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1. Introduction

This paper generalizes the concept of Bayes’ correlated equilibrium Bergemann and
Morris (2016) to multistage games. In a multistage game, a set of players interact over
several stages, and at each stage, players receive private signals about past and current
(payoff-relevant) states, past actions and past signals, and choose actions. Repeated
games and, more generally, stochastic games are examples of multistage games.

Consider an analyst, who postulates a multistage game, which we call the base game,
but also acknowledges that players may receive additional signals, which can depend
on past and current states, past actions, and past and current signals (including the past
additional ones). Define an expansion of the base game to be a multistage game that
differs from the base game only in that players receive additional signals. Which predic-
tions can the analyst make if he does not want to hypothesize a fixed expansion? Alter-
natively, consider an information designer who can design the additional information
players receive. Which outcomes can the information designer achieve?

Bergemann and Morris (2016) address the above questions within the class of static
games. These authors show that the Bayes’ correlated equilibria of the (static) base game
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characterize all the predictions the analyst can make, or equivalently, the outcomes the
information designer can achieve. (See below for an informal definition of a Bayes’ cor-
related equilibrium.) In many economic applications, however, the interaction between
the economic agents is best modeled as a dynamic game, where the agents receive in-
formation over time and have the opportunity to make multiple decisions.

As an example, consider the refinancing operations of central banks. Typically, cen-
tral banks organize weekly tender auctions to provide short-term liquidities to financial
institutions. While extensive regulations carefully specify the auction formats central
banks use, the information the financial institutions and the central banks receive over
time as well as the communication between them are substantially harder to model. An
analyst may thus want to postulate a base game, which captures all that is known to
him—auction format, public annoucements, public statistics—and to remain agnostic
about the private information the financial institutions and central banks have. In other
words, the analyst considers all possible expansions of the base game. Recent contri-
butions in the econometrics literature on partial identification have adopted such an
approach. See Bergemann, Brooks, and Morris (2019), Gualdani and Sinha (2021), Mag-
nolfi and Roncoroni (2017), and Syrgkanis, Tamer, and Ziani (2018).

Our main contribution is methodological. We derive several generalizations of the
concept of Bayes’ correlated equilibrium, where each generalization corresponds to a
solution concept for multistage games. We focus primarily on the concept of Bayes–
Nash equilibrium. While refinements are frequently used in applications, we do so for a
simple reason: the logical arguments do not differ from one solution concept to another.
Our main theorem (Theorem 1) states an equivalence between (i) the set of all distribu-
tions over states, signals in the base game, and actions induced by all Bayes–Nash equi-
libria of all expansions of the base game, and (ii) the set of all distributions over states,
signals in the base game, and actions induced by all Bayes’ correlated equilibria of the
base game.

At a Bayes’ correlated equilibrium of the base game, at each stage, an “omniscient”
mediator, who knows everything that has occurred, makes private recommendations of
actions to players, conditional on past and current states and signals, past actions and
past recommendations. In other words, the mediator makes recommendations at each
history of the base game. Moreover, at each stage, players have an incentive to be obe-
dient, if they have never disobeyed in the past, and expect others to have been obedient
in the past and to continue to be in the future. We stress here that the “omniscient” me-
diator is a metaphor, an abstract entity, which only serves as a tool to characterize all the
equilibrium outcomes we can obtain by varying the information structures. Whenever
we refer to the mediator making recommendations at a given history, it should be un-
derstood as the information structure—the statistical experiment—generating the addi-
tional signals conditional on the given history.

The logical arguments are simple. Fix an expansion of the base game and a (Bayes–
Nash) equilibrium. We show that we can emulate the equilibrium of the expansion
as an equilibrium of an auxiliary mediated game, where a dummy (additional) player
makes reports to a mediator and the mediator sends messages to the original players. In
that auxiliary mediated game, the dummy player knows the actions, signals, and states
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and the messages the mediator sends are the additional signals of the expansion. We
can then apply the classical revelation principle of Myerson (1986) and Forges (1986)
to replicate the equilibrium of the auxiliary mediated game as a canonical equilibrium
of the “direct” game, i.e., as an equilibrium of a mediated game where players report
their private information to the mediator, the mediator recommends actions and play-
ers are truthful and obedient, provided they have been in the past. At that canonical
equilibrium, the mediator is “omniscient” at truthful histories and players are obedient
provided they have been in the past: we have a Bayes’ correlated equilibrium. The very
same logic generalizes to a variety of other solution concepts. All we need is a revelation
principle.

Finally, we provide two illustrations of the broad applicability of our results. In par-
ticular, we extend the characterization of de Oliveira and Lamba (2019).

The closest paper to ours is Bergemann and Morris (2016), henceforth BM. These
authors characterize the set of distributions over actions, signals in the base game, and
states induced by all Bayes–Nash equilibria of all expansions of static base games, and
show the equivalence with the distributions induced by the Bayes’ correlated equilibria
of the static base games. The present paper generalizes their work to dynamic prob-
lems.1 Two main insights emerge from our generalization.

The first insight of our analysis is that we genuinely need the mediator to make rec-
ommendations at all histories. To understand the need for this, note that even in dy-
namic games where all the states and signals about the states are drawn ex ante, it would
not be enough to have the mediator recommend strategies as a function of the realized
states and signals at the first stage only. The reason is that players’ signals at interim
stages may also provide private information about the actions taken by players in earlier
stages. For instance, if the base game is a repeated game with imperfect monitoring, a
possible expansion is to perfectly inform players of past actions. As a result, if the medi-
ator could not react to deviations that are unobserved by some players, it might not be
able to induce the appropriate continuation play. In fact, as the introductory example
(Section 2) demonstrates, applying the definition of BM on the strategic form of even
the simplest multistage games does not characterize what we can obtain by considering
all equilibria of all expansions of the base game—an extensive-form game. The need
to work with games in extensive form to characterize their Bayes’ correlated equilibria
echoes a similar observation in Myerson (1986) regarding the gradual release of infor-
mation in communication games. This is not coincidental: Bayes’ correlated equilibria
are communication equilibria (Forges (1986), Myerson (1986)) of mediated games with
an “omniscient mediator.”

The second insight is that our characterization of Bayes’ correlated equilibrium in
multistage games generalizes to any solution concept for which a revelation principle

1Our work is related in spirit to Penta (2015) and Penta and Zuazo-Garin (2021). The first paper extends
the belief-free approach to robust mechanism design to dynamic problems, in which agents obtain infor-
mation over time about payoff-relevant states, but where actions are public. The second paper considers
the question of robust predictions when common knowledge assumptions about players’ information on
each other moves are relaxed; payoffs remain common knowledge. In contrast to our paper, where we
consider all expansions, Penta and Zuazo-Garin (2021) incorporate only “local” perturbations of the belief
hierarchies.
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holds. In particular, this is true for the two versions of perfect Bayesian equilibrium we
consider (Section 5). This is particularly important for many economic applications.
Bargaining problems (e.g., Bergemann, Brooks, and Morris (2015)), allocation problems
with aftermarkets (e.g., Calzolari and Pavan (2006), Giovannoni and Makris (2014), and
Dworczak (2020)), dynamic persuasion problems (Ely (2017) and Renault, Solan, and
Vieille (2017)) are all instances of dynamic problems, where sequential rationality is a
natural requirement.

Doval and Ely (2020) is another generalization of the work of BM and nicely comple-
ments our own generalization. These authors take as given states, consequences, and
state-contingent payoffs over the consequences, and characterize all the distributions
over states and consequences consistent with the players playing according to some
extensive-form game. Our work differs from theirs in two important dimensions. First,
we take as given the base game (and thus the order of moves). In some economic ap-
plications, it is a reasonable assumption. For instance, if we think about the refinancing
operations of central banks, the auction format and their frequencies define the base
game. If a first-price auction is used to allocate liquidities, it would not make sense to
consider games, where another auction format is used. In other applications, this is less
reasonable. Second, unlike Doval and Ely, we are able to accommodate dynamic prob-
lems, where the evolution of states and signals is controlled by the players through their
actions. This is a natural assumption in many economic problems, such as mergers with
ex ante match-specific investments or inventory problems.

Finally, this paper contributes to the literature on correlated equilibrium and its
generalizations, e.g., communication equilibrium (Myerson (1986), Forges (1986)),
extensive-form correlated equilibrium (von Stengel and Forges (2008)), or Bayesian so-
lution (Forges (1993, 2006)).2 The concept of Bayes’ correlated equilibrium is a general-
ization of all these notions. Solan (2001) is a notable exception. In stochastic games with
players perfectly informed of past actions and past and current states, Solan considers
general communication devices, where the mediator sends messages to the players as a
function of past messages sent and received, and the history of the game, i.e., the past
actions, and the past and current states. Solan’s mediator is omniscient. For that class
of games, Solan shows that the set of Bayes’ correlated equilibrium payoffs is equal to
the set of extensive-form correlated equilibrium payoffs. As we show in the introductory
example, this equivalence does not hold if players are not perfectly informed of past
actions. See Forges (1985) for a related result.

2. An introductory example

This section illustrates our main results with the help of a simple example. The exam-
ple highlights a novel and distinctive aspect of (unconstrained) information design in
dynamic games: In addition to providing information about payoff-relevant states, the
designer can choose the information players have about the past actions of others. For
example, in voting problems, the designer can choose how much information to reveal
about past votes.

2The concept of extensive-form correlated equilibrium was first introduced in Forges (1986). The con-
cept introduced in von Stengel and Forges (2008) differs from the one in Forges (1986).
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Figure 1. The base game.

Example 1. There are two players, labeled 1 and 2, and two stages. Player 1 chooses
either T or B at the first stage, while player 2 chooses either L or R at the second stage.
In the base game, player 2 has no information about player 1’s choice. Figure 1 depicts
the base game, with the payoff of player 1 as the first coordinate. ♦

Suppose that the information designer wants to maximize player 1’s payoff. Which
information structure(s) should it design?

To address that question, we generalize the work of Bergemann and Morris (2016) to
dynamic games. Bergemann and Morris (2016) characterize the distributions over out-
comes we can induce by varying the information players have in static games of incom-
plete information, i.e., as we vary the information a player has about the payoff-relevant
states and the information of others. They prove that the Bayes’ correlated equilibria of
the static base game characterize the distributions we can induce. At a Bayes’ corre-
lated equilibrium, an omniscient mediator recommends actions, and the players have
an incentive to be obedient.

Thus, a naive idea is to apply the concept of Bayes’ correlated equilibrium to the
strategic form of the base game. In our example, the unique Bayes’ correlated equi-
librium of the strategic form is (B, R) with a payoff profile of (1, 1). Working with the
strategic form is, however, too restrictive. For example, if the designer perfectly in-
forms player 2 of player 1’s action, the induced game has an equilibrium with out-
come (T , L) and associated payoff (2, 2). (In static games with complete informa-
tion, the set of Bayes’ correlated equilibria coincides with the set of correlated equilib-
ria.)

Our approach is to have the omniscient mediator recommending actions to the play-
ers not only at the initial history, but at each history of the dynamic game. In addition,
the players must have an incentive to be obedient, provided they have been obedient
in the past. This approach generalizes the definition of Bayes’ correlated equilibria of
Bergemann and Morris (2016) to multistage games and illustrates the need to work on
the extensive-form games. (Myerson (1986), has already pointed out the insufficiency of
the strategic form; see Section 2 of his paper.)

We now illustrate how our approach works in our example. Since the mediator is
omniscient and makes recommendations at all histories, we need to consider two rec-
ommendation kernels. The first kernel specifies the probability of recommending an



1480 Makris and Renou Theoretical Economics 18 (2023)

action to player 1 at the first stage. The second kernel specifies the probability of rec-
ommending an action to player 2 at the second stage as a function of the action rec-
ommended and chosen at the first stage. Players must have an incentive to be obedi-
ent. We claim that there exist such recommendation kernels with a payoff profile of
(5/2, 1).

To see this, assume that the mediator recommends with probability 1/2 player 1 to
play T and with the complementary probability to play B at the first stage, and recom-
mends player 2 to play L at the second stage if and only if, player 1 was obedient at the
first stage. (Otherwise, the mediator recommends R.) We now prove that the players
have an incentive to be obedient.

