lower end of the interval and tilt-
ing it a negative amount may introduce a nonconcavity at the upper end of the interval.
Appendix B shows that for small perturbations, we can repair these nonconcavities on
an arbitrarily small interval as long as the relevant endpoints are free.

Raise and tilt affect both (IR) and (IC-FOC). However, Appendix B uses the fact that
F(·|a) satisfies MLRP to show that these two perturbations have noncollinear effects on
(IR) and (IC-FOC), which means that we can construct combinations of them to affect
each constraint separately. Therefore, as long as there exists at least one free point ŷ < y

such that v(ŷ) > u, we can use raise and tilt on [ŷ� y] to establish the shadow values λ and
μ of relaxing (IR) and (IC-FOC). If no such point exists, then v(·) is linear and v(y)= u.

A profit-maximizing incentive scheme v(·) cannot be improved by either raise or tilt
on any valid interval. That is, raising v(·) on an interval [yL� yH] with both endpoints free
must have a nonnegative expected net cost:∫ yH

yL

n(y)f (y|a)dy ≥ 0� (2)

If v(yL) > u, then we can raise v(·) by a negative amount on [yL� yH], in which case (2)
holds with equality.

Similarly, if yL is free, then tilting v(·) on [yL� yH] must have nonnegative expected
net cost, ∫ yH

yL

n(y)(y − yL)f (y|a)dy + (yH − yL)

∫ y

yH

n(y)f (y|a)dy ≥ 0� (3)

where the first term represents the fact that tilt increases the slope of v(·) from yL to yH
and the second represents the resulting higher level of v(·) from yH to y. If yH is free,
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then applying negative tilt yields the reverse inequality:

∫ yH

yL

n(y)(y − yL)f (y|a)dy + (yH − yL)

∫ y

yH

n(y)f (y|a)dy ≤ 0� (4)

Our characterization combines these perturbations with the usual complementary
slackness condition that λ = 0 if (IR) is slack (so that (LL) binds).

Definition 2. A contract v(·) is generalized Holmström–Mirrlees (GHM) if (IC-FOC)
holds with equality, (IR), (LL), and (NG) are satisfied, there exist λ ≥ 0 and μ > 0 such
that

λ

(∫ y

y
v(y)f (y|a)dy − c(a)− u0

)
= 0�

and for any yL < yH ,

(i) if yL and yH are free, then (2) holds, and holds with equality if v(yL) > u;

(ii) if yL is free, then (3) holds;

(iii) if yH is free, then (4) holds.

Our main result in this section characterizes the unique incentive scheme that im-
plements any a > 0 at maximum profit.

Proposition 3 (Risk-averse agent, risk-neutral principal). Suppose u(·) is strictly con-
cave and π(y) ≡ y. Then for any a > 0, v(·) implements a at maximum profit if and only
if it is GHM.

The necessity of GHM follows from the arguments above. To establish sufficiency,
we first show that if any ṽ(·) implements a at higher profit than v(·), then there exists
a local perturbation that improves v(·). Then we show that among local perturbations,
it suffices to consider tilt and raise on valid intervals. This result follows because any
perturbation that respects concavity can be approximated arbitrarily closely by a com-
bination of valid tilts and raises. Therefore, if any perturbation improves the principal’s
profitability, then so must some individual tilt or raise.

One implication of Proposition 3 is that net cost equals 0 for any output where both
(LL) and (NG) are slack.

Corollary 2. Suppose u(·) is strictly concave and π(y) ≡ y. For any a > 0, let v(·) solve
(P) and suppose y ∈ (y� y) is free. Then n(y) ≤ 0 and n(y) = 0 if y is a point of normal
concavity.

At any point of normal concavity y, we can find two free points that are arbitrarily
close to y.8  Proposition 3 implies that (2) holds with equality between these points;

8See Claim 1 in Appendix B.
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taking a limit as these points approach y yields n(y) = 0. If y is a kink point, then we
cannot perturb v(·) around y and preserve concavity. However, there is a sense in which
(NG) binds on the linear segments on either side of y: Lemma 3 in Appendix B proves
that absent (NG), the principal would want to increase payments near the ends of a
linear segment and decrease them somewhere in the middle of that segment. Therefore,
n(y) ≤ 0 at the endpoints of any linear segment, which includes any kink point.

5.2 Implications of the no-gaming constraint

This section builds on Proposition 3 to illustrate how risk-taking affects the trade-off
between insurance and incentives that lies at the heart of this moral hazard problem.
For a broad class of settings, we show that optimal incentives are linear in output where
(NG) binds and otherwise equate the marginal costs and benefits of incentive pay at
each output.

Intuitively, if setting n(y) = 0 at some y would violate (NG), then this constraint
binds, and so the optimal contract is locally linear in utility. These linear segments are
“ironed” in the sense that they set net cost equal to 0 in expectation, even if they do
not do so point-by-point. Outside of these ironed regions, (NG) is slack and so n(y) = 0
output-by-output.

We demonstrate this intuition if ρ(λ + μl(·|a)) is first convex and then concave,
which we argue is a natural case to consider.

Lemma 2. Suppose u(·) and F(·|a) are analytic and con(ρ′)+ con(ly) >−1. Then for any
λ and μ, there exists yI such that ρ(λ+μl(·|a)) is convex on [y� yI) and concave on (yI� y].

The proof of Lemma 2 can be found in Appendix D.2. The requirement that con(ρ′)+
con(ly) > −1 is relatively mild. It is automatic if ρ′ and ly are log concave, but it also
holds, for example, if ly is strictly log concave and the agent’s utility function is from a
broad class that satisfy hyperbolic absolute risk aversion, including u(w) = logw.9

The following proposition characterizes the optimal contract if ρ(λ+μl(·|a)) is first
convex and then concave and (LL) is slack.

Proposition 4 (Slack (LL)). Fix a≥ 0 and π(y) ≡ y. Let v∗(·) solve (P), let λ and μ be the
shadow values on (IR) and (IC-FOC), respectively, and suppose that v∗(y) > u.10 Suppose
there exists yI such that ρ(λ + μl(·|a)) is convex on [y� yI) and concave on (yI� y]. Then

9Recall that hazard analysis and risk assessment utility satisfies u(w) = 1−γ
γ ( αw

1−γ + β)γ . If ly is strictly

log concave, then ρ(λ + μl(·|a)) is first convex and then concave if either γ < 0 or γ ∈ ( 1
2 �1). To see this

result for u(w) = logw, observe that 1
u′(w) =w in this case. By definition, ρ( 1

u′(w) ) = u(w), which means that

ρ(w) = logw. Then ρ′(w) = 1
w , which satisfies con(ρ′(w)) = −1 because (1/w)−1

−1 = −w. The assumption that
ly is strictly log concave then ensures that con(ly) > 0 and, hence, con(ρ′)+ con(ly) > −1.

10The supplementary file on the journal website, http://econtheory.org/supp3660/supplement.pdf,
gives conditions under which an optimal contract exists even if u = −∞. Under those conditions, this
existence proof also shows that (LL) is slack if u > −∞ is sufficiently negative.

http://econtheory.org/supp3660/supplement.pdf
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Figure 3. Illustration of ρ(λ+μl(·|a)) and the profit-maximizing v∗(·).

v∗(·) satisfies (IR) and (IC-FOC) with equality, and there exist ŷ ≥ yI , v ∈ R, and α ∈ R+
such that v∗(·) is continuous,

v∗(y) =
{
v + α(y − y) if y < ŷ�

ρ
(
λ+μl(y|a)) otherwise�

and
∫ ŷ
y n(y)f (y)dy = 0. If yI = y, then ŷ = y.

Under the condition that ρ(λ+μl(·|a)) is first convex and then concave, and (LL) is
slack, the profit-maximizing contract v∗(·) is linear in utility for low output and other-
wise sets n(y) = 0 output-by-output. Moreover, on the linear region of v∗(·), expected
net costs equal 0. See Figure 3 for an illustration.

In the extremes, if ρ(λ + μl(·|a)) is convex everywhere, then the profit-maximizing
contract is linear,11 while the profit-maximizing contract equals ρ(λ+μl(·|a)) if the lat-
ter is concave. Intuitively, ρ(λ+μl(·|a)) is likely to be convex if the principal would like
to “insure against downside risk” by offering low-powered incentives for low output and
“motivate with upside risk” by giving steeper incentives for high output. For instance,
ρ(·) tends to be more convex if prudence is large relative to absolute risk aversion, which
means that risk aversion declines sufficiently quickly as compensation increases.12 Con-
versely, ρ(λ+μl(·|a)) is likely to be concave if the principal would like to motivate with
downside risk and insure against upside risk.

Proposition 4 focuses on the case where (LL) is slack, but (NG) has a similar effect if
(IR) is slack so that (LL) binds. In that case, the principal would like to pay the agent as
little as possible for any y with l(y|a) < 0, since paying for low output both increases the

11This case obtains if, for example, l(·|a) is convex and ρ(·) is convex on the range of λ + μl(·|a). Note
that ρ(·) cannot be convex over its entire domain, because ρ(0) = −∞.

12In particular, ρ(λ + μl(·|a)) is concave (convex) if both ρ(·) and l(·|a) are concave (convex). Recalling
that prudence is −u′′′(·)/u′′(·) and absolute risk aversion is −u′′(·)/u′(·), we can show that ρ(·) is convex if
the ratio of prudence to absolute risk aversion exceeds 3. Note that this condition is equivalent to con(u′) <
−2. The border case is u(w) = √

w, which corresponds to a linear ρ(·).
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agent’s rent and tightens (IC-FOC) (Jewitt et al. 2008). But paying the agent as little as
possible for low output and rewarding high output would violate (NG), so this constraint
binds following low output.

Proposition 5 (Slack (IR)). Fix a ≥ 0 and π(y) ≡ y. Let v∗(·) solve (P) and suppose that
(IR) is slack under v∗(·). Define y0 such that l(y0|a) = 0. Then v∗(·) is linear on [y� y0].

If (IR) is slack and v∗(·) is strictly concave for y < y0, then making it “flatter” on [y� y0]
by taking a convex combination of it with the linear segment that connects v(y) and
v(y0) improves the agent’s incentives and decreases the principal’s expected payment.
So the profit-maximizing v∗(·) is linear on [y� y0], though it can be strictly concave for
higher output.

