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1. INTRODUCTION

We consider a dynamic “principal-agent” model, where the sole instrument the

principal has is information.1 Principal and agent are engaged in a long-term re-

lationship. The principal aims at inducing the agent to choose an action – the

principal’s most preferred action – as often as possible, and can only do so by dis-

closing information about an unknown state. To give examples, the principal is:

(i) an external consultant with a clear agenda about what a company (the agent)

should do, (ii) a department in a corporation aiming to maintain a central role

while advising the CEO, (iii) a technology leading, multinational firm in a joint

venture with a local firm in a less developed country; (iv) a lobbyist attempting to

influence a politician.

We assume that the principal commits to a disclosure policy, which we refer to as

the offer of a “contract.” The dynamic contracting problem we study is, therefore, a

dynamic persuasion problem.

The standard approach in the study of dynamic contracting models (e.g., Spear

and Srivastava (1987)) is to use the agent’s continuation value, or promised util-

ity, as a state variable. The principal’s Bellman equation is then the fixed point of

an operator, which satisfies a promise-keeping constraint in addition to incentive

constraints. However, in dynamic persuasion models, there are additional compli-

cations.

First, since the belief of the agent changes over time due to information disclosure,

we must treat it as an additional state variable. This increases the dimensionality

of the principal’s problem. Second, any information disclosure policy, to which the

principal commits, generates a martingale of beliefs. We must therefore impose

the constraint that the belief process is a martingale. To the best of our knowledge,

we are the first to be able to provide a complete characterization of an optimal con-

tract by solving for the fixed point of a Bellman equation with two state variables

tracking the evolution of the agent’s beliefs and of his promised utility.
1That is, the principal cannot make transfers, terminate the relationship, choose allocations or
constrain the agent’s choices.
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We now illustrate the general properties of our optimal policy. First, the principal

uses information disclosure as a “carrot” to motivate the agent to take the prin-

cipal’s most preferred action until either the agent perfectly learns the state, or

choosing the principal’s most preferred action becomes statically optimal. More-

over, if the agent learns the state, he learns it in finite time. After the agent has

learned the state, he will take his optimal action in that state. Alternatively, as

long as the agent keeps getting pieces of information from the principal (and, thus,

has not learned the state yet), he will take the principal’s preferred action. By

trickling down bits of information, the principal is able to induce the agent to delay

moving away from his favorite course of action. In some instances, the principal

will promise eventual full disclosure of the state with probability one. In other in-

stances, the principal will be able to stir the agent’s beliefs so that, with positive

probability, the agent will take the principal’s favorite action forever. We provide a

characterization of when this occurs.

Define the agent’s opportunity cost at a state as the difference between the agent’s

stage payoff at his optimal action and the stage payoff when taking the principal’s

preferred action. Generically, the agent’s opportunity cost, relative to the prin-

cipal’s benefit from his preferred action, is different in different states, and our

optimal policy exploits these differences. The second property of our optimal pol-

icy is that, along the paths at which the agent plays the principal’s most preferred

action, his belief about the likelihood of the “high opportunity cost” state is decreas-

ing. Intuitively, the optimal contract exploits the asymmetry in opportunity costs

and lowers the agent’s expected opportunity cost – hence making it easier to incen-

tivize the agent – by biasing information disclosure in the direction of informing

him when the opportunity cost is high.2

Figure 1 plots four representative evolutions of the agent’s belief about the high

opportunity cost state. In each panel, the grey region “OPT” indicates the region at

which choosing the principal’s most preferred action is optimal for the agent. An

arrow pointing from one belief to another indicates how the agent revises his belief

within the period following a signal’s realization. Multiple arrows originating from

the same point thus represent the information disclosed by the policy. Within a
2To be precise, under our policy, upon receiving the signal “the opportunity cost is high,” the agent
learns that this is indeed true. However, the signal is not sent with probability one. This corre-
sponds to the (magenta/dotted) arrows pointing at 1 in Figure 1.
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period, the agent takes a decision after having revised his beliefs. Arrows have

different colors/patterns. At all beliefs at the end of continuous black arrows, the

agent chooses the principal’s most preferred action. At all beliefs at the end of

dotted magenta arrows, he chooses what is best given his current belief.
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FIGURE 1. Evolution of actions and beliefs over time

Third, in panels (A), (B) and (C), the policy does not disclose information to the

agent at the first period. Starting from the second period, the policy discloses just

enough information to compensate the agent for the opportunity cost of choosing

the principal’s preferred action; no rent is left to the agent. However, as panel (D)

illustrates, in some cases the policy discloses information in the first period, which

may leave a strictly positive rent to the agent. For instance, it does so if the promise

of full information disclosure at the next period wouldn’t incentivize the agent to

choose the principal’s preferred action. Disclosing information at the first period

may also be necessary to reduce the agent’s expected opportunity cost of following

the principal’s recommendation.

Finally, with the exception of panel (B), the policy does not induce the agent to be-

lieve that playing the principal’s most preferred action is optimal. This is markedly
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different from what we would expect from the static analysis of Kamenica and

Gentzkow (2011). Intuitively, the “static” persuasion policy is sub-optimal because

it does not extract all the information surplus it creates. Even in panel (B), the

beliefs do not jump immediately to the “OPT” region. In fact, the belief process

may approach the “OPT” region only asymptotically.

These properties highlight that in our dynamic environment, information is used

as a compensation tool for creating inter-temporal incentives, more than as a per-

suasion tool to affect the agent’s myopic incentives.

