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On bargaining norms as solutions to cost–minimization
problems

Tymon Tatur
Department of Economics, University of Bonn

This paper studies bargaining outcomes in economies in which agents may be
able to impose outcomes that deviate from the relevant social norms but incur
costs when they do so. It characterizes bargaining outcomes that are easiest for
a society to sustain as part of a social norm that everybody will want to follow.
Depending on technological assumptions, the approach yields the Nash bargain-
ing solution, the Kalai–Smorodinsky solution, the equal monetary split, and other
bargaining solutions. Set-valued solution concepts are derived that are relevant if
one is unable or unwilling to make specific technological assumptions.
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1. Introduction

Following Nash (1950, 1953) much of the modern theory on bargaining can be split into
two branches. The axiomatic approach, born with Nash (1950), predicts bargaining out-
comes based on assumptions about how outcomes in different bargaining situations dif-
fer. The strategic approach, also conceived by Nash (1953), considers a single bargaining
situation in isolation and uses a non-cooperative game to model the strategic incentives
players may face when negotiating an agreement. Once an agreement is reached, the
game typically ends. In contrast, this paper is concerned with bargaining outcomes in
societies where cooperation is governed by social norms, including ethical and moral
norms. The idea that social norms may be relevant in bargaining is not new. For in-
stance, Arrow (1971, p. 22) argued that a primary reason for the existence of social norms
may be to facilitate cooperation by creating environments where individuals can trust
each other, thereby making more efficient cooperation possible:

It is a mistake to limit collective action to state action. . . I want to [call] attention to a less
visible form of social action: norms of social behavior, including ethical, and moral ones.
I suggest as one possible interpretation that they are reactions of society to compensate
for market failure. It is useful for individuals to have some trust in each other’s word. In
the absence of trust, it would become very costly to arrange for alternative sanctions and
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guarantees, and many opportunities for mutual beneficial cooperation would have to be
forgone.

What allocation of surplus should we expect to be imposed as part of a social norm if
such norms are used to avoid inefficiencies that will occur in the absence of such norms?

To understand the basic idea of the approach proposed in this paper, consider the
following stylized example. Two agents can collaborate to costlessly produce a good
that is worth $1. There is bargaining over how to divide the created $1 surplus. In other
words, agents can agree on any allocation of surplus (x1, x2 ) ∈ {[0, 1]2 : x1 + x2 = 1},
where x1 is the surplus received by player 1 and x2 is the surplus received by player 2.
However, in the spirit of the inefficiencies mentioned by Arrow, assume such agreements
are not easily enforceable. Before the cooperation is complete and the final product can
be sold, each side will repeatedly have an opportunity to “steal” the unfinished good,
which can be sold for $0.60. Note that no matter what allocation of surplus the two
agents agree on, in the absence of ethical or other norms, at least one party will have
an incentive to break the agreement if doing so guarantees them $0.60. Moreover, if an
agent expects the other agent to steal the unfinished product at the first opportunity—
leaving them with nothing—that agent would have an incentive to steal the unfinished
good themself before the other agent does. Thus, we can expect that each agent will try
to steal the unfinished good if given the chance. Hence, the good will never be com-
pleted and the surplus divided between the two agents will be at most $0.60 instead of
$1. This is inefficient in the sense that if both agents could trust each other’s assurances
that they will complete the project, they could create a surplus of $1 instead and divide
it in such a way that each of them would be strictly better off. Perhaps it was, among
others, this sort of situation that Arrow had in mind when he wrote that “it is useful for
individuals to have some trust” and “in the absence of trust” it may be the case that
“many opportunities for mutual beneficial cooperation would have to be forgone.”1

Imagine that a social norm is in place mandating that the project be completed when
agreed upon and where stealing the unfinished product would violate the norm. After
the product is finished, player 1 receives x1 and player 2 receives x2 dollars, where x1

and x2 are nonnegative numbers that add up to 1. Furthermore, suppose that if one
player violates the norm, that player will incur a “deviation cost” of m dollars. In the
case of an internalized norm, m could capture costs that the agent needs to incur to
overcome the anxiety after breaking the norm. If observed deviations from the norm
result in sanctions, m could represent the costs the agent needs to incur to avoid those
sanctions or the disutility experienced when facing those sanctions. It is clear that if m

1The example illustrates why inefficiencies may arise in prolonged collaborations when trust is absent.
It is perhaps less obvious that norms may also prevent inefficiencies in situations where complete contracts
specifying any division of surplus are available. Consider, for instance, a buyer and a seller who can draw
up a legally binding contract specifying the terms of delivery and the price for the goods sold, knowing that
courts will enforce both the delivery and payment of the goods if necessary. As was pointed out by Crawford
(1982), in said situations, inefficiencies will often occur if agents can imperfectly commit to bargaining
positions before bargaining starts. Social norms can also help eliminate such inefficiencies: if deviations
from the norm result in sanctions or other costs, incentives to imperfectly commit to a bargaining position
in an attempt to get a division more favorable than the one specified by the norm will decrease.
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is sufficiently large (in the considered example, at least $0.60), any allocation x can be
sustained as a norm. While any allocation of surplus can be sustained as a norm if the
“punishment” m is sufficiently large, the minimal m needed to sustain trust will depend
on the allocation. Indeed, if player i gets xi under the allocation x, then for them not to
be willing to break the norm and leave with $0.60, it must be that 0.60 − m ≤ xi. Thus,
for any allocation x, the set of punishments m for which x can be sustained as a norm is
given by

S(x) = {
m ∈ [0, ∞) : m≥ 0.60 − min(x1, x2 )

}
.

In other words, if we identify norms with pairs (x, m), where x is the allocation of surplus
postulated by the norm and m specifies how deviators are sanctioned, then the norms
that can be sustained are exactly those norms (x, m) for which m ∈ S(x). If such a norm
is used, which will it be?

Sustaining a social norm that prevents individuals from stealing the unfinished good
will, of course, involve certain social costs. For instance, if the norm is sustained by pun-
ishing deviators, potential deviators need to be monitored and the individuals punish-
ing deviators need to be incentivized. Imagine that κ(m) is the minimal cost that society
needs to incur to sustain a norm with an enforcement technology in which deviators
incur a cost of m. It appears natural to assume that κ(m) increases in m. Consider now
the problem of finding the cheapest sustainable norm (x, m) among all the norms that
can be sustained, namely the problem

min
x

min
m∈S(x)

κ(m). (1)

In the example considered above, this problem is easy to solve. Since the minimal pun-
ishments needed to sustain an allocation x are given by 0.60 −min(x1, x2 ), it is clear that
among all allocations x that are sustainable as part of a norm, there is a unique one that
is the cheapest to maintain, and that is the allocation xeven in which each player receives
$0.50, that is, where the dollar is split evenly. It is no coincidence that this allocation
xeven also has the property that for any x′ �= xeven, it is the case that S(x′ ) � S(xeven ),
namely, that the set of punishments with which xeven can be sustained is strictly larger
than the set of punishments with which any other allocation x′ can be sustained.

In this paper, we will analyze the allocation of surplus in bargaining problems by
asking which allocation of surplus is least costly for society to sustain as a social norm.
We will see that in the case of two-player bargaining under complete information,2 this
approach yields different predictions depending on the nature of the assumed punish-
ments. In particular, standard solution concepts like the Kalai–Smorodinsky solution,
the Nash bargaining solution, and the equal monetary split, can all be understood as
unique solutions to our cost-minimization problem for natural punishment technolo-
gies. We also show how our approach can be used to yield set-valued solution con-
cepts that generalize the bargaining solutions mentioned above, and are useful if little is
known about the way in which norms are enforced and about the function κ.

2A companion paper studies bargaining among more players.
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The paper is organized as follows. Section 2 introduces the model and basic con-
cepts. Section 3 considers several examples and, in particular, shows how for appropri-
ate norm enforcement technologies, our approach yields the Kalai–Smorodinsky solu-
tion and the Nash bargaining solution. Section 4 derives some more general results. The
main results here are Theorems 1 and Theorem 2, which characterize all allocations that
are the unique solution to some cost-minimization problem and, at the same time, char-
acterize all allocations that are the easiest to sustain for some enforcement technology.
Section 5 discusses extensions. Section 6 concludes and the Appendix contains proofs.

Since this paper provides alternative foundations for concepts like the Nash bargain-
ing solution, the Kalai–Smorodinsky solution, and more, our work can be seen as part
of a large body of literature discussing foundations for those and related concepts. Our
approach, however, differs from typical papers using the axiomatic approach (e.g., Nash
(1950), Kalai and Smorodinsky (1975), or Rubinstein (1982)), as a single type of bargain-
ing problem is considered in isolation and no assumptions are made about how bar-
gaining outcomes will change if some aspects of the bargaining situation—like the set of
alternatives or the preferences of the players—are modified. Our approach also differs
from papers using the strategic approach (e.g., Nash (1953), Rubinstein (1982), Abreu
and Gul (2000), Compte and Jehiel (2010), and Perry and Reny (1994)) and, more gener-
ally, papers using non-cooperative game theory, given that we do not select outcomes
based on standard solution concepts used in non-cooperative game theory.

If one thinks about social norms that are internalized (i.e., part of the agent’s pref-
erences) the proposed approach seems related to a literature studying the evolution of
preferences in reduced models in which nature designs preferences to avoid certain in-
efficiencies, such as in Samuelson (2004) or Samuelson and Swinkels (2006). Papers that
use evolutionary game theory to select Nash equilibria in non-cooperative bargaining
games (e.g., Young (1993)) appear less related because the methodology is again very
different.

2. Model

Consider the problem of two agents who can engage in some activity that creates a mon-
etary surplus. For the sake of concreteness, we will assume that the surplus is equal to
$1.