If player 2’s recommendation is L, he believes that player 1 has played T with prob-
ability 1/2, and thus expects a payoff of 1 if he plays L. He therefore has an incentive to
be obedient. If player 2’s recommendation is R, we are off the equilibrium path and any
conjecture that puts probability of at least 1/2 on player 1 having played B makes R op-
timal. As for player 1, he clearly has an incentive to be obedient when his recommenda-
tion is B since he gets his highest payoff. When his recommendation is T , a deviation to
B is unprofitable because this leads player 2 to play R. Thus, we have a Bayes’ correlated
equilibrium with a payoff profile of (5/2, 1).

We now argue that no information structures can give player 1 a payoff higher than
5/2, hence answering our initial question. Since player 2 can always play R, player 2’s
payoff cannot be lower than 1. Therefore, within the set of feasible payoff profiles, con-
ditional on player 2’s getting a payoff of at least 1, player 1’s highest payoff is 5/2.

Finally, we now explain how we can use the Bayes’ correlated equilibrium to design
an information structure, whose associated expansion generates an equilibrium payoff
of (5/2, 1). The idea is simple; think of recommendations as signals. Accordingly, sup-
pose that there are two equally likely signals, t and b, at the first stage, and two signals l

and r at the second stage. Player 1 privately observes the first signal, while player 2 ob-
serves the signal l if only if either (t, T ) or (b, B) is the profile of signal and action at the
first stage. With such information structure, players have an incentive to play according
to their signals, and thus,we obtain the payoff profile (5/2, 1).

As a final observation, consider the alternative base game in Figure 2, where we re-
verse the order of play. (The first coordinate of a payoff vector refers to player 1’s payoff.)

Note that the two base games have the same strategic form. Yet, their set of Bayes’
correlated equilibria differ. The alternative base game has the unique payoff profile
(1, 1) as Bayes’ correlated equilibrium’s payoff. Indeed, on path, player 1 must play B

Figure 2. An alternative base game: reversing the order of play.
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since T is strictly dominated. And since player 2 can guarantee a payoff of 1 by playing
R, the unique outcome is (B, R).

3. Multistage games and expansions

The model follows closely Myerson (1986). There is a set I of n players, who interact
over T < +∞ stages, numbered 1 to T . (With a slight abuse of notation, we denote T

the set of stages.) At each stage, a payoff-relevant state is drawn, players receive private
signals about past and current states, past private signals and actions, and choose an
action. We are interested in characterizing the joint distributions over profiles of states,
actions, and signals, which arise as equilibria of “expansions” of the game, i.e., games
where players receive additional signals.

3.1 The base game

We first define the base game �, which corresponds to the game being played if no ad-
ditional signals are given to the players. At each stage t, a state ωt ∈ �t is drawn, player
i ∈ I receives the private signal si,t ∈ Si,t , which may depend probabilistically on the cur-
rent and past states, past signals, and actions, and then chooses an action ai,t ∈ Ai,t . All
sets are nonempty and finite.

The description of the base game is very flexible. It can accommodate games
with perfect or imperfect observation, repeated games with incomplete information,
or stochastic games, among others. We stress, however, that the base game puts cer-
tain restrictions on what an information designer can do or what robustness exercises
an analyst can conduct. For instance, once the order of moves is fixed, we cannot have
a player receiving information (original or additional) about the moves of players who,
according to the base game, move at a later stage.

We now introduce some notation. We write At :=×i∈I Ai,t for the set of actions at
stage t and A :=×t∈T×i∈I Ai,t for the set of profiles of actions. We let Hi,t = Ai,t−1 ×
Si,t be the set of player i’s new information at the beginning of stage t ∈ {2, � � � , T }, Hi,1 =
Si,1 the set of initial information, and Hi,T+1 = Ai,T the set of new information at the
end of the last stage.

We denote p1(h1, ω1 ) the joint probability of (h1, ω1 ) at the beginning of the first
stage and pt+1(ht+1, ωt+1|at , ht , ωt ) the joint probability of (ht+1, ωt+1 ) at stage t + 1
given that at is the profile of actions played at stage t and (ht , ωt ) is the history of ac-
tions played, signals received, and states realized at the beginning of stage t. We assume
perfect recall and, therefore, impose that pt+1((bt , st+1 ), ωt+1|at , ht , ωt ) = 0 if bt �= at .

We denote H� the subset of×T+1
t=1 (×i∈I Hi,t ×�t ) that consists of all terminal his-

tories of the game, with generic element (h, ω).3 The history (h, ω) is in H� if and only
if there exists a profile of actions a ∈A such that

pa(h, ω) := p1(h1, ω1 ) ·
∏
t∈T

pt+1
(
ht+1, ωt+1|at , ht , ωt

)
> 0.

3The sets ST+1 and �T+1 are defined to be a singleton.
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For any vector (h, ω), we can denote various subvectors: hi = (hi,1, � � � , hi,t , � � � ,
hi,T+1 ) the private (terminal) history of player i, ht

i = (hi,1, � � � , hi,t ) the private history
of player i at stage t, ht = (h1,t , � � � , hn,t ) the profile of actions played at stage t − 1 and
signals received at stage t, ht = (h1, � � � , ht ) the history of signals and actions at stage t,
ω= (ω1, � � � , ωT ) the profile of realized states, and ωt = (ω1, � � � , ωt ) the profile of states
realized up to stage t, with corresponding sets Hi = {hi : (h, ω) ∈ H� for some ω}, Ht

i =
{ht

i : (h, ω) ∈ H� for some ω}, Ht = {ht : (h, ω) ∈ H� for some ω}, Ht = {ht : (h, ω) ∈
H� for some ω}, � = {ω : (h, ω) ∈ H� for some h}, �t = {ωt : (h, ω) ∈ H� for some h}.
We write Ht�t for the restriction of H� to the first t stages. We let Ĥ :=×i∈I Hi and
Ĥt :=×i∈I Ht

i . Similar notation will apply to other sets. If there is no risk of confusion,
we will not formally define these additional notation.

The payoff to player i is ui(h, ω) when the terminal history is (h, ω) ∈ H�. We
assume that payoffs do not depend on the signal realizations, i.e., for any two histo-
ries h = (a, s) and h′ = (a′, s′ ) such that a = a′, ui(h, ω) = ui(h′, ω) for all ω, for all i.4

Throughout, we refer to the signals in S as the base signals.

3.2 Expansions

In an expansion of the base game, at each stage, players receive additional signals, which
may depend probabilistically on past and current states, past and current signals (in-
cluding the past additional ones), and past actions. Thus, players can receive additional
information not only about the realization of current and past (payoff-relevant) states
(such as the valuations for objects in auction problems), but also about the past realiza-
tion of actions (as in repeated games with imperfect monitoring). Throughout, we use
the same notation as in the base game to denote relevant subvectors and their corre-
sponding sets.

Formally, an expansion is a collection of sets of additional private signals (Mi,t )i,t
and probability kernels (ξt )t such that all sets of additional signals are nonempty and
finite, ξ1 : H1 ×�1 → �(M1 ), and ξt : Ht ×Mt−1 ×�t → �(Mt ) for all t ≥ 2.5 Intuitively,
at each stage t, player i receives the additional private signal mi,t ∈Mi,t , with

ξt
(
mt|ht , mt−1, ωt

)
the probability of mt when (ht , mt−1, ωt ) is the history of actions, base signals, states,
and past additional signals at the beginning of stage t. We write M for the collection
(Mi,t )i,t and ξ for (ξt )t .

Together with the base game �, an expansion (M , ξ) induces a multistage game �π ,
where at each stage t, a payoff-relevant state ωt is realized, player i receives the private
signal (si,t , mi,t ), and takes an action ai,t . To complete the description of the induced
multistage game, we let π1(h1, m1, ω1 ) := ξ1(m1|h1, ω1 )p1(h1, ω1 ) be the probability of
(h1, m1, ω1 ) at the first stage and

πt+1
(
ht+1, mt+1, ωt+1|at , ht , mt , ωt

)
:= ξt+1

(
mt+1|ht+1, mt , ωt+1)pt+1

(
ht+1, ωt+1|at , ht , ωt

)
4This is without loss of generality as we can always redefine the states to include the signals.
5The set Mi,T+1 is a singleton.
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the probability of (ht+1, mt+1, ωt+1 ) when at is the profile of actions played at stage t

and (ht , mt , ωt ) is the history of actions, signals, and states at the beginning of stage t.
With a slight abuse of language, we use the word “expansion” to refer to the collection of
additional signals and kernels (M , ξ) as well as to the multistage game �π induced by it.

It is worth stressing that our definition of expansions implies that the evolution of
future states and base signals, as a function of earlier actions, states and base signals, is
known to the analyst/designer in the sense of being pinned down by the base game (and
hence remains constant across all expansions). Additional signals are just information
and do not cause future states.

We denote HM� the set of all terminal histories, with (h, m, ω) ∈ HM� if and only
if (h, ω) ∈ H�. We do not require, however, histories (h, m, ω) ∈ HM� to have strictly
positive probability for some profile of actions, i.e., for all (h, m, ω) ∈ HM�, we do not
require the existence of a ∈A such that

πa(h, m, ω) := π1(h1, m1, ω1 ) ·
∏
t∈T

πt+1
(
ht+1, mt+1, ωt+1|at , ht , mt , ωt

)
> 0.

In other words, we do not prune out the additional messages, even when they have
zero probability under all action profiles. (Note that (h, ω) ∈ H� corresponds to∑

mπa(h, m, ω) > 0 for some a.)
In closing, it is worth noting that an expansion ξ induces a collection of kernels π,

with the property that margH�π
a = pa for all a ∈A, i.e.,

∑
(m1, ���,mT )

(
π1(h1, m1, ω1 ) ·

∏
t∈T

πt+1
(
ht+1, mt+1, ωt+1|at , ht , mt , ωt

))

= p1(h1, ω1 ) ·
∏
t∈T

pt+1
(
ht+1, ωt+1|at , ht , ωt

)
. (†)

We call this property consistency. As explained in the Introduction, in static problems,
the converse is also true, i.e., any consistent kernel π induces an expansion ξ. This
equivalence breaks down in dynamic problems. This is the case when the additional sig-
nals are not just signals, but also cause the realization of future states and base signals,
so that the base game stops pinning down their evolution (see Example 2 below).

4. A first equivalence theorem and an application

This section contains our first characterization theorem—other characterizations will
differ by the solution concepts adopted. In Section 4.1, we consider the concept of
Bayes–Nash equilibrium. This allows us to present our first characterization theorem in
the simplest possible terms, without cluttering the analysis with issues such as consis-
tency of beliefs, sequential rationality, or truthfulness and obedience at off-equilibrium
path histories. As we will see, the main arguments extend almost verbatim to other
solution concepts. In addition, if we are interested in proving an impossibility result,
e.g., whether efficiency obtains, the weaker the solution concept, the stronger the re-
sult. Section 5 extends our analysis to two refinements of the concept of Bayes–Nash
equilibrium, which all impose sequential rationality.
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4.1 A first equivalence theorem

We first define the concepts of Bayes–Nash equilibrium and Bayes’ correlated equilib-
rium. Throughout, we fix an expansion �π of �. A behavioral strategy σi is a collection
of maps (σi,t )t∈T , with σi,t : Ht

iM
t
i → �(Ai,t ).

Definition 1 (BNE). A profile σ of behavioral strategies is a Bayes–Nash equilibrium of
�π if ∑

h,m,ω

ui(h, ω)Pσ ,π(h, m, ω) ≥
∑

h,m,ω

ui(h, ω)P(σ ′
i ,σ−i ),π(h, m, ω),

for all σ ′
i , for all i, with Pσ̃ ,π ∈ �(HM�) denoting the distribution over profiles of actions,

signals, and states induced by σ̃ and π.

We let BNE(�π ) be the set of distributions overH� induced by the Bayes–Nash equi-
libria of �π .

We now state formally the main objective of our paper: We want to provide a charac-
terization of the set

⋃
�π an expansion of �BNE(�π ), i.e., we want to characterize the distri-

butions over the outcomes H� of the base game � that we can induce by means of some
expansion �π of the base game, without any reference to particular expansions. To do
so, we need to introduce the concept of Bayes’ correlated equilibrium of �.