5.3 Numerical examples

In this section, we present simulations of the profit-maximizing contract for a version of
the model with discrete outputs. Fix N ∈N and define

Y = {y | y = y + i(y − y)/N for some i ∈ {1� � � � �N}}�
We constrain output to satisfy y ∈ Y = {y1� � � � � yN}, where the probability that y = yi is
pi(a) ≡ ∫ yiyi−1

f (z|a)dz and we define y0 = y.
For any a > 0, the profit-maximizing contract in this discrete setting solves the dis-

crete version of (P),

max
v∈RN

N∑
i=1

[
yi − u−1(vi)

]
pi(a) (PN )

subject to
N∑
i=1

vipi
′(a) ≥ c′(a)�

N∑
i=1

vipi(a)− c(a) ≥ u0�

vi ≥ u for all i�

2vi ≥ vi−1 + vi+1 for all i ∈ {2� � � � �N − 1}� (5)

where vi represents the agent’s utility following output yi. The benefit of this discrete
setting is that the analog to the no-gaming constraint, (5), can be written in a way that is
linear in vi. Therefore, the contracting problem is a convex optimization program that
can be solved using standard techniques. It can be shown that the solution of (PN ) and
the corresponding payoffs converge to the solution of the original problem as N → ∞.
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Figure 4. An example of the contracts that implement a given effort at maximum profit with
and without the concavity constraint.

Figure 4 gives an example that fixes the effort level and varies the lower bound on the
agent’s utility, u. In each panel, the contract that solves (PN ), the no-gaming contract, is
denoted by a dashed line, while the contract without risk-taking, the HM contract, does
not impose (5) and is denoted by a solid line. For all of our examples, N = 1,000.13

Consider the left panel of Figure 4. In this example, the no-gaming constraint binds,
and so the no-gaming contract is linear in utility for an interval of outputs including the
lowest one. This result echoes our observation that the optimal contract resembles an
ironed version of the contract without risk-taking. Note, however, that the no-gaming
constraint affects the optimal contract even for outputs where (NG) is slack. This global
effect arises because the no-gaming constraint distorts the multipliers λ and μ and so
changes the net cost of paying the agent following any output realization. In both pan-
els, the limited liability constraint is binding and so the no-gaming contract makes the
agent’s utility linear following low output, as Proposition 5 suggests. Increasing u makes
this liability constraint binding over a wider range of outputs and so expands the region
over which the agent’s utility is linear.

Figure 5 uses a similar example to illustrate how the profit-maximizing contract
changes with the agent’s outside option, u0.14 As u0 increases, the limited liability con-
straint becomes “less binding” in the sense that it binds for a smaller range of outputs.

13These examples assume that u(ω) = 2
√
ω, c(a) = a2/100, u0 = 70, and u = 0 (u = 20) in the left (right)

panel. The set of contractible outputs satisfies Y ⊆ [−50�100] and the density of intermediate output
is f (y|a) = αy + β. The parameters α and β are pinned down by the constraints

∫
f (y|a)dy = 1 and∫

yf (y|a)dx = a, and the principal aims to implement effort a= 40.
14Apart from u0, this example is identical to the left panel in Figure 4.
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Figure 5. An example of the contracts that implement a given effort at maximum profit with
and without the concavity constraint for different outside options, u0.

Again consistent with Proposition 5, the no-gaming contract is linear over a smaller
range of outputs as u0 increases.

Thus far in this section, we have characterized the profit-maximizing contract for a
fixed effort level. We can numerically solve for the (approximately) optimal effort level
by solving (PN ) for a fine grid of efforts. Of course, the possibility of gaming unam-
biguously increases the total incentive cost of inducing any fixed effort level. However,
imposing the no-gaming constraint has an ambiguous effect on the incentive cost of in-
ducing increased effort. Consequently, the possibility of risk-taking can either increase
or decrease the optimal effort level. Indeed, Figure 6 illustrates examples in which each
of these possibilities obtains.15

6. Extensions and reinterpretations

This section considers three extensions, all of which assume that both the principal and
the agent are risk-neutral. Section 6.1 changes the agent’s utility so that he must incur a
cost to gamble. Section 6.2 alters the timing so that the agent gambles before observing
intermediate output. Section 6.3 reinterprets the baseline model as a dynamic setting
in which, rather than gambling, the agent can choose when output is realized so as to
game a stationary contract. Proofs for this section can be found in Appendix C.

15These examples are identical to the example from Figure 4 except that u0 = 20, u = 2
√

10, c(a)= 0�004a2

in the left panel, and c(a)= 0�002a2 in the right panel.
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Figure 6. The possibility of risk-taking can result in either lower effort (the left panel) or higher
effort (the right panel).

6.1 Costly risk-taking

In many settings, the agent might have to bear a cost to engage in risk-taking. A portfolio
manager, for example, might spend time and effort to identify investments that allow for
risk-taking without being detected. If larger gambles are harder to hide from investors,
then the manager’s cost is increasing in the dispersion of the risk-taking distribution.
In this section, we adapt the arguments in Propositions 1 and 2 to a model with costly
risk-taking. The resulting contracts are strictly convex, providing a rationale for such
contracts in practice.

Consider the model from Section 2, and suppose that the agent must pay a private
cost EGx[d(y)]−d(x) to implement distribution Gx following the realization of x, where
d(·) is smooth, strictly increasing, and strictly convex, with d(y) = 0. For example, this

cost function equals the variance of Gx if d(y) = y2. More generally, d(·) captures the
idea that the agent must incur a higher cost to take on more dispersed risk. The princi-
pal’s and agent’s payoffs are y − s(y) and s(y)− c(a)− d(y)+ d(x), respectively.16

For any contract s(·), define

ṽ(y) ≡ s(y)− d(y) and c̃(a) ≡ c(a)−EF(·|a)
[
d(x)

]
�

so that conditional on effort, the agent’s payoff equals ṽ(y) − c̃(a). Then the principal’s
payoff equals π̃(y)− ṽ(y), where π̃(y)≡ y − d(y) is strictly concave.

As in Section 3, the agent chooses Gx so that his expected payoff equals ṽc(x). Since
π̃(·) is strictly concave, the principal prefers to deter risk-taking by offering a contract

16We are grateful to Doron Ravid for suggesting this formulation of the cost function.
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that makes the agent’s payoff ṽ(·) concave. Consequently, we can modify the proof of
Proposition 2 to show that the principal’s optimal contract makes ṽ(·) linear. The opti-
mal s(·) equals ṽ(·)+ d(·) and is, therefore, strictly convex.

Proposition 6 (Costly risk-taking). Assume c̃(·) is strictly increasing and strictly con-
vex. For optimal effort a∗ ≥ 0, define s∗(y) = c̃′(a∗)(y − y) + d(y) − w̃, where w̃ =
min{M� c̃′(a∗)(a− y)− c̃(a∗)− u0}. Then s∗(·) is optimal.

This result follows a logic similar to Proposition 2, where the optimal s∗(·) ensures
that ṽ(·) is linear. Intuitively, s∗(·) is the most convex contract that deters the agent from
gambling. Note that the principal earns more if risk-taking is costly, since she can offer
somewhat convex incentives without inducing gaming.

6.2 Risk-taking before intermediate output is realized

If the agent engages in risk-taking before observing intermediate output, then he gam-
bles to “concavify” his expected utility given effort. This section gives conditions under
which linear contracts are optimal for this alternative timing.

Consider the following game.

Move 1. The principal offers a contract s(y) : Y → [−M�∞).

Move 2. The agent accepts or rejects the contract. If he rejects, the game ends, he
receives u0 and the principal receives 0.

Move 3. The agent chooses an effort a ≥ 0 and a distribution G(·) ∈ �(Y) subject to
the constraint EG[x|a] = a.17

Move 4. The outcome of the gamble x ∼ G(·) is realized and final output is real-
ized according to y ∼ F(·|x). We assume that F(·|x) has full support, with
EF(·|x)[y] = x and a density f (·|x) that satisfies strict MLRP in x.

The principal and agent earn y − s(y) and s(y) − c(a), respectively, where c(·) is strictly
convex.

By choosing G(·), the agent essentially randomizes his level of effort. This feature
means that the contract cannot increase the agent’s expected payoff following effort a
without also increasing the expected payoff of exerting less effort and randomizing be-
tween x = a and some lower x. The agent will therefore engage in risk-taking whenever
his expected payoff as a function of effort is convex. One advantage of this model is that
our tools extend naturally to it, a feature that is not shared by every model of ex ante
risk-taking.18

As an example of the kind of risk-taking that fits this setting, suppose the princi-
pal is an investor and the agent is an entrepreneur who chooses among many possible

17With some notational inconvenience, one can extend this argument to more general mappings from a

to EG[x|a].
18For example, if the agent could instead choose the distribution of an additively separable noise term

that affects output, then linear contracts would not necessarily be optimal.
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projects. The entrepreneur can exert more effort to identify better projects, but he can
also work less hard and choose a riskier project that succeeds wildly in some environ-
ments but fails miserably in others. The inherent riskiness of the project is then cap-
tured by the entrepreneur’s choice of G(·), while F(·|x) represents residual uncertainty
that remains even if the entrepreneur picks the “safest” project that he has identified.19

Given s(·) and x, the agent’s expected payoff equals

Vs(x) ≡
∫ y

y
s(y)f (y|x)dy�

As in (1), let V c
s (·) be the concave closure of Vs(·). Analogous to Proposition 1, the agent

will optimally choose G such that EG(·)[Vs(x)] = V c
s (a). Since EG(·)[EF(·|x)[y]] = a for any

G(·), the principal’s problem is

max
a�s(·) a− V c

s (a) (6)

subject to a ∈ arg max
ã

{
V c
s (ã)− c(ã)

}
�

V c
s (a)− c(a) ≥ u0�

s(·) ≥ −M�

We prove that a linear contract solves this problem.

Proposition 7 (Ex ante risk-taking). If a∗ ≥ 0 is optimal in the program (6), then a∗ ≤
aFB and sL

a∗(·) is optimal.

To see the argument, relax the optimal contracting problem by assuming that the
principal can choose V c

s (·) directly, subject only to the constraints that V c
s (·) is concave

and V c
s (·) ≥ −M . This relaxed problem is very similar to (Obj)–(NG) except that V c

s (·)
is a function of effort rather than of intermediate output. Nevertheless, a linear V c

s (·) is
optimal for reasons similar to Proposition 2. But V c

s (·) is linear if Vs(·) is linear, and Vs(·)
is linear if s(·) is linear because EF(·|x)[y] = x. Hence, sL

a∗(·) induces the optimal V c
s (·)

from the relaxed problem and so is optimal.

6.3 Manipulating the timing of Output20

In this section, we argue that risk-taking is very similar to another common form of gam-
ing: manipulating when output is realized over time. To make this point, we consider a
model in which the principal offers a stationary contract that the agent can game by
shifting output across time, rather than by engaging in risk-taking. This model turns out
to be equivalent to the setting in Section 4.