Let

X = {
(x1, x2 ) ∈ [0, 1]2 : x1 + x2 = 1

}
be the set of possible efficient allocations of the monetary surplus, where (x1, x2 ) ∈ X
is interpreted as an allocation where player 1 receives x1 and player 2 receives x2. If an
allocation of surplus x ∈ X is implemented, players receive von Neumann–Morgenstern
utilities u1(x1 ) and u2(x2 ), respectively, where ui for i = 1, 2 are differentiable utility
functions satisfying u′

i > 0 and u′′
i ≤ 0. In the following discussion, we will assume that

players are symmetric in all aspects except their utility functions ui.3

3See Section 5.1 for some remarks about the case where players are asymmetric in other aspects.
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In the example considered in the Introduction, we assumed that during the cooper-
ation, agents have the option to steal an unfinished product that can be sold for $0.60.
We then considered social norms that we identified with pairs (x, m), where x was the
allocation of surplus postulated by the norm and m was a real number describing the
consequences an agent had to face when deviating from the norm.

In this section, we will consider a more general framework and, in particular, allow
the agents to attempt to “grab” any fraction of the produced surplus. We will also al-
low for more subtle enforcement mechanisms where the consequences that an agent
faces after a deviation can, among other things, depend on how far they deviated from
the social norm in place. While we will still be able to identify social norms with pairs
(x, c), where x is the allocation of surplus postulated by the norm and c describes the
consequences agents have to face after a deviation, the parameter c that describes what
happens after a deviation will no longer be a real number, but a more complicated ob-
ject. In particular, the parameter c will be equal to a pair of functions c = (p, m), where
p : [0, 1]2 → [0, 1] and m : [0, 1]2 → [0, 1] are both nondecreasing in each of their two
arguments.

2.1 Norms

Let E be a set whose elements are pairs of functions (p, m), where p : [0, 1]2 → [0, 1]
and m : [0, 1]2 → [0, 1] are both nondecreasing in each of their two arguments. We will
interpret E as the set of possible ways in which social norms can be enforced in a given
society and call E the set of possible norm enforcements or the enforcement technology
set.

A social norm will be identified with a pair (x, c), where x ∈ X is the allocation of
surplus specified by the norm and c ∈ E describes what happens if agents deviate from
the norm.

We want to consider the case where each agent i can attempt to grab any fraction
x′
i ∈ [0, 1] of the produced surplus. If the norm (x, c) ∈ X × E is in place and the agent

attempts to grab x′
i ∈ [0, 1] of the jointly produced surplus, then their attempt is suc-

cessful with a probability of 1 − p(x′
i − xi, xi ) and is detected by the other player with a

probability of p(x′
i − xi, xi ). If the attempt is successful, then the agent receives x′

i, but
incurs a monetary cost of m(x′

i − xi, xi ), which, for instance, could represent the costs
of overcoming anxiety after breaking an internalized norm, the disutility from sanctions
that deviators face, or costs incurred to avoid such sanctions. What happens if the agent
is unsuccessful and their attempt is detected? For now, we will assume that if the other
agent detects that their partner wants to behave in a way that is inconsistent with the
valid norms, they will cease any cooperation and player i who attempted to deviate from
the norm will receive nothing, meaning their utility is ui(0).4 Note that we said nothing
about the payoffs that the other player receives when player i attempts to deviate from
the behavior specified by the norm. Thus, our modeling approach, for instance, can
handle situations where if player i grabs x′

i, this leaves the other player with nothing

4See Section 5.2 for a brief discussion of alternatives.
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(e.g., in the example discussed in the Introduction) and situations where if player i grabs
x′
i < 1, this still leave some positive share of surplus to the other player.

If the norm specifies a division x ∈ X and deviation costs are captured by c = (p, m),
agent i will have no incentive to use the action that gives them x′

i if and only if

ui(xi ) ≥ (
1 −p

(
x′
i − xi, xi

)) · ui
(
x′
i −m

(
x′
i − xi, xi

)) +p
(
x′
i − xi, xi

) · ui(0).

This motivates the following definition.

Definition 1. An allocation x ∈X can be sustained as part of a norm with c = (p, m) ∈ E
if and only if

ui(xi ) ≥ (
1 −p

(
x′
i − xi, xi

)) · ui
(
x′
i −m

(
x′
i − xi, xi

)) +p
(
x′
i − xi, xi

) · ui(0) (2)

holds for all players i ∈ {1, 2} and all x′
i ∈ [0, 1]. For any allocation x ∈ X , denote the set

of c ∈ E for which x can be sustained by SE (x).

We restricted attention to functions p and m, which are non-decreasing in both of
their arguments. The fact that p is nondecreasing in the first argument captures the idea
that for any given norm, it is (weakly) harder to grab larger shares of the surplus without
being detected. The fact that p is non-decreasing in the second argument captures the
idea that it is (weakly) harder to grab a fixed amount from the other player if the other
player is getting very little. If m captures the feeling of anxiety after breaking a norm,
then the assumption that m is nondecreasing in the first argument captures the idea that
larger deviations cause (weakly) more anxiety. Finally, the fact that m is nondecreasing
in the second argument captures the idea that a deviation from the norm by a fixed
amount may be seen as more justified if one gets a little instead of a lot.

Remark 1. Note that the function SE introduced in Definition 1 only depends on the
preferences of both players and, therefore, not on which utility function is used to rep-
resent those preferences. Thus, SE will not be affected if positive affine transformations
are applied to the utility functions u1 and u2. As a result, the same is true for the de-
rived concepts defined in terms of SE (e.g., Definition 3 and Definition 4 in the next
subsection). Thus, we can, without loss of generality, assume that u1(0) = u2(0) = 0 and
u1(1) = u2(1) = 1 whenever this is convenient.

Definition 2. An enforcement technology set E is regular if and only if, for any (p, m) ∈
E , it is the case that the functions p and m are continuous.

Regular technology sets have the property that for any c ∈ E , the set of allocations
x ∈ X that can be sustained as part of a norm using that c is closed in X .

2.2 An induced partial order on X

The function SE can be used to compare different allocations of surplus in terms of how
large the set of enforcement technologies is for which a given allocation can be sustained
as part of a norm.
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Definition 3. Fix an enforcement technology set E . An allocation x ∈ X is easier to
sustain as part of a norm than y ∈ X (we will also use the notation x 	E y) if and only if
SE (y ) � SE (x).

The above definition immediately implies that the binary relation 	E on X is irreflex-
ive (i.e., there is no x with x 	E x) and transitive (i.e., for x, y, z ∈ X , y 	E x and z 	E y

implies z 	E x). Thus, 	E is a strict partial order on X .5

It will be useful to introduce some language to describe allocations that are the great-
est elements with respect to the partial order 	E .

Definition 4. Fix an enforcement technology set E . An allocation x ∈ X is the easiest to
sustain as part of a norm if and only if SE (y ) � SE (x) for all allocations y ∈ X satisfying
y �= x.

If x ∈ X is the easiest allocation to sustain for some enforcement technology set E ,
then the set of c ∈ E for which a player would want to deviate is smaller than for any
other allocation y �= x. Thus, an allocation that is the easiest to sustain can be seen as
one that is strictly more robust than any other allocation.

2.3 The cost-minimization problem

In the case of the example considered in the Introduction, the allocation in which each
player received half a dollar was not only the allocation that was the easiest to sustain as
part of a norm in the sense defined above: It was also the unique allocation that solved
a certain cost-minimization problem.

We will say that a function κ : E → [0, ∞) is nondecreasing if and only if κ(p, m) ≥
κ(p′, m′ ) whenever p ≥ p′ and m ≥ m′. Let κ : E → [0, ∞) be some nondecreasing func-
tion and consider the problem

min
x∈X :SE (x) �=∅

inf
{
κ(c) : c ∈ SE (x)

}
. (3)

We will call this minimization problem the cost-minimization problem for the enforce-
ment technology set E and cost function κ, and will be interested in the question whether
there exists a unique x ∈ X with SE (x) �= ∅ that minimizes inf{κ(c) : c ∈ SE (x)}. In other
words, we will be interested in the question whether there is an allocation that is cheap-
est to sustain in that the cost is lowest if we consider the infimum over all enforcement
technologies c that can be used to sustain x. The reason why we take inf{κ(c) : c ∈ SE (x)}
rather than minc∈SE (x) κ(c) is that additional assumptions on the set E are required to
guarantee that the latter exists.

Definition 5. Fix an enforcement technology set E and a nondecreasing cost function
κ : E → [0, ∞). We will say that x is the unique solution to the cost-minimization problem
(for that enforcement technology set and cost function) if and only if x is the unique
solution to the problem (3), in the sense that SE (x) �= ∅ and for any y ∈ {z ∈ X : SE (z) �= ∅}
with y �= x, it is the case that inf{κ(c) : c ∈ SE (x)} < inf{κ(c) : c ∈ SE (y )}.

5A binary relation that is irreflexive and transitive is called a strict partial order.
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We will later see that there is a relationship between the set of allocations satisfying
Definition 4 for some enforcement technology E and the set of allocations satisfying the
above Definition 5 for some enforcement technology set E and some nondecreasing cost
function κ : E → [0, ∞).

3. Examples

In the Introduction, we saw an example where the allocation in which each player
received half a dollar was the easiest to sustain and a unique solution to the cost-
minimization problem for some nondecreasing cost function κ.6 The following exam-
ples will yield two other prominent bargaining solutions.

To simplify notation, we will assume in this section that ui(0) = 0 for each player i.
Under Remark 1, this is without loss of generality.

3.1 Kalai–Smorodinsky solution

Let E be the set of pairs (p, m) such that the function m : [0, 1]2 → [0, ∞) satisfies m ≡ 0
and the function p : [0, 1]2 → [0, 1] satisfies p ≡ r for some r ∈ [0, 1]. This means that
deviations do not result in any monetary costs. Instead, if an agent tries to grab a larger
share of the surplus than specified by the norm, there is an exogenously fixed proba-
bility r that the bargaining process will permanently end and each player will get their
disagreement payoff.

Proposition 1. For the enforcement technology set E considered in this subsection, there
exists an allocation of surplus that is easier to sustain as a norm than any other alloca-
tion of surplus: the Kalai–Smorodinsky solution, meaning the unique allocation xK.S., in

which
u1(xK.S.

1 )
u1(1) = u2(xK.S.

2 )
u2(1) .

