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Unrestricted information acquisition

Tommaso Denti
Department of Economics, Cornell University

In many strategic environments, information acquisition is a central component
of the game that is played. Being uncertain about a payoff-relevant state, a player
in a game has a twofold incentive to acquire information: learning the state and
learning what others know. We develop a model of information acquisition in
games that accounts for players’ incentive to learn what others know. In applica-
tions to rational inattention and global games, we prove the power of this incen-
tive. When information acquisition is “independent,” that is, players can acquire
information only about the state, severe coordination problems emerge among
rationally inattentive players. When information acquisition is “unrestricted,”
that is, players can acquire information about the state and each other’s informa-
tion in a flexible way, we show that rational inattention admits a sharp logit char-
acterization and we provide a new rationale for selecting risk dominant equilibria
in coordination games.
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1. Introduction

Strategic interaction often is not based on fixed prior information: information acqui-
sition is a central component of the game that is played. Facing uncertainty about a
payoff-relevant state, a player has a twofold incentive to acquire information: learning
the state and learning what others know. Learning the state is of course necessary to
optimally choose what action to take, but it is not sufficient. A player realizes that the
actions opponents take depend on what information they have; this generates an incen-
tive to learn what others know.

In this paper, we propose a model of information acquisition in games that accounts
for players’ incentive to learn what others know. We fix a game where the players are un-
certain about some feature of the environment that affects payoffs; such uncertainty is
measured by a common prior over possible states. The traditional approach is to also fix
an information structure and analyze the Bayes Nash equilibria. An information struc-
ture details how the joint probability distribution of the players’ signals depends on the
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state; in a Bayes Nash equilibrium, each player observes her signal, uses Bayes’ rule to
compute beliefs, and takes an action that is optimal in expectation.

Here, we make the information structure endogenous. For each player, we fix a fea-
sible set of costly experiments. An experiment details how the probability distribution
of the player’s own signal depends on the state and the opponents’ signals; different
experiments represent different levels of information about the state and what others
know; the associated costs incorporate limitations in acquiring information. Every in-
formation structure induces an experiment for each player. We say that a probability
distribution over states and actions is robust to information acquisition if it corresponds
to a Bayes Nash equilibrium for some information structure such that for each player,
the induced experiment maximizes the value minus the cost of information.

Robustness to information acquisition is the new concept we introduce in this pa-
per: it reflects the idea that no player has an incentive to change what she knows about
the state and what others know. It can been seen as a refinement of Bayes correlated
equilibrium (Bergemann and Morris (2016)).1 As Bergemann and Morris show, a prob-
ability distribution over states and actions is a Bayes correlated equilibrium if it cor-
responds to a Bayes Nash equilibrium for some information structure. Robustness to
information acquisition adds the condition that the experiments induced by the infor-
mation structure are individually optimal in balancing the value and the cost of infor-
mation.

Whether or not there exists an equilibrium that is robust to information acquisition
depends on what experiments are feasible and what properties the cost of information
satisfies. When there is no prior uncertainty about the state, in which case a Bayes cor-
related equilibrium coincides with an Aumann correlated equilibrium, a robust equilib-
rium exists under broad conditions on the cost of information—any Nash equilibrium
is robust to information acquisition, provided that the players can privately randomize
over actions. In general, it is possible that no equilibrium is robust to information ac-
quisition; intuitively, it could be that the players do not agree on any information struc-
ture. The concept is, nevertheless, useful in a variety of circumstances, as we show in
applications.

We present applications to rational inattention (Sims (2003)) and global games
(Carlsson and van Damme (1993)). In the applications, we focus on two cases of par-
ticular interest. We say that information acquisition is unrestricted if all experiments
are feasible: the players can acquire information about the state and each other’s in-
formation in a flexible way. We say that information acquisition is independent if all
feasible experiments are independent of others’ signals: the players can acquire infor-
mation only about the state. Most previous works have focused on independent infor-
mation acquisition (e.g., Persico (2000), Bergemann and Valimaki (2002), Yang (2015));
our model nests these contributions. By comparing unrestricted and independent in-
formation acquisition, we are able to assess the effect of players’ incentive to learn what
others know.

1Bayes correlated equilibrium has gained attention, especially for applications to information design
(Bergemann and Morris (2019)).
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In the first application, we study games between rationally inattentive players.
Rational inattention is an influential model of costly information acquisition in eco-
nomics.2 According to this model, agents pay attention as if they optimally acquire
costly information; in a widespread specification, the cost of information is proportional
to the expected reduction in the entropy of beliefs (Matejka and McKay (2015)). One
challenge has been understanding the implications of rational inattention in settings—
such as games—where noise is endogenously correlated across agents.3

Focusing on potential games (Monderer and Shapley (1996)), we provide a simple
and transparent characterization of rational inattention in games. We show that a prob-
ability distribution over states and actions is robust to unrestricted information acqui-
sition if and only if the players follow a joint logit rule. The result can be seen as a many
player extension of Matejka and McKay’s individual logit rule for rationally inattentive
decision makers, one of the cornerstones of the literature.

Independent information acquisition generates starkly different predictions. In a
thought-provoking work, Yang (2015) studies a coordination game between rationally
inattentive agents who can acquire information only about the state; he finds a large
multiplicity of equilibria. Yang’s indeterminacy result casts doubt on whether a mean-
ingful analysis of rational inattention in games is possible. We revisit his findings in the
broader context of potential games and highlight the significance of players’ incentive
to learn what others know. When information acquisition is unrestricted, the behav-
ior of rationally inattentive players admits a sharp logit characterization; in particular,
as the cost of information vanishes, a unique equilibrium arises in which the players
coordinate on maximizing the potential function of the game.

We expand the study of information acquisition and equilibrium selection in a sec-
ond application where we focus on global games. Global games is a prominent approach
to equilibrium selection in coordination games.4 According to this approach, an equi-
librium is selected if it survives a small perturbation of common knowledge. One lim-
itation of global games is that the selection rule crucially depends on the nature of the
perturbation (Kajii and Morris (1997), Weinstein and Yildiz (2007)). Studying the case
of the negligible costs of information, we provide a microfoundation to perturbations of
common knowledge and revisit selection rules from global games. Our analysis provides
a new rationale for selecting risk dominant equilibria (Harsanyi and Selten (1988)).

A few recent papers have also relaxed the independence assumption on informa-
tion acquisition in games (e.g., Hellwig and Veldkamp (2009), Myatt and Wallace (2012)).
These papers mostly focus on specific environments, for example, beauty contests
where uncertainty is normally distributed. Our model, which applies to general games

2See Mackowiak, Matejka, and Wiederholt (2023) for a survey of the literature. See also Alaoui and Penta
(2022) for a broader approach to rational inattention.

3As Sims (2010, p. 171) puts it, “[a]nother issue that arises in bringing rational inattention to equilib-
rium models is that the rational inattention models of individual behavior have nothing to say about prop-
erties of information processing error other than its conditional distribution given decision choices. [...]
Information-processing noise that is independent across agents will average out in macroeconomic behav-
ior, whereas highly correlated information-processing noise will become an additional source of macroe-
conomic randomness.”.

4See Morris and Shin (2003) for a survey of the literature.
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and arbitrary spaces of uncertainty, follows in their footsteps in accounting for players’
incentive to learn what others know.

2. Robustness to information acquisition

2.1 Definition

A finite set of individuals N = {1, � � � , n}, with typical element i, play a simultaneous
game. The players are uncertain about a payoff-relevant state θ, which is drawn from
a finite set � according to a full-support probability distribution π ∈ �(�). A player i

has a finite set of actions Ai and a utility function ui : � × A → R, where we adopt the
usual notation A−i = ∏

j �=i Aj and A =Ai ×A−i.
Let �π(� × A) be the set of joint probability distributions over states and actions

whose marginal distribution over states is π:

�π(�×A) =
{
ρ ∈ �(�×A) :

∑
a∈A

ρ(θ, a) = π(θ) for all θ ∈�

}
.

We take the view that correlation in actions is the result of players acting on information
about the state and what others know. We want to formalize the idea that ρ ∈ �π(�×A)
is “robust to information acquisition” if no player has an incentive to change what she
knows about the state and what others know.

We start with the notion of correlated equilibrium for games of incomplete informa-
tion as in Bergemann and Morris (2016).5

Definition 1 (Bergemann and Morris (2016)). A probability distribution ρ ∈ �π(�×A)
is a Bayes correlated equilibrium (BCE) if for all i ∈N and ai, a′

i ∈Ai,∑
θ∈�

∑
a−i∈A−i

(
ui(θ, ai, a−i ) − ui

(
θ, a′

i, a−i

))
ρ(θ, ai, a−i ) ≥ 0.

As Bergemann and Morris show, BCE characterizes all Bayes Nash equilibria that can
arise across information structures. For each player i, let Xi be a standard Borel space
of signals; we adopt the notation X−i = ∏

j �=i Xj and X = Xi × X−i.6 An information
structure μ ∈ �π(�×X ) is a joint probability distribution over states and signals whose
marginal distribution over states is π. For each player i, a mixed-action rule is a measur-
able function σi : Xi → �(Ai ); we denote by σi(ai|xi ) ∈ [0, 1] the probability that player i
takes an action ai after having observed a signal xi.7 We denote by 	i the set of i’s mixed-
action rules; we adopt the notation 	−i = ∏

j �=i 	j and 	 = 	i × 	−i. With a slight abuse
of notation, we define

ui
(
θ, σ(x)

) =
∑
a∈A

ui(θ, a)
∏
j∈N

σj(aj|xj ).

5See also the Bayesian solution of Forges (1993).
6Throughout, Cartesian products of measurable spaces are endowed with the product σ-algebras.
7A function σi : Xi → �(Ai ) is measurable if for every ai ∈ Ai, σi(ai|xi ) is measurable in xi .
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Proposition 1 (Bergemann and Morris (2016)). Assume that for every player i, Xi con-
tains more elements than Ai. A probability distribution ρ ∈ �π(� × A) is a BCE if and
only if there are an information structure μ ∈ �π(� × X ) and a profile of mixed-action
rules σ ∈ 	 that satisfy the following conditions:

(i) For all θ ∈� and a ∈A,

ρ(a|θ) =
∫
X

∏
i∈N

σi(ai|xi ) dμ(x|θ).

(ii) For all i ∈N , σi is an optimal solution of

max
σ ′
i∈	i

∫
�×X

ui
(
θ, σ ′

i(xi ), σ−i(x−i )
)

dμ(θ, x).

Condition (i) states that ρ is the probability distribution over states and actions in-
duced by μ and σ . Condition (ii) states that σ is a Bayes Nash equilibrium when μ is the
players’ information structure.

The concept of BCE takes the conservative view that all information structures are
possible. However, intuition suggests that some information structures are more likely
to occur than others. For an extreme example, suppose that the utility of a player is
constant in the state and the opponents’ actions. Intuition suggests that such a player
has little incentive to acquire information: if acquiring information is costly, then an
information structure where the player knows a lot may be viewed as not robust.

Next we formalize a notion of robustness to information acquisition. For each player
i, an experiment is a measurable function Pi : � × X−i → �(Xi ) that details how the
distribution of i’s signal depends on the state and the opponents’ signals; we denote by
Pi(Bi|θ, x−i ) ∈ [0, 1] the probability that xi belongs to a Borel set Bi ⊆ Xi conditional on
θ being the state and x−i being the signals observed by the opponents.8 We fix a set
of feasible experiments Pi; we adopt the notation P−i = ∏

j �=iPj and P = Pi × P−i. A
function Ci : Pi ×�π(�×X−i ) → R+ represents i’s cost of acquiring information, which
we allow to depend both on i’s experiment and on i’s ex ante beliefs about the state and
the opponents’ signals.9 For every information structure μ ∈ �π(� × X ), we denote by
μ−i ∈ �π(�×X−i ) the marginal distribution over states and the opponents’ signals.

