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Conveying value via categories
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A sender sells an object of unknown quality to a receiver who pays his expected
value for it. Sender and receiver might hold different priors over quality. The
sender commits to a monotone categorization of quality. We characterize the
sender’s optimal monotone categorization, the optimality of full pooling or full
separation, and make precise a sense in which pooling is dominant relative to
separation. As an application, we study the design of a grading scheme by an
educational institution that seeks to signal student qualities and simultaneously
incentivize students to learn. We show how these incentive constraints are em-
bedded as a distortion of the school’s prior over student qualities, generating a
monotone categorization problem with distinct sender and receiver priors.

Keywords. Monotonic categorization, heterogeneous priors, information de-
sign.

JEL classification. D82, D83.

1. Introduction

A sender is about to come into possession of an object of unknown quality. Prior to
knowing that quality, she commits to a categorization.That is, she partitions the set of
qualities into subsets or categories—some possibly singletons—and verifiably commits
to reveal the category in which the quality belongs. The categories must be monotone.
For instance, she can place qualities between a1 and a2 into one category. She cannot,
however, lump qualities below a1 with those above a2, where a2 > a1. Monotonicity is a
natural restriction in many settings; see Section 2.5.

A receiver buys the object and pays the sender his expected value conditional on the
sender’s category announcement. The sender seeks to maximize expected payment.

The sender and receiver use distinct distributions to evaluate the expectation of
quality. That could mean that they hold different priors, and so disagree about the un-
derlying distribution of qualities. However, there are other situations with common pri-
ors that map to a reduced form with different priors. For instance, the sender might
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be an intermediary for individuals who differ in their optimism or pessimism about the
value of the object they own, and she might be more responsive to, say, optimistic own-
ers who are also more generous with their fees. Further, distinct priors may be a stand-
in for state-dependent sender payoffs over and above receiver payments or incentive
constraints that effectively distort the measure that the sender employs to maximize
expected value. Temporarily postponing this discussion (see Sections 2.4 and 4), note
that a difference in priors, either primitive or induced, is what makes our categorization
problem nontrivial.

A categorization will typically have pooling intervals in which all qualities are in the
same category and separating intervals in which all qualities are revealed. We build an
auxiliary function x �→ H(x), where H(x) is the probability, from the sender’s perspec-
tive, that the quality is below the x-quantile in the receiver’s prior. Theorem 1 shows that
an optimal categorization can be built by pooling quality intervals where H differs from
its lower convex envelope and by separating in all intervals where these two objects coin-
cide. Section 2.3 compares our approach with the ironing procedure of Myerson (1981)
and the procedure in Rayo (2013).

Theorem 1 can be applied to study full pooling as well as local pooling on inter-
vals. The former is optimal when the receiver’s prior dominates the sender’s prior under
first stochastic dominance either throughout (Proposition 1) or on intervals (Proposi-
tion 2).1 However, these findings are not paralleled for separation. Full separation is
optimal if and only if the sender’s prior dominates the receiver’s in the likelihood ratio
order (Proposition 3). Moreover, this dominance relationship over an interval continues
to be necessary for separation on that interval, but is not sufficient (Proposition 4). This
asymmetry across pooling and separation has implications for the relative prevalence of
pooling. In Section 3.3, we describe a precise sense in which pooling is more widespread
than separation.

Specifically, suppose that pairs of priors are drawn from some universe of allowable
priors, which could be equally attached to sender and receiver. Say that a quality is po-
tentially pooled if it is pooled (with other qualities) in at least one of the two problems,
and is comprehensively pooled if it is pooled in both problems. Proposition 5 shows that
every quality is potentially pooled, and that the set of problems for which a nondegener-
ate interval of qualities is comprehensively pooled is open and dense in the space of all
prior pairs (under the uniform topology). Pooling is the rule rather than the exception.

That said, it is possible to examine how the extent of pooling and separation varies
with the sender’s and receiver’s prior beliefs. In Section 3.4, we vary the implied opti-
mism in the sender’s prior. Proposition 6 shows that a higher prior for the sender (in the
likelihood-ratio order) expands optimal separating regions. In Section 3.5, we show that
a special case of “nonlinear sender payoff” problems can be rewritten as a version of
our benchmark problem, with an implied distortion in the sender’s prior. In that special
class of problems, an increased convexity of the sender’s payoff function is analogous to
heightened optimism of the sender’s prior in the benchmark problem.

1We say a distribution dominates anotheron an interval if the former distribution, conditional on the
interval, dominates the latter distribution, conditional on that same interval.
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Categorization has several applications. Financial rating agencies classify assets ac-
cording to riskiness, certifying companies underwrite eco-friendly labels, bond issues
are rated by agencies, the Department of Health provides restaurants with sanitary in-
spection grades, and schools grade students according to their academic achievements.
In Section 4, we study an application where a school chooses a grading system both to
signal student’s underlying abilities and to incentivize students to exert effort to learn.
Beyond its intrinsic interest, this application illustrates how the school’s problem of in-
centivizing learning can be nested by our framework. Proposition 7 shows that incentive
constraints can be incorporated into our benchmark model, with an appropriately in-
duced sender prior, which is different from the receiver prior even though the primitive
priors could be the same.

1.1 Related literature

We contribute to the literature on “information design,” stemming from Rayo and Se-
gal (2010) and Kamenica and Gentzkow (2011). Within that literature, our work re-
lates mainly to papers studying monotone information design, such as Mensch (2021)
and Ivanov (2021), and information design with heterogeneous priors, such as Alonso
and Camara (2016). Our paper combines these two starting points and provides a
sharp characterization of optimal categorization in this combined environment. In Sec-
tion 3.4, we compare optimal monotone categorization to non-monotone benchmarks.

Like us, Dworczak and Martini (2019) study optimal signaling structures in environ-
ments where the receivers’ actions depend on their posterior mean. Much of the anal-
ysis in Kolotilin (2018) also focuses on the “posterior mean case.”2 Both papers study
problems where the sender’s payoff is affine in the state and potentially nonlinear in
the receiver’s chosen action. In contrast, the sender’s payoff in our environment is as-
sumed to be affine in the receiver’s action (which equals the receiver’s posterior mean),
but potentially nonlinear in the state. See, for example, the discussion in Section 2.3,
which clarifies how the heterogeneous priors between the sender and receiver can be
expressed as the sender having a payoff function that is nonlinear in the state. Moreover,
in our exercise, the sender must employ a monotone categorization, which is not a re-
quirement in Kolotilin (2018) and Dworczak and Martini (2019). Dworczak and Martini
(2019) provide conditions for the optimality of monotone signals in their environment.
Kolotilin (2018) also provides conditions for a special type of monotone structure, which
he calls interval revelation, to be optimal. Kolotilin and Li (2021) provide some charac-
terization results for monotone persuasion, again in a setup where the sender’s payoff is
state independent.

The solution method described in Theorem 1 is related to the ironing technique orig-
inally used in Myerson (1981), and recently extended by Kleiner, Moldovanu, and Strack
(2021) to apply to optimization problems subject to majorization constraints. This con-
nection is discussed at length in Section 2.3.

2Some of Kolotilin’s (2018) results apply to a broader class of persuasion problems. However, Kolotilin
(2018) remarks that his Assumption 2 (page 614) implies that the “sender’s payoff depends only on the
expected state” and, therefore, the results that rely on such assumption refer to the “posterior mean case.”.



1410 Onuchic and Ray Theoretical Economics 18 (2023)

Rayo (2013) studies optimal monotonic signals in a problem where a monopolistic
seller designs a menu of good qualities to be offered to buyers who care about the “sta-
tus” implied by their chosen good. In part, our analysis can be viewed as bridging Rayo’s
specific problem to a more abstract setting where sender and receiver have distinct pri-
ors. This allows us to interpret the sender’s incentives to pool or separate states within
certain intervals as due to greater local pessimism or greater local optimism than the
receiver, respectively. Some of Rayo’s (2013) results parallel ours; for example, his char-
acterization of the optimality of full separation is equivalent to ours in Proposition 3.
Kartik, Lee, and Suen (2021) find related characterization of full separation in an envi-
ronment with a different restriction on the set of experiments available to the sender.

2. Monotone categorization

A sender is about to come into possession of an object, the quality a of which is cur-
rently unknown to her. She has the opportunity to choose a categorization—a partition
of the space of potential qualities. She commits to naming the element of the partition
to which a belongs. A receiver buys the object and obtains value equal to its quality.
He believes that quality is distributed according to a continuous cdf R, strictly increas-
ing on [a, ā] with R(a) = 0 and R(ā) = 1. He stands ready to pay his expected value for
the object, where expectations are computed using R and the category revealed by the
sender.

It is assumed that the chosen categorization must be monotone, with each element
a (possibly degenerate) interval. For instance, the sender can create two categories for
qualities between a and a1 or between a1 and ā. She cannot, however, lump together
qualities below a1 or above a2 > a1 into one category without including all qualities in
between.

The sender’s objective is to maximize her expected revenue from the sale of the ob-
ject, by committing to a categorization before quality is revealed to her. That expectation
is calculated using a signed measure S (which is potentially not a cdf). The maximiza-
tion problem is nontrivial only if S �= R; that is, when sender and receiver have distinct
priors. If S = R, then the expected sale revenue is independent of the sender’s chosen
characterization. (In that case, Bayesian plausibility implies that the expected revenue
is equal to the object’s expected value according to the common prior S =R.)

An interpretation of our model is that the sender and receiver hold distinct priors
about the object’s value, and we, therefore, informally think of S as a cdf. However, our
analysis does not rely on such a presumption, and some of our applications and in-
terpretations make use of the fact that S is a signed measure. We assume that S has
bounded variation on the same support [a, ā] as R, with S(a) and S(ā) both finite, and
that it only has upward jumps.3 MeasureS would indeed be a cdf if it were nondecreasing
with the usual endpoint conditions.

3The assumed absence of downward jumps avoids notational complexity, but is dispensable.
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2.1 Sender’s categorization problem

For any countable—possibly empty—collection P of disjoint intervals, each of the form
[p, p′ ) ⊂ [a, ā], define

A(x) =
{
ER[y|y ∈ [

p, p′ )
]

if x ∈ [p, p′ ) ∈ P ,

x otherwise.
(1)

Let AR be the collection of all such functions. This set is nonempty; e.g., A(x) = x

for all x lies in it. The sender picks A ∈ AR to maximize her expected return under the
integrating function S or, more precisely, under the signed measure that S represents.