Proof. Consider an arbitrary allocation x. Since r does not depend on x′, whenever
inequality (2) is not satisfied for some player i and x′

i ∈ [0, 1], it will also not hold for that
player i and x′

i = 1. Thus, (p, m) ∈ SE (x) if and only if

ui(xi ) ≥ (
1 −p(1, xi )

) · ui(1)

for i ∈ {1, 2}. This means that

SE (x) =
{

(p, m) ∈ E : p(1, 0) ∈
[

1 − min
(
u1(x1 )
u1(1)

,
u2(x2 )
u2(1)

)
, 1

]}
.

6It is straightforward to reproduce this example in our framework where an agent can attempt to grab
any amount of surplus. Let Ē be the set of pairs (p, m) such that p : [0, 1]2 → [0, 1] and m : [0, 1]2 → [0, ∞),
and both functions are nondecreasing in each. Define E as the set of (p, m) ∈ Ē such that m is a constant
function and p is given by the requirement that p(�, xi ) = 0 for xi + � ≤ 0.60 and p(�, xi ) = 1 for xi + � >

0.60. This means that the agent can attempt to grab any amount of surplus, but attempts to grab more than
$0.60 will be unsuccessful with probability 1—and, thus, never something the agent will want to consider—
and attempts to grab $0.60 or less will always be successful. The reasoning from the Introduction can then
be applied unchanged to conclude that the allocation in which each player receives half a dollar is both
easiest to sustain and the unique solution to the cost-minimization problem for a natural cost function κ.
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It is easy to see that min( u1(x1 )
u1(1) , u2(x2 )

u2(1) ) achieves its maximum for the Kalai–Smoro-

dinsky solution, that being the unique allocation xK.S. satisfying
u1(xK.S.

1 )
u1(1) = u2(xK.S.

2 )
u2(1) .

Note that if it is more costly for a society to implement enforcements with higher
probabilities r, the Kalai–Smorodinsky solution will be the unique allocation that is
cheapest to sustain. For instance, xK.S. is the unique solution to the cost-minimization
problem for E and the cost function κ : E → [0, ∞) defined by κ((p, m)) = p(1, 0) for
(p, m) ∈ E .

3.2 Nash bargaining solution

In the last subsection, we considered the case where whenever a player tried to grab a
bigger share of the surplus than specified by the norm, there is an exogenously fixed
positive probability that the bargaining process will permanently end, with each player
obtaining their disagreement payoff. In this section, we consider an example where the
probability of permanent disagreement considered in the last section depends on how
large is the deviation from the norm. Specifically, we will assume that more extreme
deviations result in a higher chance of cooperation breaking down permanently.

Let E be the set of pairs (p, m) such that the function m : [0, 1]2 → [0, ∞) satisfies
m≡ 0 and the function p : [0, 1]2 → [0, 1] is continuous, p(�, xi ) does not depend on xi,
p(�, xi ) = 0 whenever � = 0, and at points (�, xi ) where p(�, xi ) < 1, p is differentiable
and satisfies ∂

∂�p(�, xi ) > 0 and ∂2

∂�2 p(�, xi ) ≥ 0. The conditions on p capture the idea
that (i) the chance of failure is low for allocations close to the norm x, (ii) the chance of
failure rises as the deviation becomes more excessive, provided it has not yet reached 1,
and (iii) the “marginal chance of failure” is larger for more excessive deviations, again
provided the probability of failure has not yet reached 1.

Proposition 2. For the enforcement technology set E considered in this subsection, there
exists an allocation of surplus that is easier to sustain as a norm than any other allocation
of surplus, and that allocation is the symmetric Nash bargaining solution xNBS, namely
the unique solution to the problem maxx∈X (u1(x) − u1(0)) · (u2(x) − u2(0)).

Proof. We claim that, for any allocation x ∈ X , the set SE (x) satisfies

SE (x) =
{

(p, m) ∈ E :
∂

∂�
p(0, 0) · u1(x1 ) ≥ u′

1(x1 ) and
∂

∂�
p(0, 0) · u2(x2 ) ≥ u′

2(x2 )

}
. (4)

To see that (4) holds, consider any allocation x ∈ X and any (p, m) ∈ E . For i ∈ {1, 2},
define fi : [xi, 1] → R by fi(x′

i ) = (1 − p(x′
i − xi, xi )) · ui(x′

i ). Now inequality (2) can be
rewritten as

ui(xi ) ≥ fi
(
x′
i

)
. (5)

Note that since p(0, xi ) = 0 for any (p, m) ∈ E and any xi ∈ [0, 1], inequality (5) holds
with equality if x′

i = xi. Since the functions fi are concave on the relevant domain,7 this

7Note that (5) always holds if p(x′
i −xi , xi ) = 1. The fact that fi(x′

i ) is concave if we restrict attention to x′
i

such that p(x′
i − xi, xi ) < 1 follows from the assumptions on p for (p, m) ∈ E , and ui ≥ 0, u′

i > 0, and u′′
i ≤ 0.
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implies that f ′(xi ) ≤ 0 is a sufficient and necessary condition for inequality (5) to hold for
all x′

i ∈ (xi, 1] whenever xi < 1. Since f ′(xi ) ≤ 0 is equivalent to ∂
∂�p(0, 0) ·ui(xi ) ≥ u′

i(xi ),
this proves (4) for the case where x1 < 1 and x2 < 1. However, for the case where x1 = 1
or x2 = 1, (4) holds since SE (x) = ∅ and the right-hand side of (4) is also equal to the
empty set.8

Equation (4) implies that an allocation x ∈ X is easier to sustain as a norm than an
allocation y ∈ X if and only if

max
(
u′

1(x1 )
u1(x1 )

,
u′

2(x2 )
u2(x2 )

)
< max

(
u′

1(y1 )
u1(y1 )

,
u′

2(y2 )
u2(y2 )

)

or, equivalently,

max
(
u′

1(x1 )
u1(x1 )

,
u′

2(1 − x1 )
u2(1 − x1 )

)
< max

(
u′

1(y1 )
u1(y1 )

,
u′

2(1 − y1 )
u2(1 − y1 )

)
.

Consider

max
(
u′

1(x1 )
u1(x1 )

,
u′

2(1 − x1 )
u2(1 − x1 )

)
(6)

as a function of x1. Since the functions u1 and u2 are concave and increasing,
u′

1(x1 )
u1(x1 ) is

decreasing in x1 and
u′

2(1−x1 )
u2(1−x1 ) is increasing in x1. Thus, there is a single allocation for

which (6) is minimized and that allocation is the unique solution of the equation

u′
1(x1 )

u1(x1 )
= u′

2(1 − x1 )
u2(1 − x1 )

. (7)

However, the unique allocation for which (7) holds is the symmetric Nash bargaining
solution.9

Given the above analysis, it is straightforward to check that xNBS is the unique so-
lution for the cost-minimization problem for the enforcement technology set E and the
cost function κ : E → [0, ∞) given by κ((p, m)) = ∂

∂�p(0, 0).
Note that the enforcement technologies considered in this example have a very par-

ticular property: The set SE (x) depended only on the local properties of the utility func-
tions u1 and u2 around x, and on the disagreement payoff. This is reminiscent of Nash’s
(1950) independence of irrelevant alternatives axiom.

8Assume xi = 1 for some i ∈ {1, 2}. The relationship SE (x) = ∅ must hold, considering that for any
(p, m) ∈ E , it will be the case that (2) does not hold for player j with xj = 0 and a positive x′

j that are suf-
ficiently close to 0. To see that the right-hand side of (4) is also equal to the empty set, note that if xj = 0,
then for any (p, m) ∈ E , ∂

∂�p(0, 0) · uj(xj ) = 0 < u′
j(xj ) as uj(0) = 0 and u′

j(0) > 0.
9The symmetric Nash bargaining solution is the unique allocation solving maxx u1(x1 ) · u2(1 − x1 ). Note

that this problem has an interior solution and that the first-order condition u′
1(x1 ) · u2(1 − x1 ) − u1(x1 ) ·

u′
2(1 − x1 ) = 0 is equivalent to (7).
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4. General results

4.1 Set-valued solution concepts

In Section 3, we saw that for well established solution concepts like the Nash bargaining
solution, the Kalai–Smorodinsky solution, or the equal monetary split, there exist en-
forcement technology sets E that yield those bargaining solutions in the sense that the
allocation of surplus predicted by the bargaining solution is also the allocation that is
the easiest to sustain as part of a social norm and that this allocation solves the cost-
minimization problem for some cost function κ.

Definition 6. Let X cost-min be the set of allocations x ∈ X such that there exists a reg-
ular10 enforcement technology set E and a nondecreasing function κ : E → [0, ∞) with
the property that x is the unique solution to the cost-minimization problem for that
enforcement technology set E and that cost function κ.

In the language of Myerson (1991), X cost-min can be seen as a “lower solution con-
cept” in the sense that for any x∗ ∈ X cost-min, we can find an environment where x∗ is
the unique allocation minimizing costs and, thus, the only predicted allocation if norms
are chosen to minimize the costs of sustaining them.

Let us analogously introduce some notation for the set of all allocations that are the
easiest to sustain for some regular enforcement technology set E .

Definition 7. Let X easiest be the set of allocations x ∈X such that there exists a regular
enforcement technology set E with the property that x is the easiest to sustain, meaning
SE (y ) � SE (x) for all allocations y ∈ X satisfying y �= x.

In the next section we will give an exact characterization of both X cost-min and
X easiest.

4.2 Characterization

A fundamental question that solution concepts like the Nash bargaining solution or the
Kalai–Smorodinsky solution try to address is how different attitudes toward risk affect
bargaining outcomes. A basic intuition is as follows: If one player is more risk averse
than the other player, they will be less aggressive when making demands, allowing the
other player to achieve a more favorable outcome.

Our approach will predict that exactly those allocations x are possible bargaining
outcomes that are not unbalanced in the sense that, given allocation x, one player will
be strictly more willing to make risky demands than the other.