19If
∫ z
y Fxx(y|x)dy ≥ 0 for all z ∈ Y and x, then a riskier G(·) leads to a riskier distribution over final output

(in each case, in the sense of second-order stochastic dominance).
20We are grateful to Lars Stole for suggesting this interpretation of the model.
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Consider a continuous-time game between an agent and a principal on the time
interval [0�1]. Both parties are risk-neutral and do not discount time. At t = 0, the game
proceeds as follows:

Move 1. The principal offers a stationary contract s(y) : Y → [−M�∞).

Move 2. The agent accepts or rejects. If he rejects, he earns u0 and the principal
earns 0.

Move 3. The agent chooses an effort a≥ 0.

Move 4. Total output x is realized according to F(·|a) ∈ �(Y).

Move 5. The agent chooses a mapping from time t to output at time t, yx : [0�1] → Y ,
subject to

∫ 1
0 yx(t)dt = x.

Move 6. The agent is paid
∫ 1

0 s(yx(t))dt.

The principal’s and agent’s payoffs are
∫ 1

0 [yt − s(yt)]dt and
∫ 1

0 s(yt)dt−c(a), respectively.
Let F(·|·) and c(·) satisfy the conditions from Section 2.

Crucially, the principal must offer a stationary contract s(·) in this model. Without
this restriction, the principal could eliminate gaming incentives entirely, for instance, by
paying only for cumulative output at t = 1. While stationarity is a significant restriction,
we believe it is realistic in many settings: as documented by Oyer (1998) and Larkin
(2014), contracts tend to be stationary over some period of time (such as a quarter or a
year).

This problem is equivalent to one in which, rather than choosing the realized out-
put yx(t) at each time t, the agent instead decides what fraction of time in t ∈ [0�1] to
spend producing each possible output y ∈ Y . In particular, define Gx(y) as the fraction
of time for which yx(t) ≤ y.21 Then Gx(·) is a distribution that satisfies EGx[y] = x, and
the agent’s and principal’s payoffs are EGx[s(y)] − c(a) and EGx[y − s(y)], respectively.
That is, intertemporal gaming plays exactly the same role as gambling in our baseline
model.

Proposition 8 (Intertemporal gaming). The optimal contracting problem in this setting
coincides with (ObjF)–(LLF) with u(y) ≡ y and π(y) ≡ y. Hence, if a∗ ≥ 0 is optimal, then
a∗ ≤ aFB and sL

a∗(·) is optimal.

Intuitively, the agent will adjust his realized output so that his total payoff equals the
concave closure of s(·). He does so by smoothing output over time if s(·) is concave, or
bunching it in a short interval if s(·) is convex. This behavior is consistent with Oyer
(1998) and Larkin (2014), which find that salespeople facing convex incentives concen-
trate their sales. Conversely, Brav et al. (2005) find that CEOs and chief financial officers
smooth earnings to avoid the severe penalties that come from falling short of market
expectations.

21Formally, Gx(y) = L({t|yx(t) ≤ y}), where L(·) denotes the Lebesgue measure.
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7. Concluding remarks

Risk-taking fundamentally constrains how a principal motivates her agents. This paper
argues that risk-taking blunts convex incentives, which have significant effects on opti-
mal incentive provision. Apart for Corollary 1, the agent does not engage in risk-taking
under our optimal contract. Therefore, our analysis focuses on the incentive costs of
risk-taking, rather than any direct costs that risk-taking has on society.

Nevertheless, our framework provides a natural starting point to consider why con-
tracts might not deter risk-taking. Corollary 1 suggests one reason: the principal might
be risk-seeking, for instance, because her own incentives are nonconcave. A second rea-
son is implicit in our assumption that the principal can commit to an incentive scheme.
Commitment might be difficult in some settings, for instance, because output can serve
as the basis for future compensation (Chevalier and Ellison 1997, Makarov and Plantin
2015). More generally, an agent’s competitive context shapes the incentives they face,
which in turn determine the kinds of risks they optimally pursue; see Fang and Noe
(2016) for a step in this direction. Our model provides a foundation on which to study
the consequences of risk-taking behavior for markets, organizations, and society.

Appendix A: Proofs for Sections 3 and 4

For notational convenience, we use the indefinite integral to indicate an integral on [y� y]
in all of the appendices. Proofs are ordered based on where the corresponding results
appear in the text. Some proofs depend on later results. We point out each of these
dependencies as they arise; see footnotes 22 and 24.

A.1 Proof of Proposition 1

Fix a ≥ 0 and let v(·) implement a at maximum profit. We first claim that following each
realization x, the agent’s payoff equals vc(x) and the principal’s payoff is no larger than
π(x− v̂c(x)).

Fix x ∈ Y . Since v is upper semicontinuous, there exist p ∈ [0�1] and z1� z2 ∈ Y such
that pz1 + (1 − p)z2 = x and pv(z1) + (1 − p)v(z2) = vc(x). Since the agent can choose
G̃x to assign probability p to z1 and 1 −p to z2, his expected equilibrium payoff satisfies
EGx[v(y)] ≥ vc(x). But vc is concave and vc(y) ≥ v(y) for any y ∈ Y , so by Jensen’s in-
equality, EGx[v(y)] ≤ EGx[vc(y)] ≤ vc(EGx [y]) = vc(x). So EGx [v(y)] = vc(x), and, hence,
the contract vc(x) satisfies (ICF )–(LLF ) for effort a and the degenerate distribution G.

Next consider the principal’s expected payoff. Since π(·) is concave, applying
Jensen’s inequality and the previous result yields

EF(·|a)
[
EGx

[
π
(
y − u−1(v(y)))]]≤EF(·|a)

[
π
(
EGx

[
y − u−1(v(y))])]

≤EF(·|a)
[
π
(
x− u−1(vc(x)))]�

where the first inequality is strict if π is strictly concave and the second is strict if u is
strictly concave (so that −u−1 is also strictly concave). Therefore, the principal weakly
prefers the contract vc(x) and strictly so if either π(·) or u(·) is strictly concave.
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A.2 Proof of Lemma 1

Existence follows from Proposition 9 in Appendix D.22 To prove uniqueness, suppose
at least one of π(·) or u(·) is strictly concave, and suppose that two contracts v(·) and
ṽ(·) both implement a ≥ 0 at maximum profit, with v(x) �= ṽ(x) for some x ∈ Y . Since
v(·) and ṽ(·) are upper semicontinuous and concave, they must differ on an interval of
positive length. But then the contract v∗(·) ≡ 1

2(v(·)+ ṽ(·)) satisfies (ICF )–(LLF ) for effort
a, and the principal’s payoff under v∗ is

EF(·|a)
[
π
(
y − u−1(v∗(y)

))]≥ EF(·|a)
[
π

(
y − 1

2
(
u−1(v(y))+ u−1(ṽ(y))))]

≥ 1
2
EF(·|a)

[
π
(
y − u−1(v(y)))]+ 1

2
EF(·|a)

[
π
(
y − u−1(ṽ(y)))]

by Jensen’s inequality, where at least one of the inequalities is strict.

A.3 Proof of Proposition 2

For any contract s, write U(s) = maxa{EF(·|a)[s(y)] − c(a)}. Fix an optimal pair (a∗� s∗),
where s∗(·) implements a∗. Recall that for each a, sL

a is the lowest-cost linear contract
that implements a and that sL

aFB has slope 1.
Assume first that U(s∗)≥U(sL

aFB). Then

EF(·|a∗)
[
π
(
y − s∗(y)

)] ≤ π
(
EF(·|a∗)

[
y − s∗(y)

])
= π

(
a∗ −EF(·|a∗)

[
s∗(y)

])
= π

(
a∗ − c

(
a∗)− (EF(·|a∗)

[
s∗(y)

]− c
(
a∗)))

≤ π
(
aFB − c

(
aFB)− (EF(·|aFB)

[
sL
aFB(y)

]− c
(
aFB)))

= π
(
EF(·|aFB)

[
y − sL

aFB(y)
])

= EF(·|aFB)

[
π
(
y − sL

aFB(y)
)]
�

The first inequality is Jensen’s and is strict unless either y − s∗(y) is constant or the
principal is risk-neutral. The second inequality uses U(s∗) ≥ U(sL

aFB) and a∗ − c(a∗) ≤
aFB − c(aFB), and is strict unless a∗ = aFB and U(s∗) = U(sL

aFB). The final equality uses
that y − sL

aFB(y) is a constant. For (a∗� s∗) to be optimal, these inequalities must hold
with equality, so a∗ = aFB, sL

aFB(·) is optimal, and, moreover, s∗ = sL
aFB if the principal is

risk-averse.
Assume instead that U(sL

aFB) > U(s∗). Then, since U(s∗)≥ u0, it follows that sL
aFB(y) =

−M . For each a, let ŝa(·) be the linear contract ŝa(y) = s∗(y) + c′(a)(y − y) that equals
s∗(y) at y and implements a. Note that ŝaFB(y) ≥ sL

aFB(y) for any y, so U(ŝaFB) ≥U(sL
aFB) >

U(s∗).
We claim that U(ŝa∗) ≤U(s∗). To see this, define û so that∫ (

ŝa∗(y)− (s∗(y)+ û
))
f
(
x|a∗)dx= 0 (7)

22Proposition 9 is self-contained and thus presents no circularities.



740 Barron, Georgiadis, and Swinkels Theoretical Economics 15 (2020)

and suppose to the contrary that û > 0. Then, since ŝa∗(y) < s∗(y)+ û, and since ŝa∗(·) is
linear and s∗(·) + û is concave, there exists ỹ > y such that ŝa∗(·) − (s∗(·) + û) is strictly
negative below ỹ and strictly positive above ỹ. Hence, since fa(·|a∗)/f (·|a∗) is strictly
increasing, by Beesack’s inequality,23 (7) implies that

0 <

∫ (
ŝa∗(y)− (s∗(y)+ û

))fa(y|a∗)
f
(
y|a∗) f (y|a∗)dx

=
∫ (

ŝa∗(y)− s∗(y)
)
fa
(
y|a∗)dy�

where the equality uses that
∫
fa(y|a∗)dy = 0. This contradicts that both ŝa∗ and s∗ im-

plement a∗, and so U(ŝa∗)≤U(s∗).
Since U(ŝa) is continuous in a and U(ŝaFB) > U(s∗)≥U(sa∗), there exists â ∈ [a∗� aFB)

such that U(ŝâ) =U(s∗). Since sL
â

is weakly below ŝâ,

EF(·|a∗)
[
sL
â(y)

] ≤ EF(·|a∗)
[
ŝâ(y)

]
= EF(·|â)

[
ŝâ(y)

]− ∫ â

a∗

(
∂

∂a
EF(·|a)

[
ŝâ(y)

])
da

= EF(·|â)
[
ŝâ(y)

]− c′(â)
(
â− a∗)

= U(ŝâ)+ c(â)− c′(â)
(
â− a∗)

≤ U(ŝâ)+ c
(
a∗)

= U
(
s∗
)+ c

(
a∗)

= EF(·|a∗)
[
s∗(y)

]
�

Here, the second equality uses that EF(·|a)[ŝâ(y)] is linear in a and that ŝâ(·) implements
â, and the second inequality uses that c(·) is convex.