Observe that any A ∈ AR has (at most) countably many disjoint intervals on which
it is constant; these are the pooling intervals. Adjacent pooling intervals have distinct
constant images. Qualities that are not in pooling intervals are in separating regions.
By convention, all pooling intervals are closed on the left and open on the right, so A

isright-continuous. Accordingly, we always separate ā (so A(ā) = ā). These choices are
without loss of generality because (a) R has no mass points and (b) S has only upward
jumps by assumption, so the sender would prefer to close any discontinuity in A on the
right rather than the left.

For this last reason, and to write expected value formally as an integral, we adopt the
convention that S is left-continuous. The sender solves4

maximize
∫ ā

a
A(x)dS(x), (2)

noting that this Stieltjes integral is just the expected value under S when S is a cdf. It is
well definedbecause the integrand A is right-continuous, and because S has bounded
variation and is taken to be left-continuous. We could have adopted a right-continuous
representation for S, except that the integral in (2) would have to be rewritten to accom-
modate the left-hand limits of S, which is notationally cumbersome.

2.2 Optimal categorization

Define a weighting function � associated with A ∈ AR by

�(x, A) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
S(p) + [

R(x) −R(p)
][ S

(
p′) − S(p)

R
(
p′) −R(p)

]
if x is in a pooling interval [p, p′ ),

S(x) otherwise.

(3)

With R strictly increasing, � is well defined. If S is a cdf, so is �. If S has bounded
variation, so does �. Next, for any left-continuous function H : [0, 1] → R+, define its

4If S has all the properties of a cdf except that S(ā) < 1, this can be interpreted as S having a mass point
at ā. Under that interpretation, the objective in (1) represents the sender’s expected value over the interval
[a, ā). However, note that for reasons (a) and (b) described above, it is without loss to let A(ā) = ā and to
write the sender’s objective as the expected value over [a, ā).
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S
t0 = 0 ā

�
t0 = 0 t1 ā

Figure 1. Function R (not shown) is uniform on [0, ā] and S is as pictured. Jagged lines indicate
separating regions. In the first panel, there is full separation and � = S. In the second panel, the
sender pools on [t0, t1 ) and separates elsewhere, and � is shown as a thicker line.

lower convex envelope by

H̆(x) ≡ min
{
y|(x, y ) ∈ Co

(
Graph(H )

)}
.

This chalks out uniquely the largest convex function we can place below H. In what
follows, we study the particular function H = S ◦R−1.

Lemma 1. (i) The value to the sender,
∫ ā
a A(x)dS(x), equals

∫ ā
a xd�(x, A).

(ii) Furthermore, for any A ∈ AR and z ∈ [0, 1], �(R−1(z), A) ≥ H̆(z).

Part (i) states that the sender’s value under any categorization A is found by inte-
grating x over [a, ā] under the weighting function �(·, A), which in separating regions
“follows” the sender’s prior S and in pooling regions follows the receiver’s prior R. See
Figure 1.Moreover, integration by parts reveals that

∫ ā

a
xd�(x, A) = [

1 −�(ā, A)
]
ā− [

1 −�(a, A)
]
a+

∫ ā

a

(
1 −�(x, A)

)
dx

= [
1 − S(ā)

]
ā− [

1 − S(a)
]
a+

∫ ā

a

(
1 −�(x, A)

)
dx, (4)

where we use �(a, A) = S(a) and �(ā, A) = S(ā). Therefore, we will have found our op-
timal categorization if we can find a suitable pointwise lower bound to every �. That
motivates part (ii), which connects the weighting function � to the lower convex enve-
lope H̆ of H = S ◦ R−1. It is easy to see that H̆ has zones where it coincides with locally
convex segments of H (not necessarily all of them), and other intervals where it is a
straight line connecting two points of the form (z, H(z)) and (z′, H(z′ )). We can thus
fashion a categorization A∗ by pooling the intervals where H̆ is a straight line and by
separating everywhere else. The � induced by A∗ will coincide with H̆.
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Figure 2. The construction of H = S ◦ R−1 and its lower convex envelope. In panel (a), R is
concave. In panel (b), R is convex. In both cases, S has a reverse-logistic shape. Function H is
plotted as a thin line along with its lower convex envelope, plotted as a thick line.

Lemma 2. There exists A∗ ∈ AR such that �(R−1(z), A∗ ) = H̆(z) for all z ∈ [0, 1].

Together, Lemmas 1(ii) and 2 imply that there is a categorization A∗ such that for ev-
ery categorization A ∈ AR and z ∈ [0, 1], �(R−1(z), A) ≥�(R−1(z), A∗ ). In other words,

�(x, A) ≥�
(
x, A∗) for every x ∈ [a, ā] and A ∈ AR. (5)

Consequently, (4) and (5) imply that sender value is weakly higher under A∗ than under
any A ∈ AR, which yields the following theorem.

Theorem 1. A solution to the sender’s problem exists. A categorization A∗ is a solution if
and only if �(R−1(z), A∗ ) = H̆(z) for all z ∈ [0, 1], where H = S ◦R−1.

Figure 2 displays the optimal categorization. Function S is taken to be a cdf. It is
shown horizontally flipped and has a “reverse-logistic” shape. In the illustration in panel
(a), R is concave (shown vertically flipped) and in panel (b), R is convex (again vertically
flipped). In each panel, the function H = S ◦R−1 is derived, and displayed in the north-
east quadrant. Its lower convex envelope is also displayed. To see informally how this
categorization behaves, note that if R is concave (panel (a)), this concavity compresses
the concave segment of the derived H and elongates the convex segment. The resulting
pool is, therefore, small. This is reasonable: the concavity of R implies receiver pes-
simism about quality, so it is better that the sender separates qualities to a greater de-
gree (relative to uniform R). In fact, panel (a) shows two distinct zones of separation. In
panel (b), R is convex: the receiver is relatively optimistic. That accentuates the concave
segment of H and induces greater pooling—another intuitive observation.
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2.3 Relation between Theorem 1, the ironing procedure, and Rayo (2013)

An “ironing” procedure, as introduced in Myerson (1981), can often solve problems of
the form

max
A∈A

∫ ā

a
π(x)A(x)dR(x), (6)

where R is some distribution with support [a, ā], π is some potentially non-monotonic
function (it is the virtual surplus function in Myerson), and A is a given subset of all non-
decreasing functions from [a, ā] into some given interval [b, b̄]. For expositional ease, we
assume R is uniform on [0, 1], but this is not necessary.

Suppose first that A is the space of all nondecreasing functions. The procedure
defines a new version of π, which “irons out” its non-monotonicities. Let �(x) ≡∫ x

0 π(z)dz and π̆(x) ≡ d�̆(x)/dx, where �̆ is the lower convex envelope of �. Because �̆

is convex, the ironed version π̆ of π is nondecreasing. Moreover, π̆ coincides with π on
intervals where both are strictly increasing, and (generically) differs from π on intervals
where π̆ is constant. Replacing π by π̆ in (6), we obtain the auxiliary expression

∫ ā

a
π̆(x)A(x)dR(x). (7)

Next, choose A ∈ A so as to maximize the objective in (7). One solution is the step func-
tion A∗ with A∗(x) = b when π̆(x) ≤ 0 and A∗(x) = b̄ when π̆(x) > 0. Importantly, this
solution is such that A is constant wherever π̆ differs from π. and we can, consequently,
show that such A∗ must also be a solution to the original maximization problem.5

Previous literature has shown that the ironing method introduced above can be ap-
plied to a broader set of problems in which A is further restricted. For example, addi-
tional constraints arise in Myerson’s allocation problems with multiple potential buyers,
or from the production costs as in Mussa and Rosen (1978), or to account for a variety
of capacity constraints. In all such cases, the ironing solution is such that A is strictly
increasing on intervals where π̆ is strictly increasing and constant on intervals where π̆

is constant.
In our categorization problem, assuming further that S is absolutely continuous with

respect to R, (2) can be converted to (6), with π(x) ≡ dS
dR (x). However, our sender must

choose A from AR, the space of all nondecreasing functions that additionally satisfy the
Bayesian constraint in (1).6  Rayo (2013) studies the maximization problem in (6), sub-
ject to Bayesian constraints analogous to (1), with the additional assumption that π is a

5Formally, we have

∫ ā

a
π(x)A(x)dR(x) ≤

∫ ā

a
π̆(x)A(x)dR(x) ≤

∫ ā

a
π̆(x)A∗(x)dR(x) =

∫ ā

a
π(x)A∗(x)dR(x),

where the last equality follows from the fact that A∗ is constant on each interval I where π differs from π̆

and
∫
I π(x)dR(x) = ∫

I π̆(x)dR(x) by the construction of π̆.
6Such Bayesian constraints are similar in spirit to capacity constraints, as they can be thought of as the

sender allocating a limited amount of “beliefs” about the object’s quality across categories.
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smooth function. The solution methods proposed both by Rayo (2013) and by us yield
pooling and separating regions that coincide with the ironing solution just described.
Therefore, one interpretation of our Theorem 1 and the methods used in Rayo (2013) is
that the ironing procedure applies to design problems subject to Bayesian constraints
as in (1).7

Now we remark on some differences. As already noted, our objective function can
be rewritten in the form (6) if S is absolutely continuous with respect to R. However, the
proof of Theorem 1 applies more broadly even when the sender’s objective cannot be
written in that form—so that the ironing procedure, or Rayo’s (2013) method, cannot be
applied directly. Specifically, our approach circumvents the step of rewriting the objec-
tive in (6)—to obtain (7)—by relying on the special structure of the Bayesian constraints
in (1).

Instead, part (i) of Lemma 1 achieves a different rewriting of the sender’s objective.
It shows that

∫ ā
a A(x)dS(x) can be equivalently written as

∫ ā
a xd�(x, A), which is the

expected value of the object under the weighting function � (so named because S, and,
therefore, �, may not be a proper cdf). This weighting function is a composite of S and
R: in the separating intervals of A, it equals the sender’s prior S; in the pooling intervals
of A, it is an affine function of R. See the precise definition of � in (3). The sender’s
problem is then to pick an A that yields the “best” such weighting function.