Definition 8. Let i ∈ {1, 2} be a player and let j be their opponent. Define Di ⊂ X as
the set of allocations x such that for any q ∈ (0, 1) and � ∈ (0, 1),

xi +�≤ 1 and ui(xi ) < q · ui(xi +�) + (1 − q) · ui(0)

10Regular enforcement technology sets were defined in Definition 2. In Section 4.3, we discuss how the
results change if the requirement that E is regular is dropped in this and the following definition.
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is implied by

xj +� ≤ 1 and uj(xj ) ≤ q · uj(xj +�) + (1 − q) · uj(0).

To understand Definition 8,11 imagine that a player contemplates accepting al-
location x or appealing against x. Specifically, imagine that the player can demand
x′
i = xi +�, but the request will be accepted only with some probability q and will result

in disagreement with probability 1 − q. The set Di is the set of allocations that are un-
balanced in the sense that player i would have higher incentives to make such demands
than their opponent.12

Note that, on an intuitive level, it seems natural for a player to be more willing to ap-
peal an allocation x and demand some x′ with x′

i > xi if x is an allocation that only gives
player i a small share of the surplus. This suggests that if x ∈ Di, then for any allocation
y with yi < xi, it must be that y ∈ Di. Lemma 2 in the Appendix formally shows that for
each player i ∈ {1, 2}, there exists a number x̄i = supx∈Di

xi ∈ (0, 1
2 ] with the property that

the set Di either satisfies Di = {x ∈ X : xi < x̄i} or satisfies Di = {x ∈ X : xi ≤ x̄i}.

Theorem 1. Let x ∈ X be an allocation of surplus. Then the following three statements
are equivalent:

(i) There exists a regular enforcement technology set E and a nondecreasing function
κ such that x is the unique solution to the cost-minimization problem

min
x∈X :SE (x) �=∅

inf
{
κ(c) : c ∈ SE (x)

}
.

(ii) There exists a regular enforcement technology set E such that the allocation of sur-
plus x is the easiest to sustain for the enforcement technology set E .

(iii) For each player i, there is no y ∈ Di with yi > xi.

In other words, X cost-min = X easiest = {x ∈ X : x1 ≥ x̄1 and x2 ≥ x̄2}, where x̄i =
supx∈Di

xi > 0 for i = 1, 2.13

The complete proof of Theorem 1 is provided in the Appendix. Here we just men-
tion some basic ideas used in the proof. Define x̄1 and x̄2 as in the theorem. To
prove Theorem 1, it is enough to show that (1) X easiest ⊂ {x ∈ X : x1 ≥ x̄1 and x2 ≥ x̄2},
(2) {x ∈ X : x1 ≥ x̄1 and x2 ≥ x̄2} ⊂ X cost-min, and (3) X cost-min ⊂ X easiest.

To provide some intuition for the result, let us sketch why (1) holds. To prove (1) it
is enough to show that for any allocation x ∈ X with the property that xi < x̄i holds for
some player i, it is the case that x /∈ X easiest. Now note that if x is an allocation such that
xi < x̄i, then there is an allocation y with the property that xi < yi < x̄i. Since xi < x̄i and
yi < x̄i, both x and y lie in Di. But Di was the set of allocations z, so that given z, player

11See Rubinstein, Safra, and Thomson (1992) for a characterization of the Nash bargaining solution in
similar terms.

12See Lemma 5 in the Appendix for a different characterization.
13The sets Di were defined in Definition 8.
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i has strictly higher incentives to make demands than the other player j. This suggests
that for any enforcement technology set E , SE (x) and SE (y ) will be equal to the set of
norm enforcements c ∈ E such that player i would not want to impose any alternative
allocations. (If player i does not want to impose any alternative allocations, the same is
true for the other player j, as they have strictly weaker incentives to make demands.)14

However, if SE (x) and SE (y ) are both determined only by player i’s incentives, then we
expect that SE (x) ⊂ SE (y ) will hold for any E . (Indeed, as xi < yi holds, we expect player
i will be more satisfied under y than under x and will have weaker incentives to make
demands under y than under x.) This, however, implies x /∈ X easiest. To prove statement
(2) for each x ∈ {x ∈ X : x1 ≥ x̄1 and x2 ≥ x̄2}, an enforcement technology set E and a
cost function κ are constructed so that x is the unique solution to the cost-minimization
problem for that enforcement technology set and cost function. The proof of statement
(3) is relatively straightforward.

The set X cost-min = X easiest characterized in Theorem 1 in general depends on the
risk preferences of the two players. For instance, it is straightforward to show that for the
case where both players have the same preferences over lotteries, X cost-min = X easiest =
{( 1

2 , 1
2 )} holds. From Theorem 1 and the examples considered in Section 3, we know that,

in general, the set X cost-min = X easiest is convex and contains the Nash bargaining solu-
tion, the Kalai–Smorodinsky solution, and the equal division ( 1

2 , 1
2 ). The reader might

wonder how much larger X cost-min = X easiest is compared to the convex hull of those
three allocations. The following proposition addresses this question.

Proposition 3. For i = 1, 2, let ȳi ∈ [0, 1] be the unique solution of

ui(2ȳi ) − ui(ȳi )
ȳi

ui(ȳi ) − ui(0)
= u′

j(1 − ȳi )

uj(1 − ȳi ) − uj(0)
,

where j stands for the other player. Define Y∗ ⊂ X by

Y∗ =
{
x ∈ X : x1 ≥ min

(
ȳ1,

1
2

)
and x2 ≥ min

(
ȳ2,

1
2

)}
.

Then X cost-min = X easiest ⊂ Y∗.

Consider the equation defining ȳi. Note that if we replace ui(2ȳi )−ui(ȳi )
ȳi

with u′
i(ȳi ) ≥

ui(2ȳi )−ui(ȳi )
ȳi

, we obtain an equation that characterizes the payoff of player i under the

Nash bargaining solution.15 Thus, with Y∗ we have an outer solution concept whose
extreme points can be directly related to the Nash bargaining solution.

One can show that for the case where one of the players is risk neutral, the set Y∗
defined in Proposition 3 actually coincides with X cost-min = X easiest. This implies that if

14See Lemma 3 in the Appendix for a formal statement.
15The Nash bargaining solution is the allocation x that maximizes (u1(x1 ) − u1(0)) · (u2(x2 ) − u2(0)). It,

therefore, satisfies the first-order condition
u′

1(x1 )
u1(x1 )−u1(0) = u′

2(x2 )
u2(x2 )−u2(0)) . Replacing xj with 1 − xi we obtain

the equation.
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player i is risk neutral, then X cost-min = X easiest = {x ∈ X : xj ∈ [ȳi, 1
2 ]}, where ȳi is defined

as in Proposition 3 and j stands for the other player.

4.3 Robustness of the characterization

In Definition 6 and Definition 7, we required that the enforcement technologies sets are
regular.

Theorem 2. Statements (i), (ii), and (iii) in Theorem 1 are still equivalent for any alloca-
tion x ∈ X if the word “regular” is dropped in (i) and (ii).

Note that neither of the two theorems immediately implies the other. The less re-
strictive we are in terms of the permitted enforcement technologies, the larger the sets
of allocations satisfying (i) and (ii) in Theorem 1 may get. Thus, in Theorem 1, the state-
ment “(iii) implies (i) and (ii)” does not follow directly from the fact that (iii) implies (i)
and (ii) in the context of Theorem 2. Similarly, the fact that (i) and (ii) imply (iii) in Theo-
rem 2 does not follow from the fact that (i) and (ii) imply (iii) in the context of Theorem 1.

Theorem 2 could be proven independently, following the same lines as the proof
of Theorem 1 in the Appendix, where the proof of statement (2) could be simplified by
using enforcement technologies that are not continuous. The fact that the proof of The-
orem 1 is slightly more involved is one of several reasons why Theorem 1 is presented as
the main result, with Theorem 2 serving as a robustness check.

4.4 Comparative statics

According to Theorem 1, X cost-min = X easiest = {x ∈ X : x1 ≥ x̄1 and x2 ≥ x̄2}, where x̄i =
supx∈Di

xi for i = 1, 2. The definition of the sets Di implies some immediate comparative
statics results.

Consider, for instance, how the set X cost-min = X easiest changes if player 1 became
more risk averse in that their preference over risk is no longer given by u1, but by û1 = v ◦
u1 instead, where v is an increasing, strictly concave function. The definition of the sets
Di together with Jensen’s inequality immediately implies that x̄1 would weakly decrease
and x̄2 would weakly increase. Thus, X cost-min = X easiest would “shift” in player 2’s favor.

4.5 Dominance

Let E be an enforcement technology set. So far, we have focused on the case where
the cost-minimization problem (3) has a unique solution. Consider the case where for
some regular enforcement technology set E and some cost function κ the minimization
problem,

min
x∈X :SE (x) �=∅

inf
{
κ(c) : c ∈ SE (x)

}
(8)

has more than one solution. Can we argue that among the allocations x that minimize
costs, some are less attractive than others?
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Definition 9. An allocation y ∈ X dominates an allocation x ∈ X if and only if, for any
regular enforcement technology set E , it is the case that SE (x) ⊂ SE (y ) and there ex-
ists a regular enforcement technology set E ′ such that SE ′(x) � SE ′(y ). An allocation is
undominated if there is no allocation y ∈ X that dominates it.

If an allocation y dominates an allocation x, then for any regular enforcement tech-
nology set E and cost function κ, whenever x is a solution to the minimization problem
(8), so is y. Moreover, for any c ∈ SE ′(x), implementing (y, c) instead of (x, c) would
have the advantage that it achieves the same cost, but is more robust. For instance, if
agents are occasionally confused about the enforcement technology used, there would
be an advantage in using y, because there are enforcement technology sets E ′ for which
SE ′(x) � SE ′(y ), but there is no downside, as SE ′(x) ⊂ SE ′(y ) always holds.

Theorem 3. An allocation x ∈ X is undominated if and only if x lies in {x ∈ X : x1 ≥
x̄1 and x2 ≥ x̄2}, where x̄i = supx∈Di

xi > 0 for i = 1, 2 and Di are defined as in Definition 8.

Let X undom be the set of allocations that are undominated. For Theorem 1 to imply
Theorem 3, one just needs to show that X undom = X easiest.