Related literature. The paper is part of the literature on Bayesian persuasion,

pioneered by Kamenica and Gentzkow (2011), and recently surveyed by Kamenica

(2019). The three most closely related papers are Ball (2019), Ely and Szydlowski

(2020), and Orlov et al. (2020). In common with our paper, these papers study the

optimal disclosure of information in dynamic games and show how the disclosure of

information can be used as an incentive tool. The observation that information can

be used to incentivize agents is not new and dates back to the literature on repeated

games with incomplete information, e.g., Aumann et al. (1995). See Garicano and

Rayo (2017) and Fudenberg and Rayo (2019) for some more recent papers exploring

the role of information provision as an incentive tool.

The classes of dynamic games studied differ considerably from one paper to an-

other, and this makes comparisons difficult. In Ely and Szydlowski (2020), the

agent has to repeatedly decide whether to continue working on a project or to quit

(i.e., unlike our paper, there are only two actions); quitting ends the game. The

principal aims at maximizing the number of periods the agent works on the project

and can only do so by disclosing information about its complexity, modeled as the

number of periods required to complete the project. Thus, their dynamic game is

a quitting game, while ours is a repeated game. When the project is either easy

or difficult (i.e., when there are two states), the optimal disclosure policy initially

persuades the agent that the task is easy, so that he starts working. (Naturally,

if the agent is sufficiently convinced that the project is easy, there is no need to

persuade him initially.) If the project is in fact difficult, the policy then discloses

it at a later date, when completing the project is now within reach. A main differ-

ence with our optimal disclosure policy is that information comes in lumps in Ely
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and Szydlowski (2020), i.e., information is disclosed only at the initial period and

at a later period, while information is repeatedly disclosed in our model.3 Another

main difference is as follows. In Ely and Szydlowski, only when the promise of

full information disclosure at a later date is not enough to incentivize the agent to

start working does the principal persuade the agent initially. This is not so with

our policy: the principal persuades the agent in a larger set of circumstances. This

initial persuasion reduces the cost of incentivizing the agent in future periods.

Orlov et al. (2020) also consider a quitting game, where the principal aims at de-

laying the quitting time as far as possible.4 The quitting time is when the agent

decides to exercise an option, which has different values to the principal and the

agent. The principal chooses a disclosure policy informing the agent about the

option’s value. When the principal is able to commit to a long-run policy, it is op-

timal to fully reveal the state with some delay. This policy is not optimal in Ely

and Szydlowski (2020), or in our paper. See Au (2015), Bizzotto et al. (2021), Che

et al. (2020), Henry and Ottaviani (2019) and Smolin (2021) for other papers on

information disclosure in quitting games, where the agent either waits and obtains

additional information, or takes an irreversible action and stops the game.

Ball (2019) studies a continuous time model of information provision, where the

state changes over time and payoffs are the ones of the quadratic example of Craw-

ford and Sobel (1982). Ball shows that the optimal disclosure policy requires the

sender to disclose the current state at a later date, with the delay shrinking over

time. The main difference between his work and ours is the persistence of the state

(also, we consider two different classes of games). When the state is fully persis-

tent, as in Ely and Szydlowski (2020) and our model, full information disclosure

with delay is not optimal in general. (See the discussion of Example 1 in Section

3.)

Finally, there are a few papers on dynamic persuasion, where the agent takes an

action repeatedly. However, either the agent is myopic, e.g., Ely (2017) and Renault

et al. (2017), or the principal cannot commit, e.g., Escude and Sinander (2023).
3When there are more than two states, the optimal policy discloses information more frequently in
Ely and Szydlowski (2020). The frequency of disclosure is thus a consequence of the dimensionality
of the state space in their model, while it is not so in our model.
4We refer to what Orlov et al. (2020) call the agent as the principal, and vice versa.
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2. THE PROBLEM

2.1. The model. A principal and an agent interact over an infinite number of

periods, indexed by t ∈ {1, 2, . . . }. At the first period, the principal learns a payoff-

relevant state ω ∈ Ω = {ω0, ω1}, while the agent remains uninformed. The prior

probability of ω is p0(ω) > 0. At each period t, the principal sends a signal s ∈ S

and, upon observing s, the agent takes decision a ∈ A. The sets A and S are finite.

The cardinality of S is as large as necessary for the principal to be unconstrained in

his information disclosure policy.5 Throughout, we interchangeably use the words

“period” and “stage.”

We assume that there exists a∗ ∈ A such that the principal’s stage payoff is strictly

positive whenever a∗ is chosen, and zero otherwise. The principal’s stage payoff

function is thus v : A × Ω → R, with v(a∗, ω0) > 0, v(a∗, ω1) > 0 and v(a, ω0) =

v(a, ω1) = 0 for all a ∈ A \ {a∗}. The agent’s stage payoff function is u : A × Ω → R.

The (common) discount factor is δ ∈ (0, 1).

We write At−1 for A× · · · × A︸ ︷︷ ︸
t−1 times

and St−1 for S × · · · × S︸ ︷︷ ︸
t−1 times

, with generic elements at

and st, respectively. A behavioral strategy for the agent is a collection of maps

σ = (σt)
∞
t=1 with σt : At−1 × St → ∆(A).

Before learning the state, the principal commits to a strategy, or contract, specify-

ing, as a function of the state, the information to be disclosed (i.e., the statistical

experiment to be conducted) at each history of realized signals and actions. For-

mally, the principal commits to a collection of maps (a contract) τ = (τt)
∞
t=1, with

τt : At−1 × St−1 × Ω → ∆(S). The contract enables the principal to use information

disclosures to reward or punish the agent for choosing the “right” or the “wrong”

action.