Definition 2. A probability distribution ρ ∈ �π(� × A) is robust to information ac-
quisition if there is an information structure μ ∈ �π(� × X ), a profile of experiments
P ∈ P , and a profile of mixed-action rules σ ∈ 	 such that the following conditions are
satisfied:

8A function Pi : �×X−i → �(Xi ) is measurable if for every Borel set Bi ⊆ Xi, Pi(Bi|θ, x−i ) is measurable
in θ and x−i.

9The dependence of Ci on i’s ex ante beliefs is important for applications to rational inattention, but can
otherwise be dispensed with. See Denti, Marinacci, and Rustichini (2002) for an analysis of the relation
between the cost of information and prior beliefs.
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(i) For all θ ∈� and a ∈A,

ρ(a|θ) =
∫
X

∏
i∈N

σi(ai|xi ) dμ(x|θ).

(ii) For all θ ∈�, Bi ⊆ Xi, and B−i ⊆ X−i,

μ(Bi ×B−i|θ) =
∫
B−i

Pi(Bi|θ, x−i ) dμ−i(x−i|θ).

(iii) For all i ∈N , (Pi, σi ) is an optimal solution of

max
P ′
i∈Pi ,σ ′

i∈	i

∫
�×X

ui
(
θ, σ ′

i(xi ), σ−i(x−i )
)

dP ′
i(xi|θ, x−i ) dμ−i(θ, x−i ) −Ci

(
P ′
i , μ−i

)
.

Condition (i) states that ρ is the probability distribution over states and actions in-
duced by μ and σ . Condition (ii) states that Pi is, with respect to μ, a (regular) condi-
tional distribution of xi given θ and x−i. Condition (iii) states that (Pi, σi ) is an optimal
solution of an information acquisition problem where player i maximizes the value of
information (i.e., expected utility) minus the cost of information.

Definition 2 is the central concept we introduce in this paper: it reflects the idea that
ρ is robust to information acquisition when no player has an incentive to change what
she knows about the state and what others know. It is easy to see that if ρ is robust to
information acquisition, then ρ is a BCE. In the rest of the paper, we will present many
instances in which the opposite is not true and the notion of robustness we propose has
bite.

In most studies of information acquisition in games, players can acquire informa-
tion only about the state (e.g., Persico (2000), Bergemann and Valimaki (2002), Yang
(2015)). Definition 2 nests these contributions: it is enough to assume that for every
player i and every feasible experiment Pi ∈ Pi, the distribution of xi depends only on θ

and not on x−i. In that case, we say that information acquisition is independent.
In applications, we will compare independent information acquisition to the case in

which all experiments are feasible; that is, for every player i, Pi is the set of all measur-
able functions from �×X−i to �(Xi ). In that case, we say that information acquisition
is unrestricted. Comparing independent and unrestricted information acquisition will
allow us to assess the power of the incentive to learn what others know.

We conclude the section by discussing a few technical and conceptual issues con-
cerning Definition 2.

Remark 1. Definition 2 treats the information structure μ and the profile of experi-
ments P as separate objects, instead of deriving P from μ via condition (ii). The reason is
that (ii) determines each Pi only μ−i-almost surely, while Ci could assign different costs
to different versions of the conditional distribution of xi given θ and x−i (think of the
case in which i’s cost of information is independent of her ex ante beliefs about the state
of the the signals of others).
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Remark 2. As in Bergemann and Morris (2016), Definition 2 maintain the hypothesis
that the players share a common prior over the entire space of uncertainty (states and
signals). Non-common priors, however, naturally arise in the context of information
acquisition. For example, there is no shortage of situations in which individuals agree to
disagree on the quality of information sources (e.g., newspapers of different slants).

Remark 3. Definition 2 assumes the existence of a real ex ante stage where players eval-
uate experiments before nature draws the signals. This is different from Harsanyi’s in-
terim approach to incomplete information in which the ex ante stage is merely a math-
ematical artifact to represent the players’ hierarchies of beliefs.

Remark 4. Bergemann and Morris (2016) also consider a more general version of Def-
inition 1 where a default information structure μ∗ is given, and BCE characterizes all
equilibria that can arise across information structures μ that provide more information
than μ∗.10 Analogously, we could extend Definition 2 by requiring that for each player i,
each feasible experiment provides more information to player i than μ∗

i .11

2.2 A revelation principle

We have defined robustness to information acquisition for arbitrary signal spaces. Our
initial finding is a version of the revelation principle: we may focus on experiments
whose outcomes are mixed-action recommendations.12 The result holds under broad
assumptions on the cost of information.

To formalize assumptions and results, we first need to define two rankings of exper-
iments. The first ranking is standard.

Definition 3 (Blackwell (1951)). An experiment Pi is a garbling of an experiment P ′
i ,

denoted by Pi 	 P ′
i , if there is a measurable function Ki : Xi → �(Xi ) such that for all

θ ∈�, Bi ⊆Xi, and x−i ∈X−i,

Pi(Bi|θ, x−i ) =
∫
Xi

Ki

(
Bi|x′

i

)
dP ′

i

(
x′
i|θ, x−i

)
.

The second ranking of experiments is—to the best of our knowledge—new.

Definition 4. An experiment Pi is a shrinking of an experiment P ′
i , denoted by Pi �P ′

i ,
if there is a measurable function K−i : �×X−i → �(X−i ) such that for all θ ∈�, Bi ⊆Xi,
and x−i ∈X−i,

Pi(Bi|θ, x−i ) =
∫
X−i

P ′
i

(
Bi|θ, x′

−i

)
dK−i

(
x′

−i|θ, x−i

)
.

10We refer the interested reader to their paper for the appropriate definition of “more information.”.
11Formally, every Pi ∈ Pi is a garbling of a conditional μ∗

i distribution of xi given (θ, x−i ).
12The term “revelation principle” usually applies to situations where players send signals. Here, as in

Bergemann and Morris (2016), we use the same term in situations where players receive signals.
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Garbling and shrinking capture two complementary yet different notions of infor-
mativeness. In both cases, one obtains Pi by adding noise to P ′

i , thus making Pi less
informative than P ′

i . The difference is in the timing with which the noise is added. In
the case of a garbling, one obtains Pi by first performing P ′

i and then adding noise to its
outcome x′

i—noise represented by Ki. In the case of a shrinking, one obtains Pi by first
adding noise to x−i—noise represented by K−i—and then performing P ′

i on the realized
x′

−i. The following example describes a garbling that is not a shrinking.

Example 1. Let Pi and P ′
i be a pair of completely uninformative experiments: under Pi

and under P ′
i , the distribution of xi is independent of θ and x−i. As is well known, Pi is a

garbling of P ′
i (and vice versa). However, as readily checked, Pi is a shrinking of P ′

i if and
only if Pi = P ′

i , that is, if and only if the distribution of xi is the same under Pi and under
P ′
i . ♦

Next is an example of a shrinking that is not a garbling.

Example 2. Let Pi and P ′
i be a pair of experiments that coincide up to a relabelling of

X−i: for all θ ∈�, Bi ⊆Xi, and x−i ∈X−i,

Pi(Bi|θ, x−i ) = P ′
i

(
Bi|θ, f (x−i )

)
,

where f : X−i → X−i is a bijective function such that both f and f−1 are measurable. It
is easy to see that Pi is a shrinking of P ′

i (and vice versa). On the other hand, in general,
Pi need not be a garbling of P ′

i . ♦

Our revelation principle holds when the cost of information is monotone with re-
spect to garbling and shrinking. Next is monotonicity with respect to garbling.

Assumption 1. If Pi 	 P ′
i and P ′

i ∈ Pi, then Pi ∈ Pi and Ci(Pi, μ−i ) ≤ Ci(P ′
i , μ−i ).

In other terms, if Pi is a garbling of P ′
i and P ′

i is feasible, then Pi is feasible and less
expensive than P ′

i .
To define monotonicity with respect to shrinking, we need to account for the possi-

ble dependence of the cost of information on prior beliefs. Thus, we extend the notion
of shrinking to pairs of experiments and priors: we define (Pi, μ−i )�∗ (P ′

i , μ
′
−i ) if there is

a measurable function K−i : �×X−i → �(X−i ) such that for all θ ∈�, Bi ⊆Xi, x−i ∈X−i,
and B−i ⊆X−i,

Pi(Bi|θ, x−i ) =
∫
X−i

P ′
i

(
Bi|θ, x′

−i

)
dK−i

(
x′

−i|θ, x−i

)
,

μ′
−i(B−i|θ) =

∫
X−i

K−i

(
B−i|θ, x′

−i

)
dμ−i

(
x′

−i|θ
)
.

Assumption 2. If (Pi, μ−i ) �∗ (P ′
i , μ

′
−i ) and P ′

i ∈ Pi, then Pi ∈ Pi and Ci(Pi, μ−i ) ≤
Ci(P ′

i , μ
′
−i ).
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If the cost of information is independent of prior beliefs, then the assumption has
the following equivalent, simpler formulation: if Pi � P ′

i and P ′
i ∈ Pi, then Pi ∈ Pi and

Ci(Pi ) ≤ Ci(P ′
i ).13 In other terms, if Pi is a shrinking of P ′

i and P ′
i is feasible, then Pi is

feasible and less expensive than P ′
i .

Finally, we assume that there are more signals than mixed actions.

Assumption 3. For every player i, �(Ai ) is a Borel subset of Xi.

We are now ready to state the revelation principle. In short, we denote by Ai the set
of i’s mixed actions—we adopt the notation A−i = ∏

j �=iAj and A = Ai ×A−i. Let PAi
be

the set of i’s feasible experiments Pi ∈ Pi whose outcomes are mixed-action recommen-
dations:

PAi
= {

Pi ∈ Pi : for all θ and x−i, Pi(Ai|θ, x−i ) = 1
}

.

We adopt the notation PA−i
= ∏

j �=iPAj
and PA = PAi

×PA−i
.

Proposition 2. Under Assumptions 1–3, a probability distribution ρ ∈ �π(� × A) is
robust to information acquisition if and only if there are μ ∈ �π(�×A) and P ∈ PA such
that the following conditions are satisfied:

(i) For all θ ∈� and a ∈A,

ρ(a|θ) =
∫
X

∏
i∈N

αi(ai ) dμ(α|θ).

(ii) For all θ ∈�, Bi ⊆ Ai, and B−i ⊆ A−i,

μ(Bi ×B−i|θ) =
∫
B−i

Pi(Bi|θ, α−i ) dμ−i(α−i|θ).

(iii) For all i ∈ N , Pi is an optimal solution of

max
P ′
i∈PAi

∫
�×A

ui(θ, α) dP ′
i(αi|θ, α−i ) dμ−i(θ, α−i ) −Ci

(
P ′
i , μ−i

)
.

In sum, without loss of generality, we can focus on experiments whose outcomes are
mixed-action recommendations. The proposition is reminiscent of existing versions of
the revelation principle for single-agent information acquisition problems (e.g., Corol-
lary 1 in Matejka and McKay (2015)) and for games with independent information ac-
quisition (e.g., Proposition 1 in Yang (2015)). Endogenously correlated information in-
troduces two new features:

• When there is a single agent or information acquisition is independent, we may
focus on experiments whose outcomes are pure-action recommendations. In the

13If (Pi , μ−i ) �∗ (P ′
i , μ

′
−i ), then Pi � P ′

i . Conversely, if Pi � P ′
i , then for every μ−i ∈ �π (� × X−i ), there

exists μ′
−i ∈ �π (�×X−i ) such that (Pi, μ−i ) �∗ (P ′

i , μ
′
−i ).
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case of correlated information acquisition, we look at mixed-action recommenda-
tions. This accounts for the fact that players can privately randomize over actions:
players can acquire information about others’ signals, but not about others’ realized
actions.