Part (ii) of Lemma 1 shows that for every A, the implied weightingfunction � is
weakly dominated by the lower convex envelope of H ≡ S◦R−1 in the sense of first-order
stochastic dominance. Additionally, Lemma 2 shows that there exists some A ∈ AR

whose induced weighting function is equal to the lower convex envelope of H. That
A must, therefore, be a solution to the sender’s problem.

Thus, both our procedure and the ironing method invoke convex envelopes, but in
different ways. In the latter, the convex envelope is used to define the auxiliary problem
in (7), the solution to which is then the solution to the original problem. In contrast,
in our method the convex envelope of H = S ◦ R−1 is itself the solution to the problem;
it equals the weighting function induced by the sender’s optimal categorization. More-
over, the first-order stochastic dominance argument described above and the optimality
of the overall procedure do not rely on S being a cdf that is absolutely continuous with
respect to R.

2.4 Remarks on non-common priors

The literal interpretation of our model is that sender and receiver hold distinct priors:
they agree to disagree. But there are other, “common prior,” models that might lead to
the sender acting as if she holds a prior distinct from the receiver’s.8 As a first example,

7In a recent paper, written concurrently to ours, Kleiner, Moldovanu, and Strack (2021) demonstrate that
ironing can be derived as a special case of a general solution method that applies to optimization problems
subject to majorization constraints, such as Bayes-plausibility restrictions.

8This literal interpretation is also taken by Alonso and Camara (2016), who extend the “concavification”
argument of Kamenica and Gentzkow (2011) to a context with heterogeneous priors. Further, see Van den
Steen (2004, 2009, 2010, 2011), Che and Kartik (2009), Galperti (2019), de Clippel and Zhang (2020), and
(Kartik, Lee, and Suen (2017, 2021), who also consider environments with heterogeneous priors.
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the sender might be interested in a robust solution such as one that generates the high-
est return to her under the most pessimistic receiver prior in some exogenously given
class. Additionally, in Section 3.6, we describe how the profit maximization problem of
a retailing intermediary, studied in Rayo and Segal (2010), can be interpreted as that of a
sender with state-dependent preferences (or, equivalently, a distorted prior). Finally, in
Section 4, we provide a model with incentive constraints arising from moral hazard and
show that it maps into our setting with non-common priors.

2.5 Remarks on monotonicity

Our sender is restricted to choosing monotonic categorizations. In many situations,
monotonicity is warranted, either coming from external constraints or from internal
constraints within a larger problem. As an example of the former, a non-monotone
categorization by a credit rating agency of the riskiness of debt issuers could invite a
lawsuit from a relatively safe issuer. (See Goldstein and Leitner (2018) for a discussion.)
As an instance of the latter, monotonicity could emerge as the outcome of a broader
design problem in which incentive constraints need to be respected and natural single-
crossing conditions hold over the type space of agents. Our application in Section 4 is a
case in point (though our goal in that section is broader), and so is the design problem
in Rayo (2013).

Compared to unrestricted persuasion problems, this additional imposition of mono-
tonicity calls for a new solution method, because some concavifications of sender values
in receiver posteriors, achieved through belief-splitting, are no longer available when
categories are required to be monotone. In Section 3.6, we compare our results on
monotonic categorization to categorization benchmarks without the monotonicity as-
sumption, such as in Alonso and Camara (2016) and Rayo and Segal (2010).

There are problems that can also be mapped into the framework of monotone
persuasion with state-dependent sender preferences. For instance, Kolotilin and Za-
pechelnyuk (2019) establish an equivalence between balanced delegation problems and
monotone persuasion problems. Our method finds the optimal signal in their linear per-
suasion environment when the sender”s value is linear in the receiver”s action. Board
(2009) studies the optimal design of groups accounting for peer effects. His case of aver-
age quality peer effects is also closely connected to a monotone persuasion problem. In
Rayo (2013), buyers value both the underlying quality of a status good and the average
type of agents who purchase it. In that setting, the monopolist seller’s problem is also a
monotone categorization problem.

3. Pooling and separation under optimal categorization

Theorem 1 has implications for pooling and separation, both globally and on subin-
tervals. Propositions 1–4 relate separating regions of the optimal categorizations to the
sender’s local optimism relative to the receiver and its pooling regions to the sender’s
relative local pessimism. The relevant notions of local optimism and pessimism are dis-
cussed below. It is of interest that they are not symmetric.
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3.1 Full pooling and pooling intervals

Proposition 1 states that if the receiver is more optimistic than the sender in the sense
of first-order stochastic dominance (or �1), then the sender should not reveal any infor-
mation that might make the receiver more pessimistic, and so full pooling on [a, ā) is
optimal.

Proposition 1. Full pooling on [a, ā) is optimal if and only if S(x) − S(a) ≥ [1 −
S(a)]R(x) for all x ∈ [a, ā]. If S is a cdf with S(a) = 0, then this condition is equivalent
to R �1 S.

This intuitive idea extends to local regions over which the receiver is more optimistic
than the sender. Say that R �1 S on an interval I if R(·|I ) �1 S(·|I ).

Proposition 2. Let S be a cdf. If R �1 S on [a, b), then there exists an optimal catego-
rization where [a, b) belongs to a pooling interval. Conversely, R �1 S on any pooling
interval under an optimal categorization.

If x < ā is a discontinuity point of S, then there exists some x′ > x such that R �1 S on
[x, x′ ). Therefore, a consequence of Proposition 2 is that, for all mass points in S, there
exists an optimal categorization such that the mass point belongs to a pooling category.

3.2 Full separation and separating intervals

The same ideas do not carry over in symmetric fashion to zones of separation. Unlike the
case of full pooling, first-order stochastic dominance is not the relevant criterion. When
S is a cdf, full separation is optimal if and only if S dominates R in the likelihood ratio
order, denoted by ��.9 Put another way, the converse of full pooling is not separation. It
is true that if S �1 R, she would gain from splitting [a, ā] into two or more pools, but for
full separation to be optimal, she must want to split every pool.

Proposition 3. Full separation is optimal if and only if H = S ◦R−1 is convex on [0, 1].
If S is a cdf, then this condition is equivalent to S �� R.

Unlike Proposition 2, this assertion admits only a partial extension to subintervals:
S �� R over [a, b) is necessary but not sufficient for [a, b) to be nested in a separating
interval.

Proposition 4. Let S be a cdf. If [a, b) is a subset of some separating interval of qualities
in any optimal categorization, then S �� R on [a, b).

9We have S �� R if PS[x ∈ X]PR[x ∈ Y ] ≤ PS[x ∈ Y ]PR[x ∈ X] for all measurable sets X and Y with X ≤ Y ,
where X ≤ Y means that x ∈ X and y ∈ Y imply x ≤ y . Shaked and Shanthikumar (2007) show that this is
equivalent to S ◦ R−1 being convex (see equation (1.C.4)). In Theorem 1.C.5, Shaked and Shanthikumar
(2007) also show that S �� R is equivalent to S �1 R over every subinterval of [a, ā].
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3.3 Pooling versus separation

From our characterization, it should be obvious that zones of pooling and separation
will typically alternate, and, in fact, must alternate when S and R are smooth.10 That
lends an air of symmetry to pooling versus separation. At the same time, the distinct
conditions for pooling and separation in the earlier propositions hint at an asymme-
try between the two outcomes. We will now argue that there is a well defined sense in
which pooling, or the deliberate concealment of information, is more prevalent than its
transparent disclosure (or separation).

Fix a pair of priors P = (P1, P2 ) that admits continuous, strictly positive densities
(p1, p2 ) on [a, ā] and let h(x) ≡ p1(x)/p2(x). We say that h is regular if it is either weakly
monotone or has an isolated turn. Specifically, a (possibly degenerate) interval [c, d],
with a < c ≤ d < ā, is an isolated turn of h if there is ε > 0 such that (a) h is constant on
[c, d], (b) h is strictly monotone on [c − ε, c] and [d, d + ε], and (c) h is strictly increasing
on one of these intervals and strictly decreasing on the other. Regularity is an extremely
mild property that rules out some pathological functions.11

Consider P , the space of all pairs of strictly positive and continuous densities p =
(p1, p2 ) on [a, ā], with h(x) ≡ p1(x)/p2(x) regular. Endow P with the product topol-
ogy of uniform convergence on densities.12 Each such p admits two sender–receiver
problems, one with (s, r ) = (p1, p2 ) and one with (s, r ) = (p2, p1 ), where s and r are the
densities of the sender’s and receiver’s priors, respectively. A quality x ∈ [a, ā] is poten-
tially pooled under p if it is pooled (with some subset of other qualities) in some optimal
categorization in at least one of these two problems, and it is comprehensively pooled
under p if it is pooled in any optimal categorization in both the problems.

Proposition 5. Every x ∈ (a, ā) is potentially pooled under every p ∈ P . The set of prior
pairs p for which some nondegenerate interval of qualities is comprehensively pooled un-
der p is open and dense in P .

The first part of Proposition 5 states that for every quality x and every prior pair, there
is at least one assignment of that pair to sender and receiver for which an optimal solu-
tion pools x. The second part of the proposition makes it clear that the same cannot be
said of separation, at least outside a sparse closed set with empty interior. Topologically,
the set of prior pairs that comprehensively pools some intervals of qualities is open and
dense in the space of all prior pairs.

Figure 3(a) illustrates these points. Panel (a) shows how there can be full pooling in
one problem and partial pooling in the other (with priors flipped). Panel (b) shows that
even if some pooling and some separation occurs in both problems, there is still more
pooling than separation, in the sense that some interval of qualities must be pooled

10Rayo (2013) also finds that alternating pooling and separating intervals is optimal.
11A turn would fail to be isolated if it is the limit of a sequence of turns accumulating arbitrarily close to

it. This would still not eliminate regularity as long as at least one of the other turns is isolated. However,
there are pathological examples that are neither monotone nor have an isolated turn anywhere, such as the
Weierstrass fractal function, and these are eliminated via regularity.