We denote by V(τ, σ) and U(τ, σ) the principal’s and the agent’s overall expected

payoff under the profile (τ, σ). Let Pτ,σ(·|ω) be the distribution over sequences of

signals and actions induced by (τ, σ) conditional on ω. The principal’s expected
5From Makris and Renou (2023), it is enough to have the cardinality of S as large as the cardinality
of A.
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payoff V(τ, σ) is:

∑
ω

p0(ω)

∑
t

∑
st,at−1

(1− δ)δt−1Pσ,τ (st−1, at−1|ω)τt(st|st−1, at−1, ω)σt(a
∗|st, at−1)

 v(a∗, ω).

(1)

The agent’s expected payoff is defined similarly. The objective is to characterize

the maximal expected payoff V max the principal can achieve by committing to a

contract τ before learning the state, that is,

V max =

sup(τ,σ) V(τ, σ)

subject to U(τ, σ) ≥ U(τ, σ′) for all σ′.

Several comments are worth making. First, an alternative interpretation of our

model is that neither the principal nor the agent know the state, but the principal

has the ability to conduct statistical experiments contingent on the state and past

signals and actions. Second, the only additional information the agent obtains

each period is the outcome of the statistical experiment. Third, the state is fully

persistent and the principal perfectly monitors the action of the agent. Finally,

the only instrument available to the principal is information. The principal can

neither remunerate the agent nor terminate the relationship nor allocate different

tasks to the agent. We purposefully make all these assumptions to address our

main question of interest: what is the optimal way to incentivize the agent with

information only?

2.2. An example. Throughout the paper, we illustrate our results with the help

of the following example.

Example 1. The agent has three possible actions a0, a1 and a∗, with a0 (resp., a1)

the agent’s optimal action when the state is ω0 (resp., ω1). The prior probability of

ω1 is 1/3 and the discount factor is 1/2. The payoffs are in Table 1, with the first

coordinate corresponding to the principal payoff.

TABLE 1. Payoff table

a0 a1 a∗

ω0 0, 1 0, 0 1, 1/2
ω1 0, 0 0, 2 1, 1/2
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We start with few preliminary observations. First, regardless of the agent’s belief,

action a∗ is never optimal. Second, the opportunity cost of playing a∗ is higher when

the state is ω1 than ω0, i.e., u(a1, ω1)−u(a∗, ω1) > u(a0, ω0)−u(a∗, ω0). It is, therefore,

harder to incentivize the agent to play a∗ when he is more confident that the state

is ω1. As we shall see, the optimal policy exploits this asymmetry.

We now consider some simple strategies the principal may commit to. To start with,

assume that the principal commits to disclose information at the initial stage only.

We call it the KG policy, in reference to Kamenica and Gentzkow (2011). Clearly,

since a∗ is never optimal, the principal’s payoff is 0. To obtain a positive payoff, the

principal must condition his information disclosure on the agent’s actions.

The simplest such policy is to “reward” the agent with full disclosure of the state

for playing a∗ at the beginning of the relationship, say up to period T ∗. If the

agent deviates, the harshest punishment the principal can impose is to reveal no

information in subsequent periods, inducing a normalized expected payoff of 2/3.

We are thus looking for the largest T ∗ such that

(1− δ)
(

1

2

(
δ0 + δ1 + · · ·+ δT

∗−1
)

+

(
1

3
· 2 +

2

3
· 1
)(

δT
∗

+ . . .
))
≥ 2

3
,

which is T ∗ = bln(5)/ ln(2)c = 2, yielding the principal a payoff of
(
1− 1

2

)
·
(
1 + 1

2

)
=

3
4
.

Another simple strategy the principal can commit to is a “random full-disclosure

policy,” where he fully discloses the state with probability α at period t (and with-

holds all information with the complementary probability) if the agent plays a∗ at

period t − 1.6 (Again if the agent deviates, the harshest punishment is to with-

hold all information in all subsequent periods.) Thus, if we write V (resp., U ) for

the principal (resp., agent) payoff, the best recursive policy is to choose α so as to

maximize

V =
1

2
1 +

1

2
(1− α)V, subject to:

U =
1

2

(1

2

)
+

1

2

[
(1− α)U + α

4

3

]
≥ 2

3
.

The principal’s best payoff is V = 4/5 with α = 1/4. The random full-disclosure

policy does better than the policy of fully disclosing the state with delay since it
6Full information with delay plays an important role in the work of Ball (2019) and Orlov et al.
(2020).
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circumvents the integer constraint on T . Intuitively, it makes it possible to incen-

tivize the agent to play a∗ a discounted number of periods slightly larger than 2,

namely ln(5)/ ln(2).

As we will see in Section 3.5, the random full-disclosure policy is still suboptimal

since it does not exploit the asymmetry in the agent’s opportunity cost of choosing

a∗ in the two states. The optimal policy exploits such asymmetry by disclosing no

information in the first period and then either revealing that the state is ω1, the

high opportunity cost state, or lowering the agent’s belief that the state is ω1. By

doing so, the policy incentivizes the agent to take action a∗ for a longer expected

time.

3. OPTIMAL CONTRACTS

This section characterizes optimal contracts and discusses their most salient prop-

erties.

3.1. A recursive formulation. The first step towards characterizing optimal con-

tracts is to reformulate the principal’s problem as a recursive problem. To do so, we

introduce two state variables. The first state variable is promised payoff. It is well-

known that classical dynamic contracting problems admit recursive formulations if

we introduce promised payoff as a state variable and impose promise-keeping con-

straints, e.g., Spear and Srivastava (1987). The second state variable we introduce

is beliefs. We now turn to the formal reformulation of the problem.