• When there is a single agent or information acquisition is independent, a revela-
tion principle holds under Assumption 1 and a weaker version of Assumption 3,
namely, that Ai is a subset of Xi. In the case of correlated information acquisition,
Assumption 2 is also necessary. When information acquisition is independent, As-
sumption 2 is always satisfied: an experiment Pi : � → �(Xi ) is a shrinking of an
experiment P ′

i : �→ �(Xi ) if and only if Pi = P ′
i .

To get some intuition for the role of Assumptions 1 and 2 in the revelation principle, let
ρ ∈ �π(� × A) be robust to information acquisition; take also μ ∈ �π(� × X ), P ∈ P ,
and σ ∈ 	 that satisfy (i)–(iii) of Definition 2. The idea behind the revelation principle is
to combine μ and σ into a single information structure ν ∈ �π(�×A) such that signals
are mixed-action recommendations. The derived information structure ν generates, for
every player i, an experiment Qi ∈ PAi

that is (a version of) the conditional distribution
of αi given θ and α−i. One can show that under Assumptions 1 and 2, Qi is optimal for
player i. The key observation is that Qi can be obtained by garbling and shrinking Pi.
Thus, under Assumptions 1 and 2, Qi is less expensive than Pi, and the optimality of
Qi (in the sense of Proposition 2(iii)) follows from the optimality of Pi (in the sense of
Definition 2(iii)).

Many cost functions used in practice satisfy Assumptions 1 and 2. Next we provide
a notable example from rational inattention that we will use later on in applications.

Example 3. For simplicity, suppose that X is finite. Let I(Pi, μ−i ) be the mutual infor-
mation of xi and (θ, x−i ),

I(Pi, μ−i ) =
∑
θ,x

Pi(xi|θ, x−i )μ−i(θ, x−i ) ln
(
Pi(xi|θ, x−i )μ−i(θ, x−i )
Pμ−i(xi )μ−i(θ, x−i )

)
,

where Pμ−i ∈ �(Xi ) is the marginal distribution of i’s signal. Mutual information is a
measure of dependence between random variables, widely used in information theory
(Cover and Thomas (2006, Chapter 2)). In many applications of rational inattention (e.g.,
Matejka and McKay (2015)), the cost of information is based on mutual information.

It is known that mutual information is monotone with respect to garbling.14 Mu-
tual information is also monotone with respect to shrinking. To see this, take (Pi, μ−i )
and (P ′

i , μ
′
−i ) such that (Pi, μ−i ) � (P ′

i , μ
′
−i ). Simple algebra shows that Pμ−i = P ′

μ′
−i

.

Let Qi : Xi → �(� × X−i ) and Q′
i : Xi → �(� × X−i ) be the conditional distributions

of (θ, x−i ) given xi induced by (Pi, μ−i ) and (P ′
i , μ

′
−i ). We can view Qi and Q′

i as ex-
periments with input xi and output (θ, x−i ). Simple algebra shows that Qi is a gar-
bling of Q′

i. Thus I(Pμ−i , Qi ) ≤ I(Pμ−i , Q
′
i ) = I(P ′

μ′
−i

, Q′
i ). Since mutual information

14It follows from the so-called data-processing inequality (Cover and Thomas (2006, Section 2.8)).
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is symmetric, I(Pi, μ−i ) = I(Pμ−i , Qi ) and I(P ′
i , μ

′
−i ) = I(P ′

μ′
−i

, Q′
i ). We conclude that

I(Pi, μ−i ) ≤ I(P ′
i , μ

′
−i ). ♦

Popular generalizations of mutual information also satisfy Assumptions 1 and 2.

Example 3 (Continued). A popular generalization of mutual information is based on
the notion of f -divergence (Csiszar (1963, 1967), Ali and Silvey (1966)). Let f : [0, ∞) →R

be a continuous convex function. The quantity

If (Pi, μ−i ) =
∑
θ,x

Pμ−i(xi )μ−i(θ, x−i )f
(
Pi(xi|θ, x−i )μ−i(θ, x−i )
Pμ−i(xi )μ−i(θ, x−i )

)

is the f -divergence between the joint distribution of (θ, x) and the product of the
marginal distributions of xi and (θ, x−i ).15 Mutual information corresponds to the case
in which f (t ) = t ln t; in such a case, the f -divergence is called relative entropy (2006
(2006, Chapter 2)).

It is known that If is monotone with respect to garbling.16 Reasoning as above, we
can check that If is also monotone with respect to shrinking. We will use f -divergences
later on in an application to global games. ♦

Next is an example, also inspired by information theory, where the cost of informa-
tion is independent of prior beliefs and satisfies Assumptions 1 and 2.

Example 3 (Continued). Let the cost of information be the channel capacity of Pi:

I∗(Pi ) = max
μ−i

I(Pi, μ−i ).

Channel capacity is the maximum mutual information across all priors (Cover and
Thomas (2006, Chapter 7)). For applications of channel capacity in economics, see
Woodford (2012) and Nimark and Sundaresan (2019).

It is easy to see that channel capacity inherits monotonicity with respect to garbling
from mutual information. Interestingly, channel capacity also inherits monotonicity
with respect to shrinking. To see this, take Pi and P ′

i such that Pi�P ′
i , with corresponding

K−i : �×X−i → �(X−i ). For every prior μ−i, we can define

μ′
−i

(
θ, x′

−i

) =
∑
x−i

K−i

(
x′

−i|θ, x−i

)
μ−i(θ, x−i ).

By construction, (Pi, μ−i ) � (P ′
i , μ

′
−i ). Since mutual information is monotone with re-

spect to shrinking, I(Pi, μ−i ) ≤ I(P ′
i , μ

′
−i ) ≤ I∗(P ′

i ). Since the choice of μ−i is arbitrary,
I∗(Pi ) ≤ I(P ′

i ).

15We adopt the convention 0f (0/0) = 0.
16It follows from a so-called data-processing lemma (Liese and Vajda (2006, Theorem 14)).
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The same argument applies to a generalization of channel capacity based on f -
divergences:

I∗
f (Pi ) = max

μ−i
If (Pi, μ−i ).

Also I∗
f is monotone with respect to garbling and shrinking. ♦

As Example 2 highlights, monotonicity with respect to shrinking implies a form of
invariance to the labelling of the space of uncertainty. Thus, cost functions that are sen-
sitive to such a labelling (e.g., Pomatto, Strack, and Tamuz (2023), Hebert and Woodford
(2021)) are, in general, not monotone with respect to shrinking.

While quite natural, the notion of shrinking of experiments is—to the best of our
knowledge—new. The vast majority of cost functions used in applications are monotone
with respect to garbling. Versions of Assumption 2 occur in rational inattention. For ex-
ample, the notions of invariance from Caplin, Dean, and Leahy (2022, Definition 4) and
Hebert and La’O (forthcoming, Lemma 2) can be seen as special cases of monotonicity
with respect to shrinking.

2.3 Learning about others’ actions

We have assumed that players can privately randomize over actions; that is, players can
randomize over actions without worrying that opponents will spy on the outcomes of
the randomizations. The revelation principle, formalized by Proposition 2, highlights an
implication of this restriction: without loss of generality, we can focus on mixed-action
recommendations, but not on pure-action recommendations.

Of course, players’ primary incentive is to acquire information about others’ realized
actions, not about others’ mixed actions. To incorporate this incentive into the analysis,
we propose a stronger notion of robustness to information acquisition.

For each player i, a pure-action rule is a measurable function si : Xi → Ai. We denote
by Si the set of i’s pure-action rules; we adopt the notation S−i = ∏

j �=i Sj and S = Si ×S−i.

Definition 5. A probability distribution ρ ∈ �π(�×A) is strongly robust to information
acquisition if there is an information structure μ ∈ �π(� × X ), a profile of experiments
P ∈ P , and a profile of pure-action rules s ∈ S such that the following conditions are
satisfied:

(i) For all θ ∈� and a ∈A,

ρ(a|θ) = μ
({
x : s(x) = a

}|θ)
.

(ii) For all θ ∈�, Bi ⊆ Xi, and B−i ∈X−i,

μ(Bi ×B−i|θ) =
∫
B−i

Pi(Bi|θ, x−i ) dμ−i(x−i|θ).
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(iii) For all i ∈N , (Pi, si ) is an optimal solution of

max
P ′
i∈Pi ,s′i∈Si

∫
�×X

ui
(
θ, s′i(xi ), s−i(x−i )

)
dP ′

i(xi|θ, x−i ) dμ−i(θ, x−i ) −Ci

(
P ′
i , μ−i

)
.

Definition 5 is a special case of Definition 2: if ρ is strongly robust to information ac-
quisition, then it is robust. The difference is that in Definition 5, players must take pure
actions conditional on all signal realizations. Players can still randomize over actions,
but they must do it by adding noise to the experiments they perform—noise that others
can acquire information about.

For strong robustness, a strong version of the revelation principle holds: with-
out loss of generality, we can focus on experiments whose outcomes are pure-action
recommendations. To state the result, let PAi

be the set of i’s feasible experiments
Pi ∈ Pi whose outcomes are pure-action recommendations: for all θ ∈ � and x−i ∈ X−i,
Pi(Ai|θ, x−i ) = 1. We adopt the notation PA−i

= ∏
j �=iPAj

and PA = PAi
×PA−i

.

Proposition 3. Under Assumptions 1–3, a probability distribution ρ ∈ �π(� × A) is
strongly robust to information acquisition if and only if there is P ∈ PA such that the
following conditions are satisfied:

(i) For all θ ∈� and a ∈A,

ρ(a|θ) = Pi(ai|θ, a−i )ρ−i(a−i|θ).

(ii) For all i ∈N , Pi is an optimal solution of

max
P ′
i∈PAi

∑
θ,a

ui(θ, a)P ′
i(ai|θ, a−i )ρ−i(θ, a−i ) −Ci

(
P ′
i , ρ−i

)
.

The next example makes the difference between robustness (Definition 2) and
strong robustness (Definition 5) to information acquisition concrete.

Example 4. Let � be a singleton and let α ∈A be a Nash equilibrium of the correspond-
ing complete-information game. For every a ∈ A, define

ρ(a) =
∏
i∈N

αi(ai ).

We claim that under Assumption 1, ρ is robust to information acquisition. Let P be a
profile of uninformative experiments and let μ ∈ �π(�×X ) be the product distribution
induced by P . For every i ∈N and xi ∈Xi, define

σi(ai|xi ) = αi(ai ).

It is easy to see that μ, P , and σ satisfy (i)–(iii) of Definition 5. In particular, uninforma-
tive experiments are optimal: all experiments have zero value (since � is a singleton and
a−i is independent of x−i) and uninformative experiments are the least costly (because
of Assumption 1). Overall, we conclude that ρ is robust to information acquisition. ♦
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The example shows that under broad conditions on costs, every Nash equilibrium
of a complete-information game is robust to information acquisition. But it may not be
strongly robust.

Example 4 (Continued). Absent uncertainty about θ, an experiment Pi : X−i → �(Xi )
is fully informative if it reduces all uncertainty about θ and x−i. Assume that for some
player i, there exists a fully informative experiment Pi such that

Ci(Pi, ρ−i ) <
∑
a−i

ρ−i(a−i ) max
ai

ui(ai, a−i ) −
∑
a

ui(a)ρ(a), (1)

where ρ ∈ �π(�×A) is, as above, the action distribution induced by a Nash equilibrium
α ∈ A.