Since an allocation x lies in X easiest if and only if it is easiest to implement for some
regular technology set E , the definition of X undom immediately implies that X easiest ⊂
X undom. However, X undom ⊂ X easiest does not follow immediately from the definitions
of the two sets and, for instance, will not hold in general if the definition of a regular
technology set (Definition 2 in Section 2.1) is made sufficiently more restrictive. Why?
The the definition of X undom guarantees that if x ∈ X undom holds, then there is no y such
that (i) for any regular E , it is the case that SE (x) ⊂ SE (y ) and (ii) there exists a regular
E ′ such that SE ′(x) � SE ′(y ). However, it could potentially be that for some x ∈ X undom,
there is a y �= x such that for any regular E , it is the case that SE (x) = SE (y ). If this were
the case, then such a x ∈ X undom would not be an element of x ∈ X easiest, as x can never
be easiest to implement if SE (x) = SE (y ) always holds. The proof in the Appendix shows
that X undom −X easiest is empty by showing that if an allocation x is not in X easiest, then
there exists an allocation y that dominates x.

5. Discussion and extensions

5.1 Asymmetric enforcement technologies

In our analysis we assumed that players are symmetric in all ways except in their utility
functions ui. This is natural if we want to compare our results with symmetric bargaining
solutions like the symmetric Nash bargaining or the Kalai–Smorodinsky solution.

Of course, there are also situations where it is natural to consider asymmetric en-
forcement technologies. To show how the approach proposed in this paper can be ap-
plied to study these situations analogously, consider again the example discussed in the
Introduction, where two players can produce a good worth $1 without costs, but have
opportunities to steal the unfinished good before production is complete and can sell
it for $0.60 if they do so. Imagine now that because the players have different roles in
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the production process or due to different skill sets, it is easier for player 1 to steal the
unfinished good than for player 2. Specifically, assume that while player 1 can steal the
unfinished good without incurring any costs, player 2 needs to incur a cost of $0.05 to
steal it. Thus, if the norm specifies a division of surplus x = (x1, x2 ), and stealing the
good will result in a punishment that corresponds to m dollars, player 1 would prefer to
steal the good if and only if x1 < 0.60 −m, and player 2 would prefer to steal the good if
and only if x2 < 0.60 − 0.05 −m. Thus, no agent will have an incentive to steal the good
if and only if

m≥ max(0.60 − x1, 0.60 − 0.05 − x2 ) = 0.60 − min(x1, x2 + 0.5).

Analogously as in the Introduction, for any allocation x, let S(x) be the set of nonnega-
tive numbers m such that the allocation x is sustainable as a norm in the sense that no
player would have an incentive to steal the good, i.e., the above inequality holds for i = 1
and i = 2. Then

S(x) = [0.60 − min(x1, x2 + 0.5), ∞).

Clearly, the allocation in which player 1 receives $0.525 and player 2 receives $0.475 is
easiest to implement in the sense that for any allocation y with y �= x, S(y ) � S(x) holds.
As in the Introduction, if the costs a society incurs are increasing in m, this would also
be the allocation that would be the cheapest to sustain as part of a norm.

Therefore, in the above example, our model predicts that more skilled individuals
(or for other reasons the player for whom it is easier to steal a fraction of the surplus)
will receive a higher share of the surplus under the cost-minimizing norm. Of course,
we expect this to hold much more generally.

It is also not difficult to use the proposed approach to generate some well known
asymmetric bargaining solutions like the asymmetric Nash bargaining solution. To see
this, define E as in Section 3.2, but imagine that if (p, m) ∈ E is used, the norm specifies
an allocation x, and if player 1 tries to grab x′

1, his attempt will be unsuccessful with
probability

γ1 ·p(
x′

1 − x1, x1
)
,

while if player 2 tries to grab x′
2, his attempt will be unsuccessful with probability

γ2 ·p(
x′

2 − x2, x2
)
,

where γ1, γ2 ∈ (0, 1) are constants. Generalizing the ideas from Section 2.1, we can then
say that an allocation x ∈ X can be sustained as part of a social norm if and only if

u1(x1 ) ≥ (
1 −γ1 ·p(

x′
1 −x1, x1

)) ·u1
(
x′

1 −m
(
x′

1 −x1, x1
))+γ1 ·p(

x′
1 −x1, x1

) ·u1(0) (9)

holds for all x′
1 ∈ [0, 1] and

u2(x2 ) ≥ (
1−γ2 ·p(

x′
2 −x2, x2

)) ·u2
(
x′

2 −m
(
x′

2 −x2, x2
))+γ2 ·p(

x′
2 −x2, x2

) ·u2(0) (10)

holds for all x′
2 ∈ [0, 1]. Using exactly the same arguments as in Section 3.2, it is straight-

forward to verify that if we define Sγ1,γ2
E (x) as being the set of all allocations x ∈ X such
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that (9) and (10) are satisfied, there will be a unique allocation x∗ that is the easiest to

sustain—in the sense that Sγ1,γ2
E (x) � Sγ1,γ2

E (x∗ ) for any allocation x �= x—and that allo-

cation is the asymmetric Nash bargaining solution for weights α = γ2
γ1+γ2

and β = γ1
γ1+γ2

,

meaning the unique allocation solving

max
x∈X

u1(x1 )
γ2

γ1+γ2 · u2(x2 )
γ1

γ1+γ2 .

The above two examples suggest that, conceptually, it is easy to generalize the proposed

approach to situations in which enforcement technologies are asymmetric.

5.2 Other symmetric enforcement technologies

The fundamental goal of this paper is to describe a novel way in which one can think

about outcomes in certain bargaining situations. There is no question that for specific

applications, it might be worthwhile to consider enforcement technologies that are dif-

ferent from those considered here.

For instance, in Section 2.1, we assumed that if an attempt to grab a share x′
i of

the surplus was unsuccessful, then the result would be disagreement. Alternatively,

one could imagine that in such a situation not only would cooperation be permanently

ended, but the deviator would also face some sanction such as, for instance, incurring a

cost of K > 0. Analogously to Section 2.1, we could then say that an allocation x ∈ X can

be sustained as part of a norm if and only if

ui
(
x′
i

) ≥ (
1 −p

(
x′
i − xi, xi

)) · ui
(
x′
i −m

(
x′
i − xi, xi

)) +p
(
x′
i − xi, xi

) · ui(−K)

holds for all players i and all x′
i ∈ [0, 1]. The analysis could then be carried out along

the same lines as was done in Section 4, and Theorem 1 could be derived for similarly

defined sets Di where, however, in Definition 8, the payoff u(0) would be replaced with

the payoff u(−K). Of course, the results would then be a bit harder to compare with

standard solution concepts, as the derived solution concept would depend on ui(−K),

the disutility from a sanction that is not directly related to the “disagreement payoff”

that players’ receive if they decide not to cooperate.

The technical reason why this extension would be relatively straightforward is that a

fundamental monotonicity property used in our analysis would still hold. The relevant

property is that for any enforcement technology c, a player i has weaker incentives to de-

viate if the norm prescribes to them a higher rather than lower share of the surplus. (For

the framework considered in this paper, this property is formally proven in Lemma 1 in

the Appendix.) For some other modifications that one could consider, for instance, if the

utility of a player i who attempts to grab x′
i and fails is given by ui(−m(x′

i − xi, xi )), ad-

ditional assumptions on the utility functions ui are needed to guarantee that the afore-

mentioned monotonicity property holds.
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6. Conclusion

In the context of two-player bargaining under symmetric information,16 this paper stud-
ied bargaining outcomes in societies where cooperation is governed by social norms. It
proposed a new approach in which bargaining outcomes are analyzed based on how
costly they are to sustain as part of a social norm. It showed that well known bargain-
ing solutions like the Nash bargaining solution or the Kalai–Smorodinsky solution can
be understood as unique solutions to the problem of choosing an allocation that is the
cheapest to sustain as a norm for some enforcement technologies and cost functions.
Moreover, all allocations with the property of being a unique solution to some such cost-
minimization problem were characterized.

The questions of whether and when norms would form was not addressed in this
paper. This is an important question. However, if an important role of social norms is
indeed to compensate for market failures, then addressing this question will most likely
require assumptions regarding the social costs of those market failures. In contrast, our
analysis required no such assumptions. Since we only analyzed the incentives of agents
to deviate from a norm, it was irrelevant to know how the payoffs of other agents are
affected by deviations.

Appendix

A.1 Proof of Theorem 1

Define x̄1 and x̄2 as in the statement of the theorem. As noted in the main part of the
paper, to prove the equivalence of (i), (ii), and (iii), it is enough to show

(1) X easiest ⊂ {x ∈ X : x1 ≥ x̄1 and x2 ≥ x̄2}

(2) {x ∈ X : x1 ≥ x̄1 and x2 ≥ x̄2} ⊂ X cost-min

(3) X cost-min ⊂ X easiest.

Under Remark 1 it is enough to prove (1), (2), and (3) for the case where ui(0) = 0 for
i ∈ {1, 2}. Assume ui(0) = 0 for i ∈ {1, 2}.

For any player i ∈ {1, 2} and allocation x ∈ X , let S i
E (x) be the set of (p, m) ∈ E with

the property that

ui(xi ) ≥ (
1 −p

(
x′
i − xi, xi

)) · ui
(
x′
i −m

(
x′
i − xi, xi

))
(11)

holds for all allocations x′ ∈ X with x′
i > xi. On an intuitive level, S i

E (x) is exactly equal
to the set of c ∈ E for which player i would not want to impose some alternative outcome
x′ ∈ X . The definition of SE (x) immediately implies that SE (x) = S1

E (x) ∩ S2
E (x).

The following lemma formalizes the intuition that a player who receives more will
have smaller incentives to impose an alternative allocation.

Lemma 1. Let i ∈ {1, 2}. If x, y ∈ X satisfy xi < yi, then S i
E (x) ⊂ S i

E (y ).