Choose ŷ so that sL
â
(·) crosses the concave contract s∗(·) from below at ŷ, where if

sL
â
(y) < s∗(y) for all y, then ŷ = y. Since â < aFB and, hence, sL

â
(·) has slope strictly less

than 1, it follows that for all y < ŷ and t > sL
â
(y),

π ′(y − t) ≥ π ′(y − sL
â(y)

)≥ π ′(ŷ − sL
â(ŷ)

)
�

and strictly so if π(·) is not linear. Similarly, for all y > ŷ and t < sL
â
(y),

π ′(y − t) ≤ π ′(y − sL
â(y)

)≤ π ′(ŷ − sL
â(ŷ)

)
�

and strictly so if π(·) is not linear. That is, the marginal cost to the principal of paying
the agent is no less than π ′(ŷ − sL

â
(ŷ)) for y < ŷ, and no more than this amount for y > ŷ.

23The relevant version of Beesack’s inequality states that if a function h(·) single-crosses 0 from below
and satisfies

∫
h(x)dx = 0, then for any increasing function g(·),

∫
h(x)g(x)dx ≥ 0, and strictly so if g(·) is

strictly increasing and h(·) is not everywhere 0. See Beesack (1957), available online at https://www.jstor.
org/stable/2033682.

https://www.jstor.org/stable/2033682
https://www.jstor.org/stable/2033682


Theoretical Economics 15 (2020) Optimal contracts with a risk-taking agent 741

But then, since EF(·|a∗)[sL
â
(y)] ≤ EF(·|a∗)[s∗(y)] and sL

â
(y) < s∗(y) if and only if y < ŷ,

EF(·|a∗)
[
π
(
y − sL

â(y)
)]≥ EF(·|a∗)

[
π
(
y − s∗(y)

)]
�

and strictly so unless the principal is risk-neutral or sL
â
(·) and s∗(·) agree. Finally, since

the slope of sL
â
(·) is strictly less than 1 and â≥ a∗,

EF(·|â)
[
π
(
y − sL

â(y)
)]≥ EF(·|a∗)

[
π
(
y − sL

â(y)
)]
�

and strictly so unless â = a∗.
To conclude the proof, note that since (a∗� s∗) is optimal, each of these inequalities

is an equality and, hence, a∗ = â≤ aFB. If the principal is risk-averse, then s∗ = sL
â

as well.
If the principal is risk-neutral, then sL

â
(·) is optimal but not uniquely so.

A.4 Proof of Corollary 1

Fix a > 0 and consider the problem (ObjF )–(LLF ) with an arbitrary π(·) and u(s) ≡ s.
Define EGx[π(y)] = πc(x), where πc(·) denotes the concave closure of π(·).

Modify (Obj)–(NG) so that the principal’s utility equals πc(·). Since πc(y) ≥ π(y) for
any y, the principal’s payoff in this modified problem must be weakly larger than under
the original problem. But πc(·) is concave and sL

a(y) = −M , so Proposition 2 implies
that sL

a(·) implements a at maximum profit in this modified problem. So the principal’s
expected payoff equals EF(·|a)[πc(x− sL

a(x))] in this modified problem.
Now, consider the contract sL

a(x) in the original problem (Obj)–(NG). For any dis-
tribution Gx ∈ �(Y) such that EGx[y] = x, EGx [y − sL

a(y)] = x − sL
a(x) because sL

a is lin-
ear. Therefore, as in Proposition 1, there exists some GP

x such that EGP
x
[π(y − sL

a(y))] =
πc(x − sL

a(x)). Furthermore, conditional on x, the agent’s expected payoff satisfies
EGx[sL

a(y)− c(a)] = sL
a(x)− c(a) for any Gx with EGx[y] = x. So sL

a(·) satisfies (ICF )–(LLF )
for a > 0 and Gx = GP

x for each x ∈ Y . The principal’s expected payoff if she offers sL
a

equals EF(·|a)[πc(x− sL
a(x))], her payoff from the modified problem. So sL

a a fortiori im-
plements a at maximum profit for any a≥ 0.

Appendix B: Proofs for Section 5

First we prove some preliminary properties of optimal incentives schemes. If u >

−∞, Lemma 1 has shown that any profit-maximizing incentive scheme v(·) must
be unique, and supplementary file on the journal website, http://econtheory.org/
supp3660/supplement.pdf, show the same for u = −∞. We prove that v(·) must be
monotonically increasing and satisfy (IC-FOC) with equality.

Suppose v(·) is concave and not everywhere increasing. Then we can find ỹ ∈ Y
such that if we replace v(y) by a constant v(ỹ) to the right of ỹ, the resultant contract is
concave, gives the same utility to the agent, is cheaper, and, using MLRP and Beesack’s
inequality, makes (IC-FOC) slack. So any optimal v(·) must be increasing.

Suppose v(·) does not satisfy (IC-FOC) with equality. Then a convex combination of
v and the contract that gives utility constant and equal to max{u�u0 + c(a)} ≥ 0 imple-
ments a, is strictly cheaper than v, and satisfies (IC-FOC) with equality. So any optimal
v(·) must satisfy (IC-FOC) with equality.

http://econtheory.org/supp3660/supplement.pdf
http://econtheory.org/supp3660/supplement.pdf
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Consider an interval [yL� yH]. The initial impact of raising the agent’s utility on this
interval is given by

ryL�yH (y) =
{

1� y ∈ [yL� yH]�
0 else�

Similarly, tilting this interval has an initial impact on the agent’s utility given by

tyL�yH (y) =

⎧⎪⎨
⎪⎩

0� y ≤ yL�

y − yL� y ∈ (yL� yH)�

yH − yL� y ≥ yH�

In Section B.1.2, we will carefully define the perturbations raise and tilt and show that
they respect concavity.

Our first result proves two useful properties of any contract that is GHM.

Lemma 3. Let v be GHM and let [yL� yH] be a linear segment of v. Then, for each ŷ ∈
(yL� yH), there is ỹ ∈ (ŷ� yH) such that

n(ỹ)≤ 0�

If v(yL) > u, then such a ỹ exists in (yL� ŷ) as well. But somewhere on (yL� yH), n(y) ≥ 0.

Proof. Note that for y > yH , tŷ�yH (y) = yH − ŷ = (yH − ŷ)ryH�y(y). Since v satisfies (IC),
since a > 0, and since v is concave and weakly increasing, v must be strictly increasing
near y. Hence, since yH > y, v(yH) > u. We thus have

∫
n(y)ryH�y(y)f (y|a)dy = 0 by

Definition 2(i). Hence, by Definition 2(iii), we have

0 ≥
∫

n(y)tŷ�yH (y)f (y|a)dy

=
∫

n(y)tŷ�yH (y)f (y|a)dy − (yH − ŷ)

∫
n(y)ryH�y(y)f (y|a)dy

=
∫ yH

ŷ
n(y)tŷ�yH (y)f (y|a)dy�

and so at some point ỹ ∈ (ŷ� yH), the integrand is weakly negative. Since tŷ�yH (ỹ) > 0, it
follows that n(ỹ) ≤ 0.

Similarly, note that if v(yL) > u, then
∫
n(y)ryL�y(y)f (y|a)dy = 0 by Definition 2(i),

and so by Definition 2(ii),

0 ≤
∫

n(y)tyL�ŷ (y)f (y|a)dy

=
∫

n(y)tyL�ŷ (y)f (y|a)dy − (ŷ − yL)

∫
n(y)ryL�y(y)f (y|a)dy

=
∫ ŷ

yL

n(y)
[
tyL�ŷ (y)− (ŷ − yL)

]
f (y|a)dy�
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where, since the bracketed term is strictly negative on (yL� ŷ), it follows that n(y) is some-
where weakly negative on (yL� ŷ).

Finally, since
∫
n(y)ryL�yH (y)f (y|a)dy ≥ 0 and since we have established that n(y) is

weakly negative somewhere on (yL� yH), we must also have n(y) weakly positive some-
where on the same interval.

B.1 Proof of Proposition 3

The discussion prior to the statement of Proposition 3 proves necessity, given well de-
fined perturbations that satisfy concavity and well defined shadow values. This section
begins by formally defining the relevant perturbations, showing that they preserve con-
cavity, and then showing how they can be used to establish shadow values for (IR) and
(IC-FOC). We then turn to sufficiency.24

B.1.1 Preliminaries Definition 2 and Proposition 3 are phrased in terms of free points.
But not every free point is a convenient place to define a perturbation. Instead, for any
given v, let Cv be the set of points y at which there exists a supporting plane L such that
L(y ′) > v(y ′) for all y ′ �= y.

Clearly any kink point (see the discussion immediately before Corollary 2) is an ele-
ment of Cv. The next claim shows that for every other free point, there is an arbitrarily
close-by element of Cv.

Claim 1. Let ŷ be any point of normal concavity. Then, for each δ, there is a point in
{(ŷ − δ� ŷ + δ) \ ŷ} ∩Cv. From this, it follows that for each ε > 0, there exists yL < yH such
that yL� yH ∈ Cv, and such that yL� yH ∈ [ŷ − ε� ŷ + ε].

Proof. We show first that for each δ, there is a point in {(ŷ − δ� ŷ + δ) \ ŷ} ∩ Cv. To
see that this suffices to show the second part, apply the result first to find a point y1 in
{(ŷ − ε� ŷ + ε) \ ŷ} ∩Cv. Apply the result again to find y2 in {(ŷ − δ� ŷ + δ) \ ŷ} ∩Cv, where
δ= (1/2)|y1 − ŷ|, and finally take yL and yH as the smaller and larger of y1 and y2.