We first need some additional notation. We denote by p ∈ [0, 1] a generic belief,

with p the probability of ω1. We let u(a, p) := p[u(a, ω1) − u(a, ω0)] + u(a, ω0) be

the agent’s expected stage payoff of choosing a when his belief is p. We define

m(p) := maxa∈A u(a, p) as the agent’s optimal stage payoff when his belief is p, and

M(p) := p[m(1) − m(0)] + m(0) as the agent’s expected stage payoff if he learns

the state prior to choosing an action. Note that m is a piecewise linear convex

function, that M is linear and that m(p) ≤M(p) for all p. Similarly, we let v(a, p) be

the principal’s expected stage payoff when the agent chooses a and the principal’s

belief is p. Finally, let P := {p ∈ [0, 1] : m(p) = u(a∗, p)} be the set of beliefs at which

a∗ is optimal. If non-empty, the set P is the closed interval [p, p̄].
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LetW ⊆ [0, 1]× R be such that (p, w) ∈ W if and only if w ∈ [m(p),M(p)]. Through-

out, we consider the complete metric space of bounded, continuous functions V :

W → R, with the interpretation that V (p, w) is the principal’s payoff if he promises

a payoff of w to the agent when the agent’s current belief is p. Consider the follow-

ing maximization program:

T (V )(p, w) :=



max(
(λs,(ps,ws),as)∈[0,1]×W×A

)
s∈S

∑
s∈S λs[(1− δ)v(as, ps) + δV (ps, ws)],

subject to:

(1− δ)u(as, ps) + δws ≥ m(ps) for all s such that λs > 0,∑
s∈S λs[(1− δ)u(as, ps) + δws] ≥ w,∑
s∈S λsps = p,

∑
s∈S λs = 1.

The program maximizes the principal’s expected payoff over policies, i.e., maps

fromW to ([0, 1]×W×A)|S|. At each (p, w), a policy prescribes the probability λs that

the realized signal is s and conditional on s, the belief ps, the promised continuation

utility ws, and the recommended action as. The first constraint is the incentive-

compatibility condition that the agent prefers to obey the recommendation as, when

ws is the promised continuation payoff and ps is the agent’s belief. To understand

the right-hand side, observe that the agent can always play a static best-reply to

any belief, so that his expected payoff must be at leastm(ps) when his current belief

is ps.7 Conversely, if the contract recommends action as and the agent does not obey,

the contract can specify no further information revelation, in which case the agent’s

payoff is at most m(ps). Therefore, m(ps) is the agent’s min-max payoff. The second

constraint is the promise-keeping constraint: if the principal promises the payoff

w at a period, the contract must honor that promise in subsequent periods. The

third constraint states that the policy selects a splitting of p, i.e., a distribution

over posteriors with expectation p.

In most dynamic contracting papers, the promise-keeping constraint holds as an

equality everywhere in the state space. Here, on the contrary, we will show that

under the contract solving the recursive problem, there are two regions: A region
7More precisely, if the agent’s belief at period t is pt, he obtains the payoff m(pt) by playing a static
best-reply. Since the function m is convex and beliefs follow a martingale, his expected payoff is
therefore at least (1− δ)

∑
t′≥t δ

t′−tE[m(pt′)|Ft] ≥ m(pt), where Ft is the agent’s filtration at period
t.
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where the promise-keeping constraint holds as an equality, and a region where it

holds as a strict inequality. Importantly, we will also show (see Corollary 4) that

under this contract the second region can be visited only in the very first period,

and hence the contract is feasible.

Throughout, we slightly abuse notation and write τ for a policy (i.e., a map fromW

to ([0, 1]×W×A)|S|). A policy is feasible if it specifies a feasible tuple (λs, (ps, ws), as)s∈S

for each (p, w), i.e., a tuple satisfying the constraints of the maximization problem

T (V )(p, w).

Three important observations, implying Proposition 1, are worth making. First,

for any function V , it is easy to show that T (V ) is a concave function of the pair

(p, w). This is because, if τ is feasible at state variables (p, w) and τ ′ is feasible at

state variables (p′, w′), then a policy which follows τ with probability α and follows

τ ′ with probability 1−α is feasible at state variables (αp+(1−α)p′, αw+(1−α)w′).8

Second, for any function V , the mapping T (V ) is weakly decreasing in w, since

a policy that is feasible at state variables (p, w) is also feasible at state variables

(p, w′) for any w′ ≤ w. The more the principal promises to the agent, the harder it

is to incentivize the agent to play a∗. Third, the operator T is a contraction. Indeed,

T is monotone, i.e., T (V ) ≥ T (V ′) for all V ≥ V ′, and satisfies T (V + c) ≤ T (V ) + δc

for all positive constant c ≥ 0, for all V . Hence, T is a contraction by Blackwell’s

theorem. Let V ∗ be its unique fixed point.

Proposition 1. The value function V ∗ is concave in both arguments and weakly

decreasing in w.

With this recursive formulation, the principal’s maximal payoff V max is V ∗(p0,m(p0)),

and the solutions to the optimization problem T (V ∗)(p0,m(p0)) define the optimal

contracts. Characterizing the optimal solutions is the objective of the rest of the

paper.

In a working paper, Ely (2015) discusses the extension of his model in Ely (2017)

to the interaction between a long-run principal and a long-run agent and derives

a recursive reformulation.9 The main difference with our formulation is that the
8Note that (αp + (1 − α)p′, αw + (1 − α)w′) ∈ W since αw + (1 − α)w′ ≥ αm(p) + (1 − α)m(p′) ≥
m(αp+ (1− α)p′), by the convexity of m.
9Ely (2017) analyzes the interaction between a long-run principal and a sequence of short-run
agents. (See also Renault et al. (2017).)
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promise-keeping constraint is an equality in Ely (2015). In Appendix ?? we prove

that V max = maxw∈[m(p0),M(p0)] V̂
∗(p0, w), where V̂ ∗ is the fixed point of the “Ely’s

operator.”