16In a companion paper, bargaining between more players is considered.
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Proof. Let x, y ∈ X be such that xi < yi. We need to show that S i
E (x) ⊂ S i

E (y ). Assume
this is not the case, meaning there exists a c = (m, p) ∈ E with the property that c ∈ S i

E (x)
and c /∈ S i

E (y ). As c /∈ Si(y ), there exists a y ′ ∈ X with y ′
i > yi such that

ui(yi ) <
(
1 −p

(
y ′
i − yi, yi

)) · ui
(
y ′
i −m

(
y ′
i − yi, yi

))
(12)

or, equivalently,17

ui(yi ) · 1

1 −p
(
y ′
i − yi, yi

) < ui
(
y ′
i −m

(
y ′
i − yi, yi

))
.

Subtracting ui(yi ) from both sides, we see that the above inequality (and, therefore, also
inequality (12)) is equivalent to

ui(yi ) ·
(

1

1 −p
(
y ′
i − yi, yi

) − 1
)
< ui

(
y ′
i −m

(
y ′
i − yi, yi

)) − ui(yi ). (13)

Let x′ ∈ X be given by x′
i − xi = y ′

i − yi.18 Note the following statements:

(a) We have ui(xi ) < ui(yi ), as ui is increasing and xi < yi.

(b) We have ( 1
1−p(x′

i−xi,xi )
− 1) ≤ ( 1

1−p(y ′
i−yi ,yi )

− 1), as p(x′
i − xi, xi ) = p(y ′

i − yi, xi ) ≤
p(y ′

i − yi, yi ).19

(c) We have ui(x′
i − m(x′

i − xi, xi )) − ui(xi ) ≥ ui(y ′
i − m(y ′

i − yi, yi )) − ui(yi ). Indeed,
the fact that ui is concave together with x′

i − xi = y ′
i − yi implies ui(x′

i − m(x′
i −

xi, xi ))−ui(xi ) ≥ ui(y ′
i −m(y ′

i −yi, xi ))−ui(yi ). But ui(y ′
i −m(y ′

i −yi, xi ))−ui(yi ) ≥
ui(y ′

i − m(y ′
i − yi, yi )) − ui(yi ) holds as yi > xi, m is nondecreasing in its second

argument, and ui is increasing.

Inequality (13) together with (a)–(c) imply that

ui(xi ) ·
(

1

1 −p
(
x′
i − xi, xi

) − 1
)
< ui

(
x′
i −m

(
x′
i − xi, xi

)) − ui(xi )

or, equivalently

ui(xi ) <
(
1 −p

(
x′
i − xi

)
, xi

) · ui
(
x′
i −m

(
x′
i − xi, xi

))
which contradicts c ∈ Si(x).

The next lemma characterizes the sets Di for i = 1, 2.

Lemma 2. Let i ∈ {1, 2}. There exists a number x̄i ∈ (0, 1
2 ] with the property that either

Di = {x ∈ X : xi < x̄i}

17Note that since ui(yi ) ≥ 0, the last inequality implies 1 −p(y ′
i − yi, yi ) > 0.

18Such x′ exists since xi < yi holds and y ′
i ≤ 1.

19The relationship p(y ′
i − yi, xi ) ≤ p(y ′

i − yi, yi ) follows from the fact that p is nondecreasing in its argu-
ments and xi < yi .
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or

Di = {x ∈ X : xi ≤ x̄i}.

In particular, the set Di is nonempty.

Proof. Let i ∈ {1, 2}. We will organize the argument in several steps.
Step 1. Note that the definition of the set Di immediately implies that Di contains the

allocation x with xi = 0. Since Di ⊂ X is nonempty, we can define x̄i by x̄i = supx∈Di
xi.

Step 2. Note that if x ∈ Di, then also x′ ∈ Di for any x′ ∈ X with x′
i < xi. To see that this

is the case, consider the definition of the set Di and note that, for q ∈ (0, 1) and � ∈ [0, 1],

ui(xi ) < q · ui(xi +�) + (1 − q) · ui(0)

is equivalent to

ui(xi ) − ui(0)
ui(xi +�) − ui(xi )

<
q

1 − q

and, similarly,

uj(xj ) ≤ q · uj(xj +�) + (1 − q) · uj(0)

is equivalent to

uj(xj ) − uj(0)
uj(xj +�) − uj(xj )

≤ q

1 − q
.

Our claim now follows immediately from the observation that since the utility functions
of both players are increasing and concave, for k ∈ {1, 2}, uk(xk + �) − uk(xk ) is nonin-
creasing in xk and uk(xk ) − uk(0) is increasing in xk.

Steps 1 and 2 together imply that for x̄i = supx∈Di
xi, either Di = {x ∈ X : xi < x̄i} or

Di = {x ∈ X : xi ≤ x̄i} and x̄i ≥ 0. All that remains to be shown is that 0 < x̄i ≤ 1
2 .

Step 3. To show that x̄i ≤ 1
2 , assume that it is not the case and let x ∈ Di be an alloca-

tion with xi >
1
2 . Let j ∈ {1, 2} with j �= i. Note that for � = xi and q = uj(xj )/uj(xj + �),

we have xj + � = 1 ≤ 1 and uj(xj ) = q · uj(xj + �). Since x ∈ Di, this implies that
xi +� = 2 · xi ≤ 1. However, 2 · xi ≤ 1 contradicts xi > 1

2 .
Step 4. To show that x̄i > 0, note that for any allocation x such that 0 < xi <

1
2 and

ui(2 · xi ) − ui(0)
u′
i(1)

<

uj

(
1
2

)
− uj(0)

u′
i(0)

, (14)

it will be the case that x ∈ Di.
To see this, assume x is an allocation satisfying the above conditions and that

xj +�≤ 1 and uj(xj ) ≤ q · uj(xj +�) + (1 − q) · uj(0) (15)

holds for some q ∈ (0, 1) and � ∈ (0, 1). Then xj = 1 −xi together with the left inequality
in (15) and xi <

1
2 implies

� ≤ xi and xi +�≤ 1. (16)



Theoretical Economics 19 (2024) On bargaining norms 1463

Now note that the right inequality in (15) is equivalent to

1 − q ≤ uj(xj +�) − uj(xj )
uj(xj +�) − uj(0)

. (17)

Using the concavity of u1 and u2, xi < 1
2 , (14), and (16) we obtain

uj(xj +�) − uj(xj )
uj(xj +�) − uj(0)

≤ � · u′
j(0)

uj

(
1
2

)
− uj(0)

<
� · u′

i(1)
ui(2 · xi ) − ui(0)

≤ ui(xi +�) − ui(xi )
ui(xi +�) − ui(0)

(18)

Combining (16), (17), and (18), we obtain

xi +�≤ 1 and ui(xi ) < q · ui(xi +�) + (1 − q) · ui(0). (19)

This proves that for any allocation x such that 0 < xi <
1
2 and (14) holds, it will be the

case that x ∈ Di.

The next lemma relates the sets Di to S1
E and S2

E . This lemma is the key observation
in the proof of statement (1).

Lemma 3. Fix an enforcement technology set E . Let i, j ∈ {1, 2} with i �= j. For any x ∈ Di,
it is the case that

S i
E (x) ⊂ Sj

E (x).

Proof. We will prove the statement in the lemma for the case where i = 1 and j = 2. The
argument for the case where j = 1 and i = 2 is analogous. To show that for any x ∈ D1 it
is the case that

S1
E (x) ⊂ S2

E (x),

it is enough to show that (p, m) /∈ S2
E (x) implies (p, m) /∈ S1

E (x). Assume, therefore,
(p, m) /∈ S2

E (x).
Since (p, m) /∈ S2

E (x), there must exist a x′
2 ∈ (x2, 1] such that

u2(x2 ) <
(
1 −p

(
x′

2 − x2, x2
)) · u2

(
x′

2 −m
(
x′

2 − x2, x2
))

. (20)

Note that (20) implies that x′
2 −m(x′

2 −x2, x2 ) > x2. Set � = x′
2 −m(x′

2 −x2, x2 ) −x2 and
q = 1 −p(x′

2 − x2, x2 ). Note that x′
2 −m(x′

2 − x2, x2 ) ≤ 1 implies x2 +� ≤ 1. We can now
rewrite (20) as

u2(x2 ) < q · u2(x2 +�).

Since x ∈ D1, the last inequality together with x2 +�≤ 1 implies that x1 +�≤ 1 and

u1(x1 ) < q · u1(x1 +�). (21)
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Let x′′ be the allocation characterized by x′′
1 − x1 = x′

2 − x2. Note that such an al-
location does indeed exist, as x1 ≤ x2 follows from Lemma 2 given that x ∈ D1. Note
that x′′

1 − x1 = x′
2 − x2 together with x1 ≤ x2 implies that � = x′

2 −m(x′
2 − x2, x2 ) − x2 =

x′′
1 −m(x′′

1 −x1, x2 )−x1 ≤ x′′
1 −m(x′′

1 −x1, x1 )−x1 and q = 1−p(x′
2 −x2, x2 ) = 1−p(x′′

1 −
x1, x2 ) ≤ 1 −p(x′′

1 − x1, x1 ). Thus, inequality (21) implies

u1(x1 ) <
(
1 −p

(
x′′

1 − x1, x1
)) · u1

(
x′′

1 −m
(
x′′

1 − x1, x1
))

.

Since x′′
1 −x1 = x′

2 −x2 > 0 and x′′
1 = x1 +x′

2 −x2 ≤ x′
2 ≤ 1, this proves that (p, m) /∈ S1

E (x),
which is what we wanted to show.

Lemma 4. Let x, y ∈ Di with xi < yi, where i ∈ {1, 2}. Then SE (x) ⊂ SE (y ) holds for any
enforcement technology set E .

Proof. We will prove the lemma for the case where i = 1. The argument for the case
i = 2 is analogous.

According to Lemma 3,

S1
E (y ) ⊂ S2

E (y )

and

S1
E (x) ⊂ S2

E (x).

Note that according to Lemma 1, S1
E (x) ⊂ S1

E (y ) and S2
E (y ) ⊂ S2

E (x). Thus,

SE (x) = S1
E (x) ∩ S2

E (x) = S1
E (x) ⊂ S1

E (y ) = S1
E (y ) ∩ S2

E (y ) = SE (y ).