So fix δ > 0. Since ŷ is not on the interior of a linear segment and not a kink point,
there is at least one side of ŷ, without loss of generality the right side, such that v(·) is
not linear on (ŷ� ŷ +δ). Let S(·) be the correspondence that, for each y, assigns the set of
slopes of supporting planes at y and let s(·) be any selection from S(·). Note that since v

is concave, for any y ′′ > y ′, max{S(y ′′)} ≤ min{S(y ′)} and, hence, s is decreasing. Assume
first that there is a point ỹ ∈ (ŷ� ŷ +δ), where s(·) jumps downward, say from s′′ to s′ < s′′.
Then the supporting plane at ỹ with slope (s′ + s′′)/2 qualifies. Assume instead that s(·)
is continuous on (ŷ� ŷ + δ). It cannot be everywhere constant, since v(·) is not linear
on (ŷ� ŷ + δ). Hence, since s(·) is continuous, there is a point ỹ at which it is strictly
decreasing, so that, specifically, s(ỹ) < s(y) for all y < ỹ and s(ỹ) > s(y) for all y > ỹ. The
supporting plane at ỹ with slope s(ỹ) then qualifies.

24The proof of sufficiency uses Lemma 6 from Appendix D.3, which establishes the existence of an opti-
mal contract when u = −∞. Again, it is easy to verify that this lemma is self-contained and, thus, presents
no circularities.
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To see that why Claim 1 is helpful, assume that some part of Definition 2 is violated.
For example, assume some optimal contract has a pair of free points yL and yH such that∫
n(y)ryL�yH f (y)dy < 0. If either yL or yH is a kink point, then it is also an element of Cv.

If not, then we can apply Claim 1 to replace each relevant point by a sufficiently close-
by element of Cv that the strict inequality is maintained. Hence, it is enough to prove
Proposition 3 when each restriction to a free point is tightened to a restriction to Cv.

B.1.2 Formal definition and properties of the perturbations This section defines raise
and tilt, being careful, in particular, to maintain concavity at the endpoints of the per-
turbed interval. We need to consider as many as three perturbations at once, where,
given the previous discussion, we require the relevant points to be in Cv. First, we have
some small amount εp of a perturbation p, where p could be ryL�yH or tyL�yH in each
case with εp positive or negative. Second, for some ŷ ∈ Cv, we need to consider some
amount εt of tŷ�y and εr of rŷ�y . Intuitively, we use tŷ�y and rŷ�y to establish shadow values
for (IC-FOC) and (IR), and then, for any particular perturbation p, we consider the three
deviations together where one uses tŷ�y and rŷ�y to undo the effect of p on (IC-FOC) and
(IR).

Fix yL, yH , and ŷ. A priori, ŷ may have arbitrary position relative to yL and yH , and,
moreover, in the case where p is tyL�yH , one of yL or yH may not be in Cv, depending on
whether εp is negative or positive. Define y0 < y1 < · · · < yK , K ≤ 4, as elements of the
set {y� yL� yH� ŷ� y} ∩Cv. For any given ε= (εp�εt� εr), let d(·;ε) : [y� y] →R be given by

d(·;ε) = εpp(·)+ εttŷ�y(·)+ εrrŷ�y(·)�

If yL and yH are both elements of {y0� � � � � yK}, as must be true if p is ryL�yH , then it fol-
lows that d is linear on each interval of the form (yk−1� yk). Assume that yH /∈ {y0� � � � � yK}.
Then it must be that p is tyL�yH with εp ≥ 0. In this case, if yH /∈ (yk−1� yk), then d(·;ε)
is linear on (yk−1� yk), while if yH ∈ (yk−1� yk), then, since εp ≥ 0, d(·;ε) is concave with
two linear segments on (yk−1� yk). Finally, assume yL /∈ {y0� � � � � yK}. Then p is tyL�yH
with εp ≤ 0 and once again, if yL /∈ (yk−1� yk), then d(·;ε) is linear on (yk−1� yk), while if
yL ∈ (yk−1� yk), then since εp ≤ 0, d(·;ε) is once again concave with two linear segments
on (yk−1� yk).

For each k, let L−
k (·;ε) be the line that coincides with the linear segment of d(·;ε)

immediately to the right of yk−1 and let L+
k (·;ε) be the line that coincides with the linear

segment immediately to the left of yk (these are the same line if d is linear on (yk−1� yk)),
and let

dk(y;ε) =

⎧⎪⎨
⎪⎩
L−
k (y;ε)� y ≤ yk−1�

d(y;ε)� y ∈ (yk−1� yk)�

L+
k (y;ε)� y ≥ yk�

Note that dk is concave and that as |ε| ≡ |εp| + |εt | + |εr | → 0, dk converges uniformly to
the function that is constant at 0.
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For each k, let Lk be a supporting line to v at yk, where since yk ∈ Cv, we can choose
Lk such that Lk(y) > v(y) for all y �= yk, and let

vk(y) =

⎧⎪⎨
⎪⎩
Lk−1(y)� y ≤ yk−1�

v(y)� y ∈ (yk−1� yk)�

Lk(y)� y ≥ yk�

so that vk(·) is concave. Define v̂(·;ε) by

v̂(y;ε) = min
k∈{1�����K}

(
vk(y)+ dk(y;ε)

)
�

As the minimum over concave functions, v̂(·;ε) is concave.
Fix k and consider any y ∈ (yk−1� yk). Since dk(y�0) = 0 and by the fact that for each

k′, Lk′(y) > v(y) for all y �= yk′ , k is the unique minimizer of vk(y)+dk(y; 0). From this, it
follows first that v̂(y; 0) = vk(y) = v(y) and, second, that for all ε in some neighborhood
of 0 (where εp is restricted in sign if p = tyL�yH and if one of yL or yH is not in Cv),

v̂εp(y;ε) = dεp(y;ε) = p(y)�

v̂εt (y;ε) = dεt (y;ε) = tŷ�y(y)�

v̂εr (y;ε) = dεr (y;ε) = rŷ�y(y)�

But then, except on the zero-measure set of points {y0� � � � � yK},

v̂εp(·; 0) = p(·)� (8)

v̂εt (·; 0) = tŷ�y(·)�
v̂εr (·; 0) = rŷ�y(·)�

B.1.3 Shadow values We need to establish that starting from ε = 0, the effects of per-
turbation p can be undone via tŷ�y and rŷ�y . To do so, let

Q(ε)=
⎡
⎢⎣
∫

v̂εt (y�ε)fa(y|a)dy
∫

v̂εr (y�ε)fa(y|a)dy∫
v̂εt (y�ε)f (y|a)dy

∫
v̂εr (y�ε)f (y|a)dy

⎤
⎥⎦ �

The top row of Q tracks the rate at which εt and εr , respectively, affect (IC-FOC), while
the bottom row tracks the rate at which εt and εr , respectively, affect (IR). Then, from
(8),

Q(0) =
⎡
⎢⎣
∫

tŷ�yfa(y|a)dy
∫

rŷ�yfa(y|a)dy∫
tŷ�yf (y|a)dy

∫
rŷ�yf (y|a)dy

⎤
⎥⎦

=

⎡
⎢⎢⎢⎣
∫ y

ŷ
(y − ŷ)fa(y|a)dy

∫ y

ŷ
fa(y|a)dy∫ y

ŷ
(y − ŷ)f (y|a)dy

∫ y

ŷ
f (y|a)dy

⎤
⎥⎥⎥⎦ �
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and so

∣∣Q(0)
∣∣ = ∫ y

ŷ
(y − ŷ)fa(y|a)dy

∫ y

ŷ
f (y|a)dy −

∫ y

ŷ
(y − ŷ)f (y|a)dy

∫ y

ŷ
fa(y|a)dy

=
s

∫ y

ŷ
(y − ŷ)fa(y|a)dy∫ y

ŷ
(y − ŷ)f (y|a)dy

−

∫ y

ŷ
fa(y|a)dy∫ y

ŷ
f (y|a)dy

=
∫ y

ŷ
l(y|a) (y − ŷ)f (y|a)∫ y

ŷ
(y − ŷ)f (y|a)dy

dy −
∫ y

ŷ
l(y|a) f (y|a)∫ y

ŷ
f (y|a)dy

dy�

where the symbol =
s

means “has (strictly) the same sign as.”

Thus, |Q(0)| has the same sign as the difference between two expectations of l(·|a).
Using that (y − ŷ) is strictly increasing, the density in the first integral strictly likelihood-
ratio dominates the density in the second integral. Since l(·|a) is strictly increasing, it
follows that |Q(0)| is strictly positive (and remains so for all ε in some ball around 0).
But then by the implicit function theorem, for each p ∈ {tyL�yH � ryL�yH }, we can on the
appropriate neighborhood implicitly define εr(·) and εt(·) by∫

v̂
(
y;εp�εt(εp)�εr(εp)

)
f (y|a)dy = c(a)+ u0�∫

v̂
(
y;εp�εt(εp)�εr(εp)

)
fa(y|a)dy = c′(a)�

so that starting from ε = 0, if we make the small perturbation εp to v, we can restore
(IC-FOC) and (IR) by a suitable combination of small applications εt and εr of tŷ�y and
rŷ�y .

Let λ be the rate of change of costs as one relaxes (IR) using tŷ�y and rŷ�y . That is, if
we let (

qIR
t

qIR
r

)
= [Q(0)

]−1
(

0
1

)
�

then

λ =
∫

ρ−1(v(y))(qIR
t tŷ�y(y)+ qIR

r rŷ�y(y)
)
f (y|a)dy�

Similarly, if (
qIC
t

qIC
r

)
= [Q(0)

]−1
(

1
0

)
�

then the rate of change of costs as one relaxes (IC-FOC) using tŷ�y and rŷ�y is

μ=
∫

ρ−1(v(y))(qIC
t tŷ�y(y)+ qIC

r rŷ�y(y)
)
f (y|a)dy�
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Given the shadow values λ and μ, the argument in Section 5 (prior to Definition 2)
completes the proof of necessity in Proposition 3.

B.1.4 Proof of sufficiency We begin by proving the following useful result.

Lemma 4. Let v(·) be GHM and suppose y ∈ (y� y) is free. Then n(y) ≤ 0, and n(y) = 0 if y
is a point of normal concavity (as defined immediately before Corollary 2).

Proof. If y is a kink point, then Lemma 3 applied to the left of y implies that n(y) ≤ 0.
If y is a point of normal concavity, then by Lemma 1, there exist sequences of points
{yL

k}� {yHk } ∈ Cv such that yL
k < y < yHk for all k ∈N and limk y

L
k = limk y

H
k = y. These points

are free, so (2) holds with equality on each interval [yL
k� y

H
k ]. Hence, in the limit, n(y)= 0.

Now let v, with associated λ and μ, be GHM. Let us show that v is optimal. We argue
by contradiction. Assume v is not optimal, and let v∗ be a lower-cost contract satisfying
(IC-FOC) and (IR)–(NG). As in the argument at the beginning of Appendix B, v∗ can be
taken to be increasing and to satisfy (IC-FOC) exactly, and as in the proof of Lemma 6 in
Appendix D.3, v∗(y) and v∗(y) can be taken to be finite.