Bayes’ correlated equilibrium Consider the following mediated extension of �, denoted
M(�). At each period t, player i observes the private signal hi,t , receives a private rec-
ommendation âi,t from an “omniscient” mediator—a mediator who knows everything
that has occurred in M(�)—and chooses an action ai,t . We let τi,t : Ht

i × At
i → �(Ai,t )

be an action strategy at period t and write τ∗
i,t for the obedient strategy. We write τi for

(τi,t )t and τ for (τi )i.

Definition 2 (BCE). A Bayes’ correlated equilibrium of � is a collection of recommen-
dation kernels μt : Ht�t ×At−1 → �(At ) such that τ∗ is an equilibrium of the mediated
game M(�), i.e.,∑

h,ω,â

ui(h, ω)Pμ◦τ∗,p(h, ω, â) ≥
∑
h,ω, â

ui(h, ω)Pμ◦(τi ,τ∗
−i ),p(h, ω, â)

for all τi, for all i, with Pμ◦τ̃,p denoting the distribution over profiles of actions, base
signals, states, and recommendations induced by μ ◦ τ̃ and p.

We let BCE(�) be the set of distributions over H� induced by the Bayes’ correlated
equilibria of �. The set BCE(�) is convex.

It is instructive to compare the concept of Bayes’ correlated equilibrium and com-
munication equilibrium (Forges (1986), Myerson (1986)). In a communication equilib-
rium, the mediator relies on the information provided by the players to make recom-
mendations, while in a Bayes’ correlated equilibrium it is as if the mediator knows the
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realized states, actions, and base signals prior to making recommendations—the medi-
ator is omniscient. Let CE(�) be the distributions over H� induced by the communica-
tion equilibria of �. For all multistage games �, we have that CE(�) ⊆ BCE(�) since the
omniscient mediator can always replicate the Forges–Myerson mediator. Since we also
have that BNE(�) ⊆ CE(�), we have the inclusion BNE(�) ⊆ BCE(�). However, it is a
priori unclear whether BNE(�π ) ⊆ BCE(�) for all expansions �π of � since players have
additional signals in �π , while the omniscient mediator of � has no additional signals. A
consequence of our main result, Theorem 1, is that it is indeed the case.

Theorem 1. We have the following equivalence:

BCE(�) =
⋃

�π an expansion of �

BNE(�π ).

Theorem 1 states an equivalence between (i) the set of distributions over actions,
base signals, and states induced by all Bayes’ correlated equilibria of � and (ii) the set
of distributions over actions, base signals, and states we can obtain by considering all
Bayes–Nash equilibria of all expansions of �.6

Theorem 1 generalizes the work of BM to multistage games. As the introductory
example demonstrates, our definition of a Bayes’ correlated equilibrium is, in general,
weaker than applying the definition of BM to the strategic form of the base game, which
would amount to making recommendations of strategies at the first stage, as a func-
tion of the realized states and base signals. Yet, in multistage base games where (i) all
the states and base signals are drawn at the first stage, (ii) players observe their signals
sequentially over time, and (iii) past actions are perfectly observable, the two formula-
tions are equivalent. To see this, we first define the concept of “ex ante” Bayes’ correlated
equilibrium. To ease notation, assume that the profile (s, ω) of base signals and states is
drawn with probability p(s, ω) at the first stage, and no states and base signals are drawn
at later stages. An “ex ante” Bayes’ correlated equilibrium is a kernel μ : S × � → �(�)
(where � is the set of strategies of �), which satisfies∑

ω,s,σ−i ,a

p(s, ω)μ(σ |s, ω)P(σi ,σ−i )(a|s)ui(a, ω)

≥
∑

ω,s,σ−i ,a

p(s, ω)μ(σ |s, ω)P(σ ′
i ,σ−i )(a|s)ui(a, ω),

for all σ ′
i , σi, i. In words, players must have an incentive to be obedient.

Clearly, any distribution induced by an “ex ante” Bayes’ correlated equilibrium is
in BCE(�). Indeed, we can interpret the kernel μ as an expansion, where M1 = � and
ξ1 = μ, and an equilibrium of that expansion is to play according to one’s additional
signal—the recommended strategy.

Conversely, consider a Bayes’ correlated equilibrium μ of such multistage games,
where μt(ât|ât−1, at−1, s, ω) is the probability of recommending ât , when the profile of

6In a supplementary document, we also prove the equivalence with the set of distributions over actions,
base signals, and states we can obtain by considering all communication equilibria of all expansions of �.
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past recommendations and actions is (ât−1, at−1 ) and the profile of states and signals is
(s, ω). The intuition is best understood when there is a single stage. At a Bayes’ corre-
lated equilibrium, the omniscient mediator, who knows (s, ω), recommends ai to player
i with probability μ(ai|s, ω) = ∑

a−i
μ((ai, a−i )|s, ω), and player i has an incentive to be

obedient when his signal is indeed si. An alternative, but equivalent, formulation would
be to recommend a strategy σ[ai ,si]

i to player i, which stipulates to play ai when the signal
is si. Player i would indeed have an incentive to follow that strategy when his signal is
si. When there are more stages, a similar construction is possible. We now sketch it and
refer the reader to the supplementary materials for the details.

The idea is to associate with (μt(·|·, ·, s, ω))t an outcome-equivalent distribution
over feedback rules f = (ft : At−1 × At−1 → At )t (as in Kuhn’s theorem), and with
each feedback rule f and signal s, a strategy σ[f ,s] such that players have an incen-
tive to be obedient. (When there is a single stage, feedback rules are actions.) For-
mally, for each feedback rule f , define recursively: f 1(∅) = f1(∅, ∅) and f t(at−1 ) =
(f t−1(at−2 ), ft(at−1, f t−1(at−2 ))) for all at−1, for all t. We now associate a pure strategy

σ
[f ,s]
i with the feedback rule f and the profile of signals s, as follows: σ

[f ,s]
i,t (sti , a

t−1 ) =
fi,t(at−1, f t−1(at−2 )) for all at−1, for all t, with fi,t(at−1, f t−1(at−2 )) the ith component

of ft(at−1, f t−1(at−2 )). In words, σ[f ,s]
i dictates player i to play as f dictates when his

signal’s realizations are (si ). Let σ[f ,s] be the profile (σ[f ,s]
i )i. It is important to stress that

the strategy is well-defined because all past actions are perfectly observed. Without that
assumption, this would not be the case. Finally, if the mediator recommends σ[f ,s] with
probability

μ
(
σ[f ,s]|s, ω

) =×
t

×
at−1, ât−1

μt
(
ft

(
at−1, ât−1)|at−1, ât−1, s, ω

)
,

then it is routine to verify that the players have an incentive to be obedient and the
desired distribution over actions, signals, and states, is implemented. The equivalence,
however, breaks down if either actions are not perfectly observed (as in the introductory
example) or states and signals are not drawn at the first stage, e.g., because the players
control their evolutions through their actions.

As in BM, the proof of BCE(�) ⊆ ⋃
�π an expansion of �BNE(�π ) is constructive. How-

ever, unlike BM’s constructive proof, our proof of
⋃

�π an expansion of �BNE(�π ) ⊆ BCE(�)
is nonconstructive: it utilizes the revelation principle of Forges (1986) and Myerson
(1986). This approach has two main advantages: (i) it reveals the main logical argu-
ments, which are somewhat hidden in constructive proofs, and (ii) its generalization to
many other solution concepts is straightforward. The central arguments are the follow-
ing. Consider an expansion �π of � and an equilibrium distribution μd ∈ BNE(�π ). By
definition, there exists a Bayes–Nash equilibrium σ of �π , which induces μd . The main
idea is to replicate the expansion �π and its equilibrium σ as a Bayes–Nash equilib-
rium of an auxiliary mediated game M∗(�), which we now describe. The game M∗(�)
has one additional dummy player, called player 0, and a Forges–Myerson mediator,
who receives reports by and sends messages to the players. At the first stage, Nature
draws (h1, ω1 ) with probability p1(h1, ω1 ), player i observes hi,1 and player 0 observes
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(h1, ω1 ). Player 0 then reports (ĥ1, ω̂1 ) to the mediator; all other players do not make
reports (their sets of reports are singletons). The mediator then draws the message m1

with probability ξ1(m1|ĥ1, ω̂1 ) and sends mi,1 to player i. Player 0 does not receive a
message. Finally, player i chooses an action ai,1; player 0 does not take an action. Con-
sider now a history (at−1, ht−1, ωt−1 ) of past actions, signals, and states and a history
((ĥt−1, ω̂t−1 ), mt−1 ) of reports and messages. Stage t unfolds as follows:

– Nature draws (ht , ωt ) with probability pt(ht , ωt|at−1, ht−1, ωt−1 ).

– Player i ∈ I observes the signal hi,t and player 0 observes (ht , ωt ).

– Player 0 reports (ĥt , ω̂t ) to the mediator. All other players do not make reports.

– The mediator draws the message mt with probability ξt(mt|ĥt , mt−1, ω̂t ) and sends
the message mi,t to player i. Player 0 does not receive a message.

– Player i takes an action ai,t . Player 0 does not take an action.

If player 0 is truthful and each player i ∈ I follows σi, we have a Bayes–Nash equilib-
rium of the mediated game M∗(�), with equilibrium distribution μd . From the revela-
tion principle of Forges (1986) and Myerson (1986), there exists a canonical equilibrium,
which implements μd , i.e., an equilibrium where players report their private informa-
tion to the mediator, the mediator recommends actions and players are truthful and
obedient provided that they have been in the past.7 At truthful histories, the mediator is
omniscient and players have an incentive to be obedient provided they have been in the
past: this is the Bayes’ correlated equilibrium.

Before applying Theorem 1, two additional remarks are worth making. First, the
above arguments are not limited to the concept of Bayes–Nash equilibrium. The same
arguments apply to all solution concepts, such as weak perfect Bayesian equilibrium or
conditional probability perfect Bayesian equilibrium, which admit a revelation princi-
ple. We formally state these equivalences below. Second, the above arguments clearly
demonstrate the role our definition of an expansion plays. It makes it possible for the
mediator to replicate any expansion as the kernels ξt are assumed measurable with re-
spect to the mediator’s histories. With the alternative and weaker definition of an ex-
pansion as a consistent information structure, i.e., margπa = pa for all a, it is no longer
guaranteed that the mediator, despite being omniscient, can simulate any expansion, as
the next example illustrates.

Example 2. We first define the base game. There are a single player, two stages, two
actions A1 = {0, 1} at the first stage, two states �2 = {0, 1} at the second stage, and all
other sets are singletons. The probabilities are: p2(ω2 = 1|a1 = 1) = 5/6 and p2(ω2 =
1|a1 = 0) = 1/2. The player’s payoff is one (resp., zero) if the second-stage state is zero
(resp., one), regardless of his action. ♦

7Proposition 2 in Sugaya and Wolitzky (2021) is a restatement of the revelation principle of Forges (1986)
and Myerson (1986). It also applies to mediated games, where the mediator receives private signals in
addition to the players’ reports. With such restatement, we can dispense with the dummy player and have
the mediator directly learn (ht , ωt ).
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Consider now the following information structure: M1 = {0, 1}, M2 is a singleton,
π1(m1 = 1) = 1/2, π2(ω2 = 1|a1 = 1, m1 = 1) = 2/3, π2(ω2 = 1|a1 = 0, m1 = 1) = 1,
π2(ω2 = 1|a1 = 1, m1 = 0) = 1, and π2(ω2 = 1|a1 = 0, m1 = 0) = 0. This information
structure is consistent, but there are no kernels (ξ1, ξ2 ) that induce this information
structure from the base game. The issue is that action a1 and additional signal m1 jointly
cause the second-stage state ω2. In other words, the signal m1 is not just additional in-
formation; it also determines the realization of the second-period state.