We claim that ρ is not strongly robust to information acquisition. Since i’s opponents
cannot privately randomize, a fully informative experiment reduces all uncertainty not
only about x−i, but also about a−i. Thus, by (1), player i prefers to acquire full infor-
mation and best respond to the opponents’ realized actions, rather than to acquire no
information and best respond to the opponents’ mixed actions. This shows that ρ, where
actions are independent, is not strongly robust to information acquisition. ♦

As the example highlights, strong robustness to information acquisition can be a de-
manding notion. One may wonder whether there is any interesting application of such
a notion. In Section 3, we will show that there is an important class of games—potential
games—where unrestricted information acquisition has a neat characterization for ra-
tionally inattentive players.

The literature on incomplete-information games highlights two kinds of uncertainty
that players may face: fundamental uncertainty (i.e., uncertainty about the state) and
strategic uncertainty (i.e., uncertainty about others’ actions). The interaction between
fundamental and strategic uncertainty is crucial in many settings (global games, robust
mechanism design, etc.).

Both fundamental and strategic uncertainty provide an incentive to acquire infor-
mation. In Definition 5, players can reduce both fundamental and strategic uncertainty.
In Definition 2, players can reduce strategic uncertainty only insofar as it is determined
by first-order and higher-order fundamental uncertainty.

2.4 Existence

When � is a singleton, a robust equilibrium exists under broad conditions on the cost
of information; see Example 4. When � is not a singleton, the existence of a robust
equilibrium depends on the set of feasible experiments and on the properties of the
cost of information. Next is an example of nonexistence.

Example 5. The state could be either high or low: � = {h, l} with π(h) = π(l) = 1/2.
There are two players: player 1 wants to match the state and player 2 wants to match
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player 1’s action. Given A1 =A2 = {h, l}, define u1 and u2 by

u1(θ, a1, a2 ) =
{

1 if a1 = θ,

0 otherwise,
and u2(θ, a1, a2 ) =

{
1 if a1 = a2,

0 otherwise.

As in applications of rational inattention, we assume that the cost of information is
based on mutual information. For Pi ∈ Pi and μ−i ∈ �(�×X−i ), we define

Ci(Pi, μ−i ) = λI(Pi, μ−i ),

where λ > 0 is a scale factor that parametrizes the marginal cost of information, and
I(Pi, μ−i ) is the mutual information of xi and (θ, x−i ); see Example 3 for the definition
of mutual information. We also assume that all experiments are feasible and that signal
spaces are rich: for every player i, Pi is the set of all measurable functions Pi : �×X−i →
�(Xi ), and Ai is a Borel subset of Xi.

We claim that for λ sufficiently small, there is no ρ ∈ �π(�×A) that is robust to in-
formation acquisition. Using tools from rational inattention (e.g., Matejka and McKay
(2015)), one can verify that for ρ to be robust, it must be that (i) a1 is conditionally inde-
pendent of a2 given θ and (ii) a2 is conditionally independent of θ given a1. Condition (i)
reflects the fact that player 1 only cares about the state, so she disregards any additional
costly information about player 2. Condition (ii) reflects the fact that player 2 only cares
about player 1, so she disregards any additional costly information about the state.

It is easy to verify that (i) and (ii) coexist only if a2 is independent of θ and a1. If λ is
sufficiently small, this cannot happen: when information is sufficiently cheap, player 1
makes her action dependent on the state, and player 2 makes his action dependent on
player 1’s action. This shows that when λ is sufficiently small, there is no equilibrium
that is robust to information acquisition. ♦

The example shows that an equilibrium that is robust to information acquisition
may not exist. The concept is, nevertheless, useful in a variety of circumstances, as we
show next in applications. General conditions for the existence and nonexistence of
equilibria that are robust to information acquisition are largely an open question.

3. Application to potential games

We present an application to rational inattention in games. We consider potential games
(Monderer and Shapley (1996)). In a potential game, a function v : � × A → R, called
potential, summarizes players’ incentives to take actions: for all θ ∈ �, i ∈ N , ai, a′

i ∈ Ai,
and a−i ∈A−i,

ui(θ, ai, a−i ) − ui
(
θ, a′

i, a−i

) = v(θ, ai, a−i ) − v
(
θ, a′

i, a−i

)
.

The class of potential games, although restrictive, includes many games that are relevant
for information economics—among others, common interest games, congestion games,
games on networks, and linear-quadratic games.
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Figure 1. An investment game.

As is standard in rational inattention (e.g., Matejka and McKay (2015)), we assume
that the cost of information is based on mutual information. For Pi ∈ Pi and μ−i ∈ �(�×
X−i ), we define

Ci(Pi, μ−i ) = λI(Pi, μ−i ),

where λ > 0 is a scale factor that parametrizes the marginal cost of information, and
I(Pi, μ−i ) is the mutual information of xi and (θ, x−i ); see Example 3 for the definition
of mutual information. We also assume that signal spaces are rich: for every player i,
Ai = �(Ai ) is a Borel subset of Xi.

Previous work on rational inattention in games has focused on independent infor-
mation acquisition: for every player i and every feasible experiment Pi ∈ Pi, the dis-
tribution of xi depends only on θ and not on x−i. In this literature, a central paper is
Yang (2015), who shows that severe coordination problems may arise among rationally
inattentive players.

Yang considers the investment game depicted in Figure 1, which is a potential game.
He assumes that information acquisition is independent and shows that a large multi-
plicity of equilibria arises. In particular, as λ goes to zero, coordination may occur on any
equilibrium of the complete-information game. Yang’s results are thought-provoking
and cast doubt on whether a meaningful analysis of rational inattention in games is
possible.

An element that is missing from Yang’s analysis is the possibility for the players to ac-
quire correlated information—that is, information about each other’s information. In-
tuition suggests that correlated information may play an important role in coordination
games and, more broadly, in strategic settings. Our model allows us to incorporate this
ingredient into the analysis.

Here, instead of assuming that information acquisition is independent, we assume
that all experiments are feasible: for every player i, Pi is the set of all measurable func-
tions from � × X−i to �(Xi ). Thus, information acquisition is unrestricted: the players
can acquire information about the state and each other’s information in a flexible way.

In stark contrast to Yang’s indeterminacy result, unrestricted information acquisi-
tion admits a sharp characterization.

Proposition 4. Fix a potential function v and a scale factor λ. A probability distribution
ρ ∈ �π(�×A) is robust (Definition 2) to unrestricted information acquisition if and only
if there are μi ∈ �(Ai ), with i ∈ N , that satisfy the following conditions:
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(i) For all θ ∈� and a ∈A,

ρ(a|θ) =

∫
A

n∏
i=1

αi(ai )e
v(θ,α)/λ

n∏
i=1

dμi(αi )

∫
A
ev(θ,α)/λ

n∏
i=1

dμi(αi )

.

(ii) The profile (μ1, � � � , μn ) is a pure Nash equilibrium of a common-interest game
where players’ payoff function V :

∏n
i=1 �(Ai ) →R is given by

V (ν1, � � � , νn ) =
∑
θ

π(θ) log

(∫
A
ev(θ,α)/λ

n∏
i=1

dνi(αi )

)
.

Moreover, for all i ∈N and ai ∈Ai,

∑
θ,a−i

ρ(θ, ai, a−i ) =
∫
Ai

αi(ai ) dμi(αi ).

Thus, rationally inattentive players follow a joint logit rule. By (i), the distribution
over actions ρ ∈ �π(�×A) is generated by a distribution over mixed actions μ ∈ �π(�×
A) given by

μ(B|θ) =

∫
B
ev(θ,α)/λ

n∏
i=1

dμi(αi )

∫
A
ev(θ,α)/λ

n∏
i=1

dμi(αi )

.

The log-likelihood ratio of mixed-action profiles α and α′ is

ln
dμ(α|θ)

dμ
(
α′|θ) = v(θ, α) − v

(
θ, α′)

λ
,

which is a logistic regression.
The joint logit rule is pinned down by v and λ, which are primitives of the model,

and by μ1, � � � , μn, which are endogenous objects. For every player i, μi is the marginal
distribution over mixed actions. By (ii), the profile (μ1, � � � , μn ) is a (pure) Nash equilib-
rium of an auxiliary potential game where the players have a common payoff function
V . Choices in the auxiliary game are independent, yet, remarkably, they determine the
correlation structure in the original game.

As a corollary of Proposition 4, we obtain a characterization of strong robustness to
information acquisition.

Corollary 1. Fix a potential function v and a scale factor λ. A probability distribution
ρ ∈ �π(�×A) is strongly robust (Definition 5) to unrestricted information acquisition if
and only if there are αi ∈ Ai, with i ∈N , that satisfy the following conditions:
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(i) For all θ ∈� and a ∈A,

ρ(a|θ) =
ev(θ,a)/λ

∏
i∈N

αi(ai )

∑
a′

ev(θ,a′ )/λ
∏
i∈N

αi(ai )
.

(ii) The profile (α1, � � � , αn ) is a pure Nash equilibrium of a common-interest game
where players’ payoff function V : A →R is given by

V
(
α′

1, � � � , α′
n

) =
∑
θ

π(θ) log
(∑

a

ev(θ,a)/λ
∏
i∈N

α′
i(ai )

)
.

Moreover, for all i ∈N and ai ∈Ai,∑
θ,a−i

ρ(θ, ai, a−i ) = αi(ai ).

Corollary 1 follows more or less immediately from Proposition 4. For every player i,
take μi as in Proposition 4. Strong robustness is the special case in which μi puts positive
probability only on pure actions,

μi

(
{δai : ai ∈ Ai}

) = 1,

where δai ∈ Ai is the Dirac measure concentrated on ai. Then it is clear that (i) and (ii)
in Corollary 1 correspond to (i) and (ii) in Proposition 4.

We also obtain the result that there exists an equilibrium that is strongly robust
(hence, robust) to information acquisition.

Corollary 2. For every potential function v and scale factor λ, there exists a probability
distribution ρ ∈ �π(�×A) that is strongly robust (Definition 5) to unrestricted informa-
tion acquisition.

The result follows from the existence of an equilibrium in the auxiliary potential
game in Corollary 1(ii). As Example 4 highlights, the existence of a strongly robust
equilibrium is demanding. Here, one can prove a partial converse to Corollary 2: for
every utility profile (ui )i∈N and scale factor λ, if there exists a probability distribution
ρ ∈ �π(� × A) that is strongly robust to unrestricted information acquisition, then the
game admits a potential function on the support of ρ.17

A special case of interest is the negligible cost of information, that is, λ → 0. Under
independent information acquisition, Yang (2015) finds that anything goes. When in-
formation acquisition is unrestricted, we obtain the opposite result—limit uniqueness.

Corollary 3. Fix a potential function v. Let a∗ ∈ A∗ and θ∗ ∈ �∗ satisfy the following
conditions:

17A formal proof of the result was included in a previous draft of the paper and is available from the
author upon request.
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(i) The quantity v(θ∗, a) is uniquely maximized at a= a∗.

(ii) For each player i, a∗
i is the unique equilibrium action in some state θ.

For every λ > 0, let ρλ ∈ �π(� × A) be robust (Definition 2) to unrestricted information
acquisition. Then

lim
λ→0

ρλ
(
a∗|θ∗) = 1.

Thus, when information acquisition is correlated and the cost of information is neg-
ligible, a unique outcome arises: coordination occurs on the action profile a∗ that max-
imizes the potential. The result holds under a richness condition: for every player i, a∗

i

is the unique equilibrium action in some state; Yang (2015) makes a similar richness as-
sumption. Corollary 3 suggests an application of our model to equilibrium selection,
which we carry out in the next section.