Proposition 1, together with the recursive formulation, has a number of impli-

cations, which are summarized in Proposition 2. First, if the principal induces

the posterior ps while recommending the action as and promising the continua-

tion payoff ws, he should not have an incentive to disclose more information in

that period, that is, we cannot have V ∗(ps, (1− δ)u(as, ps) + δws) > (1− δ)v(as, ps) +

δV ∗(ps, ωs). In other words, the tuple (1, ps, ws, as) must be optimal at state variables

(ps, (1 − δ)u(as, ps) + δws). To see this, observe that V ∗(ps, (1 − δ)u(as, ps) + δws) ≥

(1− δ)v(as, ps) + δV ∗(ps, ws) for all (ps, ws, as). Indeed, the tuple (1, ps, ws, as) is feasi-

ble at state variables (ps, (1− δ)u(as, ps) + δws) and gives a payoff of (1− δ)v(as, ps) +

δV ∗(ps, ws) to the principal. Therefore, if the inequality were strict at some s, the

principal would strictly benefit from releasing further information at ps so as to

get V ∗(ps, (1 − δ)u(as, ps) + δws) – he would do so by following the optimal policy at

(ps, (1− δ)u(as, ps) + δws).

Second, if the principal does not recommend a∗ at a period, then he never recom-

mends a∗ at any subsequent periods, that is, the principal’s continuation value is

zero. In other words, as soon as an action other than a∗ is played, the principal

stops incentivizing the agent to play a∗. The intuition is simple. Suppose to the

contrary that the principal were to recommend as 6= a∗ after the signal s at period

t and a∗ at the next period. Consider the policy change where the principal an-

ticipates the disclosure of information: what incentivizes the agent to play a∗ at

period t+ 1 is disclosed at period t. This policy change is feasible and increases the

principal’s payoff, a contradiction. This property justifies thinking of the principal’s

preferred action a∗ as a status quo, which the principal tries to induce the agent to

maintain as long as possible. Note that, unlike quitting games, the irreversibility

is endogenous here – this explains why our solution differs from the ones found in

previous works.

Third, under any optimal policy, if a∗ is recommended at signal s, that is, as = a∗,

then V ∗(ps, ws) > V ∗(ps, w
′
s) for all w′s > ws. This implies that the agent’s expected

continuation payoff is the promised continuation utility ws, that is, the promise-

keeping constraint binds at state variables (ps, ws). (If the constraint were not
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binding, there would exist some w′s > ws such that V ∗(ps, w′s) = V ∗(ps, ws)), a con-

tradiction.)

Proposition 2. For all (p, w) and all solutions (λs, ps, ws, as)s∈S to T (V ∗)(p, w), we

have

(i): For all s ∈ S such that λs > 0,

(1− δ) v (as, ps) + δV ∗ (ps, ws) = V ∗ (ps, (1− δ)u (as, ps) + δws) .

(ii): For all s ∈ S such that λs > 0 and as 6= a∗, V ∗(ps, ws) = 0.

(iii): If as = a∗, then V ∗(ps, ws) > V ∗(ps, w
′
s) for all w′s ∈ (ws,M(ps)].

While the principal’s value function is unique, there might be several, payoff-

equivalent, optimal policies. One such optimal policy – the one we focus on –

has the following two additional properties, summarized in Proposition 3. First,

there is at most one signal s∗ at which the principal recommends the agent to play

a∗. Intuitively, if two signals recommended a∗, the principal would not lose from

merging them into one. In addition, upon receiving s∗, the agent is made indif-

ferent between obeying the recommendation and deviating to his outside option.

Second, when the principal does not recommend a∗, the principal perfectly informs

the agent of the payoff-relevant state. This follows from the principal’s indiffer-

ence over actions a 6= a∗. Since the principal’s continuation value is zero when a∗ is

not recommended (Proposition 2(ii)), full information revelation does not hurt the

principal while increasing the agent’s payoff, which relaxes the promise-keeping

constraint.

Proposition 3. For all (p, w), there exists a solution (λs, ps, ws, as)s∈S to T (V ∗)(p, w)

such that

(i): There exists at most one signal s∗ ∈ S such that λs∗ > 0 and as∗ = a∗. Moreover,

(1− δ)u(as∗ , ps∗) + δws∗ = m(ps∗).

(ii): If as 6= a∗, then ps = 1 or ps = 0.

The main implication of Proposition 3 is that we can restrict our attention to poli-

cies with at most three messages s∗, s0 and s1 in its support. At s∗, the policy

recommends a∗ and the agent is made indifferent between obeying and disobeying
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(if λs∗ > 0.) At s0 (resp., s1), the agent knows that the state is ω0 (resp., ω1) and his

payoff is m(0) (resp., m(1)). It is also worth noting that, in Example 1, the policy of

fully disclosing the state with delay satisfies neither property (iii) of Proposition 2

nor property (i) of Proposition 3. The “random full-disclosure” policy satisfies these

properties, but its induced value function is not concave.10

Several important questions remain. What are the beliefs at which the agent plays

a∗? How does the principal compensate the agent for playing a∗? Does the principal

need to reveal information at the prior belief? Does the agent learn the state? If

so, does he learn it in finite time? Before formally answering these questions, we

build some further intuition on the optimal policies.

3.2. Optimal policy: building intuition. Let Q1 be the set of beliefs at which

the agent has an incentive to play a∗ when promised full information disclosure at

the next period. That is,

Q1 := {p ∈ [0, 1] : (1− δ)u(a∗, p) + δM(p) ≥ m(p)}.