Player’s optimal payoff is 2/3 in the game �π : the optimal strategy consists in playing
a1 = 1 (resp., a1 = 0) when m1 = 1 (resp., m1 = 0). The player’s optimal strategy consists
in choosing the action that maximizes the likelihood of the second-stage state being 0.
The induced distribution μ over actions and states is μ(a1 = 0, ω2 = 0) = 1/2, μ(a1 =
0, ω2 = 1) = 0, μ(a1 = 1, ω2 = 0) = 1/6, μ(a1 = 1, ω2 = 1) = 1/3. This is not a Bayes’
correlated distribution. In any Bayes’ correlated equilibrium, the probability of (a1, ω2 )
is μ1(a1 )p2(ω2|a1 ) and there is no μ1 that induces the distribution μ.

4.2 Application I: Rationalizing dynamic choices

Suppose that an analyst observes the choices of a decision-maker over a finite number
of periods, but does not observe the information the decision-maker had. Suppose, fur-
thermore, that the analyst assumes that the state does not change over time. Which pro-
files of choices can be rationalized? This question was recently addressed by de Oliveira
and Lamba (2019), under the assumption that the information the decision-maker re-
ceives over time is independent of his actions. With our notation, this is equivalent to
requiring that ξt(·|at−1, mt−1, ω) = ξt(·|ãt−1, mt−1, ω) for all (at−1, ãt−1 ), for all mt−1, for
all t.8 We call such expansions autonomous.

We now show how Theorem 1 makes it possible to extend their result to all expan-
sions. Throughout, we follow the terminology of de Oliveira and Lamba.

We say that the profile of choices a∗ := (a∗
1, � � � , a∗

T ) is rationalizable if there exist a
probability p ∈ �(�), sets of signals Mt , and kernels ξt : At−1 ×Mt−1 ×� → �(Mt ) such
that the decision-maker chooses optimally and (a∗

1, � � � , a∗
T ) is optimal for some realiza-

tions (ω, m) of states and signals. As de Oliveira and Lamba, we assume the decision-
maker payoff function u is known to the analyst.

From Theorem 1, the profile of choices if there exists a probability p ∈ �(�) and
a Bayes’ correlated equilibrium μ such that Pμ◦τ∗,p(a∗ ) > 0. Recall that μ is a Bayes’
correlation equilibrium if∑

a,ω, â

u(a, ω)Pμ◦τ∗,p(a, ω, â) ≥
∑
a,ω, â

u(a, ω)Pμ◦τ,p(a, ω, â),

for all τ. The objective is to derive conditions on the primitives, which guarantee the
existence of such a Bayes’ correlated equilibrium.

8As all sets of base signals are singletons, we do not denote them. Similarly, since the state does not
change over time, we write ω for the fully persistent state.
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We need some additional notation. We say that D : A → �(A) is a deviation plan if
there exists a behavioral strategy τ such that

D(a1, � � � , aT |â1, � � � , âT ) :=
T∏
t=1

τt
(
at| (â1, � � � , ât )︸ ︷︷ ︸

recommendations

, (a1, � � � , at−1 )︸ ︷︷ ︸
choices

)

for all (â, a). A deviation plan specifies what the decision-maker would do if he were to
face a fixed sequence of recommendations.

We say that γ : A → A is a recommendation plan if there exist maps γt : At−1 → At

such that

γ(a) = (
γ1(∅), γ2(a1 ), � � � , γt(a1, � � � , at−1 ), � � � , γT (a1, � � � , aT−1 )

)
for all a, with the convention that A0 = {∅}. A recommendation plan specifies a recom-
mendation for each fixed sequence of choices. We write γ≥t(a) for (γt(a1, � � � , at−1 ), � � � ,
γT (a1, � � � , aT−1 )).

Finally, we define the sets: B1
a := (A1 \ {a1}) ×A2 × · · · ×AT , Bt

a := {(a1, � � � , at−1 )} ×
(At \ {at }) × At+1 × · · · × AT for all t ∈ {2, � � � , T − 1}, and BT

a := {(a1, � � � , aT−1 )} × AT .
(By convention, if T = 1, then B1

a = A1.) For all t < T , the set Bt
a is the set of all profiles

of choices, which coincide with a up to period t − 1 and differ from a at period t. Note
that the sets are pairwise disjoint and

⋃T
t=1 B

t
a = A for all a. We are now ready to state

our main definition.

Definition 1. The profile a∗ is surely dominated if there exists a deviation plan D such
that for all ω, for all a, for all recommendation plans γ:

u
(
a∗, ω

)
<

T∑
t=1

∑
b∈Bt

a∗

u(b, ω)D
(
b|a∗

1, � � � , a∗
t , γ≥t+1(b)

)
, (D1)

u(a, ω) ≤
T∑
t=1

∑
b∈Bt

a

u(b, ω)D
(
b|a1, � � � , at , γ≥t+1(b)

)
. (D2)

Intuitively, a profile of choices is surely dominated if the decision-maker has a de-
viation plan, which guarantees an improvement regardless of the state ω, the period
t at which the decision-maker is first disobedient, and the subsequent recommenda-
tions γ≥t+1(b), which may depend on the past choices. (By convention, the profile
(a1, � � � , aT , γ≥T+1(b)) = (a1, � � � , aT ) for all b.) We have the following characterization.

Theorem 2. The profile of choices a∗ is rationalizable if and only if it is not surely domi-
nated.

To get some intuition for Theorem 2, let us first consider the special case of a single
decision (T = 1). When the decision-maker makes a single decision, it is well known
that a∗ is rationalizable if and only if it is not strictly dominated, i.e., there does not exist
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a mixed action α ∈ �(A) such that u(a∗, ω) <
∑

b u(b, ω)α(b) for all ω. We now argue
that sure dominance is equivalent to strict dominance. To see this, if a∗ is strictly dom-
inated by α, then choosing D(·|a∗ ) = α and D(·|a) = 1(a) for all a �= a∗ guarantees that
a∗ is surely dominated. Conversely, choosing α = D(·|a∗ ) guarantees that a∗ is strictly
dominated.

To understand the role of (D2), we need to consider genuine dynamic problems.
So, let us assume that the decision-maker has to choose twice (T = 2). To play a∗ =
(a∗

1, a∗
2 ) with positive probability, the decision-maker must find it optimal to play a∗

1 at
the first period given that he will play a∗

2 with some probability at the second period
and other actions with the complementary probability. Condition (D2) guarantees that
the decision-maker would not find it optimal to play a∗

1 at the first period, regardless of
what he would play at the second period. Finally, the role of γ is to capture the fact that
the recommendations and, therefore, the information the decision-maker receives may
depend on his past actions.

As already mentioned, de Oliveira and Lamba (2019) were the first to consider the
problem of rationalizing dynamic choices, restricting attention to autonomous expan-
sions. We extend their work in that we consider all expansions. It is instructive to com-
pare their characterization with ours. Their main result states that the profile a∗ is ratio-
nalizable if and only if it is not truly dominated. An action profile is truly dominated if
there exists a deviation plan that strictly increases the payoff along the action sequence
without worsening payoffs at other parts of the decision tree, regardless of the state.
Formally, the profile a∗ is truly dominated if there exists a deviation rule D such that

u
(
a∗, ω

)
<

∑
b

u(b, ω)D
(
b|a∗),

u(a, ω) ≤
∑
b

u(b, ω)D(b|a),

for all ω, for all a.
Clearly, if a profile a∗ is surely dominated, then it is truly dominated. Indeed, if we

choose γ≥t+1(b) to be equal to (at+1, � � � , aT ) for all (a, b, t ), then we recover the condi-
tions for true dominance.

To understand the differences, recall that de Oliveira and Lamba (2019) restrict
attention to autonomous expansions. With such a restriction, it is without loss of
generality to assume that all signals are drawn ex ante and then they are gradually
released to the decision-maker, independently of what he does. It is easy to prove
that this is equivalent to restricting attention to recommendation kernels, which de-
pend on past recommendations, base signals, and states, but not on past actions, i.e.,
μt(·|at−1, st , ωt , ât−1 ) = μt(·|bt−1, st , ωt , ât−1 ) for all (at−1, bt−1 ). (See the supplemen-
tary material for a proof.) We therefore have

Pμ◦τ,p(a, ω, â) = Pμ◦τ,p(ω, â)Pμ◦τ,p(a|ω, â)

= Pμ◦τ∗,p(ω, â)
[
τ1

(
a1|â1) × · · · × τt

(
at|ât , at−1) × · · · × τT

(
aT |âT , aT−1)]

= Pμ◦τ∗,p(ω, â)D(a|â),
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Table 1. (�, c) is rationalizable and truly dominated.

� c r

ω 0 1 0
ω′ 0 0 1

where D is a deviation plan. The equality Pμ◦τ,p(ω, â) = Pμ◦τ∗,p(ω, â) follows from
the fact that the recommendations made and the state realized are independent of the
decision-maker’s choices, and thus do not depend on τ. We can thus rewrite the obedi-
ence constraint as∑

â,ω

Pμ◦τ∗,p(ω, â)u(â, ω) ≥
∑
â,a,ω

Pμ◦τ∗,p(ω, â)D(a|â)u(a, ω),

for all deviation plans D. To recover the characterization of de Oliveira and Lamba,
it then suffices to follow the same steps as in the proof below, starting with the above
rewriting of the obedience constraint.

We conclude this discussion with an example, which demonstrates that a profile can
be truly dominated and not surely dominated. There are two states, ω and ω′, three
actions, �(eft), c(enter), r(ight), and two periods. The intertemporal payoff is the sum
of the per-period payoff in Table 1.

We now argue that (�, c) is truly dominated. Intuitively, since � is strictly dominated,
the decision-maker benefits from playing a mixture of c and r instead of � in the first pe-
riod. More formally, consider the behavioral strategy τ given by τ1(c|�) = τ1(r|�) = 1/2,
τ1(r|r ) = τ1(c|c) = 1, and τ2 = τ∗

2. The induced deviation rule is D(c�|��) = D(r�|��) =
D(cc|�c) = D(rc|�c) = D(cr|�r ) = D(rr|�r ) = 1/2 and D(a1a2|â1â2 ) = 1 for all other pro-
files (a1, a2 ) and (â1, â2 ) such that (a1, a2 ) = (â1, â2 ). It is then easy to verify that (�, c)
is indeed truly dominated.

Yet, it is not surely dominated and, therefore, is rationalizable. Intuitively, if the
decision-maker learns the state after playing � in the first period but does not get any
additional information; otherwise, he has an incentive to play �. A Bayes correlated
equilibrium is as follows: the mediator recommends � at the first period, regardless of
the state, and recommends c (resp., r) at the second period if and only if the decision-
maker has been obedient and the state is ω (resp., ω′). If the decision-maker disobeys
the recommendation, the mediator recommends then either c or r, independently of
the state.

Proof of Theorem 2. We first rewrite the obedience constraint. Let f = (f1, � � � , fT )
be a feedback rule, with ft : At−1 × At−1 × � → A. A feedback rule specifies a deter-
ministic recommendation at each history of past actions, recommendations, and states.
A feedback rule is a pure strategy of the mediator. Let F be the finite set of all feedback
rules and F∗

ω be the non-empty subset of feedback rules, which recommend a∗ on path
when the state is ω. That is, f ∗ ∈ F∗

ω if f ∗
1 (ω) = a∗

1 and

f ∗
t

((
a∗

1, � � � , a∗
t−1

)
,
((
a∗

1, � � � , a∗
t−1

))
, ω

) = a∗
t ,

for all t ≥ 2. We write F∗� for ∪ω∈�(F∗
ω × {ω}).
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Similarly, we associate a pure strategy τ with an action rule g = (g1, � � � , gT ), where
gt : At−1 × At−1 × A → A. The action rule g specifies a pure action at each history of
past actions and past and current recommendations. We associate τ∗ with the rule g∗,
where g∗

t (at−1, ât−1, â) = â. Let G be the set of action rules.
Thanks to Kuhn’s theorem, we can rewrite the condition for rationalization as: there

exists μ ∈ �(F ×�) such that μ(F∗�) > 0 and∑
f ,ω,g

∑
a, â

u(a, ω)
(
Pf ,ω,g∗(a, â) − Pf ,ω,g(a, â)

)
μ(f , ω)ν(g) ≥ 0,

for all ν ∈ �(G ), where Pf ,ω,g is the degenerate distribution over actions and recommen-
dations induced by the feedback rule f and the action rule g when the state is ω.9

We first prove necessity. We prove that if a∗ is not rationalizable, then a∗ is surely
dominated. So, assume that a∗ is not rationalizable. For all μ such that μ(F∗�) > 0,
there exists ν such the obedience constraint is violated, i.e.,

sup
μ:μ(F∗�)>0

min
ν

∑
f ,ω,g

∑
a, â

u(a, ω)
(
Pf ,ω,g∗(a, â) − Pf ,ω,g(a, â)

)
μ(f , ω)ν(g) < 0.