This proves that SE (x) ⊂ SE (y ).

The next lemma characterizes the elements of the set {x ∈ X : x1 ≥ x̄1 and x2 ≥ x̄2}.
It will be used to prove that statement (2) holds.

Lemma 5. Assume the utility functions are normalized such that u1(0) = u2(0) = 0.20 For
any x∗ ∈ {x ∈ X : x1 ≥ x̄1 and x2 ≥ x̄2}, at least one of the following statements is true:

(a) The variable x∗ satisfies x∗
1 = x∗

2 = 1
2 .

(b) There exist i, j ∈ {1, 2} such that x∗
i < x∗

j and

ui
(
x∗
i

)
ui

(
x∗
i +�

) ≥ uj
(
x∗
j

)
uj

(
x∗
j +�

) (22)

for some � ∈ (0, 1 − x∗
j ].

(c) The variable x∗ is the symmetric Nash bargaining solution.

20If this were not the case, the formula in statement (b) would need to be adjusted.
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Proof. Let x∗ ∈ {x ∈ X : x1 ≥ x̄1 and x2 ≥ x̄2}. Clearly, the statement of the lemma is
true if x∗ = ( 1

2 , 1
2 ). We will prove the lemma for the case where x∗

1 < x∗
2. The argument

for the case where x∗
2 < x∗

1 is analogous.
As x∗ ∈ {x ∈ X : x1 ≥ x̄1 and x2 ≥ x̄2} implies that x∗

1 ≥ x̄1, it must be that either x∗
1 >

x̄1 or x∗
1 = x̄1.

Consider first the case where x∗
1 > x̄1. Note that in this case, by Lemma 2, x∗ /∈ D1.

However, x∗ /∈ D1 implies there must exist q ∈ (0, 1) and � ∈ (0, 1) so that the statement

x∗
2 +�≤ 1 and u2

(
x∗

2

) ≤ q · u2
(
x∗

2 +�
)

(23)

holds, but the statement

x∗
1 +�≤ 1 and u1

(
x∗

1
)
< q · u1

(
x∗

1 +�
)

(24)

does not. Note now that since we assumed x∗
1 < x∗

2, the inequality x∗
2 + � ≤ 1 from (23)

implies x∗
1 +� ≤ 1 from (24). Thus, if (24) does not hold, it must be that

u1
(
x∗

1
) ≥ q · u1

(
x∗

1 +�
)
.

Combining the last inequality with the second inequality from (23), we obtain

u1
(
x∗

1

)
u1

(
x∗

1 +�
) ≥ u2

(
x∗

2

)
u2

(
x∗

2 +�
) .

Thus, in this case, x∗ satisfies condition (b) in the statement of the lemma.
All that remains is to prove the lemma for the case where x∗

1 = x̄1. To this end, let xn

be a sequence of allocations such that 1
2 > xn1 > x̄1 and xn → x̄1. Note that since xn1 > x̄1,

the same reasoning that yielded (22) for x∗ with 1
2 > x∗

1 > x̄1 will yield that for each n,
there exists �n ∈ (0, xn1] such that

u1
(
xn1

)
u1

(
xn1 +�n

) ≥ u2
(
xn2

)
u2

(
xn2 +�n

) . (25)

Given that �n ∈ [0, 1] for all n and [0, 1] is compact, there exists a convergent subse-
quence �nk . Let �= limk→∞ �nk ∈ [0, x̄1].

If �> 0, inequalities (25) together with the fact that u1 and u2 are continuous implies
that, in the limit,

u1
(
x∗

1

)
u1

(
x∗

1 +�
) ≥ u2

(
x∗

2

)
u2

(
x∗

2 +�
) .

Thus, in this case, x∗ satisfies condition (b) in the statement of the lemma.
If � = 0, then (25) implies

u1
(
x∗

1
)

u′
1

(
x∗

1

) ≥ u2
(
x∗

2
)

u′
2

(
x∗

2

) .
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Note that if the last inequality is binding, then x∗ satisfies condition (c) in the state-
ment of the lemma.21 On the other hand, if the last inequality is strict, then for all suffi-
ciently small positive h, it will be the case that

u1
(
x∗

1
)

u1
(
x∗

1 + h
) ≥ u2

(
x∗

2
)

u2
(
x∗

2 + h
) .

Thus, in this case, x∗ satisfies condition (b) in the statement of the lemma.

We are now ready to prove Theorem 1 by showing that (1), (2), and (3) stated at the
beginning of this section hold.

Proof of Statement (1). To show that X easiest ⊂ {x ∈ X : x1 ≥ x̄1 and x2 ≥ x̄2}, assume
there is an allocation x∗ ∈ X easiest such that x∗ /∈ {x ∈ X : x1 ≥ x̄1 and x2 ≥ x̄2}.

If x∗ /∈ {x ∈ X : x1 ≥ x̄1 and x2 ≥ x̄2}, then x∗
i < x̄i holds for some player i. Let y ∈ X be

an allocation such that x∗
i < yi < x̄i. Under Lemma 4, for any enforcement technology

set E , it must be that

SE
(
x∗) ⊂ SE (y ). (26)

However, x∗ ∈ X easiest implies that there is an enforcement technology set E such that x∗
is the easiest to sustain, meaning SE (y ) � SE (x∗ ) holds for any y �= x∗. This contradicts
(26).

Proof of Statement (2). We will now show that for any x∗ ∈ {x ∈ X : x1 ≥ x̄1 and x2 ≥
x̄2}, there exists an enforcement technology set E and a nondecreasing cost function κ

such that x∗ is the unique solution to the cost-minimization problem for that enforce-
ment technology set and cost function.

Recall that, in keeping with Remark 1, we can, without loss of generality, restrict
attention to the case where ui(0) = 0 for i ∈ {1, 2}.

Let x∗ ∈ {x ∈ X : x1 ≥ x̄1 and x2 ≥ x̄2}. Note that x∗ must then satisfy (a), (b), or (c) in
Lemma 5. We will consider the three cases separately.

Step 1. Consider first the case where x∗ = ( 1
2 , 1

2 ), i.e., condition (a) in Lemma 5 is
satisfied. For ε ∈ (0, 1

2 ), define pε : [0, 1]2 → [0, 1] by

pε(h, xi ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 for h ∈ [0, 1], xi ∈
[

1
2

, 1
]

ε+ xi − 1
2

ε
for h ∈ [0, 1], xi ∈ [

1
2

− ε,
1
2

)

0 for h ∈ [0, 1], xi ∈ [0,
1
2

− ε).

21The unique allocation satisfying

u1
(
x∗

1

)
u′

1
(
x∗

1
) = u2

(
1 − x∗

1

)
u′

2
(
1 − x∗

1
)

is the Nash bargaining solution, as the above equation is the first-order condition for the problem
maxx1∈[0,1] u1(x1 ) · u2(1 − x1 ).
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Furthermore, let m0 : [0, 1]2 → [0, ∞) be defined by

m0(h, xi ) = 0

for all h, xi ∈ [0, 1].
Let E be the enforcement technology set given by

E =
{(

pε, m0
)

: ε ∈
(

0,
1
2

)}

and let κ : E → [0, 1] be given by

κ
((
pε, m0

)) = ε.

Note that SE (( 1
2 , 1

2 )) = E . On the other hand, for x′ ∈ X − {( 1
2 , 1

2 )}, it will be the case

that (pε, m0 ) /∈ SE (x′ ) whenever ε <
|x′

1−x′
2|

2 , which implies infc∈E κ(c) ≥ |x′
1−x′

2|
2 . This im-

plies that x∗ = ( 1
2 , 1

2 ) is the unique solution to the cost-minimization problem for the
above E and κ.

Step 2. Next consider the case where condition (b) in Lemma 5 is satisfied for i = 1
and j = 2. (The argument in the case where condition (b) in Lemma 5 is satisfied for
i = 2 and j = 1 is analogous.)

Let m0 : [0, 1]2 → [0, ∞) again be defined by

m0(h, x1 ) = 0

for all h, x1 ∈ [0, 1]. Define pε : [0, 1]2 → [0, 1] by

pε(h, x1 ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − min
(

u1
(
x∗

1

)
u1

(
x∗

1 + h
) ,

u2
(
x∗

2

)
u2

(
x∗

2 + h
))

for h ∈ [0, 1], x1 ∈ [
x∗

1, 1
]

ε− x∗
1 + x1

ε

·
(

1 − min
(

u1
(
x∗

1
)

u1
(
x∗

1 + h
) ,

u2
(
x∗

2
)

u2
(
x∗

2 + h
)))

for h ∈ [0, 1], x1 ∈ [
x∗

1 − ε, x∗
1

]
0 for h ∈ [0, 1], x1 ∈ [

0, x∗
1 − ε

]
.

Now, consider the enforcement technology set E defined by

E = {(
pε, m0

)
: ε ∈ (0, x∗

1]
}

.

Note that SE (x∗ ) = E , as(
1 −pε

(
x′
i − x∗

i , x∗
1

)) · ui
(
x′
i

)
≤ min

(
u1

(
x∗

1

)
u1

(
x∗

1 + x′
i − x∗

i

) ,
u2

(
x∗

2

)
u2

(
x∗

2 + x′
i − x∗

i

))
· ui

(
x′
i

)

≤ ui
(
x∗
i

)
ui

(
x′
i

) · ui
(
x′
i

) = ui
(
x∗
i

)
,

implies that (pε, m0 ) ∈ SE (x∗ ) for all ε ∈ (0, x∗
1].
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Let κ : E → [0, 1] be given by κ((pε, m0 )) = ε. The fact that (pε, m0 ) ∈ SE (x∗ ) for all
ε ∈ (0, x∗

1] implies that infc∈SE (x∗ ) κ(c) = 0.
Note that for any x with x1 < x∗

1, it is the case that (pε, m0 ) /∈ SE (x) for ε < x∗
1 − x1.