12We thank an anonymous referee for suggesting this line of exposition.
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Figure 3. H is shown as the thin line; its envelopes as thick grey lines. In panel A, full pooling
occurs under (S, R) and partial pooling under (R, S). In panel B, partial pooling occurs under
both (S, R) and (R, S). In both panels, pooling is more widespread on average than separation.

in both problems, whereas the same is not true of separation. To read these figures,
note that optimal categorization under the (S, R) problem is given by the lower convex
envelope of H = S ◦R−1 and, therefore, by exactly the same logic, by the upper concave
envelope of H under the (R, S) problem.

3.4 Comparative statics on priors

In this section, we apply the characterization in Theorem 1 to examine the implications
of changing optimism in sender and receiver priors. Continue to assume that S is a cdf.
In what follows, Sep(A) denotes the union of all separating intervals under a categoriza-
tion A.

Proposition 6. Fix a receiver prior R and consider two sender priors S and Ŝ, with Ŝ ��

S. There exists an optimal categorization Â for the sender with prior Ŝ such that, for any
optimal categorization A for the sender with prior S,

int
(
Sep(A)

) ⊆ int
(
Sep(Â)

)
.

That is, increasing the sender’s prior in the likelihood-ratio order leads to an expan-
sion of the separating regions and, therefore, an increase in the Blackwell informative-
ness of the optimal categorization (from the receiver’s perspective).13 To understand
this, recall that Ŝ �� S implies that Ŝ = ϕ ◦ S for some increasing and convex function ϕ.
A consequence is that the “separating regions” where ϕ ◦S ◦R−1 coincides with its lower

13Proposition 6 shows that the interior of optimal separating regions under S is contained in the interior

of optimal separating regions under Ŝ. This is enough to rank these optimal categorizations in terms of
Blackwell informativeness from the receiver’s perspective, because R has no mass points.
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convex envelope is larger than the separating regions where S ◦ R−1 coincides with its
convex envelope.

Curello and Sinander (2022) perform a related exercise. They study a persuasion en-
vironment in which sender and receiver have the same prior, but the sender’s payoff
is a potentially nonlinear function of the receiver’s posterior mean. Their main results
provide conditions under which increasing the convexity of the sender’s payoff function
increases the informativeness of the optimal signal (in the Blackwell sense). Our Propo-
sition 6 analogously shows that when sender payoff is linear but priors are asymmetric,
an increase in the convexity of the sender’s prior increases the informativeness of the
optimal signal.

Suppose instead that we fix the sender’s prior S and vary the optimism of the re-
ceiver from R to R̂, with R �� R̂. Interestingly, the converse of Proposition 6 does not
hold: there exist S, R, and R̂, such that separating regions do not “expand” from problem
(S, R) to problem (S, R̂). Formally, there is some optimal categorization A under (S, R)
such that for any optimal categorization Â under (S, R̂), int(Sep(A)) � int(Sep(Â)), and
so Theorem 1 does not imply any clear ranking between the informativeness of optimal
categorizations under R versus R̂.14

3.5 Remarks on nonlinear sender payoffs

Throughout the paper, we maintain that the sender’s payoff is linear in the posterior
mean induced on the receiver by the observed category. However, we note that there
is a special class of “nonlinear sender payoff” problems that can be rewritten as in the
linear benchmark problem. Suppose that sender and receiver share a common prior
(S = R). Denoting the state by x and the receiver’s posterior mean by a, let the sender’s
payoff function be U(x, a) = λ1(x)a + λ2a

2 for λ1 : [a, ā] → R and λ2 ∈ R. In this case,
the sender picks A ∈ AR to maximize

∫ ā

a

[
λ1(x)A(x) + λ2A(x)2]dS(x).

Using S = R and the definition of A(x), it is easy to see that

∫ ā

a

[
λ1(x)A(x) + λ2A(x)2]dS(x) =

∫ ā

a

[
λ1(x) + λ2A(x)

]
A(x)dS(x)

=
∫ ā

a

[
λ1(x) + λ2A(x)

]
A(x)dR(x)

=
∫ ā

a

[
λ1(x) + λ2x

]
A(x)dR(x) =

∫ ā

a
A(x)dŜ(x),

14The relation R�� R̂ is equivalent to there being an increasing and convex function ϕ such that R̂−1 =
R−1 ◦ ϕ. Despite the convexity added by ϕ, it is not always true that the set where H = S ◦ R−1 equals its
lower convex envelope is a subset of the set where Ĥ = S ◦R−1 ◦ϕ equals its lower convex envelope.
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where dŜ(x) = [λ1(x) + λ2x]dR(x). Note that in this special case, the nonlinearity of U
can also be viewed as a change of the sender’s prior. We can use this rewriting to perform
analogous exercise to Curello and Sinander’s (2022, Theorems 1 and 2): an increase in
λ2, which increases the convexity of U , maps into increased convexity of Ŝ. With an
argument parallel to that in Proposition 6, we can show that this heightened convexity
thus implies an increase in the informativeness of optimal categorizations.15

3.6 Non-monotonic categorization

Alonso and Camara (2016) study a persuasion problem with heterogeneous priors, with-
out restricting the sender to monotone signals. Rayo and Segal’s (2010) seminal pa-
per can also be regarded as a problem of persuasion with heterogeneous priors, but no
monotonicity constraint.16

Specifically, Rayo and Segal (2010) consider an information intermediary who is paid
a fee whenever the sale of a prospect takes place. The intermediary receives different
unit fees for different prospects. Let x be the value of a prospect to a potential buyer and
let π(x) be the unit fee paid to the intermediary if a sale takes place. For most of the
paper, Rayo and Segal (2010) assume that the probability that a sale takes place is equal
to the buyer’s expectation of the object’s value (given any information they observe).
Further, suppose no two prospects have the same value, so each x is associated with a
single fee π(x). Let R be the prior about the prospect’s value, commonly held by the
intermediary and the potential buyer.17 Then the intermediary’s profit when she picks a
categorization A ∈ AR is

∫ ā

a
π(x)A(x)dR(x) =

∫ ā

a
A(x)dS(x),

where we set dS(x) = π(x)dR(x). In that case, d[S ◦R−1](x) = dS(x)/dR(x) = π(x), so
that regions where π is increasing are equivalent to regions where S ◦R−1 is convex, and
regions where π is decreasing are equivalent to regions where S ◦R−1 is concave.

Rayo and Segal (2010) show that two prospects (x, π ) and (x′, π ′ ) can only be op-
timally pooled if they are not ordered: (x − x′ )(π − π ′ ) < 0. Our results show that this
is not true of optimal monotonic categorizations. Indeed, an optimal pooling interval
may contain a region where π is increasing (S ◦ R−1 is convex) and, therefore, contains

15Proposition 6 cannot be applied directly because it uses a different notion of increased convexity than
the one implied by an increase in λ2: increasing λ2 is equivalent to adding a convex function to the original
prior of the sender. Despite Proposition 6 not applying directly, we can show that an analogous result holds
under this alternative notion of increased convexity.

16Our Propositions 1–4 are more immediately comparable to results in Rayo and Segal’s (2010). How-
ever, if the sender’s payoff is assumed to be linear in the receiver’s action, then Alonso and Camara’s (2016)
model is equivalent to Rayo and Segal’s (2010). In that case, our discussion in this section is also a relevant
comparison to Alonso and Camara’s (2016) benchmark.

17Rayo and Segal (2010) assume that there are only finitely many prospects, so that R has finite sup-
port. This is also assumed in Alonso and Camara (2016). In our exposition, we take R to be a continuous
distribution.
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ordered prospects.18 Further, they show that all prospects that are optimally pooled to-
gether must have payoffs (x, π ) that lie on a straight line with nonpositive slope. Conse-
quently, if π(x) does not have an interval where it is linear and downward sloping, then
every optimal signal realization pools together at most two qualities.19 Optimal mono-
tone categories, on the other hand, may pool together intervals containing more than
two qualities.

Finally, without the restriction to monotonic signals, full separation is optimal when
all prospects are ordered: (x − x′ )(π(x) − π(x′ )) > 0 for every x and x′. This condition,
equivalent to S ◦R−1 being globally convex, is also the condition for full separation when
monotonicity is imposed (Proposition 3). Conversely, Rayo and Segal’s (2010) condition
for full pooling is that all prospects lie on a straight line with negative slope. That is,
π(x) must be linear and decreasing. In contrast, the condition for full pooling under the
monotonicity restriction is much weaker; see Proposition 1.

The discussion above contrasts properties of optimal categorizations with and with-
out the restriction to monotonicity. More recently, Jewitt and Quigley (2022) study a class
of persuasion games in which the sender has rank-dependent preferences Yaari (1987).
Their problem can also be interpreted as a persuasion problem with heterogeneous pri-
ors across sender and receiver (without the restriction to monotonic signals). They show
that in the class of rank-dependent sender preferences, the optimal signal can always be
taken to be monotone (so that the monotonicity restriction does not bind).

4. Moral hazard and educational grades

In this section, we study an application where a school chooses a grading system both to
signal student’s underlying abilities and to incentivize students to exert effort to learn.
Beyond its intrinsic interest, this application illustrates how incentive constraints arising
from moral hazard can generate all the key features of our benchmark model, namely a
distortion in the sender’s state-dependent preferences and the restriction to monotone
signals.20

The Setting. A school—the sender—designs a grading system to maximize tuition
revenues. This is part of a larger problem in which it might choose an admissions cutoff.

18Revisit Figure 3(a) and further suppose that R is uniform over [a, ā] = [0, 1]. The optimal monotonic
categorization is full pooling, even though S ◦ R−1 is convex over some interval or, equivalently, π(·) is
increasing over that same interval. In their Lemma 3, Rayo and Segal (2010) show that a non-monotonic
signal structure can improve over full pooling in that case. In our example, there exists some small interval
[a, b) ⊂ [0, 1/2), depicted by the two vertical dotted lines, such that the average slope of H over that inter-
val is less than 1, which is the average slope over the full interval [0, 1]. Equivalently, this means that the
average fee π over [a, b) is smaller than the average fee over [0, 1]. Additionally, because the common prior
is uniform and a < b≤ 1/2, every value in the interval is below the ex anteaverage value. Therefore, a signal
σ1 that pools [0, a) ∪ [b, 1) has larger average value and larger average fee than a signal σ2 that pools [a, b).
Consequently, if the sender is not constrained by monotonicity, the signal structure that consists of the two
pools σ1 and σ2 is an improvement over full pooling. (For more details, see Rayo and Segal (2010), Lemmas
1 and 3.).