Proposition 4 proposes a many player extension of the individual logit rule for ra-
tionally inattentive agents as in Matejka and McKay (2015). Any single-agent decision
problem trivially is a potential game; if N is a singleton, then Proposition 4 is a restate-
ment of Matejka and McKay’s main result. Matejka and McKay provide essential tools
for applications of rational inattention; we adapt and extend their results to games.

For the proof of Proposition 4, we start from player-by-player individual logit rules à
la Matejka and McKay, and show that they generate a joint logit rule, leveraging on the
potential structure of the game. The interested reader can find detailed arguments in
the Appendix.

Logit rules and potential games show up in evolutionary game theory. To illustrate
the relationship to our results, take (α1, � � � , αn ) as in Corollary 1. Suppose that � is a
singleton and all αi are uniform distributions. Then

ρ(a) =
ev(a)/λ

n∏
i=1

αi(ai )

∑
a′

ev(a′ )/λ
n∏

i=1

αi(ai )

= ev(a)/λ∑
a′

ev(a′ )/λ
.

One can view such ρ ∈ �(A) as the stationary distribution of a logit best-response dy-
namic (Blume (1993)), which is prominent in evolutionary game theory. Here, the αi are
endogenous objects that, except for knife-edge cases, are not uniform.

4. Application to global games

We present an application to equilibrium selection in coordination games: we revisit
global games and provide a new rationale for risk dominant equilibria.

We consider symmetric 2 × 2 games as depicted in Figure 2. When θ = (θll, θrl, θlr ,
θrr ) is common knowledge, there are generically one or three equilibria; in the latter
case, there is one weak equilibrium in mixed actions and two strict equilibria in pure
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Figure 2. Symmetric 2 × 2 games.

actions. Thus, without loss of generality, we may focus on the case in which (Left, Left)
or (Right, Right) or both are strict equilibria: we assume that for every θ ∈�,

max{θll − θrl, θrr − θlr } > 0 and min{θll − θrl, θrr − θlr } �= 0.

As is standard in global games, we assume that there are states in which Left and
Right are dominant actions: there are θ, θ′ ∈� such that

min{θll − θrl, θlr − θrr } > 0 and min
{
θ′
rl − θ′

ll, θ
′
rr − θ′

lr

}
> 0.

Such states may have arbitrarily small probability. Thus, we may view dominance re-
gions as richness conditions on the space of uncertainty.

For the cost of information, we consider a popular generalization of mutual informa-
tion based on f -divergences. Let f : [0, ∞) → R be a continuous function that is strictly
convex and continuously differentiable on (0, ∞). For Pi ∈ Pi and μ−i ∈ �(�×X−i ), we
define

Ci(Pi, μ−i ) = λ
(
If (Pi, μ−i ) − f (1)

)
,

where λ > 0 is a scale factor that parameterizes the marginal cost of information, and
If (Pi, μ−i ) is the f -divergence between the joint distribution of (θ, x) and the product
of the marginal distributions of xi and (θ, x−i ); see Example 3 for the definition of If .18

We also assume that signal spaces are rich: for every player i, Ai = �(Ai ) is a Borel subset
of Xi.

Let all experiments be feasible: for every player i, Pi is the set of all measurable func-
tions from � × X−i to �(Xi ). Thus, information acquisition is unrestricted: the players
can acquire information about the state and each other’s information in a flexible way.

For every scale factor λ > 0, let ρλ ∈ �π(�×A) be robust to unrestricted information
acquisition. We analyze the limit case of the negligible cost of information: we ask what
happens to ρλ as λ converges to zero. We interpret the case of λ → 0 as a perturbation
of common knowledge. The nature of the perturbation is endogenous: it depends on
players’ incentives to acquire information. The next existence result makes sure that the
problem we set out to solve is well defined.

Lemma 1. For every scale factor λ > 0, there exists ρλ ∈ �π(�×A) that is robust (Defini-
tion 2) to unrestricted information acquisition.

The notion of risk dominance will be central to our analysis. According to Harsanyi
and Selten (1988), Left risk dominates Right at θ if

θll − θrl > θrr − θlr .

Right risk dominates Left if the reverse strict inequality holds.

18Subtracting f (1) guarantees that Ci(Pi, μ−i ) ≥ 0 (see, e.g.,Liese and Vajda (2006, Theorem 5)).
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For an intuition behind risk dominance, take the perspective of a player who is un-
sure about the opponent’s action. It is easy to verify that θll − θrl > θrr − θlr if and only if
Left is a best response to a broader range of beliefs than Right; one could deem playing
Left less risky than playing Right.

The notion of risk dominance is standard in the literature. Next we introduce a re-
lated comparative notion. We say that Left is less risky at θ than at θ′ if

θll − θrl > θ′
ll − θ′

rl and θrr − θlr < θ′
rr − θ′

lr .

Harsanyi and Selten (1988) argue that when a game has multiple equilibria, the play-
ers should coordinate on the risk dominant action. Carlsson and van Damme (1993)
formalize their intuition by identifying a class of perturbations of common knowledge
that select the risk dominant equilibrium. A number of subsequent works have revis-
ited Carlsson and van Damme’s results, both from an ex ante perspective (e.g., Kajii and
Morris (1997)) and an interim perspective (e.g., Weinstein and Yildiz (2007)). A com-
mon theme is that minute details of the perturbation of common knowledge determine
whether or not the risk dominant equilibrium is selected. This raises the question of
what perturbations of common knowledge are more likely to occur. The next proposi-
tion provides an answer.

Proposition 5. Assume limt→0 f
′(t ) = −∞. For every λ > 0, let ρλ ∈ �π(�×A) be robust

(Definition 2) to unrestricted information acquisition. For ρ = limλ→0 ρ
λ, the following

conditions hold:

(i) If Left is risk dominant at θ, then

ρ(Left , Left |θ) ≥ ρ(Left , Left ).

If Right is risk dominant at θ, then the reverse inequality holds.

(ii) If Left is less risky at θ than at θ′, then

ρ(Left , Left |θ) ≥ ρ
(
Left , Left |θ′).

Figure 3 provides a graphical representation of the content of the proposition. The
horizontal axis orders the states according to the comparative notion of riskiness intro-
duced above: θ precedes θ′ if Left is less risky at θ than at θ′.19 The state θ̂ is the risk
dominance cutoff: if θ < θ̂, then Left is risk dominant; if θ > θ̂, then Right is risk dom-
inant. The vertical axis plots the conditional probability that the players coordinate on
Left, as a function of the state.

By (ii), ρ(Left , Left |θ) is decreasing in θ: the more risky Left is, the more likely the
players coordinate on Right. The quantity ρ(Left , Left ) is the marginal probability that
the players coordinate on Left. By (i), ρ(Left , Left |θ) is larger than ρ(Left , Left ) when Left

19In general, such ordering is not complete: there could be two states θ and θ′ such that Left is neither
less nor more risky at θ than at θ′. For ease of exposition, Figure 3 considers the special case in which the
ordering is complete.



1122 Tommaso Denti Theoretical Economics 18 (2023)

Figure 3. A graphical representation of Proposition 5.

is risk dominant at θ and is smaller when Right is risk dominant at θ. Extreme values of
θ correspond to dominance regions where ρ(Left , Left |θ) is either 0 or 1.

These results hold under the hypothesis that f is infinitely steep at zero: as t → 0,
f ′(t ) → −∞. This guarantees that the marginal cost of acquiring full information is in-
finite. Otherwise, acquiring full information would be optimal for λ sufficiently small,
trivially leading to complete information and multiple equilibria.

Overall, Proposition 5 suggests that when information is endogenous and cheap, it is
more likely that players coordinate on the risk dominant action. There is a simple intu-
ition behind this result. Suppose that Left is the risk dominant action. Acquiring infor-
mation, a player wants to minimize the probability of miscoordination. The probability
of miscoordination is determined by the probability of choosing Right when the oppo-
nent chooses Left, and by the probability of choosing Left when the opponent chooses
Right. By analogy with statistical decision theory, we can call these two mistakes a type I
error and a type II error. So the question is, choosing an experiment, what is the player’s
priority: minimizing the type I error or the type II error? Intuitively, the priority is to min-
imize the type I error, because erroneously choosing Left is less risky than erroneously
choosing Right, Left being the risk dominant action. This pushes the players toward
coordination on the risk dominant action.

We see Proposition 5 as supporting the risk dominance selection rule from global
games. We emphasize, however, that Proposition 5 does not state that the risk dominant
action is played with probability 1. As λ goes to 0, the players could coordinate on a
correlated equilibrium where with some probability, they take the risk dominant action,
and with the remaining probability, they take the risk dominated action. A key feature of
Proposition 5 is that the probability with which the players take the risk dominant action
is increasing in the state—increasing according to the comparative notion of riskiness
described above. In applications, lack of monotonicity in the state is one of the most
compelling critiques of multiple equilibrium narratives such as the theory of sunspots
(Morris and Shin (2000)); our results reiterate such critiques.20

20As Morris and Shin (2000, p. 139) put it, “[the theory of sunspots] runs counter to our intuition that
bad fundamentals are somehow ‘more likely’ to trigger a financial crisis, or to tip the economy into reces-
sion. In other words, sunspot explanations do not provide a basis for exploring the correlation between the
underlying fundamentals and the resultant economic outcomes.”.
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When If is mutual information, the risk dominant action is played with probability
1 in the limit. The result follows from Corollary 3 in the previous section. It is easy to
verify that the games represented in Figure 2 are potential games, and the risk dominant
action is the maximizer of the potential function.

We have used a model of costly information acquisition to generate an endogenous
perturbation of common knowledge; we borrowed the approach from Yang (2015). As
discussed in the previous section, Yang (2015) studies a coordination game where play-
ers decide whether or not to invest in a risky project; his investment game belongs to
the class of symmetric games we have analyzed in this section (cf. Figures 1 and 2). As-
suming that information acquisition is independent and costs are based on mutual in-
formation, Yang (2015) shows that multiple equilibria arise when information is cheap.

The basic intuition behind Yang’s multiplicity result is that a coordination problem
in taking actions may translate into a coordination problem in acquiring information.
Our analysis shows that this intuition, although compelling at first glance, crucially re-
lies on information acquisition being independent. When players can learn what others
know, other considerations come into play that may lead to equilibrium uniqueness.
For example, the trade-off in minimizing the probability of miscoordination that we dis-
cussed above.

Morris and Yang (2022) revisit the results of Yang (2015) from a different perspective.
They maintain the hypothesis that information acquisition is independent, but consider
a class of cost functions that do not nest mutual information. In particular, they assume
that it is costly to distinguish nearby states. They show that when information is cheap, a
unique outcome arises: as in global games, players coordinate on the risk dominant ac-
tion. Their approach is compelling in applications where the state space has an obvious
topology. An advantage of our methods is that they apply to arbitrary state spaces.

In a followup to a previous version of this paper, Hoshino (2018) adopts the model
of unrestricted information acquisition to study equilibrium selection in coordination
games. He finds that any selection of complete-information equilibria can be sustained
by some ad hoc cost functions. One limitation of this interesting result is that the cost
functions Hoshino constructs are somewhat arbitrary. By contrast, the cost functions
we consider in this section have widespread applications in economics, statistics, and
information theory. Our takeaway from Hoshino (2018) is that the relationship between
costly information acquisition and coordination problems deserves further investiga-
tion.

5. Conclusion

We have developed a model of correlated information acquisition in games. The model
has allowed us to study players’ incentive to learn what others know. In applications
to rational inattention and global games, we have shown that the model is tractable
and delivers interesting predictions: rationally inattentive players follow a joint logit
rule; players endogenously coordinate on the risk dominant action when information
is cheap. Both results crucially rely on information acquisition being correlated. When
information acquisition is independent, the behavior of rationally inattentive players is
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undetermined and severe coordination problems arise in information acquisition. This
shows the power of players’ incentive to learn what others know.