Since the set of μ such that μ(F∗�) > 0 is nonempty and convex (but not compact) and
the objective is bilinear in (μ, ν), we can apply Proposition I.1.3 from Mertens, Sorin,
and Zamir (2015, p. 6) to obtain

min
ν

sup
μ:μ(F∗ )>0

∑
f ,ω,g

∑
a, â

u(a, ω)
(
Pf ,ω,g∗(a, â) − Pf ,ω,g(a, â)

)
μ(f , ω)ν(g) < 0.

Hence, there exists ν such that for all μ with μ(F∗�) > 0,∑
f ,ω,g

∑
a, â

u(a, ω)
(
Pf ,ω,g∗(a, â) − Pf ,ω,g(a, â)

)
μ(f , ω)ν(g) < 0.

Necessity then follows by first constructing the behavioral strategy τ induced by ν and,
therefore, its associated deviation plan D and second considering all (f , ω).

More precisely, fix an arbitrary ω and any feedback rule f ∗ such that f ∗
1 (ω) = a∗

1 and

f ∗
t

((
a∗

1, � � � , a∗
t−1

)
,
((
a∗

1, � � � , a∗
t−1

))
, ω

) = a∗
t ,

for all t ≥ 2. Let μ be degenerate on (f ∗, ω). Note that (f ∗, ω) ∈ F∗�. We have that∑
f ,ω,g

∑
a, â

u(a, ω)Pf ,ω,g∗(a, â)μ(f , ω)ν(g) = u
(
a∗, ω

)
,

while ∑
f ,ω,g

∑
a, â

u(a, ω)Pf ,ω,g(a, â)μ(f , ω)ν(g) =
∑
g

∑
a, â

u(a, ω)Pf ∗,ω,g(a, â)ν(g)

9For example, â = (f1(ω), f2(f1(ω), g1(f1(ω)), ω), � � �) and a = (g1(f1(ω)), g2(f2(f1(ω), g1(f1(ω))), ω),
� � �).
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=
∑
a, â

u(a, ω)Pf ∗,τ(a, â)

=
∑
a

u(a, ω)D
(
a|γ∗(a)

)
,

where γ∗ is the recommendation plan induced by γ∗
1(∅) = f ∗

1 (ω) and

γ∗
t (a1, � � � , at−1 ) = f ∗

t

(
(a1, � � � , at−1 ),

(
γ1(∅), � � � , γt−1(a1, � � � , at−2 )

)
, ω

)
.

for all t ≥ 2. Since γ∗
t (a∗

1, � � � , a∗
t−1 ) = a∗

t , this is readily seen to be equivalent to the right-
hand side of (D1).

We now prove the necessity of (D2). The arguments are nearly identical to the above
ones. Fix an arbitrary ω, an arbirary profile a and a feedback rule f such that f1(ω) = a1

and

ft
(
(a1, � � � , at−1 ),

(
(a1, � � � , at−1 )

)
, ω

) = at ,

for all t ≥ 2. If f ∈ F∗�, we can repeat the above arguments. If, however, f /∈ F∗�, choose
μ such that μ(f , ω) = 1 −ε and μ(f ∗, ω) = ε, where 1 > ε> 0 and f ∗ is the feedback rule
defined above. From the above steps, for all ε > 0, we have that

u(a, ω) < (1 − ε)
∑
b

u(b, ω)D
(
b|γ(b)

) + ε
∑
b

u(b, ω)D
(
b|γ∗(b)

)
,

where γ is the recommendation plan induced by γ1(∅) = f1(ω) and

γt(b1, � � � , bt−1 ) = ft
(
(b1, � � � , bt−1 ),

(
γ1(∅), � � � , γt−1(b1, � � � , bt−2 )

)
, ω

)
.

for all t ≥ 2. Taking the limit as ε → 0 and noting that γt(a1, � � � , at−1 ) = at , we obtain the
condition (D2).

The proof of sufficiency is immediate and left to the reader.

To conclude, this application illustrates how we can apply our results to derive
testable implications in dynamic decision problems. We stress that our results apply
equally to dynamic games, including games with evolving states, and thus offer a wide
scope for applications.

5. Additional equivalence theorems and another application

The objective of this section is to enrich our analysis by requiring rational behavior
on and off the equilibrium path. The main message is that Theorem 1 generalizes to
stronger solution concepts. All we need is a revelation principle for these solution con-
cepts. While the definitions of these revelation principles are rather complex, they share
some salient features. First, these revelation principles require players to be obedient
and truthful at other histories than the on-path histories, but not at all histories. A player
is required to be obedient and truthful only if he has not lied in the past. That player may
have disobeyed past recommendations, however. In addition, not even all these histo-
ries are considered. A further consistency requirement is imposed, the so-called consis-
tency with mediation ranges. Second, these revelation principles postulate that players
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assign probability zero to the event that others have lied to the mediator. As Myerson
(1986, p. 342) put it:

This begs the question of whether we could get a larger set of sequentially rational com-
munication equilibria if we allowed players to assign positive probability to the event that
others have lied to the mediator. Fortunately, by the revelation principle, this set would not
be any larger (Myerson (1986, p. 342)).

In what follows, we do not provide the reader with a restatement of these revelation
principles—this would take too much space. We refer to Myerson (1986) and the recent
work of Sugaya and Wolitzky (2021). We start with the concept of weak perfect Bayesian
equilibrium, one of the most widely- used solution concepts in applications and, prob-
ably, the easiest refinement to state.

5.1 Weak perfect Bayesian equilibrium

Throughout, we fix an expansion �π of �. We denote Pσ ,π(·|ht , mt , ωt ) the distribu-
tion over HM� induced by the profile of behavioral strategies σ and the expansion π,
given the history (ht , mt , ωt ). The distribution Pσ ,π(·|ht , mt , ωt ) is well-defined even if
(ht , mt , ωt ) has zero probability under Pσ ,π , and it is equal to Pσ ,π(·|ht , mt , ωt ) when
Pσ ,π(ht , mt , ωt ) > 0. Intuitively, this distribution represents the beliefs an outside ob-
server has at (ht , mt , ωt ) if it is conjectured that players continue to follow their equi-
librium strategies even after deviations. We adopt the convention that Pσ ,π(h, m, ω) :=
Pσ ,π(h, m, ω|h0, m0, ω0 ). At any given history (ht , mt , ωt ), player i’s expected payoff is

Ui

(
σ|ht , mt , ωt

)
:=

∑
h,m,ω

ui(h, ω)Pσ ,π
(
h, m, ω|ht , mt , ωt

)
.

To complete the description, we need to specify the belief player i has at any private
history (ht

i , m
t
i ). To do so, we specify a belief system β. Player i believes that the history

is (ht , mt , ωt ) with probability β(ht , mt , ωt|ht
i , m

t
i ) at the private history (ht

i , m
t
i ). At the

private history (ht
i , m

t
i ), player i’s expected payoff is therefore

Ui

(
σ , β|ht

i , m
t
i

)
:=

∑
ht ,mt ,ωt

Ui

(
σ|ht, mt, ωt

)
β

(
ht, mt, ωt|ht

i , m
t
i

)
.

Definition 3 (wPBE). A profile σ of behavioral strategies is a weak perfect Bayesian
equilibrium of �π if there exists a belief system β on HM� such that:

(i) Sequential rationality: For all t, for all i, for all (ht
i , m

t
i ),

Ui

(
σ , β|ht

i , m
t
i

) ≥Ui

((
σ ′
i , σ−i

)
, β|ht

i , m
t
i

)
,

for all σ ′
i .

(ii) Belief consistency: The belief system β is consistent with σ , i.e., for all (h, m, ω) ∈
HM�, for all (i, t ),

β
(
ht , mt , ωt|ht

i , m
t
i

) = Pσ ,π
(
ht , mt , ωt

)
Pσ ,π

(
ht
i , m

t
i

) ,

whenever Pσ ,π(ht
i , m

t
i ) > 0.
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We let wPBE(�π ) be the set of distributions over H� induced by the weak perfect
Bayes’ equilibria of �π .

As before, the objective is to characterize the set
⋃

�π an expansion of � wPBE(�π ), i.e.,
we want to characterize the distributions over the outcomes H� of the base game � that
we can induce by means of some expansion �π of the base game, without any reference
to particular expansions. To do so, we need to introduce the concept of weak perfect
Bayes’ correlated equilibrium of �.

Weak perfect Bayes’ correlated equilibrium We consider mediated extensions M(�) of
the game �, where at each stage the set of recommendations made to a player may be a
strict subset of the set of actions available to the player. Formally, for each private history
(ht

i , â
t−1
i ) of past and current signals sti , past actions at−1

i and past recommendations
ât−1
i , Ri,t(ht

i , â
t−1
i ) ⊆ Ai,t is the set of possible recommendations to player i. We refer to

the function Ri,t as the mediation range of player i at stage t. We denote H(R) the set
of all terminal histories consistent with the mediation ranges in the mediated extension
M(�), i.e., (h, ω, â) ∈ H(R) if and only if (h, ω) ∈H� and âi,t ∈Ri,t(ht

i , â
t−1
i ) for all i, for

all t.
We denote Pμ◦τ,p(·|ht , ωt , ât ) the distribution over H(R) induced by the profile

of strategies τ, the recommendation kernels μ and the kernels p, given the history
(ht , ωt , ât ). At any history (ht , ωt , ât ), player i’s expected payoff is

Ui

(
μ ◦ τ|ht , ωt , ât

)
:=

∑
h,ω, â

ui(h, ω)Pμ◦τ,p
(
h, ω, â|ht , ωt , ât

)
.

Finally, at any private history (ht
i , â

t
i ), player i’s expected payoff is

Ui

(
μ ◦ τ, β|ht

i , â
t
i

)
:=

∑
ht ,ωt , ât

Ui

(
μ ◦ τ|ht, ωt, ât

)
β

(
ht, ωt, ât|ht

i , â
t
i

)
,

where β is a belief system. We write T ∗,t
i for the subset of action strategies of player

i, where player i is obedient up to (including) stage t. We are now ready to define the
concept of weak perfect Bayes’ correlated equilibrium.

Definition 4 (wPBCE). A weak perfect Bayes’ correlated equilibrium of � is a collection
of mediation ranges Ri,t : Ht

i ×At−1
i → 2Ai,t \ {∅} for all (i, t ), a collection of recommen-

dation kernels μt(ht , ωt , ât−1 ) :×i∈I Ri,t(ht
i , â

t−1
i ) → [0, 1], where∑

ât∈× i∈I Ri,t (hti , â
t−1
i )

μt(ht , ωt , ât−1 )[ât ] = 1,

for all (ht , ωt , ât−1 ) in H(R) and a belief system β such that:

(i) Obedience: For all t, for all i, for all private histories (ht
i , â

t
i ) such that âi,t ′ ∈

Ri,t ′(ht ′
i , ât

′−1
i ) for all t ′ ≤ t,

Ui

(
μ ◦ τ∗, β|ht

i , â
t
i

) ≥ Ui

(
μ ◦ (

τi, τ
∗
−i

)
, β|ht

i , â
t
i

)
,

for all τi ∈ T ∗,t−1
i .
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(ii) Belief consistency: β is consistent with (τ∗, μ, p), i.e., for all (h, ω, â) ∈ H(R), for
all (i, t ),

β
(
ht , ωt , ât|ht

i , â
t
i

) = Pμ◦τ∗,p
(
ht , ωt , ât

)
Pμ◦τ∗,p

(
ht
i , â

t
i

) ,

whenever Pμ◦τ∗,p(ht
i , â

t
i ) > 0.

We let wPBCE(�) be the set of distributions over H� induced by the weak perfect
Bayes’ correlated equilibria of �.