19Kolotilin, Corrao, and Wolitzky (2022) make the similar point that optimal signals are “pairwise”, in the
sense that each induced posterior distribution has at most binary support.

20In this application, the link between ability, effort, and output is deterministic. It would be of interest
to extend these arguments to stochastic output, after conditioning on ability and effort.
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The choice of that cutoff can be incorporated with no change to the discussion that fol-
lows. We emphasize the “second stage” where that cutoff—and the student body—has
already been chosen. Normalize admitted students to a unit measure, with abilities a

distributed according to R on [a, ā]. Upon entering, students fully learn a, but before
that they have only some prior, represented as a distribution over [a, ā]. For instance,
they may be close to a degenerate distribution (full self-knowledge), or have the popula-
tion belief R, or have some third belief. Among these, we assume that there is some con-
tinuous prior R0, with R0(a) = 0, which is the lowest according to first-order stochastic
dominance among all possible post-entry priors.

A market (our receiver) with shared prior R infers student abilities from a learning
level or grade � that the school chooses to make observable. Let λ > 0 be the value of
learning, relative to inherent ability, so that the market pays

E(a|�) + λ� (8)

to a student with learning �, where the conditional expectation is determined by the
prior R as well as equilibrium strategies. Notice that � has both intrinsic and signaling
value.

Incentive-Compatible Learning. The school chooses a compact set of certified learn-
ing levels L. Learning nothing is always an option, so 0 ∈ L. A student of ability a

chooses � ∈ L by exerting effort at cost c(a)�, where c′(a) < 0. We assume the following
condition:

[C] We have c(ā) > λ, so that rewards to learning alone do not motivate any student.
Every nonzero � ∈ L will presumably be occupied by some ability type. A student

could choose � /∈ L, but the market observes only �′ = max{�′′ ∈ L|�′′ ≤ �}, so there is no
point in doing so. In the spirit of direct mechanisms, suppose that the school assigns
learning �(a) ∈L to each ability type a.21 The value to an obeying student of ability a is

ER

(
a′|�(a)

) + λ�(a) − c(a)�(a),

where ER(a′|�(a)) is the expectation of ability a′ given that �(a) is observed and given
that all students follow �. A standard single-crossing argument yields the following
lemma.

Lemma 3. If �(a) and �(a′ ) are optimal for a and a′, with a > a′, then �(a) ≥ �(a′ ).

So incentive-compatibility restricts the school to a monotone categorization of abil-
ities. Learning � could have separating intervals on which it is strictly increasing and
pooling intervals on which it is constant. These obviously correspond to a particular cat-
egorization A�. Incentive-compatibility additionally implies that for every a, a′ ∈ [a, ā],

A�(a) + λ�(a) − c(a)�(a) ≥ max
{
A�

(
a′) + λ�

(
a′) − c(a)�

(
a′), a

}
. (9)

21The school maps each ability to a deterministic certified learning level. It can be shown that restricting
to deterministic grading is without loss in our environment. We thank Ian Jewitt for pointing this out.
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The second constraint on the right-hand side of (9) is needed in case �(a) > 0. Then
the zero-learning choice is off-path, and suitable beliefs will be needed to guarantee
incentive-compatibility. We presume that in such cases, the observation of 0 is associ-
ated with the belief that the student has the lowest ability a. This implements the best
equilibrium from the perspective of a tuition-maximizing school. The following lemma
tightly links incentive-compatible learning functions � to their corresponding catego-
rizations A�.

Lemma 4. (i) The following statements are equivalent.
(a) A learning function �(a) is incentive-compatible.

(b) Learning � is nondecreasing with �(a) ∈ [0, A�(a)−a
c(a)−λ ] (where A� is the corresponding

categorization), differentiable on any separating interval with

�′(a) = 1
c(a) − λ

, (10)

and at any threshold t dividing two adjacent intervals, using ↑ for left-hand limit,

�(t ) = �↑(t ) + A�(t ) −A↑
�(t )

c(t ) − λ
. (11)

(c) For every A ∈ AR and � ∈ [0, A(a)−a
c(a)−λ ], there is a unique function � with �(a) = �, and

satisfying (10) and (11). That describes all incentive-compatible � such that A� =A.

Tuition and School Payoffs. The school sets a single tuition level. Type R0 students
have the lowest willingness to pay, so the school must maximize their expected payoff
before fees.22 That is, the school chooses incentive-compatible � to maximize

∫ ā

a

[
A�(a) + {

λ− σc(a)
}
�(a)

]
dR0(a), (12)

where σ ∈ [0, 1] is the extent to which parents internalize effort costs at the ex ante stage.
The extent of this internalization will determine not just the level of the tuition (which is
a relatively minor consideration, at least for the analysis), but also the school’s “attitude”
toward the intrinsic value of learning; more on this immediately below. We now link the
school problem to our more abstract setting, thereby permitting a full solution of it.

Solution to the School Problem. Consider two cases. If λ > σ
∫ ā
a c(a)dR0(a), then R0

parents value, on average, intrinsic learning relative to cost. It is obvious that no matter
what categorization A the school seeks to implement, its associated learning function
must have the highest possible starting point. That is, recalling Lemma 4, initial learning

� = �(a) must be set equal to the upper bound A(a)−a
c(a)−λ for any choice of A ∈AR.

Otherwise, λ ≤ σ
∫ ā
a c(a)dR0(a). Now learning is not intrinsically valued by R0

parents, so the school optimally sets �(a) = 0. That motivates the definition, for any

22Because the student body is fixed, the school maximizes its profit by serving the lowest belief students.
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A ∈AR,

�∗(A) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
A(a) − a

c(a) − λ
if λ > σ

∫ ā

a
c(a)dR0(a),

0 if λ ≤ σ

∫ ā

a
c(a)dR0(a).

(13)

Proposition 7. For every A ∈ AR and � = �∗(A) as defined in (13), pick unique � as
described in Lemma 4. Then school payoff is given by

∫ ā

a

[
A(a) + {

λ− σc(a)
}
�(a)

]
dR0(a) =

∫ ā

a
A(a)dS(a)+K, (14)

where K is a constant and

S(a) =R0(a) +
∫ ā

a

σc(x) − λ

c(a) − λ
dR0(x) for all a ∈ (a, ā], with

S(a) = min
{

0,
∫ ā

a

σc(x) − λ

c(a) − λ
dR0(x)

}
.

(15)

The function S is left-continuous and has bounded variation with at most one discon-
tinuity. Also, S(a) and S(ā) are finite. These conditions, along with the fact that A is
right-continuous with at most countably many discontinuities, guarantee that all the as-
sumptions of the baseline model are satisfied.

The school problem is solved by finding a solution A∗ to the optimal categoriza-
tion problem with R as the receiver’s distribution and S, defined in (15), as the sender’s
distribution. The optimal learning function is the unique � associated with A∗ with
�(a) = �∗(A∗ ).

Proposition 7 fully removes �, as well as its attendant moral-hazard implications,
from the analysis and converts this model into our simpler categorization model. In
so doing, it reveals three reasons for the induced prior S to be different from R. First,
the sender may, in effect, be delegated to work on behalf of someone with a distinct
prior. Here, this is the student or parent with lowest belief R0.23 The school is pushed
to cater to their interests in order to maximize tuition revenue. The second stems from
ancillary constraints that might be involved in revealing quality; here, these have to do
with learning. Third, the actions taken to signal quality (school performance) may have
direct payoff effects. All three enter (15). These considerations can additionally cause S

to depart from a cdf.
At a somewhat more technical level, even though R0 is continuous, the induced S

may be discontinuous. Remember that parental priors are continuous, with R0(a) = 0.
In the first of the two cases where learning is intrinsically valued, S(a) as defined in (15)

23In an affirmative action setting, R0 can also represent the subdistribution of “diversity students” in
whose outcomes the school may be particularly interested. In that case, the school may inherently care
about R0, rather than through the tuition channel we consider.
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is negative—it is not a cdf any more—but the entire induced function S is easily seen
to be continuous. If, on the other hand, learning is not intrinsically valued, S(a) > 0,
thereby effectively generating a mass point under S at a. Our methods apply in either
event, but the latter case must generate an initial pool of zero learning.

Pooling. An intriguing question that deserves a more detailed exploration is whether
grade pooling is a pervasive property of an educational system. Proposition 8 below, a
straightforward implication of Theorem 1 and Proposition 1, formalizes the following
claims: a school will want to pool all ability types when (i) the market places a low rel-
ative value on learning, as in Lizzeri (1999), where learning has no value, (ii) if students
fully internalize their cost of learning ex ante, and (iii) if the lowest belief students are
certain ex ante that they are the lowest ability type.

Proposition 8. A sufficient condition for full pooling to be optimal is

∫ ā

a

[
σc(x) − λ

]
dR0(x) ≥ 0 for every a ∈ [a, ā]. (16)

Furthermore, the following statements are true:
(i) Equation (16) is satisfied when λ = 0. Moreover, if there is λ > 0 such that it is

satisfied, then it is also satisfied for any λ′ < λ.
(ii) Equation (16) is satisfied when σ = 1. Moreover, if there is σ > 0 such that it is

satisfied, then it is also satisfied for any σ ′ >σ .
(iii) Equation (16) is satisfied when R0 is degenerate at a = a. Moreover, if there is R0

such that it is satisfied, then it is also satisfied for any R′
0 such that R0 first-order stochas-

tically improves over R′
0.