Enumerate the closed linear segments S1� S2� � � � of v and let S =⋃Si. Let δ(y) =
v∗(y)− v(y), and let v̂(y;ε) = v(y)+ εδ(y), so that v̂(·�0) = v(·) and v̂(·�1) = v∗(·). Then,
for each ε, v̂(·;ε) is a convex combination of the concave contracts v and v∗. Hence,
v̂(·;ε) satisfies (IC-FOC) and (IR)–(NG). Since u−1(·) is convex, and since for each y,
v̂(y;ε) is linear in ε, it follows that

∫
u−1(v̂(y;ε))f (y|a)dy is convex in ε. Thus, since

∫
u−1(v̂(y;0)

)
f (y|a)dx =

∫
u−1(v(y))f (y|a)dy

>

∫
u−1(v∗(y)

)
f (y|a)dy

=
∫

u−1(v̂(y;1)
)
f (y|a)dy�

it follows that

0 >
d

dε

∫
u−1(v̂(y;0)

)
f (y|a)dy

=
∫

1

u′(u−1(v̂(y;0)
))δ(y)f (y|a)dy

=
∫

ρ−1(v(y))δ(y)f (y|a)dy
=
∫
S
ρ−1(v(y))δ(y)f (y|a)dy +

∫
Y\S

ρ−1(v(y))δ(y)f (y|a)dy�
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and so, since every point in Y \ S is a point of normal concavity (noting that we took the
sets Si to be closed and so any kink point is in S), we have

∫
S
ρ−1(v(y))δ(y)f (y|a)dy < −

∫
Y\S

ρ−1(v(y))δ(y)f (y|a)dy
= −

∫
Y\S
(
λ+μl(y|a))δ(y)f (y|a)dy

= −λ

∫
Y\S

δ(y)f (y|a)dy −μ

∫
Y\S

δ(y)fa(y|a)dy�

where the first equality follows by Lemma 4.
Both v and v∗ satisfy (IC-FOC) with equality and, hence,

∫
δ(y)fa(y|a)dy = 0, from

which

−μ

∫
Y\S

δ(y)fa(y|a)dy = μ

∫
S
δ(y)fa(y|a)dy�

Similarly, either (IR) is binding at v, in which case
∫
δ(y)f (y|a)dy ≥ 0, or (IR) does not

bind at v, in which case λ = 0, and, hence, in either case,

−λ

∫
Y\S

δ(y)f (y|a)dy ≤ λ

∫
S
δ(y)f (y|a)dy�

Making these two substitutions thus yields

∫
S
ρ−1(v(y))δ(y)f (y|a)dy < λ

∫
S
δ(y)f (y|a)dy +μ

∫
S
δ(y)fa(y|a)dy�

Hence, since S =⋃Si, where the Sis are disjoint except possibly at their zero-measure
boundaries, there must be some i such that∫

Si

ρ−1(v(y))δ(y)f (y|a)dy < λ

∫
Si

δ(y)f (y|a)dy +μ

∫
Si

δ(y)fa(y|a)dy

or, equivalently, ∫
Si

n(y)δ(y)f (y|a)dy < 0�

Fix such an i and consider δ1, the restriction of δ to Si = [yL� yH]. Since v is linear
on Si and since v∗ is concave, δ1 is concave. For any given K, let � = (yH − yL)/2K ,
and consider the function δK on [yL� yH] that agrees with δ1 on the set of points
{yL� yL +�� � � � � yH} and is linear between these points. Note that δK is concave and
continuous on [yL� yH], and that for each y, δK(y) is monotonically increasing in K with
limit δ(y). Hence, we can choose K̂ large enough that

∫
Si

n(y)δK̂(y)f (y|a)dy < 0�
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Finally, define δ̃ on [y� y] by

δ̃(y)=

⎧⎪⎨
⎪⎩

0� y ≤ yL�

δK̂(y)� y ∈ [yL� yH]�
δK̂(yH)� y > yH�

Note that yH and y are free. Note also that as in the proof of Lemma 3, v(yH) > u. It
follows from Definition 2(i) that since δ̃ is constant on [yH� y],∫ y

yH

n(y)δ̃(y)f (y|a)dy = 0

and, hence, ∫
n(y)δ̃(y)f (y|a)dy < 0�

Let us next argue that δ̃ can be expressed as a sum of raises and tilts. For k ∈
{0� � � � �2K̂}, let yk = yL + k� and let sk be the slope of δ̃ on (yk−1� yk). Then we claim
that for all y in [yL� yH],

δ̃(y)= δ(y0)ry0�y(y)+
2K̂−1∑
k=1

(sk − sk+1)ty0�yk(y)+ s2K̂ ty0�y2K̂
(y)� (9)

To see (9), note first that for y < y0 = yL, both sides of the equation are 0. At y0, each
side is δ(y0), since ry0�y(y0) = 1 and since ty0�yk(y0) = 0 for all k. Thus, since both sides
are continuous and piecewise linear on [y0� y], it is enough that the two sides have that

same derivative where defined. So fix k̂ ∈ {1� � � � �2K̂} and let y ∈ (y
k̂−1� yk̂). Note that for

k < k̂, t ′y0�yk
(y) = 0, and for k ≥ k̂, t ′y0�yk

(y) = 1. Hence, the derivative of the right-hand
side is

2K̂−1∑
k=k̂

(sk − sk+1)+ s2K̂ = s
k̂
�

as desired, and so, noting that δ̃′(y) = 0 for y > yK = yH , we have established (9).
Since

∫
n(y)δ̃(y)f (y|a)dy < 0, we must thus have at least one of

(i) δ(y0)
∫
n(y)ry0�y(y)f (y|a)dy < 0;

(ii) for some k < 2K̂ , (sk − sk+1)
∫
n(y)ty0�yk(y)f (y|a)dy < 0;

(iii) s2K̂
∫
n(y)ty0�y2K̂

(y)f (y|a)dy < 0.

By Definition 2(i), and since y0 is free,
∫
n(y)ry0�y(y)f (y|a)dy = ∫ yy0

n(y)f (y|a)dy ≥ 0 and

so (i) cannot hold. Since δ̃ is concave on [yL� yH], it follows that sk − sk+1 ≥ 0, and so,
since y0 is free, it follows by Definition 2(ii) that (ii) cannot hold either. Finally, since
y0 and y2K̂ are both free, the integral in (iii) is, in fact, 0 by Definition 2(ii) and Defini-
tion 2(iii). We thus have the required contradiction, and v is, in fact, optimal.
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B.2 Proof of Corollary 2

This result follows immediately from Proposition 3 and Lemma 4.

B.3 Proof of Proposition 4

Suppose that there exists some yI ∈ [y� y] such that ρ(λ+μl(·|a)) is convex on [y� yI] and
concave on [yI� y], let v∗(·) implement a ≥ 0 at maximum profit, and suppose v∗(y) > u.
Since v∗(·) is increasing, (LL) must be slack.

First, we show that v∗(·) has no more than one linear segment. Since v∗(·) imple-
ments a at maximum profit, it is GHM by Proposition 3. Consequently, if v∗(·) has more
than one linear segment, then Lemma 3 implies that n(·) must be positive, then nega-
tive, then positive over each segment. Hence, v∗(·) − ρ(λ + μl(·|a)) must be negative,
then positive, then negative over each linear segment. But then ρ(λ+μl(·|a)) must have
two disjoint nonconcave regions, which is ruled out by assumption.

If yI = y, then v∗(·) cannot have any linear segments, since on any such segment,
v∗(·) − ρ(λ + μl(·|a)) would be positive, then negative, then positive. But then any in-
terior free point must be a point of normal concavity, and so Corollary 2 implies that
v∗(·) = ρ(λ+μl(·|a)) over (y� y).

If yI > y, then v∗(·) must have a linear segment because it cannot coincide with
ρ(λ+μl(·|a)) everywhere. We claim that this linear segment must be [y� ŷ] for some
ŷ ≥ yI . If the linear segment starts at some ỹ > y, then every y ∈ (y� ỹ) must be a point of
normal concavity. But then v∗(·) = ρ(λ+μl(·|a)) on (y� ỹ), which violates (NG) because
ρ(λ + μl(·|a)) is convex on that region by assumption. Similarly, if ŷ < yI , then every
y ∈ (ŷ� yI) must be a point of normal concavity, which again violates (NG). So v∗(·) has
a single linear segment [y� ŷ], where ŷ ≥ yI . Since v∗(·) is GHM and v∗(y) > u, (2) holds

with equality on this linear segment and so
∫ ŷ
y n(y)f (y)dy = 0.

Finally, any y ∈ (ŷ� y) is again a point of normal concavity, and so v∗(·) =
ρ(λ+μl(·|a)) at all such points. This proves the result.

B.4 Proof of Proposition 5

Let v(·) be an optimal incentive scheme and suppose (IR) does not bind. Toward a con-
tradiction, suppose that v(·) is strictly concave at some y < y0. Consider the alternative
contract

ṽ(y) =

⎧⎪⎨
⎪⎩
αv(y)+ (1 − α)

[
v(y)+ (y − y)

v(y0)− v(y)

y0 − y

]
� y ≤ y0�

v(y)� y > y0�

Note that ṽ(·) is concave, ṽ(y) ≤ v(y) for all y ∈ Y , ṽ(y) ≥ u, and there exists an interval
in [y� y0] such that ṽ(y) < v(y) on that interval. Therefore, ṽ(·) is strictly less expensive
than v(·) to the principal. Since (IR) does not bind, there exists some α ∈ [0�1) such that
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ṽ(·) satisfies (IR). Furthermore,

∫
ṽ(y)fa(y|a)dy =

∫ y0

y
ṽ(y)fa(y|a)dy +

∫ y

y0

v(y)fa(y|a)dy

>

∫ y0

y
v(y)fa(y|a)dy +

∫ y

y0

v(y)fa(y|a)dy =
∫

v(y)fa(y|a)dy�

where the strict inequality follows because fa(y|a) is negative on y ∈ [y� y0]. Hence, ṽ(·)
satisfies (IC-FOC). So ṽ(·) implements a, contradicting that v(·) is optimal.