It is worth pausing over the role of the mediation ranges. A weak perfect Bayes’ cor-
related equilibrium constrains the mediator to only recommend actions consistent with
the mediation ranges, i.e., the only recommendations the mediator can make to player
i are in Ri,t(ht

i , â
t−1
i ) at history (ht , ωt , ât−1 ).10 In addition, players must have an in-

centive to be obedient at all histories consistent with the mediation ranges. The role
of mediation ranges is precisely to ensure that players can be obedient at all histories
of the mediated game. Without constraining the recommendations the mediator can
make, it would not be possible to ensure that players are obedient at all histories. For
example, no player would ever have an incentive to play a strictly dominated action. An
equivalent formulation is to consider weak perfect Bayesian equilibria of the mediated
game M(�), where the mediator is omniscient and unconstrained in its recommenda-
tions, and players are obedient on path. The drawback of this alternative formulation
is that players do not have to be obedient off path and, therefore, requires to explore all
possible behaviors off path. The advantage is that no mediation ranges are required.

With all these preliminaries done, we can now state our second equivalence result.

Theorem 3. We have the following equivalence:

wPBCE(�) =
⋃

�π an expansion of �

wPBE(�π ).

Theorem 3 states an equivalence between (i) the set of distributions over actions,
base signals, and states induced by all weak perfect Bayes’ correlated equilibria of �,
and (ii) the set of distributions over actions, base signals, and states we can obtain by
considering all weak perfect Bayesian equilibria of all expansions of �.

The logic behind Theorem 3 is identical to the the one behind Theorem 1. We can
replicate any weak perfect Bayesian equilibrium of �π as a weak perfect Bayesian equi-
librium of the auxiliary mediated game M∗(�) and then invoke the revelation principle
for weak perfect Bayesian equilibria, which was recently proved by Sugaya and Wolitzky
(2018, Proposition 2). More precisely, their revelation principle states that it is without
loss of generality to assume that players report their private information to the mediator,
that the mediator recommends actions to the players, and that players have an incentive
to be truthful and obedient provided they have been truthful in the past. The mediator
cannot recommend actions outside the mediation ranges and a belief system gives the

10This explains why the domain of μt (ht , ωt , ât−1 ) is×i∈I Ri,t (ht
i , â

t−1
i ) in our definition.
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player’s beliefs. Thus, unlike the classical revelation principle of Forges (1986) and My-
erson (1986), players are required to continue to be truthful and obedient even if they
have disobeyed in the past, so long as they have been truthful in the past.

We conclude with few additional remarks. First, the set wPBCE(�) is convex.11 Sec-
ond, despite its theoretical shortcomings, we have considered the concept of weak per-
fect Bayesian equilibrium as our solution concept.12 We did so for two two main rea-
sons. First, it is simple and indeed widely used in applications. Second, it generalizes to
continuous games, a common assumption in applications. In what follows, we present
another solution concept, which alleviates some of the theoretical shortcomings of weak
perfect Bayesian equilibrium. However, it comes at a cost: it is “harder” to state and to
use in applications.

5.2 Conditional probability perfect Bayesian equilibrium

An important tool in modeling off-equilibrium path beliefs is the concept of conditional
probability systems (henceforth, CPS). Fix a finite nonempty set X . A conditional prob-
ability system β on X is a function from 2X × 2X \ {∅} to [0, 1], which satisfies three
properties: for all X , Y , Z with X ⊆X , Y ⊆ X , and ∅ �= Z ⊆ X :

(i) β(Z|Z ) = 1 and β(X |Z ) = 1,

(ii) if X ∩Y = ∅, then β(X ∪Y |Z ) = β(X|Z ) +β(Y |Z ),

(iii) if X ⊆ Y ⊆ Z and Y �= ∅, then β(X|Z ) = β(X|Y )β(Y |Z ).

Conditional probability systems capture the idea of “conditional beliefs” even after zero-
probability events. In particular, if X is the set of terminal histories of a game, a condi-
tional probability system induces a belief system, i.e., a belief over histories at each infor-
mation set of a player. A conditional probability system also captures the beliefs players
have about the strategies and beliefs of others. Finally, using a conditional probability
system to represent the players’ beliefs imposes that all differences in beliefs come from
differences in information. We refer the reader to Myerson (1986) for more on condi-
tional probability systems.13

We now define the concept of conditional probability perfect Bayesian equilibrium,
a concept introduced by Sugaya and Wolitzky (2021). We first give an informal defini-
tion. A conditional probability perfect Bayesian equilibrium is a profile of strategies and
a conditional probability system such that (i) sequential rationality holds given the belief
system induced by the conditional probability system and (ii) the conditional probabil-
ity system is consistent with the profile of strategies and the data of the game. It is a
stronger concept than the concept of weak perfect Bayesian equilibrium and a weaker
concept than the concept of sequential equilibrium. We now turn to a formal definition.

11See the working paper version for a proof.
12It is well known that weak perfect Bayesian equilibria may not be subgame perfect, may rely on “irra-

tional” beliefs, and may not satisfy the one-shot deviation principle.
13Myerson shows that for any conditional probability system β, there exists a sequence of probability

measures P
n on X such that (i) Pn({x}) > 0 for all x ∈ X and (ii) β = limn P

n, i.e., β(X|Y ) = limn
P
n(X∩Y )
Pn(Y ) for

all X , for all Y �= ∅.
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In what follows, we use notation, which parallel the one used in previous definitions,
and thus do not rehash formal definitions.

Definition 5 (CPPBE). A conditional probability perfect Bayesian equilibrium of �π is
a profile σ of behavioral strategies and a CPS β on HM�, which satisfy:

(i) Sequential rationality: For all t, for all i, for all (ht
i , m

t
i ),

Ui

(
σ , β|ht

i , m
t
i

) ≥Ui

((
σ ′
i , σ−i

)
, β|ht

i , m
t
i

)
,

for all σ ′
i .

(ii) CPS consistency: The CPS β is consistent with (σ , p, ξ), i.e., for all (h, m, ω) ∈
HM�, for all (i, t ),

β
(
at|ht , mt , ωt

) =
∏
i∈I

σi,t
(
ai,t|h

t
i , m

t
i

)
,

β
(
ht+1, ωt+1|at , ht , mt , ωt

) = pt+1
(
ht+1, ωt+1|at , ht , ωt

)
,

β
(
mt+1|ht+1, mt , ωt+1) = ξt+1

(
mt+1|ht+1, mt , ωt+1).

We let CPPBE(�π ) be the set of distributions over H� induced by the conditional
probability perfect Bayesian equilibria of �π .

A few comments are worth mentioning. First, to ease notation, we have written
β(at|ht , mt , ωt ) for

β
({

(h, m, ω) ∈HM� :
(
at , ht, mt, ωt

) = (
at , ht , mt , ωt

)}
|
{

(h, m, ω) ∈ HM� :
(
ht, mt, ωt

) = (
ht , mt , ωt

)})
.

We use similar abuse of notation throughout. Second, the consistency of the CPS implies
that

β
(
ht , mt , ωt|ht

i , m
t
i

) = Pσ ,π
(
ht , mt , ωt

)
Pσ ,π

(
ht
i , m

t
i

) ,

whenever Pσ ,π(ht
i , m

t
i ) > 0. Third, a conditional probability perfect Bayesian equilib-

rium is subgame perfect. Fourth, since the belief a player has is induced by the CPS,
two players with the same information have the same belief. However, the CPS does not
impose a “do not signal what you do not know” condition. To do so, we would need to
require the CPS to maintain the relative likelihood of any two histories before and after
players taking actions.

As before, the objective is to characterize the set
⋃

�π an expansion of � CPPBE(�π ), i.e.,
we want to characterize the distributions over the outcomes H� of the base game � that
we can induce by means of some expansion �π of the base game, without any reference
to particular expansions. To do so, we need to introduce the concept of sequential Bayes’
correlated equilibrium of �.
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Sequential Bayes’ correlated equilibrium As in the previous section, we consider medi-
ated extensions M(�) of the game �, where at each stage the set of recommendations
made to a player may be a strict subset of the set of actions available to the player. We
use the same notation and do not rehash them.

A feedback rule f := (f1, � � � , fT ) is a deterministic recommendation kernel, which
recommends the action ft(ht , ωt ) at history (ht , ωt ) ∈ Ht�t . Note that given f , the his-
tory (ht , ωt ) encodes the profile of recommendations ât as (f1(h1, ω1 ), f2(h2, ω2 ), � � � ,
ft(ht , ωt )). A feedback rule f is consistent with the mediation ranges R if fi,t(ht , ωt ) ∈
Ri,t(ht

i , â
t−1
i ) for all i, for all (ht , ωt ), for all t, where ât−1 is the profile of recommenda-

tions encoded by f at (ht−1, ωt−1 ). We let F be the set of feedback rules and F(R) the
subset of feedback rules consistent with the mediation ranges R.

We denote Pf◦τ,p(·|ht , ωt ) the distribution over H(R) induced by the profile of
strategies τ, the feedback rule f and the kernels p, given the history (ht , ωt ). At any
history (ht , ωt ), player i’s expected payoff is

Ui

(
f ◦ τ|ht , ωt

)
:=

∑
h,ω

ui(h, ω)Pf◦τ,p
(
h, ω|ht , ωt

)
,

when the feedback rule is f . Finally, at any private history (ht
i , â

t
i ), player i’s expected

payoff is

Ui

(
τ, β|ht

i , â
t
i

)
:=

∑
ht ,ωt ,f

Ui

(
f ◦ τ|ht , ωt

)
β

(
f , ht , ωt|ht

i , â
t
i

)
,

where β is a CPS on F(R) ×H�. Here, we write β(f , ht , ωt|ht
i , â

t
i ) for

β
({

(f , h, ω) :
(
f , ht , ωt = f , ht , ωt

)}
|
{

(f , h, ω) :
(
f i,1

(
h1, ω1), � � � , f i,t

(
ht , ωt

)) = âti , h
t
i = ht

i

})
Definition 6 (SBCE). A communication mechanism μ ∈ �(F ) is a sequential Bayes’
correlated equilibrium of � if there exist mediation ranges R and a conditional proba-
bility system β on F(R) ×H� such that:

(i) Obedience: For all t, for all i, for all private histories (ht
i , â

t
i ) such that âi,t ′ ∈

Ri,t ′(ht ′
i , ât

′−1
i ) for all t ′ ≤ t,

Ui

(
τ∗, β|ht

i , a
t
i

) ≥Ui

((
τi, τ

∗
−i

)
, β|ht

i , a
t
i

)
for all τi ∈ T ∗,t−1

i .

(ii) CPS consistency: For all f , h, ω, t,

β(f , h, ω) = μ(f )Pf◦τ∗,p(h, ω)

β
(
f , h, ω|(f1, � � � , ft ),

(
ht , ωt

)) = β
(
f |(f1, � � � , ft ),

(
ht , ωt

))
Pf◦τ∗,p

(
h, ω|ht , ωt

)
.

We let SBCE(�) be the set of distributions over H� induced by the sequential Bayes’
correlated equilibria of �. The set SBCE(�) is convex.
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A few remarks are worth mentioning. First, in a sequential Bayes’ correlated equi-
librium, players have an incentive to be obedient at all histories consistent with the
mediation ranges. Second, unlike previous definitions, the definition asserts that the
omniscient mediator selects a feedback rule f with probability μ, i.e., as if the mediator
chooses a mixed strategy (and not a behavioral strategy). In addition, the conditional
probability system is required to be consistent with μ. Third, we may wonder whether
an equivalent formulation exists where the mediator chooses recommendation kernels
(μt )t (behavioral strategies) and consistency is imposed with respect to (μt )t , as we did
in the definition of a weak perfect Bayes’ correlated equilibrium. As Sugaya and Wolitzky
(2021) show, the answer is unfortunately no. Intuitively, the current formulation allows
more flexibility in choosing beliefs, which is needed for a revelation principle to hold.
Lastly, sequential Bayes’ correlated equilibria are sequential communication equilib-
ria (Myerson (1986)) of mediated games, where the mediator is omniscient.14 Readers
should not confuse these concepts with that of sequential equilibrium, which does not
involve a device such as a mediator.

Theorem 4. We have the following equivalence:

SBCE(�) =
⋃

�π an expansion of �

CPPBE(�π ).