This result also highlights more broadly the school’s incentives to create grading
pools. By pooling, the school boosts the grade of lower-type students, who are then not
distinguishable from higher-type students in the same pool. In contrast, separation is
necessary to induce learning, because the value of separating oneself from lower types
(or pooling oneself with higher types) is a student’s only incentive to incur in learning
costs. These considerations are distinct from those in previous literature, such as Ostro-
vsky and Schwarz (2010), where a school’s incentives to create grading pools depend on
thedistribution of job types to which students will be matched.24

Schooling with Lower Censorship. We now make functional form assumptions that
enable a complete characterization of the optimal grading policy. Let R be uniform on
[0, 1] and let R0 = aγ for γ ∈ [0, 1]. If γ = 1, then R0 = R: students have no ex ante infor-
mation about their own abilities. For lower γ, R0 is first-order stochastically dominated

24Boleslavsky and Kim (2020) also study an environment in which signaling motivates costly effort. In
our setting, agents exert effort after drawing their ability and the incentive constraint implies that signaling
structures must be monotone, whereas in Boleslavsky and Kim (2020), costly effort improves an agent’s dis-
tribution of types. Other close parallels are Rodina and Farragout (2016) and Saeedi and Shourideh (2020),
who consider a principal who wants to improve an agent’s investment in productivity when the only instru-
ment at hand is an information disclosure policy. Their environment is different from ours both in how the
agent’s effort decision is set up and in the grading schemes that are permitted.
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Figure 4. Schooling with lower censorship. In both panels, R is the uniform distribution – plot-
ted as the 45◦ line. On the left, S is shown for three values of γ: S increases in �1 as γ increases.
On the right, S is shown for three values of λ: again, S increases in �1 as λ increases.

by R, so that the lowest types are pessimistic relative to the population average. The
lower is γ, the further is the belief of the most pessimistic type from that of the average
agent. Set c(a) = 1/a and λ < 1. Finally, set σ = 0, which means that the cost of effort is
not internalized at all by the parents when choosing to join the school.

With these functional forms, use (15) to map the school’s distorted prior S:

S(a) = aγ − λa

1 − λa
. (17)

In this special case, S is a cdf (see Figure 4). Since S has a concave–convex shape, Theo-
rem 1 immediately implies that lower censorship, whereby all abilities below a threshold
are pooled together and all abilities thereafter are fully revealed, is the optimal catego-
rization.

Corollary 1 (to Theorem 1 and Proposition 7). There is ã ∈ (0, 1] such that the solution
to the school problem is to pool students with a ∈ [0, ã) and fully reveal the ability of all
students with a≥ ã.

We can easily compute ã, and perform comparative statics with respect to λ and γ.
When the lowest belief type is more optimistic, i.e., γ is higher, ã is lower and there is
more separation. The connection with the market value for learning is not monotonic.
Initially, higher value for learning induces more separation, but for high values of λ,
increasing λ leads to more pooling.

If, otherwise, the distorted prior were convex–concave, upper censorship would be
optimal. Other papers in the literature find that upper or lower censorship provides op-
timal signals for the sender. Kolotilin, Mylovanov, and Zapechelnyuk (2019) show condi-
tions for optimality of lower and upper censorship, respectively, that the sender’s payoff
as a function of the receiver’s posterior mean be concave–convex and convex–concave.
In both those papers, they consider environments where the sender’s payoff does not di-
rectly depend on the state and the sender’s payoff is nonlinear in the receiver’s posterior
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mean. In our model, the sender’s payoff is state dependent, but linear in the receiver’s

posterior mean. Perhaps surprisingly, these environments are distinct and cannot be

mapped to each other.

5. Conclusion

In this paper, we study a monotone categorization problem. A sender offers an object of

unknown quality to a receiver, who pays his expected value for it. That expected value is

taken conditional on the receiver’s information, which is affected in turn by the sender’s

choice of a monotone quality categorization. That is, the sender commits to revealing

the object’s quality up to an information partition, where each element of the partition

is an (possibly degenerate) interval. This exercise is nontrivial when sender and receiver

hold different priors over quality. We characterize the sender’s optimal monotone cate-

gorization, obtain several corollaries, such as the characterization of optimality of com-

plete pooling or separation, and make precise a sense in which pooling is dominant

relative to separation.

The assumption that sender and receiver hold distinct priors may be literally inter-

preted, but we also emphasize situations in which distinct priors emerge as reduced

forms of a more primitive setting with additional incentive constraints. As an example,

we study the design of a grading scheme by an educational institution that seeks to sig-

nal student qualities and simultaneously incentivize students to learn. We show how

these incentive constraints are embedded as a distortion of the school’s prior over stu-

dent qualities, generating a monotone categorization problem with distinct sender and

receiver priors, even if the two agents have the same priors in the original problem.

The categorization problem has several applications. Financial rating agencies clas-

sify assets according to riskiness, certifying companies underwrite eco-friendly labels,

bond issues are rated by agencies, the Department of Health provides restaurants with

sanitary inspection grades, and schools grade students according to their academic

achievements. In all of these settings, it is natural to presume that sender and receiver

could have differing opinions on the underlying distribution of the relevant state. Al-

ternatively, as in our example, one or more agents could face incentive constraints, re-

sulting in effectively distinct priors. Our framework is broad enough to incorporate such

situations.

A limitation of the analysis is that our methods apply without qualification only

when the sender’s payoff can be written as an affine function of the receiver’s posterior

expectation. While some limited progress can be made in special nonlinear settings,

a general analysis of the nonlinear case is currently beyond the scope of the methods

developed in this paper. We put on record here our opinion that progress on this front

would represent a significant step forward in our understanding of monotone catego-

rization problems.
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6. Proofs

Proof of Lemma 1. Part (i). Let Pool denote the collection of pooling intervals with
generic element [p, p′ ). Because A ∈ AR and R is strictly increasing, we have∫ ā

a
A(a)dS(a) =

∫
[a, ā]\Pool

adS(a) +
∑
Pool

ER

(
a|a ∈ [p, p′))

[
S
(
p′) − S(p)

]

=
∫

[a, ā]\Pool
adS(a) +

∑
Pool

∫ p′

p
adR(a)

[
S
(
p′) − S(p)

R
(
p′) −R(p)

]

=
∫

[a, ā]\Pool
ad�(a, A) +

∑
Pool

∫ p′

p
ad�(a, A) =

∫ ā

a
ad�(a, A),

where, in the penultimate step, d� is well defined as � has bounded variation, and the
last equality follows from the continuity of the integrand.

For any categorization A and z ∈ [0, 1], consider the quantile weighting function

�(z, A) ≡ �
(
R−1(z), A

)
.

Define a quantile pooling interval of A as any interval [w, w′ ) such that [R−1(w),
R−1(w′ )) is a pooling interval of A. Then

�(z, A) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
H(w) + (z −w)

[
H

(
w′) −H(w)

w′ −w

]
if z is in some quantile pooling [w, w′ ),

H(z) otherwise,

(18)

where we recall that H(x) = S(R−1(x)). In particular, the quantile weighting func-
tion associated with A ∈ AR equals H in quantile separating regions, and is a straight
line connecting (w, H(w)) and (w′, H(w′ )) in quantile pooling regions of the form
[w, w′ ). This means that Graph(�(·, A)) ⊂ Co(Graph(H )), which immediately implies
�(z, A) ≥ H̆(z).

Proof of Proposition 1. When A is the categorization that pools every quality, then
�(z, A) = H(0) + z(H(1) − H(0)). By Theorem 1, full pooling is then a solution to the
sender’s problem if and only if H̆(z) = H(0) + z(H(1) − H(0)) for all z ∈ (0, 1]. Now
notice that this condition is equivalent to

H(z) −H(0)
z

≥H(1) −H(0)

for all z ∈ (0, 1]. Using the definition of H, this condition can be rewritten as S(x) −
S(a) ≥ (1 − S(a))R(x) for all x ∈ [a, ā].

Proof of Proposition 2. If R �1 S on the interval [a, b], then for all x ∈ [a, b],

S(x) − S(a)
R(x) −R(a)

≥ S(b) − S(a)
R(b) −R(a)

.
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Equivalently, for every z ∈ [w, w′], where w = R(a) and w′ = R(b),

H(z) ≥H(w) + (z −w)
[
H

(
w′) −H(w)

]
.

Because the straight line connecting (w, H(w)) and (w′, H(w′ )) lies in Co(Graph(H )),
it must be that for z ∈ [w, w′ ), H̆(z) ≤ H(w) + (z − w)[H(w′ ) − H(w)] ≤ H(z). How-
ever, then there are quantiles z′ and z′′ with z ≤ w < w′ ≤ z′ such that for z ∈ [w, w′ ),
H(z) belongs to the straight line connecting (z′, H(z′ )) and (z′′, H(z′′ )). So there exists
an optimal categorization that pools the interval of quantiles [z′, z′′ ), which contains
the interval of quantiles [w, w′ ). Equivalently, such categorization pools the interval of
qualities [R−1(z′ ), R−1(z′′ )), which contains the interval [a, b).

Now let us prove the second statement. Suppose [a, b) belong to a pooling interval
[a′, b′ ) with a′ ≤ a and b′ ≥ b. Also suppose R does not �1 S on [a′, b′]. Then there exists
z ∈ (R(a′ ), R(b′ )) such that

H(z) <H(w) + (z −w)
[
H

(
w′) −H(w)

]
,

where w = R(a′ ) and w′ = R(b′ ). However, that means that H(w) + (z − w)[H(w′ ) −
H(w)] �= H̆(z), and so [a′, b′ ) cannot be a pooling interval in the optimal categorization.

Proof of Proposition 3. The first statement is immediate given Theorem 1. As for
the second, H is convex in [0, 1] if and only if for every w, x, z ∈ [0, 1] with w< x ≤ z,

H(x) −H(w)
x−w

≤ H(z) −H(w)
z −w

.

Letting a = R−1(w), b = R−1(z), and y = R−1(x), this condition is equivalent to, for all
a, b, y ∈ [a, ā] with a < y ≤ b,

S(y ) − S(a)
R(y ) −R(a)

≤ S(b) − S(a)
R(b) −R(a)

.

If S is a strictly increasing cdf, then this condition is equivalent to S(·|(a, b)) first-order
stochastically dominating R(·|(a, b)) for every a, b ∈ [a, ā], which is in turn equivalent to
S dominating R in the likelihood-ratio order.

Proof of Proposition 4. Let w = R(a) and w′ = R(b). If [a, b) is a subset of some
separating interval of qualities of categorization A, then for all x ∈ [w, w′ ), �(x, A) =
H(x), and if H(x) �= H̆(x) for some x ∈ [w, w′ ), then by Theorem 1, A is not an optimal
categorization.