This implies that for any x with x1 < x∗
1, infc∈SE (x) κ(c) ≥ x∗

1 − x1.
We will now show that for any x with x1 > x∗

1 (and, therefore, x2 < x∗
2), it is the case

that (pε, m0 ) /∈ SE (x).
To see that this indeed is true, recall that in this step we assume that x∗ satisfies

statement (b) in Lemma 5 for i = 1 and j = 2. Let � ∈ (0, 1 − x∗
2] be such that (22) from

statement (b) in Lemma 5 is satisfied. Note that for x′ = (x1 − �, x2 + �), we therefore
have

(
1 −pε

(
x′

2 − x2, x2
)) · u2

(
x′

2
)

≥ min
(

u1
(
x∗

1
)

u1
(
x∗

1 +�
) ,

u2
(
x∗

2
)

u2
(
x∗

2 +�
))

· u2
(
x′

2
)

= u2
(
x∗

2

)
u2

(
x∗

2 +�
) · u2

(
x′

2
) = u2

(
x∗

2

)
u2

(
x∗

2 +�
) · u2(x2 +�) > u2(x2 ),

where the first inequality follows from the definition of pε, the first equality follows from
inequality (22), and the last inequality holds as u2(z2 )

u2(z2+�) is increasing in z2.22 Given that
SE (x∗ ) = E and SE (x) � E for x �= x∗, we have shown that x∗ is the easiest to sustain for
the enforcement technology set E .

Step 3. Next consider the case where x∗ satisfies condition (c) in Lemma 5, i.e., x∗
is the Nash bargaining solution. For this case, let E be the enforcement technology set
given in Section 3.2 and let κ : E → [0, 1] be given by κ((p, m0 )) = D1p(0, 0). Given the
analysis in Section 3.2, it is trivial to verify that x∗ is the unique solution to the cost-
minimization problem for this E and κ.

Proof of Statement (3). To show that X cost-min ⊂ X easiest, assume x ∈ X is the unique
solution to the cost-minimization problem (3) for some E and κ. Let E ′ = E ∩ SE (x). We
claim that x is the easiest to sustain for the enforcement technology set E ′, i.e., for any
y ∈ X such that y �= x, it is the case that SE ′(y ) � SE ′(x). To see why this is so, note
that SE ′(y ) ⊂ SE ′(x) follows from the definition of E ′ and that it cannot be that SE ′(y ) =
SE ′(x), as this would imply SE (x) ⊂ SE (y ), which would contradict that x is the unique
solution to (3).

A.2 Proof of Theorem 2

Let X̂ cost-min be the set of allocations x ∈ X satisfying statement (i) in Theorem 1
where the requirement that the enforcement technology is regular has been dropped.

22To prove that u2(z2 )
u2(z2+�) is increasing in z2, it is enough to show that u2(z2+�)

u2(z2 ) is decreasing in z2, but
u2(z2+�)
u2(z2 ) = 1 + u2(z2+�)−u2(z2 )

u2(z2 ) , u2(z2 + �) − u2(z2 ) is decreasing in z2 (as u2 is a concave function), and
u2(z2 ) is increasing in z2 (as u2 is an increasing function).
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Similarly, let X̂ easiest be the set of allocations x ∈ X satisfying statement (2) in The-
orem 1 where the requirement that the enforcement technology is regular has been
dropped.

To prove Theorem 2 it is enough to show that

(1′) X̂ easiest ⊂ {x ∈ X : x1 ≥ x̄1 and x2 ≥ x̄2}

(2′) {x ∈ X : x1 ≥ x̄1 and x2 ≥ x̄2} ⊂ X̂ cost-min

(3′) X̂ cost-min ⊂ X̂ easiest.

To prove (1′), note that the proof of statement (1) in the proof of Theorem 1 did not
use the fact that the considered enforcement technology sets were regular and, thus,
the same argument yields that statement (1′) holds. To prove (2′), note that X cost-min ⊂
X̂ cost-min. Thus, (2′) follows from (2) proven in the proof of Theorem 1. To prove (3′),
note again that the argument used in the proof of Theorem 1 to prove (3) did not use the
fact that the considered enforcement sets were regular and, thus, can be immediately
generalized to show that (3′) holds.

A.3 Proof of Proposition 3

Let us start by noticing that the values ȳ1 and ȳ2 are indeed well defined.

Lemma 6. Let i, j ∈ {1, 2} such that i �= j. Then the equation

ui(2ȳi ) − ui(ȳi )
ȳi

ui(ȳi ) − ui(0)
= u′

j(1 − ȳi )

uj(1 − ȳi ) − uj(0)

has a unique solution ȳi. Moreover, if xNBS is the Nash bargaining solution, ȳi ≤ xNBS
i

holds.

Proof. Consider the equation in the statement of the lemma. Note that for ȳi → 0, the
right-hand side of the equation goes to infinity23 and the left-hand side of the equation
converges to u′

j(1)/(uj(1)−uj(0)). Similarly, for ȳi → 1, the right-hand side converges to
infinity and the left-hand side converges to some real number. Since the left-hand side
and the right-hand side are continuous in ȳi for ȳi ∈ (0, 1), this implies that the equation
in the lemma has a solution.

The uniqueness of the solution follows from the fact that the right-hand side of the
equation in the lemma increases in ȳi and the left-hand side decreases in ȳi. Indeed,
the fact that the right-hand side increases in ȳi follows immediately from the fact that
uj is increasing and concave. The fact that the left-hand side decreases in ȳi follows

from the fact that ui(ȳi ) − ui(0) increases in ȳi and the observation that ui(2ȳi )−ui(ȳi )
ȳi

=∫ 2·ȳi
y ′
i=ȳi

1
ȳi

· u′
i(y

′
i ) · dy ′

i is decreasing in ȳi.

23This follows from the observation that ui(2ȳi )−ui(ȳi )
ȳi

converges to u′
i(0) as ȳi → 0.
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The fact that ȳi ≤ xNBS
i follows from the above monotonicity results together with the

observation that ui(2ȳi )−ui(ȳi )
ȳi

< u′
i(ȳi ) and the fact that xNBS

i solves

u′
i

(
xNBS
i

)
ui

(
xNBS
i

) − ui(0)
= u′

j

(
1 − xNBS

i

)
uj

(
1 − xNBS

i

) − uj(0)
.

Proof of Proposition 3. The fact that X ∗ = {x ∈ X : x1 ≥ x̄1 and x2 ≥ x̄2} is a subset of
Y∗ now follows from Lemma 5 and Lemma 6. To see that this is indeed the case, assume,
without loss of generality, that u1 and u2 have been normalized so that u1(0) = u2(0) = 0
and u1(1) = u2 = 1.24 Let x∗ ∈ X ∗. Since x∗ ∈ X ∗, Lemma 5 tells us that x∗ must satisfy at
least one of the conditions (a), (b), or (c) in Lemma 5. Note that if x∗ satisfies conditions
(a) or (c), Lemma 6 immediately implies x∗ ∈ Y∗. Consider, therefore, the case where
x∗ satisfies condition (b), meaning there exists i, j ∈ {1, 2} with the property that x∗

i < x∗
j

and (22) holds for some � ∈ (0, 1 − x∗
j ] = (0, x∗

i ]. Rearranging terms and subtracting 1
from both sides of the inequality, note that (22) is equivalent to

ui
(
x∗
i +�

) − ui
(
x∗
i

)
ui

(
x∗
i

) ≤ uj
(
x∗
j +�

) − uj
(
x∗
j

)
uj

(
x∗
j

) .

The fact that ui is concave and �≤ x∗
i implies

ui
(
2 · x∗

i

) − ui
(
x∗
i

)
x∗
i

≤ ui
(
x∗
i +�

) − ui
(
x∗
i

)
�

.

The fact that uj is concave implies

uj
(
x∗
j +�

) − uj
(
x∗
j

)
�

≤ u′
j(xj ).

Combining the last three inequalities and using x∗
j = 1 − x∗

i yields

ui
(
2 · x∗

i

) − ui
(
x∗
i

)
x∗
i

ui
(
x∗
i

) ≤ u′
j

(
1 − x∗

i

)
uj

(
1 − x∗

i

) .

In the proof of Lemma 6 we have already argued that the left-hand side of the above
inequality decreases in x∗

i and the right-hand side increases in x∗
i . This implies x∗

i ≥ ȳi.
However, x∗

i < x∗
j implies x∗

j ≥ 1
2 . Thus, x∗

i ≥ min( 1
2 , ȳi ) and x∗

j ≥ min( 1
2 , ȳj ), which means

that x∗ ∈ Y∗.

A.4 Proof of Theorem 3

Define X undom as in Section 4.5. As was discussed in Section 4.5, in the paragraphs fol-
lowing Theorem 3, to prove the theorem it is enough to show that X undom − X easiest

24This is without loss of generality, as neither the set X ∗ nor the definition of ȳ1 and ȳ2 is affected by
positive affine transformations of the utility functions.
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is empty. We will show X undom − X easiest = ∅ by showing that x /∈ X easiest implies
x /∈ X undom.

Assume x is an allocation such that x /∈ X easiest. By Theorem 1, X easiest = {x ∈ X :
x1 ≥ x̄1 and x2 ≥ x̄2}, where x̄1 and x̄2 are defined in as in Theorem 1. Thus, x /∈ X easiest

implies x /∈ {x ∈ X : x1 ≥ x̄1 and x2 ≥ x̄2}.
Let i ∈ {1, 2} be such that xi < x̄i. Let y ∈ X be such that xi < yi < x̄i.
In accord with Lemma 4, SE (x) ⊂ SE (y ) holds for any regular E .
Let (p, m) be given by m ≡ 0, p(h, x′

i ) = 0 for h ∈ [0, 1] and x′
i ∈ [0, xi], p(h, x′

i ) =
x′
i−xi

yi−xi
for h ∈ [0, 1] and x′

i ∈ [xi, yi], and p(h, x′
i ) = 1 for h ∈ [0, 1] and x′

i ∈ [yi, 1]. Let

Ê = {(p, m)} and note that SÊ (y ) = Ê and SÊ (x) = ∅. Since SE (x) ⊂ SE (y ) holds for

any regular E and SE (x) � SE (y ) holds for E = Ê , x is dominated by y and, therefore,
x /∈ X undom.
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