Appendix C: Proofs for Section 6

C.1 Proof of Proposition 6

Given the definition of ṽ(·), c̃, and π̃, the optimal a and ṽ(·) solve

max
a�G∈G�ṽ(·)

EF(·|a)
[
EGx

[
π̃(y)− ṽ(y)

]]
(10)

subject to a�G ∈ arg max
ã�G̃∈G

{
EF(·|ã)

[
EG̃x

[
ṽ(y)

]]− c̃(ã)
}
�

EF(·|a)
[
EGx

[
ṽ(y)

]]− c̃(a) ≥ u0�

ṽ(y) ≥ −M − d(y) ∀y ∈ Y�

As in Proposition 1, following any intermediate output x, the agent optimally chooses
Gx so that EGx[ṽ(x)] = ṽc(x), where ṽc(·) is the concave closure of ṽ(·). Therefore, the
principal’s payoff following x equals EGx[π̃(y)− ṽ(y)] ≤ π̃(x)− ṽc(x). Since π̃(·) is strictly
concave, this inequality holds with equality only if Gx is degenerate. Consequently, we
can restrict attention to contracts in which ṽ(·) is concave, and, hence, for every x, the
agent will optimally choose Gx(y) = I{y≥x}.

Relax the limited liability constraint so that it must be satisfied only at y = y. Then
(10) can be written as

max
a�ṽ(·)

EF(·|a)
[
π̃(y)− ṽ(y)

]
subject to a ∈ arg max

ã

{
EF(·|ã)

[
ṽ(y)

]− c̃(ã)
}
�

EF(·|a)
[
ṽ(y)

]− c̃(a) ≥ u0�

ṽ(y)≥ −M�

ṽ(·) is concave.

Fix any effort a ≥ 0 and any concave incentive scheme ṽ(·) that implements a. As
in the proof of Proposition 2, let ṽL(·) be the unique linear incentive scheme that satis-
fies ṽL(y)= ṽ(y) and EF(·|a)[ṽL(y)] = EF(·|a)[ṽ(y)]. Then ṽL(·)− ṽ(·) single-crosses 0 from
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below and, hence, Beesack’s inequality implies

∫ (
ṽL(y)− ṽ(y)

)fa(y|a)
f (y|a) f (y|a)dx ≥ 0

with strict inequality if ṽL(y) �= ṽ(y) for some y. Consequently, ṽL(·) implements some
ã ≥ a, with ã > a if ṽL(y) �= ṽ(y) for some y.

Define ṽ∗(y) = c̃′(a)(y − y)− w̃, where w̃ = min{M� c̃′(a)(a− y)− c̃(a)−u0}, and sup-
pose that ṽ∗(y) = −M . Then ṽ∗(y) ≤ ṽL(y) for all y ≥ y and strictly so if ã > a. There-
fore, ṽ∗(·) uniquely implements a ≥ 0 at maximum profit in the relaxed problem. But
ṽ∗(y) ≥ −M ≥ −M − d(y) for all y ∈ Y , so ṽ∗(·) satisfies the limited liability constraint
and, hence, implements a in the original problem.

Next suppose that ṽ∗(y) > −M . Then by construction, EF(·|a)[ṽ∗(y)] = u0 + c̃(a) ≤
EF(·|a)[ṽ(y)], which implies that EF(·|a)[π̃(y)− ṽ∗(y)] ≥ EF(·|a)[π̃(y)− ṽ(y)]; i.e., ṽ∗(·) im-
plements a at maximum profit.

Finally, note that the preceding holds for any a≥ 0, proving that ṽ∗(·) or, equivalently,
s∗(y) = c̃′(a)(y − y)− d(y)− w̃, is optimal.

C.2 Proof of Proposition 7

Since s(·) ≥ −M , Vs(x) = ∫ s(y)f (y|x)dy ≥ −M and so V c
s (·) ≥ −M . Consider relaxing (6)

so that the principal can choose any Vs(·) that is concave and satisfies Vs(·) ≥ −M . In
this relaxed problem, the principal solves

max
a�Vs(·)

a− Vs(a)

subject to a ∈ arg max
ã

{
Vs(ã)− c(ã)

}
�

Vs(a)− c(a) ≥ u0�

Vs(y) ≥ −M for all y ∈ Y�

Vs(·) is weakly concave�

This problem is identical to (Obj)–(NG) with a degenerate distribution over intermediate
output.

Suppose (a∗� Vs(·)) is optimal in this relaxed program. Note that sL
a∗(·) is feasible

in this relaxed problem, so Vs(a
∗) ≤ sL

a∗(a∗). Suppose sL
a∗(·) is not optimal, so Vs(a

∗) <
sL
a∗(a∗). Then sL

a∗(a∗)− c(a∗) > u0 and so sL
a∗(y)= −M . Define sL(·) as the linear function

that intersects Vs(·) at y and a∗, so

sL(y) = Vs(y)+ Vs
(
a∗)− Vs(y)

a∗ − y
(y − y)�

Since Vs(a
∗) is concave, sL(y) ≤ Vs(y) for all y ∈ [y�a∗].
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For the agent to be willing to choose a∗ under Vs(·), it must be that ∂−Vs(a∗) ≥ c′(a∗),
where ∂−Vs(y) is the left derivative of Vs(·) at y. Since Vs is concave,

Vs
(
a∗)− Vs(y)

a∗ − y
≥ ∂−Vs(y) ≥ c′(a∗)�

Since Vs(y) ≥M , we conclude that sL(y) ≥ sL
a∗(y) for all y ∈ Y . But then Vs(a

∗) = sL(a∗) ≥
sL
a∗(a∗), which gives a contradiction. So (a∗� sL

a∗(·)) is also optimal. Note that for any
a∗ > aFB, (a∗� sL

a∗(·)) is strictly dominated by (aFB� sL
aFB(·)), which generates higher total

surplus and gives a (weakly) lower payment to the agent. So a∗ ≤ aFB and sL
a∗(·) is optimal

in this relaxed problem.
Finally, note that for any a ≥ 0 and x ∈ Y , VsL

a
(x) = EF(·|x)[sL

a(y)] = sL
a(x) because

EF(·|x)[y] = x. But then V c
sL
a
(a) = VsL

a
(a) = sL

a(a), and so the optimal linear Vs(·) in the

relaxed problem can be implemented in the full problem by sL
a∗(·).

C.3 Proof of Proposition 8

It suffices to prove that for any total output x,

max
yx:[0�1]→[y�y]

{∫ 1

0
s
(
yx(t)

)
dt subject to

∫ 1

0
yx(t)dt = x

}
= sc(x)�

Consider the following yx: if s(x) = sc(x), then yx(t) = x for all t. If s(x) < sc(x), then
there exist w, z, and α ∈ [0�1] such that αw+ (1−α)z = x and αs(w)+ (1−α)s(z) = sc(x).
For t ≤ α, yx(t) = w, with yx(t) = z for t > α. This function yx guarantees that the agent
earns sc(x).

Now s(yx(t)) ≤ sc(yx(t)) for all yx(t). Since sc is weakly concave and
∫ 1

0 yx(t)dt = x,

we conclude that
∫ 1

0 s(yx(t))dt ≤ ∫ 1
0 sc(yx(t))dt ≤ ∫ 1

0 sc(x)dt = sc(x). So the agent earns
(and the principal pays) sc(x) following intermediate output x, which proves the claim.

Appendix D: Additional results

The first part of this section proves existence and some properties of the optimal con-
tract for the case of a finite limited liability constraint. The second part gives sufficient
conditions on ρ and l for Proposition 4. The final part proves a result about how the
optimal contract varies in u that we use in Appendix B.

D.1 Proof of existence, uniqueness, and continuity for u finite

Proposition 9. Let U and � be the set of increasing concave utility functions for the
agent and the principal satisfying our assumptions, and let V be the set of concave (but not
necessarily increasing) functions from [y� y] to R, where each of U , �, and V has the topol-
ogy of almost everywhere pointwise convergence. Fix a. Then (i) for each z = (M�u0�π�u),
there exists an optimal contract v that implements a given z and (ii) at any point z where



754 Barron, Georgiadis, and Swinkels Theoretical Economics 15 (2020)

at least one of π or u is strictly concave, the optimal contract implementing a is unique
and continuous in z.

Proof. The proof relies on Berge’s theorem. Fix a. For any given z = (M�u0�u�π),
let vL(·|z) be given by vL(y|z) = c′(a)(y − y) + β, where β = min(u(−M)�c(a) + u0 −
c′(a)(a − y)), be the maximum-profit linear (in utils) contract that implements a. In
particular, vL(·|z) satisfies (IC) since, under our assumptions, the agent’s utility from
income given vL(·|z) is linear in effort while −c(·) is concave and so the first-order con-
dition implies (IC)

Let B : R × R × � × U →→ V be the correspondence that for each M ∈ R, u0 ∈ R,
π ∈�, and u ∈ U gives the set of contracts v such that

EF(·|a)
[
π
(
y − u−1(v(y)))] ≥ EF(·|a)

[
π
(
y − u−1(vL(y|z)))]− 1� (11)

a ∈ arg max
ã

{
EF(·|ã)

[
v(y)− c(ã)

]}
�

EF(·|a)
[
v(y)− c(a)

] ≥ u0�

v(y) ≥ u(−M)�

v ∈ V �

where the second through fifth constraints are simply the translations of (IC)–(NG) when
z is a parameter, and the first constraint restricts attention to contracts that come within
1 util for the principal of vL(·|z). Since vL(·|z) ∈ B(z), this constraint is innocuous, and it
also follows that B is non-empty-valued.

For any given v ∈ V , define vmax = maxy∈[y�y] v(y). We begin by proving the following
statement.

(*) For each compact subset Z ⊆ R×R×�×U , there is u such that vmax ≤ u for all
z ∈ Z and v ∈ B(z).

To see (*), begin by noting that vL(·|·) is continuous on the compact set [y� y] × Z,

and so −∞ <m ≡ miny∈[y�y]×Z{π(y−u−1(vL(y|z)))}. Using that Z is compact, let u∗ <∞
satisfy that for all z ∈ Z, π(y − u−1(u∗)) ≤ m− 2, so that any time the principal gives the
agent utility u∗ or above, the principal is at least 2 utils worse off than under vL(·|z).

Fix z ∈Z and v ∈ B(z). Choose ymax so that v(ymax) = vmax. Let umin = minz∈Z u(−M),
and define v̂ as the function that equals umin at y and y, equals vmax at ymax, and is linear
to the left and right of ymax. That is, v̂(ymax) = ymax� and

v̂(y) =

⎧⎪⎪⎨
⎪⎪⎩
umin + vmax − umin

ymax − y
(y − y)� y ∈ [y� ymax)

umin + vmax − umin

y − ymax
(y − y)� y ∈ (ymax� y]

⎫⎪⎪⎬
⎪⎪⎭ �

Note that

EF(·|a)
[
π
(
y − u−1(v̂(y)))]≥EF(·|a)

[
π
(
y − u−1(vL(y|z)))]− 1� (12)
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using that the concave function v is everywhere at or above v̂ and the first constraint in
(11).