Appendix: Proofs

Proof of Proposition 2. “If.” Let μ ∈ �π(�×A) and P ∈ PA satisfy (i)–(iii) of Propo-
sition 2. For every player i, let σi ∈ 	i be an action rule such that for all αi ∈ Ai,
σi(ai|αi ) = αi(ai ).

Since μ and P satisfy (i) and (ii) of Proposition 2, we see that μ, P , and σ satisfy (i)
and (ii) of Definition 2. To prove (iii) of Definition 2, take an experiment P̃i ∈ Pi and an
action rule σ̃i ∈ 	i. Define the experiment P ′

i by

P ′
i(Bi|θ, x−i ) = P̃i

(
σ̃−1
i (Bi )|θ, x−i

)
.

The experiment P ′
i is a garbling of Pi. Thus, by Assumption 3, P ′

i ∈ Pi and Ci(P ′
i , μ−i ) ≤

Ci(P̃i, μ−i ). Moreover, for all θ ∈ � and x−i ∈ X−i, P ′
i(Ai|θ, x−i ) = 1. Therefore, P ′

i ∈ PAi
.

Using (iii) of Proposition 2, we obtain that∫
�×X

Ui

(
θ, σ̃i(xi ), σ−i(x−i )

)
dP̃i(xi|θ, x−i ) dμ−i(θ, x−i ) −Ci(P̃i, μ−i )

≤
∫
�×Ai×X−i

Ui

(
θ, αi, σ−i(x−i )

)
dP ′

i(αi|θ, x−i ) dμ−i(θ, x−i ) −Ci

(
P ′
i , μ−i

)

=
∫
�×A

Ui(θ, α) dP ′
i(αi|θ, α−i ) dμ−i(θ, α−i ) −Ci

(
P ′
i , μ−i

)

≤
∫
�×A

Ui(θ, α) dPi(αi|θ, α−i ) dμ−i(θ, α−i ) −Ci(Pi, μ−i )

=
∫
�×X

Ui

(
θ, σ(x)

)
dPi(xi|θ, x−i ) dμ−i(θ, x−i ) −Ci(Pi, μ−i ).

It follows that (iii) of Definition 2 holds.
“Only if.” Let ρ ∈ �π(�×A) be robust to information acquisition. Let μ ∈ �π(�×X ),

P ∈ P , and σ ∈ 	 as in Definition 2. Let ν ∈ �π(� × A) be the push-forward of μ under
the function x �→ σ(x). For every player i, let K−i : �×X−i → �(X−i ) be a version of the
(regular) conditional μ−i probability of x−i given θ and σ−i(x−i ). Define the experiment
Qi by

Qi(Bi|θ, x−i ) =
∫
X−i

Pi

(
σ−1
i (Bi )|θ, x′

−i

)
dK−i

(
x′

−i|θ, x−i

)
.

Claim 1. We have Qi ∈ PAi
and Ci(Qi, ν−i ) ≤ Ci(Pi, μ−i ).

Proof. Define the experiment Q◦
i by

Q◦
i (Bi|θ, x−i ) =

∫
X−i

Pi

(
Bi|θ, x′

−i

)
dK−i

(
x′

−i|θ, x−i

)
.
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For all θ ∈� and B−i ⊆ X−i,

μ−i(B−i|θ) =
∫
X−i

K−i(B−i|θ, x−i ) dν−i(x−i|θ).

Thus (Q◦
i , ν−i ) � (Qi, μ−i ). In addition, Qi 	 Q◦

i , and for every θ ∈ � and x−i ∈ X−i,
Qi(Ai|θ, x−i ) = 1. It follows from Assumptions 3 and 4 that Q◦

i ∈ Pi, Qi ∈ PAi
, and

Ci(Qi, ν−i ) ≤ Ci

(
Q◦

i , ν−i

) ≤Ci(Pi, μ−i ),

as desired.

Since μ, P , and σ satisfy (i) and (ii) of Definition 2, we see that ν and Q satisfy (i) and
(ii) of Proposition 2. To prove (iii) of Proposition 2, note that for every Q′

i ∈ PAi
,∫

�×A
Ui(θ, α) dQ′

i(αi|θ, α−i ) dν−i(θ, α−i ) −Ci

(
Q′

i, ν−i

)

=
∫
�×Ai×X−i

Ui

(
θ, αi, σ−i(x−i )

)
dQ′

i

(
αi|θ, σ−i(x−i )

)
dμ−i(θ, x−i ) −Ci

(
Q′

i, ν−i

)

≤ max
σ ′
i

∫
�×X

Ui

(
θ, σ ′

i(xi ), σ−i(x−i )
)

dQ′
i

(
xi|θ, σ−i(x−i )

)
dμ−i(θ, x−i ) −Ci

(
Q′

i, ν−i

)
.

Define the experiment P ′
i by

P ′
i(Bi|θ, x−i ) =Q′

i

(
Bi|θ, σ−i(x−i )

)
.

Claim 2. We have (P ′
i , μ−i ) � (Q′

i, ν−i ).

Proof. Define K′
−i : �×X−i → �(X−i ) by

K−i(B−i|θ, x−i ) = 1B−i

(
σ−i(x−i )

)
.

Then

P ′
i(Bi|θ, x−i ) =

∫
X−i

Q′
i

(
Bi|θ, x′

−i

)
dK−i

(
x′

−i|θ, x−i

)
,

ν−i(B−i|θ) =
∫
X−i

K−i(B−i|θ, x−i ) dμ−i(θ, x−i ).

The desired result follows.

It follows from Assumption 4 that Ci(P ′
i , μ−i ) ≤ Ci(Q′

i, ν−i ). Thus,

max
σ ′
i

∫
�×X

Ui

(
θ, σ ′

i(xi ), σ−i(x−i )
)

dQ′
i

(
xi|θ, σ−i(x−i )

)
dμ−i(θ, x−i ) −Ci

(
Q′

i, ν−i

)

≤ max
σ ′
i

∫
�×X

Ui

(
θ, σ ′

i(xi ), σ−i(x−i )
)

dP ′
i(xi|θ, x−i ) dμ−i(θ, x−i ) −Ci

(
P ′
i , μ−i

)

≤
∫
�×X

Ui

(
θ, σ(x)

)
dPi(xi|θ, x−i ) dμ−i(θ, x−i ) −Ci(Pi, μ−i ),
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where the last inequality follows from (iii) of Definition 2. As shown above, Ci(Qi, ν−i ) ≤
Ci(Pi, μ−i ). We obtain that∫

�×X
Ui

(
θ, σ(x)

)
dPi(xi|θ, x−i ) dμ−i(θ, x−i ) −Ci(Pi, μ−i )

≤
∫
�×A

Ui(θ, α) dQi(αi|θ, α−i ) dν−i(θ, α−i ) −Ci(Qi, ν−i ).

We conclude that (iii) of Proposition 2 holds.
The proof of Proposition 3 is analogous to the proof of Proposition 2; we omit the

details.

Lemma 2. Suppose that all experiments are feasible and signal spaces are rich enough to
contain the sets of mixed actions. For every i ∈ N , Pi ∈ PAi

, and μ−i ∈ �π(� × A−i ), the
following statements are equivalent:

(i) Experiment Pi is an optimal solution of

max
P ′
i∈PAi

∫
�×A

ui(θ, α) dP ′
i(αi|θ, α−i ) dμ−i(θ, α−i ) − λI

(
P ′
i , μ−i

)
.

(ii) There is μi ∈ �(Ai ) that satisfies the following conditions:

(a) For all Bi ⊆ Ai and μ−i-almost all θ and α−i,

Pi(Bi|θ, α−i ) =

∫
Bi

eui(θ,α)/λ dμi(αi )∫
Ai

eui(θ,α)/λ dμi(αi )
.

(b) For all αi ∈ Ai,

∫
�×A−i

eui(θ,α)/λ∫
Ai

eui(θ,α′
i ,α−i )/λ dμi

(
α′
i

) dμ−i(θ, α−i ) ≤ 1.

Moreover, for all Bi ⊆ Ai,

μi(Bi ) =
∫
�×A−i

Pi(Bi|θ, α−i ) dμ−i(θ, α−i ).

For the proof, see Denti, Marinacci, and Montrucchio (2020), who extend Matejka
and McKay (2015) to continuous variables.

Proof of Proposition 4. “If.” Pick ρ ∈ �π(� × A) and μi ∈ �(Ai ), i ∈ N , that satisfy
(i) and (ii) of Proposition 4. We claim that ρ is robust to unrestricted information acqui-
sition.
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To prove the claim, we use Proposition 2. Define μ ∈ �π(�×A) by

μ(B|θ) =

∫
B
ev(θ,α)/λ

n∏
i=1

dμi(αi )

∫
A
ev(θ,α)/λ

n∏
i=1

dμi(αi )

. (2)

For every i, define Pi ∈ PAi
by

Pi(Bi|θ, α−i ) =

∫
Bi

ev(θ,α)/λ dμi(αi )∫
Ai

ev(θ,α)/λ dμi(αi )
.

By construction, (i) and (ii) of Proposition 2 are satisfied. To prove that ρ is robust to
unrestricted information acquisition, it remains to show that (iii) of Proposition 2 is sat-
isfied.

By Monderer and Shapley (1996, Lemma 2.10), we have that

ui(θ, α) − ui
(
θ, α′

i, α−i

) = v(θ, α) − v
(
θ, α′

i, α−i

)
.

We deduce that

Pi(Bi|θ, α−i ) =

∫
Bi

eui(θ,α)/λ dμi(αi )∫
Ai

eui(θ,α)/λ dμi(αi )
. (3)

In addition, because μi is a best response to μ̄−i = (μj )j �=i in the auxiliary common-
interest game V , we have that

∑
θ

π(θ)

∫
A
ev(θ,αi ,α−i )/λ

∏
j �=i

dμj(αj )

∫
A
ev(θ,α′ )/λ

n∏
i=1

dμi

(
α′
i

) ≤ 1, αi ∈ Ai,

which is the first-order condition of the optimization problem

max
νi

V (νi, μ̄−i ).

It follows from (2) that

∫
�×A−i

ev(θ,α)/λ∫
Ai

ev(θ,α′
i ,α−i )/λ dμi

(
α′
i

) dμ−i(θ, α−i ) ≤ 1, αi ∈ Ai.
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Using again Monderer and Shapley (1996, Lemma 2.10), we conclude that

∫
�×A−i

eui(θ,α)/λ∫
Ai

eui(θ,α′
i ,α−i )/λ dμi

(
α′
i

) dμ−i(θ, α−i ) ≤ 1, αi ∈ Ai. (4)

Conditions (3) and (4) correspond to (ii)(a) and (ii)(b) of Lemma 2. We deduce that (iii)
of Proposition 2 holds, as desired.

“Only if.” Let ρ ∈ �π(� × A) be robust to unrestricted information acquisition. We
claim that (i) and (ii) of Proposition 4 hold.

To prove the claim, we use Proposition 2. Take μ ∈ �π(� × A) and P ∈ PA as in
Proposition 2. For every player i, let μi ∈ �(Ai ) be the marginal distribution of μ over i’s
mixed actions.

By (i) of Lemma 2, we have that

Pi(Bi|θ, α−i ) =

∫
Bi

eui(θ,α)/λ dμi(αi )∫
Ai

eui(θ,α)/λ dμi(αi )
.

In addition, by Monderer and Shapley (1996, Lemma 2.10), we have that

ui(θ, α) − ui
(
θ, α′

i, α−i

) = v(θ, α) − v
(
θ, α′

i, α−i

)
.

It follows that

Pi(Bi|θ, α−i ) =

∫
Bi

ev(θ,α)/λ dμi(αi )∫
Ai

ev(θ,α)/λ dμi(αi )
.