If Q1 is empty, then all policies are optimal, as the principal can never incentivize

the agent to play a∗. If Q1 is non-empty, then it is a closed interval [q1, q1]. Note

that q1 = 0 if, and only if, a∗ is optimal at p = 0. See Figure 2 for an illustration.

m(·)

M(·)

u(a∗, ·)

q1

m(q1)

1

m(1)

(1− δ)u(a∗, ·) + δM(·)

q1

FIGURE 2. The set Q1

For all p ∈ Q1, we write w(p) ∈ [m(p),M(p)] for the continuation payoff that makes

the agent indifferent between playing action a∗ and receiving the continuation pay-

off w(p) in the future, and playing a best-reply to the belief p forever. That is, w(p)

solves:

(1− δ)u(a∗, p) + δw(p) = m(p).

10We remark that Propositions 2 and 3 remain true with more than two states.
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An important feature of our model is that the agent’s opportunity cost of choosing

a∗ rather than his best action, relative to the principal’s benefit, differs accross

states. When the state is ω0 (resp. ω1) the opportunity cost relative to the benefit is

[m(0) − u(a∗, 0)]/v(a∗, 0) (resp. [m(1) − u(a∗, 1)]/v(a∗, 1)). Without loss of generality,

we assume that:

Assumption 1.
m(1)− u(a∗, 1)

v(a∗, 1)
≥ m(0)− u(a∗, 0)

v(a∗, 0)
.

As we shall see, our optimal policy heavily exploits this asymmetry. It also follows

from Assumption 1 that if a∗ is optimal for the agent at p = 1, i.e., m(1) = u(a∗, 1),

then a∗ is also optimal at p = 0. Consequently, a∗ is optimal at all beliefs, i.e.,

P = [0, 1]. (Recall that P is the set of beliefs at which a∗ is optimal.) In what

follows, we exclude this trivial case and assume that 1 /∈ P .

To strengthen our intuition, we briefly return to the original (non-recursive) de-

scription of the problem. Let (τ, σ) be a profile of strategies. We can rewrite the

principal’s expected payoff V(τ, σ) in Equation (1) as V(τ, σ) = λ∗v∗(a∗, p∗), with

λ∗ := (1− δ)
∑
ω

p0(ω)

∑
t

∑
st,at−1

δt−1Pσ,τ (st, at−1|ω)σt(a
∗|st, at−1)


the discounted probability of recommending action a∗, and

p∗ :=
(1− δ)p0(ω1)

(∑
t

∑
st,at−1 δt−1Pσ,τ (st, at−1|ω1)σt(a

∗|st, at−1)
)

λ∗
,

the average discounted probability of ω1 when a∗ is played.11 As expected, the

principal’s payoff only depends on how often a∗ is played, and the average belief at

which it is played.

We now make two observations, which will enable us to rewrite the principal’s

expected payoff and get important insights on optimal policies. First, if we let p†

be the average discounted probability of ω1 when a∗ is not recommended, we have

that λ∗p∗ + (1 − λ∗)p† = p0 since the belief process is a martingale. Second, recall

from Proposition 3(ii) that the agent’s belief is either 0 or 1, when he does not play

a∗. Therefore, conditional on not playing a∗, his expected payoff is M(p†), and his
11Note that p∗ cannot be lower than q1 since the agent would never play a∗ at beliefs lower than q1.
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overall expected payoff is:

λ∗u(a∗, p∗) + (1− λ∗)M(p†) = λ∗[u(a∗, p∗)−M(p∗)] +M(p0). (2)

Since the agent’s ex-ante payoff must be at least m(p0), the agent’s ex-ante rent is:

c := λ∗[u(a∗, p∗)−M(p∗)] +M(p0)−m(p0) ≥ 0. (3)

With the help of these two observations, we can rewrite the principal’s expected

payoff as:
v(a∗, p∗)

M(p∗)− u(a∗, p∗)
×
(
M(p0)−m(p0)− c

)
. (4)

The first term captures the benefit of incentivizing the agent to play a∗ relative to

the cost. Since v(a∗,0)
v(a∗,1)

≥ m(0)−u(a∗,0)
m(1)−u(a∗,1)

, it is decreasing in p∗.12 Ceteris paribus, the lower

the average belief at which the agent plays a∗, the higher the principal’s expected

payoff.

The second term captures how the principal rewards the agent for playing a∗ with

his only instrument: information. The term M(p0) − m(p0) is the maximal value

of information the principal can create. Ceteris paribus, the principal’s payoff is

decreasing in c, that is, the best is to leave no rents to the agent and to create as

much information as necessary to repay the agent.

The above discussion, along with our previous results, thus suggests some guiding

principles in constructing an optimal policy. First, the policy must recommend a∗

at the lowest possible beliefs p∗s. Second, the policy should leave as little rent as

possible to the agent. Naturally, it is not always possible to leave no rents. E.g.,

when the prior belief p0 /∈ Q1, the agent must be given some strictly positive rent

if he is to ever play a∗. In the next sub-section, we will construct an optimal policy

with all these features.

3.3. Benchmark Scenarios. Before defining our optimal policy, we discuss two

benchmark scenarios. In the first benchmark, the agent only has two actions, A =

{a∗, a†}. The constraint that the agent’s ex-ante expected payoff must be at least as

high as his outside option is

λ∗u(a∗, p∗) + (1− λ∗)u(a†, p†) ≥ m(p0).

12 This follows from the observation that M(p∗)−u(a∗, p∗) = p∗[(m(1)−m(0))−(u(a∗, 1)−u(a∗, 0))]+
m(0)− u(a∗, 0), v(a∗, p∗) = p∗(v(a∗, 1)− v(a∗, 0)) + v(a∗, 0), and simple algebra.
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Observe that if either λ∗(u(a∗, p∗)− u(a†, p∗)) < 0 or (1− λ∗)(u(a†, p†)− u(a∗, p†)) < 0,

then the constraint cannot be satisfied.13 In words, if an action is recommended

with strictly positive probability, the agent must find that action optimal at the

corresponding belief; the same is true in the static problem. Therefore, the KG

policy is an optimal policy, when the agents has only two actions.