Now notice that if H = H̆ on this interval, then H is convex on it, and so S dominates
R in the likelihood-ratio order over this interval.

The proof of Proposition 5 repeatedly uses the lemma below, which is an immediate
consequence of Theorem 1 and, thus, is stated without proof.
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Lemma 5. Take x ∈ (a, ā) and let z = R(x). Suppose there exist quantiles z1 < z < z2 and
λ ∈ (0, 1), with z = λz1 + (1 − λ)z2, such that λH(z1 ) + (1 − λ)H(z2 ) ≤ H(z). Then there
exists an optimal categorization such that x belongs to a pooling category. Moreover, if the
inequality is strict, then x belongs to a pooling category in any optimal categorization.

Proof of Proposition 5. Part (i). Take p ∈ P and let P = (P1, P2 ) be the associated
pair of prior cdfs. Let quality x ∈ (a, ā) belong to some separating interval in some opti-
mal categorization of problem (S, R) = (P1, P2 ), and let z = R(x) = P2(x). By Lemma 5,
it must be that for all (z1, z2 ) with 0 ≤ z1 < z < z2 ≤ 1,

λH(z1 ) + (1 − λ)H(z2 ) ≥H(z) with z = λz1 + (1 − λ)z2, (19)

where H ≡ P1 ◦ P−1
2 . Fix any such pair (z1, z2 ), and let y1 = H(z1 ), y2 = H(z2 ), and y =

H(z). Then 0 ≤ y1 < y < y2 ≤ 1, and we can rewrite (19) as

λy1 + (1 − λ)y2 ≥ y and λH−1(y1 ) + (1 − λ)H−1(y2 ) =H−1(y ), (20)

where H−1 = P2 ◦ P−1
1 , and so corresponds to the H function in the “mirrored” prob-

lem (S, R) = (P2, P1 ). Reduce λ to λ′ if needed, so that the inequality in (20) holds with
equality. Then, because H−1 is increasing, we must have

λ′H−1(y1 ) + (
1 − λ′)H−1(y2 ) ≤H−1(y ), where y = λ′y1 + (1 − λ)y2. (21)

Using (21) and Lemma 5 again, we have that quantiles [y1, y2 ) of distribution P1 are
pooled in some optimal categorization of the problem (S, R) = (P2, P1 ). Noting that
quantiles [y1, y2 ) of P1 correspond to quantiles [z1, z2 ) of P2–and thus contain x—we
conclude that x belongs to a pooling interval in some optimal categorization of problem
(S, R) = (P2, P1 ).

Part (ii).
Step 1. Fix p = (p1, p2 ) ∈ P , with h(x) = p1(x)/p2(x), let P = (P1, P2 ) be its associ-

ated pair of cdfs, and let H = P1 ◦ P−1
2 . In this step, we prove the followingclaim.

Claim 1. If h is not monotone, there exists a nondegenerate interval of qualities that is
comprehensively pooled under p.

Proof of Claim 1. Because h is regular and non-monotone, it has an isolated turn, say
at some interval of qualities [x∗, x∗∗]. By the definition of an isolated turn, there is x′ < x∗
and x′′ > x∗∗ such that h is constant on [x∗, x∗∗], and (without loss) strictly decreas-
ing on [x′, x∗] and strictly increasing on [x∗∗, x′′]. Equivalently, letting {z′, z∗, z∗∗, z′′} =
{P2(x′ ), P2(x∗ ), P2(x∗∗ ), P2(x′′ )}, H is strictly concave on [z′, z∗], linear on [z∗, z∗∗], and
strictly convex on [z∗, z′′]. (We use notation z to indicate quantiles of distribution P2.)

Because H is strictly concave on [z′, z∗], Lemma 5 implies that qualities in quantiles
[z′, z∗ ) of P2 are pooled in any optimal categorization of problem (S, R) = (P1, P2 ). Fur-
ther, in any such optimal categorization, quantiles [z′, z∗ ) must be contained in a strictly
larger pooling interval, which strictly extends not just beyond z∗, but up to some quan-
tile z2 ∈ (z∗∗, z′′]. The reason is that for any quantile z between z∗ and such z2, the strict
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Figure 5. Illustration 1 for Proof of Proposition 5. Function H is strictly concave on [z′, z∗], lin-
ear on [z∗, z∗∗], and strictly convex on [z∗, z′′]. Optimal pooling must extend beyond z∗∗ into the
strictly convex region—at least to z2. A quality with quantile z ∈ (z∗∗, z2 ) satisfies the sufficient
condition for pooling to be strictly optimal, as the chord joining H(w) and H(w′ ) shows.

inequality in Lemma 5 holds, making pooling z strictly optimal. This is illustrated in
Figure 5.

Now consider the mirrored problem (S, R) = (P2, P1 ). Define P1 quantiles cor-
responding to the P2 quantiles above, replacing the notation z by y. Function H is
strictly convex on [z∗∗, z′′] or, equivalently, H−1 is strictly concave on (y∗∗, y ′′ ), where
y∗∗ = H(z∗∗ ) and y ′′ = H(z′′ ). By Lemma 5, quantiles [y∗∗, y ′′ ) of P1 belong to a pool-
ing interval in any optimal categorization of problem (S, R) = (P2, P1 ). However, by the
same argument as in the previous paragraph, in any optimal categorization, the pooling
interval containing [y∗∗, y ′′ ) must extend back to some y1 strictly smaller than y∗. Letting
z1 = H−1(y1 ), we thus know that quantiles [z1, z2 ) must belong to a pooling interval in
any optimal categorization in both problems, so the claim is proved.

Step 2. In light of Step 1, it only remains to show that the set of all p with non-
monotone regular h is open and dense in P . Call this set P0.

Pick p ∈ P0. There are intervals [a, b] and [c, d] on which h is strictly increasing and
strictly decreasing, respectively. Define δ≡ min{h(b)−h(a), h(c)−h(d)}/3 > 0. Because
P contains only strictly positive, continuous density pairs, there is ε > 0 such that if
‖p−p′‖< ε for some p′ in P , then ‖h−h′‖< δ, where h′ = p′

1/p
′
2. By the definition of δ

and uniform convergence, we see that h′ cannot be monotone. Therefore, P0 is open in
P .

Next, we argue that P0 is dense in P . Pick p ∈ P \ P0. We deform p locally so as to
keep its associated h regular but make it non-monotone. In what follows we suppose
that h is nondecreasing (the other case is proved similarly). Pick some quality level x∗ ∈
(a, ā). Fix some small ε > 0, and let k≡ p1(x∗ )/p2(x∗ ) and k′ ≡ p1(x∗ + ε)/p2(x∗ + ε).25

25Specifically, ε > 0 is smaller than k and also small enough so that x∗ + 3ε < x̄.
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Define a function pε
1 by

pε
1(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p1(x) for x≤ x∗ or x > x∗ + 3ε,(
k− x+ x∗)p2(x)

for x ∈ (x∗, x∗ + ε],
k− ε

k′ p1(x) + (
x− x∗ − ε

)
μp2(x)

for x ∈ (x∗ + ε, x∗ + 2ε],
x− x∗ − 2ε

ε

[
p1

(
x∗ + 3ε

) −pε
1

(
x∗ + 2ε

)] +pε
1

(
x∗ + 2ε

)
for x ∈ (x∗ + 2ε, x∗ + 3ε],

where μ> 0 is chosen so that

∫ x∗+3ε

x∗
pε

1(x)dx =
∫ x∗+3ε

x∗
p1(x)dx. (22)

Because h(x) = p1(x)/p2(x) is nondecreasing, pε
1(x) <p1(x) for x ∈ (x∗, x∗ + ε].26 Then

pε
1 rises faster than p1 and intersects it from below, on (x∗ +ε, x∗ +2ε], achieving pε

1(x∗ +
2ε) >p1(x∗ + 2ε),27 and pε

1 then adjusts to meet p1 again at point x∗ + 3ε. At the middle
interval, pε

1 is determined by μ > 0, picked so as to ensure that pε
1 is a bonafide density

and integrates to 1. Note that there is a unique value of μ such that (22) holds: the left-
hand side of (22) is strictly increasing in μ, smaller than the right-hand side as μ → 0,
and larger than it as μ→ ∞.

Now consider the prior pair pε = (pε
1, pε

2 ), with pε
2 = p2, and let hε(x) = pε

1(x)/pε
2(x).

We claim that hε is regular and non-monotone for every ε > 0. Obviously, hε(x) = h(x)
for all x≤ x∗ and x ≥ x∗ + 3ε. For any x ∈ (x∗, x∗ + ε),

hε(x) = pε
1(x)

pε
2(x)

=
(
k− x+ x∗)p2(x)

p2(x)
= k− x+ x∗,

and so hε strictly declines in x over this range. For x ∈ (x∗ + ε, x∗ + 2ε),

hε(x) = pε
1(x)

pε
2(x)

= k− ε

k′
p1(x)
p2(x)

+ (
x− x∗ − ε

)
μ = k− ε

k′ h(x) + (
x− x∗ − ε

)
μ,

which is strictly increasing in x, given that h is nondecreasing.
It follows that hε has an isolated turn at x∗ + ε and is, therefore, regular. All that

remains to do is take ε → 0 and notice that pε
1 converges in the topology of uniform

convergence to p1. This shows that P0 is dense in P , and our proof is complete.

Proof of Proposition 6. For each pair of sender–receiver priors (S, R), let A(S, R)
be the set of optimal categorizations. Now observe that for any (S, R), there exists

26For all x ∈ (x∗, x∗ + ε], the fact that h is nondecreasing tells us that p1(x) ≥ kp2(x) > (k−x+x∗ )p2(x).
27The integrability requirement (22) guarantees that pε

1(x∗ + 2ε) must strictly exceed p1(x∗ + 2ε).
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a maximally separating optimal categorization. To see this, take A∗ ∈ A(S, R) with
int(Sep(Â)) = int{H = H̆}, where H = S ◦R−1. Theorem 1 implies that for such A∗,

A ∈ A(S, R) ⇒ int
(
Sep(A)

) ⊂ int
(
Sep

(
A∗)).