Theorem 4 states an equivalence between (i) the set of distributions over actions,
base signals, and states induced by all sequential Bayes’ correlated equilibria of �, and
(ii) the set of distributions over actions, base signals, and states that we can obtain by
considering all conditional probability perfect Bayesian equilibria of all expansions of
�. The logic behind Theorem 4 and its proof are the same as in previous sections. (More
precisely, the revelation principle we invoke is stated in Proposition 8 in Sugaya and
Wolitzky (2021).)

5.3 Application II: Bilateral bargaining

We consider a variation on the work of Bergemann, Brooks, and Morris (2015). There
is one buyer and one seller. The seller makes an offer a1 ∈ A1 ⊂ R+ to the buyer, who
observes the offer and either accepts (a2 = 1) or rejects (a2 = 0) it. If the buyer accepts
the offer a1, the payoff to the buyer is ω − a1, while the payoff to the seller is a1, with ω

being the buyer’s valuation (the payoff-relevant state). We assume that ω ∈ � ⊂ R++. If
the buyer rejects the offer, the payoff to both the seller and the buyer is normalized to
zero. The buyer and the seller are symmetrically informed and believe that the state is ω
with probability p(ω) > 0. We assume that the set of offers the seller can make is finite,
but as fine as needed. For future reference, we write ωL for the lowest state, ω−

L for the
largest offer a1 strictly smaller than ωL, and ωH for the highest state.

14Sequential Bayes’ correlated equilibria are the subsets of Bayes’ correlated equilibria, where the medi-
ator never recommends codominated actions, a generalization of the concept of dominance. We refer the
reader to Myerson (1986) for more detail.
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This model differs from Bergemann, Brooks, and Morris (2013) in one important as-
pect. In our model, both the seller and the buyer have no initial private information
about the state, while Bergemann, Brooks, and Morris assume that the buyer is privately
informed of the state ω. The base game of Bergemann, Brooks, and Morris thus corre-
sponds to a particular expansion of our base game. Similarly, Roesler and Szentes (2017)
consider all information structures, where the buyer has some signals about his own
valuation (and the seller is uninformed).15 Unlike these papers, we consider all infor-
mation structures. In particular, the information the buyer receives may depend on the
information the seller has received as well as the offer made. In addition, the seller can
be better informed than the buyer in our model.

We characterize the set of sequential Bayes’ correlated equilibria. A communication
system μ is a sequential Bayes’ correlated equilibrium if there exist mediation ranges
(R1, R2 ) and a conditional probability system β, which jointly satisfy the following con-
straints. First, if the omniscient mediator recommends f1(ω) ∈R1 to the seller, the seller
must have an incentive to be obedient, i.e.,∑

f ,ω

f1(ω)f2
(
f1(ω), ω

)
β

(
f , ω|f1(ω)

) ≥
∑
f ,ω

a1f2(a1, ω)β
(
f , ω|f1(ω)

)

for all a1. Second, if the offer made to the buyer is a1 and the mediator recommends
f2(a1, ω) ∈ R2(a1 ) to the buyer, the buyer must have an incentive to be obedient, i.e.,∑

f ,ω

(ω− a1 )f2(a1, ω)β
(
f , ω|a1, f2(a1, ω)

)

≥
∑
f ,ω

(ω− a1 )
(
1 − f2(a1, ω)

)
β

(
f , ω|a1, f2(a1, ω)

)
.

Third, the conditional probability system must be consistent, i.e., for all f ∈ F(R), for all
a1, a2, ω,

β(f , a1, a2, ω) = μ(f )p(ω)1
{
f1(ω) = a1, f2

(
f1(ω), ω

) = a2
}

,

β(f , a1, a2, ω|f1, a1, ω) = β(f |f1, a1, ω)1
{(
f2(a1, ω), ω

) = a2
}

.

There are immediate bounds on the equilibrium payoffs: the sum of the buyer
and seller’s payoffs is bounded from above by E(ω) = ∑

ωp(ω)ω, the buyer’s payoff is
bounded from below by 0, and the seller’s payoff is bounded from below by ω−

L . The
following proposition states that there are, in fact, no other restrictions on equilibrium
payoffs.

15In related work, Kartik and Zhong (2023) characterize all wPBE of the bilateral bargaining model with
interdependent values as one varies the information structure. They do so under three different scenar-
ios regarding base signals: one like ours, one like that in Bergemann, Brooks, and Morris, and one where
the buyer is better informed than the seller. Under the first scenario, they also find that the set of imple-
mentable payoffs is the one that satisfies the immediate bounds on equilibrium payoffs we discuss prior to
Proposition 1.
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Figure 3. Payoffs at all sequential Bayes’ correlated equilibria.

Proposition 1. The set of sequential Bayes’ correlated equilibrium payoffs is

co
{(

0, ω−
L

)
,
(
0, E(ω)

)
,
(
E(ω) −ω−

L , ω−
L

)}
.

The set of equilibrium payoffs is depicted in Figure 3.
Notice that the set of BCE here differs from the one in Bergemann, Brooks, and Mor-

ris (2013) in that the lowest seller payoff is ω−
L , and not the monopoly profit.

We prove this proposition in what follows. As a preliminary observation, note that
the conditional probability system puts no restriction on the buyer’s beliefs after ob-
serving an off-path offer a1, i.e., an offer such that

∑
f ,ωμ(f )p(ω)1{f1(ω) = a1} = 0. To

see this, for any conditional probability system, β(a1, ω) = β(ω, a1|a1 )β(a1 ). Moreover,
from the consistency of β, we have that β(a1, ω) = ∑

f β(f , a1, ω) = ∑
f μ(f )p(ω) ×

1{f1(ω) = a1} = 0. Since β(a1 ) = 0, β(ω, a1|a1 ) is arbitrary, and thus we can assume
that the buyer believes that the state is ωL with probability one. We refer to those beliefs
as the most pessimistic beliefs. Similarly, there are no restrictions on the buyer’s beliefs
after observing an off-path offer a1 and a recommendation f2(a1, ω).

We are now ready to state how to obtain the payoff profile (E(ω) −ω−
L , ω−

L ). We first
start with an informal description. The mediator recommends the seller to offer ω−

L ,
regardless of the state. If the offer ω−

L is made, the mediator recommends the buyer to
accept, regardless of the state. If any offer a1 >ω−

L is made, the mediator recommends
the buyer to reject the offer, regardless of the state. Since any such offer is off-path,
the buyer has an incentive to be obedient when he believes that the state is ωL with
probability one. As we have just argued, we can choose a well-defined conditional prob-
ability system capturing such beliefs. Finally, if any offer a1 <ω−

L is made, the mediator
recommends the buyer to accept, regardless of the state. Formally, the communica-
tion system puts probability one to f , given by f1(ω) = ω−

L , f2(a1, ω) = 0 if a1 >ω−
L and

f2(a1, ω) = 1 if a1 ≤ ω−
L for all ω. The mediation ranges are R1 = {ω−

L }, R2(a1 ) = {1} if
a1 <ωL, R2(ωL ) ⊆ {0, 1}, and R2(a1 ) = {0} if a1 >ωL.

We now turn our attention to the two other payoff profiles (0, E(ω)) and (0, ω−
L ).

The profile (0, E(ω)) corresponds to full surplus extraction, which can be obtained with
f1(ω) = ω for all ω and f2(a1, ω) = 1 whenever a1 ≤ ω (and zero, otherwise). The
mediation ranges are R1 = �, R2(a1 ) = {0} if a1 > ωH , R2(a1 ) = {1} if a1 < ωL, and
R2(a1 ) = {0, 1} if a1 ∈�.
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Lastly, when E(ω) ∈ A1 (which we assume), the profile (0, ω−
L ) is implementable

as follows. Consider two feedback rules f and f ′ such that for all ω, f1(ω) = f ′
1(ω) =

E(ω), f2(a1, ω) = f ′
2(a1, ω) = 0 if a1 > E(ω), f2(a1, ω) = f ′

2(a1, ω) = 1 if a1 < E(ω),
f2(E(ω), ω) = 1 while f ′

2(E(ω), ω) = 0. Assume that μ(f ) = ω−
L/E(ω), μ(f ′ ) = 1 − μ(f ),

and that R1 = {E(ω)}, R2(a1 ) = {1} if a1 <ωL, R2(a1 ) = {0, 1} if a1 = E(ω), and R2(a1 ) =
{0}, otherwise. In effect, the mediator recommends the seller to offer E(ω), regardless of
the state, and the buyer to accept that offer with probability ω−

L/E(ω), on path. Off-path,
we again use the most pessimistic beliefs to give the seller a payoff of zero, if he deviates.
To complete the proof of Proposition 1, it is enough to invoke the bounds on the payoff
profiles and the convexity of the set of sequential Bayes’ correlated equilibrium payoffs.

6. Conclusion

This paper generalizes the concept of Bayes’ correlated equilibrium to multi-stage
games and offers two applications, which are suggestive of the usefulness of our charac-
terization results. The main contribution is methodological.

The reader may wonder why we have not considered the concept of sequential equi-
librium. The main reason is that a revelation principle does not hold for this concept. To
be more precise, Sugaya and Wolitzky (2021) show that the set of sequential communi-
cation equilibria of a multistage game characterizes the set of equilibrium distributions
we can obtain by considering all mediated extensions of the multistage game, where
the solution concept is sequential equilibrium. However, their definition of a sequential
equilibrium treats the mediator as a player, and thus allows for the mediator to trem-
ble. When we consider an expansion and its emulation by a mediator with the mediated
game M∗(�), players do not expect the mediator to tremble. If a player observes an
unexpected additional signal, that player must believe with probability one that one of
his opponents has deviated. He cannot believe that none of his opponents deviated,
but the mediator did. This would be inconsistent with the expansion being the game
actually played. Extending the analysis to other solution concepts such as sequential
equilibrium or rationalizability or to general extensive-form games is challenging and
left for future research.

Appendix A: Proof of Theorem 1

(⇐ .) We first prove that
⋃

�π an expansion of �BNE(�π ) ⊆ BCE(�). Throughout, we fix an
expansion �π of �. Recall that there exist kernels (ξt )t such that

πt+1
(
ht+1, mt+1, ωt+1|at , ht , mt , ωt

)
= ξt+1

(
mt+1|ht+1, mt , ωt+1)pt+1

(
ht+1, ωt+1|at , ht , ωt

)
,

for all (ht+1, mt+1, ωt+1 ), for all t.
Let σ∗ be a Bayes–Nash equilibrium of �π . We now construct an auxiliary mediated

game M∗(�), which emulates the distribution Pσ∗,π as an equilibrium distribution.
The game M∗(�) has one additional player, labeled player 0, and a (Forges–

Myerson) mediator. Player 0 is a dummy player: his payoff is identically zero.
The game unfolds as follows: At stage t = 1,
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– Nature draws (h1, ω1 ) with probability p1(h1, ω1 ).

– Player i ∈ I observes the signal hi,1 and player 0 observes (h1, ω1 ).

– Player 0 reports (ĥ1, ω̂1 ) to the mediator. All other players do not make reports.

– The mediator draws the message m1 with probability ξ1(m1|ĥ1, ω̂1 ) and sends the
message mi,1 to player i. Player 0 does not receive a message.

– Player i takes an action ai,1. Player 0 does not take an action.

Consider now a history (at−1, ht−1, ωt−1 ) of past actions, signals, and states and a
history ((ĥt−1, ω̂t−1 ), mt−1 ) of reports and messages. At stage t:

– Nature draws (ht , ωt ) with probability pt(ht , ωt|at−1, ht−1, ωt−1 ).

– Player i ∈ I observes the signal hi,t and player 0 observes (ht , ωt ).

– Player 0 reports (ĥt , ω̂t ) to the mediator. All other players do not make reports.

– The mediator draws the message mt with probability ξt(mt|ĥt , mt−1, ω̂t ) and sends
the message mi,t to player i. Player 0 does not receive a message.

– Player i takes an action ai,t . Player 0 does not take an action.

In the above description, when we say that player i does not make a report, we im-
plicitly assume that the set of reports player i can make to the mediator is a singleton.
Similarly, when we say that player 0 does not take an action. In the rest of the proof, we
omit these trivial reports and actions.