In the second benchmark, the agent’s opportunity cost relative to the principal’s

benefit of inducing a∗ is the same across states, i.e., m(1)−u(a∗,1)
v(a∗,1)

= m(0)−u(a∗,0)
v(a∗,0)

. Con-

sider the best random full-disclosure policy. It requires that the state be fully re-

vealed with probability α at each period, where α is such that the agent’s payoff

equals his outside option payoff, that is:

(1− δ)u(a∗, p0) + δ [αM(p0) + (1− α)m(p0)] = m(p0).

It follows that:

α =
1− δ
δ

m(p0)− u(a∗, p0)

M(p0)−m(p0)
.

Since the principal’s payoff satisfies V = (1− δ)v(a∗, p0) + δ(1− α)V , it follows that:

V =
M(p0)−m(p0)

M(p0)− u(a∗, p0)
v(a∗, p0).

Now, from the above relaxed version of the principal’s maximization problem, where

only the (ex-ante) participation constraint needs to be satisfied, an upper bound on

the principal’s payoff is given by Eq. (4). Since v(a∗,0)
v(a∗,1)

= m(0)−u(a∗,0)
m(1)−u(a∗,1)

, the first term is

constant in p∗ (see footnote 12) and, thus, equals to v(a∗,p0)
M(p0)−u(a∗,p0)

. Since c ≥ 0, the

second term is at most M(p0) − m(p0). Therefore, M(p0)−m(p0)
M(p0)−u(a∗,p0)

v(a∗, p0) is an upper

bound of the relaxed problem. Since the random full-disclosure policy achieves this

upper bound, it is an optimal policy.

Corollary 1. (i): When |A| = 2, the KG policy is optimal.

(ii): When v(a∗,0)
v(a∗,1)

= m(0)−u(a∗,0)
m(1)−u(a∗,1)

, the random full-disclosure policy is optimal.

We hasten to stress that both the KG and random full-disclosure policies are not

optimal in general, as Example 1 demonstrates. See Section 3.5.

3.4. Optimal policy: a formal description. We define a family of policies (τq)q∈[q1,q1]

indexed by a belief q, and prove later the existence of q∗ ∈ [q1, q1] such that the

13In the former case, the left-hand side would be strictly less than u(a†, p0) ≤ m(p0), while it would
be strictly less than u(a∗, p0) ≤ m(p0) in the latter case, a contradiction in both cases.
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policy τq∗ is optimal. At each (p, w) ∈ W, a policy prescribes a feasible tuple

(λs, (ps, ws), as)s∈S, that is, a splitting (λs, ps)s∈S, a profile of recommendations (as)s∈S

and a profile of continuation payoffs (ws)s∈S. There are four different types of pre-

scription, depending on which of four regions the state variables (p, w) belong to;

the belief q parameterizes these regions. The four regions are:

W1
q :=

{
(p, w) : p ∈ [0, q1), w ≤

q1 − p
q1

m(0) +
p

q1
m(q1)

}
,

W2
q :=

{
(p, w) : p ∈ (q, 1],

1− p
1− q

m(q) +
p− q
1− q

m(1) < w ≤ 1− p
1− q1

m(q1) +
p− q1

1− q1
m(1)

}
⋃{

(p, w) : p ∈ [q1, q], w ≤ 1− p
1− q1

m(q1) +
p− q1

1− q1
m(1)

}
,

W3
q :=

{
(p, w) : p ∈ (q, 1], w ≤ 1− p

1− q
m(q) +

p− q
1− q

m(1)
}
,

W4
q := W \ (W1

q ∪W2
q ∪W3

q ).

Figure 3 illustrates the four regions, withW1
q the black region,W2

q the region with

vertical lines, W3
q the gray region, and W4

q the region with slanted lines. Observe

that regionsW1
q andW4

q do not depend on the parameter q, while the other two do.

m(·)

M(·)

q1 p

w

q1q

FIGURE 3. Regions W1
q (black), W2

q (vertical lines), W3
q (gray) and W4

q (slanted
lines).

We begin with an informal overview of our optimal policy. In region W2
q , the prin-

cipal recommends a∗ and discloses information in the next period as a reward. The

belief p decreases over time, until either it reaches a point at which the agent will

choose a∗ forever, or it enters regionW4
q .

In regionW4
q , the principal discloses the state with sufficiently high probability so

that, when disclosure does not occur, the agent’s belief is q1. At the belief q1, the
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agent plays a∗ one final time. (Recall that at q1, the agent plays a∗ if rewarded with

full information disclosure at the next period.)

In region W1
q , the belief p is so low that even the promise of full information dis-

closure at the next period does not incentivize the agent to play a∗, not even once.

In this region, the principal sends either the signal s∗ or the signal s0. The signal

s0 perfectly informs the agent that the state is ω0, while the signal s∗ induces the

belief q1, at which the agent plays a∗ one final time.

In region W3
q , the belief p is higher than q and, even possibly, higher than q1. In

this region, the principal sends either the signal s∗ or the signal s1. The signal

s1 perfectly informs the agent that the state is ω1, while the signal s∗ induces the

belief q ≤ q1, at which the agent plays a∗. It is almost the mirror image of what

the policy does in region of W1
q ; the only conceptual difference is that the policy

induces the belief q rather than q1, the natural counterpart of q1. This asymmetry

is a consequence of trying to induce a∗ at the lowest possible average belief.