Let A and Â be maximally separating in A(S, R) and A(Ŝ, R), respectively. Suppose
(a, a′ ) ⊂ int(Sep(A)). By the definition of A, (a, a′ ) is an open interval over which H =
S ◦ R−1 coincides with its lower convex envelope. Equivalently, for every x ∈ (a, a′ ) and
y, z ∈ [a, ā], with y < x < z, defining α ∈ (0, 1) such that x= αy + (1 − α)z,

H(x) = H
(
αy + (1 − α)z

) ≤ αH(y ) + (1 − α)H(z). (23)

Now recall that Ŝ �� S implies that there is some increasing and convex function ϕ such
that Ŝ = ϕ ◦ S. This implies that for the same x, y, z ∈ [a, ā] and α ∈ (0, 1),

ϕ ◦H(
αy + (1 − α)z

) ≤ ϕ
[
αH(y ) + (1 − α)H(z)

]
≤ αϕ ◦H(y ) + (1 − α)ϕ ◦H(z). (24)

Consequently, (a, a′ ) is an open interval over which Ĥ = ϕ ◦ S ◦ R−1 coincides with its
lower convex envelope. Therefore, by the definition of Â, (a, a′ ) ⊂ int(Sep(Â)). This is
true for every such (a, a′ ), and so int(Sep(A)) ⊂ int(Sep(Â)).

Proof of Lemma 4. Part (i). Let �(a) be an incentive-compatible learning function.

First, note that for an initial choice of �(a) ∈ [0, A�(a)−a
c(a)−λ ], (9) is satisfied for the lowest

ability student. By Lemma 3, � is nondecreasing. Next, take a and a′ in the same sepa-
rating interval. From (1) and (9), we have

1

c
(
a′) − λ

≥ �(a) − �
(
a′)

a− a′ ≥ 1
c(a) − λ

.

Take a′ → a to obtain (10) on any separating interval. Now take a ∈ [ak−1, ak ) for some
k> 1. Use (9) to see that

�(a) + A�(ak ) −A�(a)
c(a) − λ

≤ �(ak ) ≤ �(a) + A�(ak ) −A�(a)
c(ak ) − λ

and send a → ak to get (11). Conversely, with �(a) ∈ [0, A�(a)−a
c(a)−λ ], �(a) constant on

pooling intervals, and given (10) and (11), we must conclude that � is an incentive-
compatible learning function.

Part (ii). Let A ∈ AR. Given � ∈ [0, A(a)−a
c(a)−λ ], define a function � with �(a) = �, with (10)

holding on separating intervals of A, with � constant on pooling intervals of A, and sat-
isfying (11), with A� = A, at every left edge ak of every interval. Standard arguments for
differential equations ensure that � is well defined and unique. By Part (i), � is incentive-
compatible.

Proof of Proposition 7. The proof will rely on the following lemmas.
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Lemma 6. For A ∈ A and � ∈ [0, A(a)−a
c(a)−λ ], let � be the unique associated learning

function as given by Lemma 4. Let dA and d� be the Stieltjes measures associated
with A and �, respectively. Then d� is absolutely continuous with respect to dA

and

d�

dA
(a) = 1

c(a) − λ

is the Radon–Nikodym derivative of d� with respect to dA.

Proof. For any set B ⊂ [a, ā], dA(B) = 0 trivially implies d�(B) = 0 since A and � are
constant or strictly increasing in exactly the same intervals. Hence d� is absolutely
continuous with respect to dA, and so there exists a Radon–Nikodym derivative be-
tween the two measures. Now let [b, b′ ) ⊂ [a, ā]. Then [b, b′ ) is made up of count-
ably many intervals [c, c′ ) ∈ C on which both A and � are continuous and differen-
tiable, along with at most countably many points of discontinuity d ∈ D. It follows
that

d�[b, b′ ) = �(c) − �(b) =
∑

(c,c′ )∈C

∫ c′

c
�′(x)dx+

∑
d∈D

[
�(d) − �↑(d)

]

=
∑

(c,c′ )∈C

∫ c′

c

1
c(x) − λ

A′(x)dx+
∑
d∈D

1
c(d) − λ

(
A(d) −A↑(d)

)

=
∫ b′

b

1
c(x) − λ

dA(x),

where the third equality uses Lemma 4.
Because the intervals [b, b′ ) ∈ [a, ā] generate the Borel σ-algebra in [a, ā], we con-

clude that d�
dA (x) = 1

c(x)−λ is the Radon–Nikodym derivative of d� with respect to dA.

Lemma 7. Integration by Parts. If P is a Q-integrable function on [a, ā], then Q is P-
integrable on [a, ā] and

∫ ā

a
P(x)dQ(x) = P(a)

∫ ā

a
dQ(x) +

∫ ā

a

∫ x

a
dQ(y )dP(x).

Proof. If P is Q-integrable, then the standard integral by parts formula yields

∫ ā

a
P(x)dQ(x) = P(ā)Q(ā) − P(a)Q(a) −

∫ ā

a
Q(x)dP(x). (25)

Rearrange (25) to get

∫ ā

a
P(x)dQ(x) =

[
P(a) +

∫ ā

a
dP(x)

]
Q(ā) − P(a)Q(a) −

∫ ā

a
Q(x)dP(x)
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= P(a)
∫ ā

a
dQ(x) +

∫ ā

a
(
∫ ā

a
dQ(y

(
−

∫ x

a
dQ(y )

)
dP(x)

= P(ā)Q(ā) − P(a)Q(a) −
∫ ā

a
Q(x)dP(x).

Case 1. First assume λ > σ
∫ ā
a c(a)dR0(a), so that �∗(a) = A(a)−a

c(a)−λ .

Set P =A and Q = R0 in Lemma 7. Because R0 is continuous and of bounded varia-
tion, the relevant integral is defined and

∫ ā

a
A(a)dR0(a) =A(a)

∫ ā

a
dR0(a) +

∫ ā

a

∫ ā

a
dR0(x)dA(a). (26)

Next, setting P = �, setting dQ(x) = [λ − σc(x)]dR0(x) in Lemma 7, and noting again
that Q is continuous and of bounded variation, we see that∫ ā

a

[
λ− σc(a)

]
�(a)dR0(a)

= �(a)
∫ ā

a

[
λ− σc(a)

]
dR0(a) +

∫ ā

a

∫ ā

a

[
λ− σc(x)

]
dR0(x)d�(a). (27)

Recall that �(a) = A(a)/[c(a) − λ]. Use this in (27) and invoke Lemma 6 to get

∫ ā

a

[
λ− σc(a)

]
�(a)dR0(a)

= (
A(a)−a

)∫ ā

a

λ− σc(a)
c(a) − λ

dR0(a) +
∫ ā

a

∫ ā

a

λ− σc(x)
c(a) − λ

dR0(x)dA(a)

=K+A(a)
∫ ā

a

λ− σc(a)
c(a) − λ

dR0(a) +
∫ ā

a

∫ ā

a

λ− σc(x)
c(a) − λ

dR0(x)dA(a), (28)

where K = −a
∫ ā
a

λ−σc(a)
c(a)−λ dR0(a). Combining (26) and (28),

∫ ā

a

[
A(a) + (

λ− σc(a)
)
�(a)

]
dR0(a)

=K +A(a)
∫ ā

a

c(a) − σc(a)
c(a) − λ

dR0(a) +
∫ ā

a

∫ ā

a

c(a) − σc(x)
c(a) − λ

dR0(x)dA(a)

=K+A(a)
[
1 − S(a)

] +
∫ ā

a

[
1 − S(a)

]
dA(a), (29)

where S is defined by (15):

S(a) =R0(a) +
∫ ā

a

σc(x) − λ

c(a) − λ
dR0(x).
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Note that S is continuous, S(a) is finite, and S(ā) = 1. Also remark that R0(a) = 0, so that
S(a) is strictly negative.

We claim that S has bounded variation. Define �+(x) ≡ max{λ − σc(x), 0} and
�†(x) ≡ −min{λ− σc(x), 0}. Then, by (15),

S(a) =R0(a) +
∫ ā

a

�+(x)
c(a) − λ

dR0(x) −
∫ ā

a

�†(x)
c(a) − λ

dR0(x)

=R0(a) +
∫ ā

a

�+(x)
c(a) − λ

dR0(x) −
∫ a

a

�+(x)
c(a) − λ

dR0(x)

−
∫ ā

a

�†(x)
c(a) − λ

dR0(x) +
∫ a

a

�†(x)
c(a) − λ

dR0(x).

The first term on the right-hand side of this equation is a cdf, nondecreasing in a. Con-
sider each of the four integrals (without the sign that precedes them). Each integrand is
a nonnegative-valued function (because c(a) > λ, and �+ and �† are each nonnegative),
and each is nondecreasing in a (because c(a) declines in a). Therefore, each integral is
nondecreasing in a. It follows that S can be written as the sum/difference of five non-
decreasing functions and, consequently, is of bounded variation. Therefore, integration
with respect to S is well defined. Define P =A and Q(a) = 1 − S(a), and apply Lemma 7
yet again to (29) to obtain (14).

The remainder now follows by applying Theorem 1 to the induced problem (S, R),
solving for an optimal A∗, setting � = �(∗ ), and then backing out the optimal learning
function via Lemma 4.

Case 2. Now assume λ ≤ σ
∫ ā
a c(a)dR0(a), so that �∗(a) = 0.

Equations (26) and (27) still hold as in Case 1, but now note that �(a) = 0 and so by
setting S(a) = 0, we can rewrite (27) as∫ ā

a

[
λ− σc(a)

]
�(a)dR0(a) = −A(a)S(a) +

∫ ā

a

∫ ā

a

λ− σc(x)
c(a) − λ

dR0(x)dA(a). (30)

Finally, combine (26) and (30) to again get∫ ā

a

[
A(a) + (

λ− σc(a)
)
�(a)

]
dR0(a) =A(a)

[
1 − S(a)

] +
∫ ā

a

[
1 − S(a)

]
dA(a). (31)

We prove that S has bounded variation just as before. Since S is left-continuous and
only discontinuous at a, integration with respect to S is still well defined. Define P = A

and Q(a) = 1 − S(a), apply Lemma 7 yet again to (31), and set K = 0 to obtain (14).
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