We restrict attention to the histories of M∗(�), where (h, ω) ∈ H�. At stage t, player
i’s private history is (ht

i , m
t
i ), which is also player i’s private history in �π . In addition,

any private history (hi,t , mi,t ) in M∗(�) is also a private history in �π . Thus, σ∗
i is a well-

defined strategy for player i in M∗(�). Moreover, if player 0 truthfully reports his private
information (ht , ωt ) at all histories ((ht , ωt ), (ht−1, ωt−1 ), (ĥt−1, ω̂t−1 )), the conditional
probability of the message mt is the same as in �π . It follows immediately that σ∗ to-
gether with the truthful strategy for player 0 is a Bayes–Nash equilibrium of the auxiliary
mediated game M∗(�).

From the revelation principle of Forges (1986) and Myerson (1986), there exists
a canonical equilibrium μ, where the mediator recommends actions and players are
truthful and obedient, provided they have been in the past. At truthful histories, the
mediator recommends ât with probability

μt
(
ât|

(
ht , ωt

)
︸ ︷︷ ︸
player 0

,
(
ht

1, � � � , ht
n

)
︸ ︷︷ ︸

players in I

, ât−1︸︷︷︸
past recommendations

)
.

It is then routine to verify that we have a Bayes’ correlated equilibrium with the rec-
ommendation kernel μt given by

μt
(
ât|ht , ωt , ât−1) := μt

(
ât|

(
ht , ωt

)
,
(
ht

1, � � � , ht
n

)
, ât−1),

for all (ht , ωt , ât−1 ) for all t.
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(⇒). We now prove that BCE(�) ⊆ ⋃
�π an expansion of �BNE(�π ).

Let μ be a Bayes’ correlated equilibrium with distribution Pμ◦τ∗,p. We now con-
struct an expansion �π and a Bayes–Nash equilibrium σ∗ of �π , with the property that
margH� Pσ∗,π = margH� Pμ◦τ∗,p.

The expansion is as follows. Let Mi,t = Ai,t for all (i, t ),

π1(h1, m1, ω1 ) = p1(h1, ω1 )μ1(â1|h1, ω1 ),

with m1 = â1, for all (h1, m1, ω1 ), and

πt+1
(
ht+1, mt+1, ωt+1|at , ht , mt , ωt

)
= pt+1

(
ht+1, ωt+1|at , ht , ωt

)
μt+1

(
ât+1|ht+1, ωt+1, ât

)
,

with (mt , mt+1 ) = (ât , ât+1 ), for all (at , ht , mt , ωt , ht+1, mt+1, ωt+1 ). Clearly, the ex-
pansion is well-defined: ξ1(m1|h1, ω1 ) = μ1(â1|h1, ω1 ) with m1 = â1, and for t > 1,
ξt+1(mt+1|ht+1, mt , ωt+1 ) = μt+1(ât+1|ht+1, ωt+1, ât ) with (mt , mt+1 ) = (ât , ât+1 ).

By construction, any strategy τt : Ht ×At → �(At ) of M(�) is equivalent to a strategy
σt : Ht × Mt → �(At ) of �π , i.e., σt(at|ht , mt ) :=×i σi,t(ai,t|ht

i , m
t
i ) =×i τi,t(ai,t|h

t
i , â

t
i )

with mt = ât , with the property that Pσ ,π(ht , mt , ωt ) = Pμ◦τ,p(ht , ât , ωt ) when mt = ât ,
for all (ht , mt , ωt ), for all t.

To see this last point, note that the definition of π1 is clearly equivalent to Pσ ,π(h1,
m1, ω1 ) = Pμ◦τ,p(h1, ω1, â1 ) with m1 = â1, for all (h1, m1, ω1 ). By induction, assume that
Pσ ,π(ht , mt , ωt ) = Pμ◦τ,p(ht , ωt , ât ) with mt = ât , for all (ht , mt , ωt ). We now compute
the probability of (ht+1, mt+1, ωt+1 ). We have that

Pσ ,π
(
ht+1, mt+1, ωt+1)

= Pσ ,π
(
ht+1, mt+1, ωt+1|ht , mt , ωt

)
Pσ ,π

(
ht , mt , ωt

)
= πt+1

(
ht+1, mt+1, ωt+1|at , ht , mt , ωt

)
σt

(
at|ht , mt

)
Pσ ,π

(
ht , mt , ωt

)
= pt+1

(
ht+1, ωt+1|at , ht , ωt

)
μt+1

(
ât+1|ht+1, ωt+1, ât

)
τt

(
at|ht , ât

)
× Pμ◦τ,p

(
ht , ât , ωt

)
= Pμ◦τ,p

(
ht+1, ωt+1, ât+1),

with ât+1 =mt+1. Finally, since μ is a Bayes’ correlated equilibrium of M(�), the strategy
σ∗ ≡ τ∗ is a Bayes–Nash equilibrium of �π , and thus

BCE(�) ⊆
⋃

�π an expansion of �

BNE(�π ).

This completes the proof.

Appendix B: Proof of Theorem 3

The proof is nearly identical to the proof of Theorem 1 and is, therefore, omitted. We
only sketch the minor differences.
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(⇐.) Fix an expansion �π and a weak perfect Bayesian equilibrium (σ∗, β) of �π .
We need to construct a weak perfect Bayesian equilibrium of the auxiliary game M∗(�),
which replicates the distribution Pσ ,π . To do so, we define a belief system β∗ of the
auxiliary game M∗(�) as follows:

β∗(ht , mt , ωt ,
(
ht , ωt

)
,
(
ht , ωt

)
|ht

i , m
t
i

)
:= β

(
ht , mt , ωt|ht

i , m
t
i

)
for all (ht , mt , ωt ), for all (i, t ). Note that the above formulation implies that player i be-
lieves with probability 1 that player 0 truthfully report (ht , ωt ). (In M∗(�), player i also
has beliefs about the signals (ht , ωt ) player 0 receives and the reports (ĥt , ω̂t ) by player
0 to the mediator.) It is immediate to verify that (σ∗

0 , σ∗, β∗ ) is a weak perfect Bayesian
equilibrium of M∗(�), where σ∗

0 is the truthful reporting strategy of player 0. The proof
then follows from the revelation principle for weak perfect Bayesian equilibrium. Three
remarks are worth making. First, the mediation ranges and the belief system come from
the revelation principle–the revelation principle precisely states the existence of medi-
ation ranges and belief system such that players have an incentive to be obedient and
truthful, provided they have been truthful in the past. Second, since M∗(�) is a medi-
ated extension of �, it is a common belief that states and base signals evolve according
to (pt )t . At the truthful histories of the direct mediated extension of �, players have an
incentive to be obedient at all recommendations consistent with the mediation ranges,
the mediator is omniscient and beliefs are as in the base game �. (Beliefs of player i

about the action of player 0 are trivial—player 0 has no actions.) Third, the revelation
principle asserts that players assign probability zero to the event others have lied to the
mediator, hence we can use the belief β such that

β
(
ht , ωt , ât|ht

i , â
t
i

)
:= β∗∗(ht , ωt , ât ,

(
ht
j

)
j
,
(
ht , ωt

)
|ht

i , h
t
i , â

t
i

)
.

for all ht , ωt , ât , t, to sustain obedience, where β∗∗ is the belief system inherited from
the revelation principle.

We therefore have a weak perfect Bayes’ correlated equilibrium.
(⇒.) We construct the expansions as in the the proof of Theorem 1, i.e., defining

the additional signals as the recommendations. Since the additional signals player i can
receive are the recommendations, player i can only receive additional signals consistent
with the mediation ranges. Thus, we can use the belief system of the weak perfect Bayes’
correlated equilibrium to construct the weak perfect Bayesian equilibrium of �π .

Appendix C: Proof of Theorem 4

The proof is yet again nearly identical to the proof of Theorem 1. We only sketch the
main differences.

(⇐). Fix an expansion �π and a conditional probability perfect Bayesian equilib-
rium (σ∗, β) of �π . As in the previous proofs, we construct a conditional probability
perfect Bayesian equilibrium of the mediated game M∗(�), which replicates the dis-
tribution Pσ∗,π . As in the proof of Theorem 3, we construct a conditional probability
system β∗ of the mediated game M∗(�) from the conditional probability system β of
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the game �π such that ((σ∗
0 , σ∗ ), β∗ ) is a conditional probability perfect Bayesian equi-

librium of M∗(�), with player 0, the dummy player, truthfully reporting his private in-
formation (ht , ωt ) at each stage t. Since β is a conditional probability system, there
exists a sequence βn of fully supported probabilities such that β(X|Y ) = limn

βn(X∩Y )
βn(Y )

for all X and all nonempty Y . Consider now the sequence of fully supported kernels
γn : HM� → �(H� ×H�), where γn converges to γ((h, ω), (h, ω)|(h, m, ω)) = 1 for all
(h, m, ω). The interpretation is that player 0 learns and truthfully report (h, ω), when
the profile of actions, signals, and states is (h, m, ω). Let β∗ be the CPS resulting from
taking the limit of βn × γn. By construction, β∗(ht , mt , ωt|ht

i , m
t
i ) = β(ht , mt , ωt|ht

i , m
t
i ),

so that σ∗
i remains sequentially rational for player i. Moreover, the newly constructed

conditional probability system is consistent with the kernels p and ξ. The rest of the
proof follows from the revelation principle.

(⇒). Let (μ, R, β) be a sequential Bayes’ correlated equilibrium. The difference with
the previous proofs is that the definition of a sequential Bayes’ correlated equilibrium
does not specify recommendation kernels (μ1, � � � , μT ), which can then be used as ex-
pansions. However, as in the proof of Kuhn’s theorem, we can construct such recom-
mendation kernels from μ.

The construction is iterative. In the sequel, we slightly abuse notation and write
(μ1, � � � , μT ) for the kernels. For all (h1, ω1, â0 ) such that p1(h1, ω1 ) > 0,

μ1
(
â1|â0, h1, ω1) :=

∑
f

μ(f )1
{
f1

(
h1, ω1) = â1

}
.

Note that μ1(â1|h1, ω1, â0 ) > 0 and
∑

â1
μ1(â1|h1, ω1, â0 ) = 1. The kernel μ1 is thus well-

defined. (Recall that (h1, ω1 ) = (h1, ω1 ) and that â0 is a singleton.)
We proceed iteratively. For all (ht , ωt , ât−1 ), such that

p1(h1, ω1 )μ1
(
â1|â0, h1, ω1) × · · ·

×pt−1
(
ht−1, ωt−1|at−1, ht−2, ωt−2)μt−1

(
ât−1|ât−2, ht−1, ωt−1t

)
×pt

(
ht , ωt|at , ht−1, ωt−1)> 0

for some (a1, � � � , at ),

μt
(
ât|ât−1, ht , ωt

)
:=

∑
f

μ(f )1
{
f1

(
h1, ω1) = â1, � � � , ft

(
ht , ωt

) = ât
}

∑
f

μ(f )1
{
f1

(
h1, ω1) = â1, � � � , ft−1

(
ht−1, ωt−1) = ât−1

} .

It is immediate to verify that the kernel is well-defined.
Two remarks are in order. First, since we consider histories (h, ω) ∈ H�, we already

have that

p1(h1, ω1 )μ1
(
â1|â0, h1, ω1) × · · ·

×pt−1
(
ht−1, ωt−1|at−1, ht−2, ωt−2)pt

(
ht , ωt|at , ht−1, ωt−1)> 0
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for some (a1, � � � , at ). Second, since we only consider feedback rules in the support of μ,
all the recommendations with positive probabilities are consistent with the mediation
ranges. Hence, players are obedient at these recommendations.

We define the conditional probability system on H�A as

β(h, ω, â) =
∑
f

β(f , h, ω)1
{
f (h, ω) = â

}
.

To complete the proof, we repeat the same steps as in the proof of Theorem 1, i.e.,
the additional messages are the recommendations, the kernels (ξ1, � � � , ξT ) are the rec-
ommendation kernels (μ1, � � � , μT ), and the conditional probability system is the one on
H�A defined above. Since we consider the restriction to recommendations with pos-
itive probabilities, the recommendations are consistent with the mediation ranges and
players have an incentive to play according to their signals.
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