Aggregating across players, simple algebra shows that

dμ(α|θ)
n∏

i=1

dμi(αi )

= ev(θ,α)/λ∫
A
ev(θ,α′ )/λ

n∏
i=1

dμi

(
α′
i

) . (5)

We deduce that (i) of Proposition 4 holds.
By (ii) of Lemma 2, we have that

∫
�×A−i

eui(θ,α)/λ∫
Ai

eui(θ,α′
i ,α−i )/λ dμi

(
α′
i

) dμ−i(θ, α−i ) ≤ 1, αi ∈ Ai.

Using again Monderer and Shapley (1996, Lemma 2.10), we obtain that

∫
�×A−i

ev(θ,α)/λ∫
Ai

ev(θ,α′
i ,α−i )/λ dμi

(
α′
i

) dμ−i(θ, α−i ) ≤ 1, αi ∈ Ai
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In addition, it follows from (5) that

dμ−i(α−i|θ)∏
j �=i

dμj(αi )
=

∫
Ai

ev(θ,α′
i ,α−i )/λ dμi

(
α′
i

)
∫
A
ev(θ,α′ )/λ

n∏
i=1

dμi

(
α′
i

) .

We deduce that∫
�×A−i

ev(θ,α)/λ∫
Ai

ev(θ,α′
i ,α−i )/λ dμi

(
α′
i

) dμ−i(θ, α−i ) ≤ 1, αi ∈ Ai. (6)

Simple calculus shows that (6) is the (necessary and sufficient) first-order condition of
the optimization problem

max
νi

V (νi, μ̄−i ),

where μ̄−i = (μj )j �=i. Since this is true for all players i, we conclude that (ii) of Proposi-
tion 4 holds.

Proof of Corollary 1. “If.” Pick ρ ∈ �π(� × A) and α ∈ A that satisfy (i) and (ii) of
Corollary 1. For every player i, choose μi ∈ �(Ai ) such that

μi(δai ) = αi(ai ), (7)

where δai ∈ Ai is the Dirac measure concentrated on ai ∈ Ai. Thus, μi puts positive
probability only on pure actions.

It is easy to see that (i) of Corollary 1 implies (i) of Proposition 4. By (ii) of Corollary 1,
αi is an optimal solution of

max
α′
i

V
(
α′
i, α−i

)
.

The first-order condition of this optimization problem is

∑
θ

π(θ)

∑
a′

−i

ev(θ,ai ,a′
−i )/λ

∏
i �=j

αj

(
a′
j

)
∑
a′

ev(θ,a′ )/λ
∏
j∈N

αj

(
a′
j

) ≤ 1, ai ∈Ai.

It follows from (7) that

∑
θ

π(θ)

∫
A−i

ev(θ,ai ,α′
−i )/λ

∏
i �=j

dμj

(
a′
j

)
∫
A
ev(θ,α′ )/λ

∏
j∈N

dμj

(
α′
j

) ≤ 1, ai ∈Ai.
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In addition, by convexity of the exponential function, we have that

ev(θ,αi ,α′
−i )/λ =

∑
ai

αi(ai )e
v(θ,ai ,α′

−i )/λ, αi ∈ Ai.

Thus, we deduce that

∑
θ

π(θ)

∫
A−i

ev(θ,αi ,α′
−i )/λ

∏
i �=j

dμj

(
a′
j

)
∫
A
ev(θ,α′ )/λ

∏
j∈N

dμj

(
α′
j

) ≤ 1, αi ∈ Ai,

which is the first-order condition of the optimization problem

max
νi∈�(Ai )

V (νi, μ̄−i ),

where μ̄−i = (μj )j �=i. Hence, (ii) of Proposition 4 holds. Overall, we have shown that
ρ is robust to information acquisition. Given that for every player i, μi puts positive
probability only on pure actions, we conclude that ρ is strongly robust to unrestricted
information acquisition.

“Only if.” Let ρ ∈ �π(� × A) be strongly robust to unrestricted information acqui-
sition. In particular, ρ is robust to information acquisition in the sense of Definition 2.
Thus, there are μi ∈ �(Ai ), i ∈ N , that satisfy (i) and (ii) of Proposition 4. The additional
“strongly” qualification implies that for every player i, μi puts positive probability only
on pure actions. Define αi ∈ Ai by

αi(ai ) = μi(δai ),

where δai ∈ Ai is the Dirac measure concentrated on ai ∈ Ai. It is easy to see that (i) and
(ii) of Corollary 1 hold. In addition, for all i ∈N and ai ∈ Ai,

∑
θ,a−i

ρ(θ, ai, a−i ) =
∫
Ai

α′
i(ai )μi

(
α′
i

) = αi(ai ).

The Proof of Corollary 2 follows from the existence of a maximizer of V in Corol-
lary 1(ii).

Proof of Corollary 3. For every λ > 0 and i ∈ N , take μλ
i as in Proposition 4. For

every a �= a∗,

ρλ
(
a|θ∗) =

∫
A

n∏
i=1

αi(ai )e
v(θ∗,α)/λ

n∏
i=1

dμλ
i (αi )

∫
A
ev(θ∗,α)/λ

n∏
i=1

dμλ
i (αi )
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≤

∫
A

n∏
i=1

αi(ai )e
v(θ,α)/λ

n∏
i=1

dμλ
i (αi )

ev(θ,a∗ )/λ
n∏

i=1

μλ
i (δa∗

i
)

=

∫
A

n∏
i=1

αi(ai )e(v(θ,α)−v(θ,a∗ ))/λ
n∏

i=1

dμλ
i (αi )

n∏
i=1

μλ
i (δa∗

i
)

.

By (i), we have that

lim sup
λ→0

∫
A

n∏
i=1

αi(ai )e(v(θ,α)−v(θ,a∗ ))/λ
n∏

i=1

dμλ
i (αi ) = 0.

By (ii), we have that

lim inf
λ→0

μλ
i (δa∗

i
) > 0.

We deduce that ρλ(a|θ∗ ) → 0 as λ → 0. Since the choice of a �= a∗ was arbitrary, we
conclude that ρλ(a∗|θ∗ ) → 1 as λ → 0.

Proof of Lemma 1. Fix λ > 0. We will prove the stronger statement that there exists
ρλ ∈ �π(� × A) that is strongly robust to unrestricted information acquisition. To ease
notation, we drop the superscript λ and write ρ instead of ρλ.

Denote the players by i and j. For ρj ∈ �π(�×Aj ), define BRi(ρj ) ⊆ PAi
by

BRi(ρj ) = arg max
Pi∈PAi

∑
θ,a

ui(θ, a)Pi(ai|θ, aj )ρj(θ, aj ) − λIf (Pi, ρj ).

Since If (Pi, μj ) is jointly continuous in Pi and ρj , the correspondence

BRi : �π(�×Aj ) ⇒ PAi

has nonempty values and closed graph (by Berge’s maximum theorem). In addition,
If (Pi, ρj ) is convex in Pi.21 Thus, BRi also has convex values.

For ρj ∈ �π(�×Aj ), let Fi(ρj ) ⊆ �π(�×Ai ) be the set of all ρi ∈ �(�×Ai ) for which
there exists Pi ∈ PAi

such that for all θ and ai,

ρi(θ, ai ) =
∑
aj

Pi(ai|θ, aj )ρj(θ, aj ).

21This follows from the joint convexity of the mapping (p, q) → qf (p/q) on R
2++; see, e.g., Liese and

Vajda (2006, p. 4398).
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Since BRi has closed graph and nonempty convex values, the correspondence

Fi : �π(�×Aj ) ⇒ �π(�×Ai )

has closed graph and nonempty convex values. Given that Aj = Ai, we deduce that Fi

has a fixed point (by Kakutani’s fixed-point theorem).
Let ρj ∈ �(� × Ai ) be a fixed point of Fi; take a corresponding Pi ∈ BRi(ρj ). Define

ρ ∈ �(�×A) by

ρ(θ, a) = Pi(ai|θ, aj )ρj(θ, aj ).

We claim that ρ is strongly robust to unrestricted information acquisition. To verify the
claim, we use Proposition 3.

Let Pj ∈ PAj
be the mirror image of Pi: for all θ ∈� and a ∈A,

Pj(aj|θ, ai ) = Pi

(
a′
i|θ, a′

j

)
with a′

i = aj and a′
j = ai.

Let ρi ∈ �(�× Ai ) be the marginal distribution of ρ over states and i’s actions. Since ρj
is a fixed point of Fi, we have that for all θ ∈ � and ai ∈Ai,

ρi(θ, ai ) = ρj
(
θ, a′

j

)
with a′

j = ai.

It follows that (i) of Proposition 3 holds. In addition, by symmetry of the game, Pi ∈
BRi(ρj ) implies Pj ∈ BRj(ρi ). It also follows that (ii) of Proposition 3 holds. We conclude
that ρ is strongly robust (hence, robust) to unrestricted information acquisition.

Lemma 3. For λ sufficiently small, if ρλ is robust to unrestricted information acquisition,
then it is strongly robust.

Proof. Suppose that ρλ is robust to unrestricted information acquisition. Take μλ ∈
�π(�×A) and Pλ ∈ PA as in Proposition 2. To show that ρλ is also strongly robust, it is
enough to show that for all players i and states θ,

μλ
(
{δLeft , δRight } ×A−i|θ

) = 1.

By contradiction, suppose that

μλ
(
{δLeft , δRight } ×A−i|θ

)
< 1. (8)

We distinguish between two cases.
Case (i). We have∫

�×A−i

(
ui(θ, Left , α−i ) − ui(θ, Right , α−i )

)
Pλ
i (δLeft |θ, α−i ) dμλ

−i(θ, α−i ) = 0.

Thus, either player i never receives a mixed-action recommendation αi = δLeft or when
she receives it, she is indifferent between playing Left and Right. When player i receives
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a mixed-action recommendation αi �= δLeft , she must be willing to play Right:

∫
�×A−i

(
ui(θ, Left , α−i ) − ui(θ, Right , α−i )

)
Pλ
i (αi|θ, α−i ) dμλ

−i(θ, α−i ) ≤ 0.

Therefore, player i would get the same expected utility by deviating to a direct experi-
ment Qλ

i ∈ PAi
such that for all θ ∈� and α−i ∈ A−i,

Qλ
i (Right |θ, α−i ) = 1.

The experiment Qi is uninformative, which implies that Qi 	 Pi. For λ sufficiently small,
dominance regions guarantee that there are θ, θ′ ∈� such that

ρλ(Left , Left |θ) > 1/2 and ρλ
(
Right , Right |θ′)> 1/2.

This means that Pi cannot be uninformative. We deduce that Qλ
i ≺ Pλ

i . Since f is strictly
convex, If (Pλ

i , μλ
−i ) > If (Qλ

i , μλ
−i ). Thus, Pλ

i cannot be a best response to μλ
−i: contra-

diction.
Case (ii). We have∫

�×A−i

(
ui(θ, Left , α−i ) − ui(θ, Right , α−i )

)
Pλ
i (δLeft |θ, α−i ) dμλ

−i(θ, α−i ) > 0. (9)

Thus, player i receives the mixed-action recommendation αi = δLeft with positive prob-
ability, and when she receives it, she strictly prefers to play Left rather than Right. When
player i receives a mixed-action recommendation αi �= {δLeft , δRight }, she must be indif-
ferent between Left and Right:∫

�×A−i

(
ui(θ, Left , α−i ) − ui(θ, Right , α−i )

)
Pλ
i (αi|θ, α−i ) dμλ

−i(θ, α−i ) = 0. (10)

Therefore, player i would get the same expected utility by deviating to a direct experi-
ment Qi ∈ PAi

such that for all θ ∈� and α−i ∈ A−i,

Qλ
i (δLeft |θ, α−i ) = Pλ

i

(
Ai \ {δRight }|θ, α−i

)
,

Qλ
i (δRight |θ, α−i ) = Pλ

i (δRight |θ, α−i ).