We show that (12) implies a uniform bound on vmax. Intuitively, when vmax is large,
the piecewise linear function v̂(y) is above u∗ for nearly all of [y� y], implying losses com-
pared to vL(·|z) that contradict (12).

A uniform bound on vmax is, of course, trivial for v such that vmax ≤ u∗. So assume
vmax > u∗. Let yL ∈ [y� ymax) solve v̂(yL) = u∗, where if ymax = y, we let yL = y and, simi-
larly, define yH ∈ (ymax� y] by v̂(yH)= u∗, where if ymax = y, yH = y.

Since v̂(·) is concave, v̂(y) ≥ u∗ for all y ∈ [yL� yH] and, hence,

π
(
y − u−1(v̂(y)))−π

(
y − u−1(vL(y|z)))≤ −2�

while for any y,

π
(
y − u−1(v̂(y)))−π

(
y − u−1(vL(y|z)))≤ b�

where b≡ π(y + maxz∈Z M)−m. So from (12) we must have(
F(yH |a)− F(yL|a))(−2)+ (1 − (F(yH |a)− F(yL|a)))b ≥ −1

or, equivalently,

F(yH |a)− F(yL|a) ≤ 1 + b

2 + b
� (13)

where the right-hand side is strictly less than 1 because ∞ > b> 0. But if yL �= y, then

yL = y + u∗ − umin

vmax − umin
(ymax − y)

≤ y + u∗ − umin

vmax − umin
(y − y)�

and so as vmax → ∞, yL → y. Similarly, if yH �= y, then

yH = y − u∗ − umin

vmax − umin
(y − ymax)

≥ y − u∗ − umin

vmax − umin
(y − y)�

and so as vmax → ∞, yH → y. But then by (13), vmax is bounded, establishing (*).
From (*) and the dominated convergence theorem, each expectation in (11) is con-

tinuous in z, and, hence, noting that each of (IC) and (NG) can be expressed as a collec-
tion of weak inequalities, B(·) is upper hemicontinuous.

Let us next show that B(·) is lower hemicontinuous. To see this, fix z, let v ∈ B(z),
and let zk → z. For ε ∈ (0�1) and δ > 0, define ṽ(·|ε�δ) by ṽ(y|ε�δ) = (1 − ε)v(y) +
εvL(y|M − δ�u0 + δ�u�π).

By Jensen’s inequality, for each y,

y − u−1((1 − ε)v(y)+ εvL(y|z))≥ (1 − ε)
(
y − u−1(v(y)))+ ε

(
y − u−1(vL(y|z)))�



756 Barron, Georgiadis, and Swinkels Theoretical Economics 15 (2020)

since −u−1 is concave. Hence, since π is increasing and concave,

π
(
y − u−1((1 − ε)v(y)+ εvL(y|z))) ≥ π

(
(1 − ε)

(
y − u−1(v(y)))+ ε

(
y − u−1vL(y|z)))

≥ (1 − ε)π
(
y − u−1(v(y)))+ επ

(
y − u−1(vL(y|z)))�

and so the same is true in expectation. Since the first constraint in (11) holds weakly for
v(·) and strictly for vL(·|z), we have that for each ε ∈ (0�1),

EF(·|a)
[
π
(
y − u−1((1 − ε)v(y)+ εvL(y|z)))]>EF(·|a)

[
π
(
y − u−1(vL(y|z)))]− 1�

It follows from continuity that for each n ∈ {1�2� � � �} there exists 1
n > δn > 0 sufficiently

small that the first constraint in (11) is slack for vn ≡ ṽ(·| 1
n �δn).

It is immediate that the third and fourth constraints in (11) hold strictly at vn, while
the second and fifth constraints (which do not depend on z) continue to hold, since vn is
a convex combination of concave contracts satisfying (IC). Hence, for each n, there is Kn

such that for all k ≥ Kn, vn ∈ B(zk). Let kn = max{n�maxn′≤n Kn}. Then, for each n, vkn ∈
B(zkn), and since kn → ∞ and δn → 0, vkn → v. Hence, B(·) is lower hemicontinuous,
and thus continuous.

Fix z and let {vk} be a sequence in B(z). Since each vk is concave and thus has vari-
ation at most 2(u − u(−M)), it follows from Helly’s selection theorem that {vk} has a
convergent subsequence. Thus, B is compact-valued and, from Berge’s theorem, the
set of maximizers of EF(·|a)[π(y − u−1(v(y)))] on B(·) is non-empty-valued and upper
hemicontinuous.

Finally, consider any z where at least one of π and u is strictly concave. Then if
v1,v2 ∈ B(z), it is direct that (v1 + v2)/2 ∈ B(z) is strictly more profitable than either v1 or
v2. Thus, the maximum is unique and, hence, continuous in z.

D.2 Mild sufficient conditions for Proposition 4

This appendix gives sufficient conditions under which ρ(λ+μl(·|a)) is first convex and
then concave. We show that this case obtains if con(ρ′) + con(ly) > −1, where for an
interval X ⊆ R and analytic function h : X → R+, con(h) = infX{1 − (hh′′)/(h′)2}. For
any analytic function q with domain a subset of the reals, let q(k) be the kth derivative
of q.

Lemma 5. Assume that q > 0 is not everywhere a constant, is analytic, and has con(q) =
ω > −∞. Assume also that for some ŷ on the interior of its domain, q′(ŷ) = 0. Let k̂ =
min{k|q(k)(ŷ) �= 0}. Then q(k̂)(ŷ) < 0.

Proof. Note that k̂≥ 2. Recall that q has concavity ω if qω/ω is concave or, equivalently
(cancelling the strictly positive term qω−2), if for all y in the domain of q,

ξ(y)≡ (ω− 1)
(
q′(y)

)2 + q(y)q′′(y) ≤ 0�
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So, in particular, if k̂ = 2, then we must have q′′(ŷ) < 0, since ξ(ŷ) ≤ 0. Note that for
k ∈ {0�1�2� � � �},

ξ(k)(ŷ) = d(ŷ)+ q(ŷ)q(k+2)(ŷ)�

where d is an expression involving derivatives of q of order less than k + 2. So the

first nonzero term of the Taylor expansion of ξ is ξ(k̂−2)(ŷ)

(k̂−2)! (y − ŷ)k̂−2, where ξ(k̂−2)(ŷ) =
q(ŷ)q(k̂)(ŷ). Hence, since (y − ŷ)k̂−2 > 0 for y > ŷ, while ξ(y) ≤ 0, q(k̂)(ŷ), which is
nonzero by assumption, must be strictly negative.

Using this lemma, we can prove the following claim, from which our sufficient con-
dition is immediate.

Claim 2. Let g and h be strictly positive analytic functions with con(g′) + con(h′) > −1,
and g′ and h′ everywhere strictly positive. Then (g(h(·))) is never first strictly concave and
then weakly convex.

Proof. Let

θ(·) = (g(h(·)))′′ = g′′(h′)2 + g′h′′� (14)

If both g and h are linear, then θ ≡ 0 and we are done. Assume g and h are not both
linear, and consider any point ŷ at which θ = 0. We show that immediately to the right of
ŷ, θ < 0. This rules out that θ is ever first strictly negative and then weakly positive over
any interval of nonzero length.

To see this, note that

θ′ = g′′′(h′)3 + 3g′′h′h′′ + g′h′′′�

Consider any point ŷ at which θ = 0. Consider first the case that g′′(ŷ)h′′(ŷ) �= 0.
Then, since g′ > 0, it follows by (14) that g′′(ŷ) and h′′(ŷ) have opposite sign. Hence,
g′′(ŷ)h′′(ŷ)h′(ŷ) < 0 and so, evaluated at ŷ,

θ′ =
s

−g′′′(h′)2
g′′h′′ − 3 − g′h′′′

g′′h′′h′

= g′g′′′(
g′′)2 − 3 + h′h′′′(

h′′)2
≤ − con

(
g′)− con

(
h′)− 1

< 0�

where in the second line we substitute for (h′)2 in the first term using (14) and that
θ(ŷ)= 0, and similarly for g′ in the third term. Hence, θ is negative on an interval to
the right of ŷ.

Assume instead that g′′(ŷ)h′′(ŷ) = 0, where, since θ(ŷ) = 0, it follows that g′′(ŷ) =
h′′(ŷ) = 0. Thus, since con(g′) > −∞, it follows from Lemma 5 applied to q = g′ that the
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first nonzero derivative of g′ is strictly negative and similarly for h′. But then the first
nonzero derivative of θ will be of the form g(k)(h′)k + g′h(k), with k ≥ 3, and at least
one term strictly negative, and so, taking a Taylor expansion, θ is strictly negative on an
interval to the right of ŷ and we are done.

D.3 Stability of optimal contract as u decreases

This appendix shows that if vu(·) is an optimal contract for some limited liability con-
straint u and vu(y) > u, then vu(·) remains optimal in the problem with any less binding
limited liability constraint u′, including u′ = −∞.

Lemma 6. Assume that for some u > −∞, vu(y) > u. Let u′ < u. Then vu′ = vu.

Proof. Assume vu has vu(y) > u, but that when the limited liability constraint is some
u′ < u, there exists a superior concave contract v̂ that implements a. We show that this
leads to a contradiction.

Assume first that v̂(y) > −∞ (as is automatic if u′ is finite). Then, for small enough
ε, the contract (1 − ε)vu(·) + εv̂(·) is both strictly cheaper than vu (since u is strictly
concave) and implements a subject to limited liability constraint u, yielding the desired
contradiction.

Assume instead that v̂(y) = −∞. Begin by picking any point x′ > y where x′ ∈ Cv̂

(since v̂(y) = −∞, such points exist) and construct ṽ by applying a sufficiently small
positive amount of tx′�y such that ṽ remains strictly cheaper than vu. Since this adds a
positive increasing function to v̂, both (IC-FOC) and (IR) are strictly slack at ṽ.

For each y ∈ [y� y], let hy(·) be a supporting plane to ṽ at y. Let the concave con-
tract vy(·) be given by vy(x) = ṽ(x) for x > y and by vy(x) = hy(x) for x ≤ y. For each x,
vy(x) is weakly decreasing in y, with limy→y vy(x) = ṽ(x). Thus, by the monotone con-
vergence theorem, as y → y,

∫
vy(x)f (x|a)dx → ∫

ṽ(x)f (x|a)dx,
∫
vy(x)fa(x|a)dx →∫

ṽ(x)fa(x|a)dx, and
∫
u−1(vy(x))f (x|a)dx → ∫

u−1(ṽ(x))f (x|a)dx. Hence, for y close
enough to y, vy implements a and is cheaper than vu. For any such y, vy(y) is finite and
we are back to the previous case.
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