It is obvious that Qλ
i 	 Pλ

i . But further inspection reveals that Qλ
i ≺ Pλ

i : it follows from
(8)–(10). Since f is strictly convex, If (Pλ

i , μλ
−i ) > If (Qλ

i , μλ
−i ). Thus, Pλ

i cannot be a best
response to μλ

−i: contradiction.

Proof of Proposition 5. By Lemma 3, we can assume that ρλ is strongly robust to
information acquisition. Take Pλ ∈ PA as in Proposition 3. For every player i, denote by
αλ
i ∈ Ai the marginal distribution over i’s actions:

αλ
i (ai ) =

∑
θ,a−i

ρλ(θ, ai, a−i ).
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Define also αi(ai ) = limλ→0 α
λ
i (ai ). It is clear that

αi(ai ) =
∑
θ,a−i

ρ(θ, ai, a−i ).

Dominance regions guarantee that there are θ, θ′ ∈� such that

ρ(Left , Left |θ) = 1 = ρ
(
Right , Right |θ′).

This implies that for both players i,

αi(Left ) ∈ (0, 1).

Thus, without loss of generality, we can assume that for all λ,

αλ
i (Left ) ∈ (0, 1). (11)

In short, for every θ ∈� and a−i ∈A−i, we define

�ui(θ, a−i ) = ui(θ, Left , a−i ) − ui(θ, Right , a−i ).

We prove the proposition in five claims.

Claim 3. If ρλ−i(θ, a−i ) > 0, then Pλ
i (ai|θ, a−i ) ∈ (0, 1).

Proof. For ease of exposition, we drop the superscript λ. By contradiction, suppose
that ρ−i(θ, a−i ) > 0 and Pi(ai|θ, a−i ) ∈ {0, 1}; without loss of generality, assume that
Pi(Left |θ, a−i ) = 0.

For every ε ∈ (0, 1), consider the deviation Pε
i ∈ PAi

given by

Pε
i

(
Left |θ′, a′

−i

) =
{
ε if

(
θ′, a′

−i

) = (θ, a−i ),

Pi

(
Left |θ′, a′

−i

)
if

(
θ′, a′

−i

) �= (θ, a−i ).

The quantity If (Pε
i , μ−i ) is convex in Pε

i ; thus, it is convex in ε. Therefore, we have the
inequality

If (Pi, μ−i ) − If
(
Pε
i , μ−i

) ≥ −∂If
(
Pε
i , μ−i

)
∂ε

ε. (12)

Since αi(Left ) ∈ (0, 1) (see (11)) and limt→0 f
′(t ) = −∞, basic calculus shows that

lim
ε→0

∂If
(
Pε
i , μ−i

)
∂ε

= −∞. (13)

In addition, simple algebra shows that∑
θ′,a′

ui
(
θ′, a′)Pi

(
a′
i|θ′, a′

−i

)
ρ−i

(
θ′, a′

−i

) −
∑
θ′,a′

ui
(
θ′, a′)Pε

i

(
a′
i|θ′, a′

−i

)
ρ−i

(
θ′, a′

−i

)

= −ε�ui(θ, a−i )ρ−i(θ, a−i ). (14)
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By (13), we can choose ε small enough such that

�ui(θ, a−i )ρ−i(θ, a−i ) >
∂If

(
Pε
i , μ−i

)
∂ε

.

It follows from (12) and (14) that Pε
i is a profitable deviation: contradiction.

Claim 4. For all θ ∈� and a−i ∈A−i,

�ui(θ, a−i ) = lim
λ→0

λf ′
(
Pλ
i (Left |θ, a−i )

αλ
i (Left )

)
− λf ′

(
Pλ
i (Right |θ, a−i )

αλ
i (Right )

)
.

Proof. Take θ ∈� and a−i ∈ A−i. It follows from Claim 3 that ρλ has full support. Thus,
in particular, ρλ−i(θ, a−i ) > 0 and Pλ

i (Left |θ, a−i ) ∈ (0, 1). In addition, the direct experi-
ment Pλ

i is an optimal solution to

max
Pi

∑
θ,a

ui(θ, a)Pi(ai|θ, a−i )ρ
λ
−i(θ, a−i ) − λIf (Pi, μ−i ).

Therefore, the following first-order condition must hold:

�ui(θ, a−i )ρ
λ
−i(θ, a−i ) = λ

∂λIf
(
Pλ
i , μ−i

)
∂Pλ

i (Left |θ, a−i )
.

Simple calculus shows that ∂λIf (Pλ
i , μ−i )/∂Pλ

i (Left |θ, a−i ) is equal to

ρλ−i(θ, a−i )

(
f ′

(
Pλ
i (Left |θ, a−i )

αλ
i (Left )

)
− f ′

(
Pλ
i (Right |θ, a−i )

αλ
i (Right )

)
+ o(1/λ)

)
,

where o(1/λ) grows much slower than 1/λ. The desired result follows.

Claim 5. If �ui(θ, a−i ) > 0, then Pλ
i (Left |θ, a−i ) → 1.

Proof. By contradiction, suppose that Pλ
i (Left |θ, a−i ) → t ∈ [0, 1). If t ∈ (0, 1), then

lim
λ→0

λf ′
(

t

αi(Left )

)
− λf ′

(
1 − t

αi(Right )

)
= 0 <�ui(θ, a−i ),

which contradicts Claim 4. If t = 0, then

lim
λ→0

λf ′
(

t

αi(Left )

)
≤ 0 <�ui(θ, a−i ),

which, again, contradicts Claim 4.

Claim 6. If Left is risk dominant at θ, then

ρ(Left , Left |θ) ≥
∑
θ′

ρ
(
Left , Left , θ′).
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Proof. Define αλ
i (Left |θ) and αi(Left |θ) by

αλ
i (Left |θ) = ρλ(Right , Left |θ) + ρλ(Left , Left |θ),

αi(Left |θ) = lim
λ→0

αλ
i (Left |θ) = ρ(Right , Left |θ) + ρ(Left , Left |θ).

In the limit, the players must perfectly coordinate their actions, which implies that

αi(Left |θ) = ρ(Left , Left |θ) and αi(Left ) =
∑
θ′

ρ
(
Left , Left , θ′).

Hence, to verify the claim, it is enough to show that

αi(Left |θ) ≥ αi(Left ). (15)

If θrr − θlr < 0, then the unique complete-information equilibrium is (Left, Left), which
implies that αi(Left |θ) = 1, which in turn implies that (15) trivially holds.

Assume now that θrr − θlr > 0, so that both (Left, Left) and (Right, Right) are strict
complete-information equilibria. By Claims 4 and 5,

θll − θrl = − lim
λ→0

λf ′
(
Pλ
i (Right |θ, Left )

αλ
i (Right )

)
,

θrr − θlr = − lim
λ→0

λf ′
(Pλ

i (Left )|θ, Right
)

αλ
i (Left )

).

Since Left is risk dominant at θ, θll − θrl > θrr − θlr . Thus, for λ sufficiently small,

f ′
(
Pλ
i (Right |θ, Left )

αλ
i (Right )

)
≤ f ′

(
Pλ
i (Left |θ, Right )

αλ
i (Left )

)
.

Since f is strictly convex, f ′ is strictly increasing. It follows that

Pλ
i (Left |θ, Right )

1 − Pλ
i (Left |θ, Left ) + Pλ

i (Left |θ, Right )
≥ αλ

i (Left ). (16)

Starting from the system of equations

αλ
i (Left |θ) = Pλ

i (Left |θ, Left )αλ
−i(Left |θ) + Pλ

i (Left |θ, Right )
(
1 − αλ

−i(Left |θ)
)
,

αλ
−i(Left |θ) = Pλ

−i(Left |θ, Left )αλ
i (Left |θ) + Pλ

−i(Left |θ, Right )
(
1 − αλ

i (Left |θ)
)
,

we obtain that αλ
i (Left |θ) is equal to

Pλ
−i(Left |θ, Right )

(
Pλ
i (Left |θ, Left ) − Pλ

i (Left |θ, Right )
) + Pλ

i (Left |θ, Right )

1 − (
Pλ
i (Left |θ, Left ) − Pλ

i (Left |θ, Right )
)(
Pλ

−i(Left |θ, Left ) − Pλ
−i(Left |θ, Right )

) .

By Claim 5, for λ sufficiently small,

Pλ
i (Left |θ, Left ) >Pλ

i (Left |θ, Right ) and Pλ
−i(Left |θ, Left ) >Pλ

−i(Left |θ, Right ).
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Thus, we can minorize αλ
i (Left |θ) and obtain that

αλ
i (Left |θ) ≥ Pλ

i (Left |θ, Right )

1 − Pλ
i (Left |θ, Left ) + Pλ

i (Left |θ, Right )
.

It follows from (16) that αλ
i (Left |θ) ≥ αλ

i (Left ).

Claim 7. If Left is less risky at θ than at θ′, then

ρ(Left , Left |θ) ≥ ρ
(
Left , Left |θ′).

Proof. If θ′
ll − θ′

rl < 0, then trivially

ρ(Left , Left |θ) ≥ 0 = ρ
(
Left , Left |θ′).

If θrr − θlr < 0, then trivially

ρ(Left , Left |θ) = 1 ≥ ρ
(
Left , Left |θ′).

Now assume that θll − θrl < 0. Since Left is less risky at θ than at θ′, θ′
ll − θ′

rl < 0. Hence,
(Right, Right) is the unique complete-information equilibrium both at θ and at θ′. It
follows that

ρ(Left , Left |θ) = 0 = ρ
(
Left , Left |θ′).

Next, assume that θ′
rr −θ′

lr < 0. Since Left is less risky at θ than at θ′, θrr −θlr < 0. Hence,
(Left, Left) is the unique complete-information equilibrium both at θ and at θ′. It follows
that

ρ(Left , Left |θ) = 1 = ρ
(
Left , Left |θ′).

Finally, assume that both (Left, Left) and (Right, Right) are complete-information equi-
libria at θ and at θ′. By Claims 4 and 5, we have that for both players i,

θll − θrl = − lim
λ→0

λf ′
(
Pλ
i (Right |θ, Left )

αλ
i (Right )

)
,

θrr − θlr = − lim
λ→0

λf ′
(
Pλ
i (Left |θ, Right )

αλ
i (Left )

)
,

θ′
ll − θ′

rl = − lim
λ→0

λf ′
(
Pλ
i

(
Right |θ′, Left

)
αλ
i (Right )

)
,

θ′
rr − θ′

lr = − lim
λ→0

λf ′
(
Pλ
i

(
Left |θ′, Right

)
αλ
i (Left )

)
.
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Since Left is less risky at θ than at θ′, we have that for λ sufficiently small,

f ′
(
Pλ
i (Right |θ, Left )

αλ
i (Right )

)
≤ f ′

(
Pλ
i

(
Right |θ′, Left

)
αλ
i (Right )

)
,

f ′
(
Pλ
i

(
Left |θ′, Right

)
αλ
i (Left )

)
≤ f ′

(
Pλ
i (Left |θ, Right )

αλ
i (Left )

)
.

Since f is strictly convex, f ′ is increasing. Thus,

Pλ
i (Right |θ, Left ) ≤ Pλ

i

(
Right |θ′, Left

)
,

Pλ
i

(
Left |θ′, Right

) ≤ Pλ
i (Left |θ, Right ).

Since this is true for both players i, we conclude that

ρ(Left , Left |θ) ≥ ρ
(
Left , Left |θ′).
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