We now formally define the policy τq, starting with regionW2
q . Define the functions

λ :W → [0, 1] and ϕ :W → [0, 1] so that (λ(p, w), ϕ(p, w)) is the unique solution ofp
w

 = λ(p, w)

 ϕ(p, w)

m(ϕ(p, w))

+ (1− λ(p, w))

 1

m(1)

 (5)

for all w > m(p) and (λ(p,m(p)), ϕ(p,m(p))) = (1, p). When (p, w) is in regionW2
q , the

policy splits p into two beliefs ϕ(p, w) and 1, with probability λ(p, w) and 1− λ(p, w),

respectively. When the posterior belief is ϕ(p, w), the policy recommends a∗ and

promises the continuation payoff w(ϕ(p, w)) if the recommendation is followed.

Therefore, if the agent follows the recommendation, his discounted expected payoff

is m(ϕ(p, w)) = (1 − δ)u(a∗, ϕ(p, w)) + δw(ϕ(p, w)). When the posterior belief is 1,

the policy recommends a1 and promises the continuation payoff m(1), with a1 an

optimal action at state ω1. Therefore, if the agent follows the recommendation, he

achieves the discounted expected payoff m(1). Note that when w = m(p), the prin-

cipal recommends a∗ with probability one, and promises the continuation payoff

w(p) in the future. Upon following the recommendation, the agent achieves the

discounted expected payoff m(p).

The key feature of the policy in region W2
q is to disclose, with some probability,

that the state is ω1. As we already suggested, the rationale for disclosing when
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the state is ω1 is two-fold. First, the lower the agent’s belief, the lower the cost

of incentivizing the agent to play a∗ relative to the principal’s benefit. Second, to

satisfy the promise-keeping constraint, the policy needs to compensate the agent

for playing a∗. Since the principal’s payoff is zero when the agent takes any ac-

tion different from a∗, the best is to choose a compensation which guarantees the

highest probability of playing a∗. Putting these two observations together, at (p, w),

policy τq(p, w) finds two beliefs (p′, p′′) such that (i) the agent is asked to play a∗

at p′, (ii) p′ < p since the agent should play a∗ at the lowest belief, and (iii) the

probability of p′ is as high as possible. The best splitting is to have p′ as close

as possible to p and p′′ as far as possible, i.e., equal to 1. Observe that since

(1 − λ(p, w))m(1) + λ(p, w)m(ϕ(p, w)) = w, the promise-keeping constraint binds in

regionW2
q . See Figure 4 for an illustration.

m(·)

M(·)

p

w

1

m(1)

ϕ(p, w)

m(ϕ(p, w))

FIGURE 4. Construction of λ and ϕ: p = λϕ+ (1− λ)1; w = λm(ϕ) + (1− λ)m(1)

Note that starting with (p, w) ∈ W2
q , the decreasing sequence of beliefs (ϕ(p, w), ϕ2(p, w), . . . )

(and corresponding payoffs) reaches either regionW4
q – as in Panels (A) and (C) of

Figure 1 – or a belief in P at which it is statically optimal for the agent to play a∗ –

as in panel (B) of Figure 1.14 In the latter case, the policy recommends a∗ and stops

disclosing information (i.e., the belief stays constant).

When (p, w) is in region W4
q , the agent cannot be incentivized to play a∗ at (p, w).15

In that case, the policy splits p into posteriors 0, q1, and 1 with respective proba-

bilities λ0, λq1 and λ1. Conditional on 0 (resp., 1), the policy recommends an action

optimal at 0, (resp., an action optimal at 1), and promises a continuation payoff of

m(0) (resp., m(1)). Conditional on q1, the policy recommends action a∗ and promises

a continuation payoff of w(q1). Doing so, the principal ensures that the agent plays

14We write ϕ2(p, w) for ϕ(ϕ(p, w),m(ϕ(p, w))).
15Recall that q1 is the lowest belief at which the agent can be incentivized to play a∗.
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a∗ one more time. The probabilities (λ0, λq1 , λ1) ∈ R+ × R+ × R+ are the unique

solution to:

λ0


0

m(0)

1

+ λq
1


q1

m(q1)

1

+ λ1


1

m(1)

1

 =


p

w

1

 .

A solution exists since W4
q is the convex hull of (0,m(0)), (q1,m(q1)) and (1,m(1)).

In this region, the promise-keeping constraint is also binding.

When (p, w) is in region W1
q , the policy splits p into 0 (i.e., discloses that the state

is ω0) and q1 with respective probabilities q1−p
q1

and p
q1

. If the realized belief is 0,

the policy recommends an action optimal at 0 and promises a continuation pay-

off of m(0). If the realized belief is q1, the policy recommends a∗ and promises a

continuation payoff of w(q1). The agent is thus made indifferent between play-

ing a∗ and receiving w(q1) in the future, and playing a best reply to the belief q1

forever. Intuitively, in region W1
q , the principal cannot incentivize the agent to

take action a∗ by promising future information disclosure (since p < q1). Hence,

the principal must first persuade the agent by disclosing some information. Note

that the promise-keeping constraint is slack in this region whenever (p, w) satisfies
q1−p
q1
m(0) + p

q1
m(q1) > w.

When (p, w) is in region W3
q , the policy splits p into q and 1 with respective prob-

abilities 1−p
1−q and p−q

1−q . Conditional on 1, the policy recommends an action optimal

at 1 and promises a continuation payoff of m(1). Conditional on q, the policy rec-

ommends a∗ and promises a continuation payoff of w(q). The agent is thus made

indifferent between playing a∗ and receiving w(q) in the future, and playing a best-

reply to the belief q forever. The policy in this region is analogous to the one in

region W1
q – the policy starts by disclosing some information. When q = q1, the

reason for the analogy is immediate, as q1 is the highest belief at which the agent

is willing to take action a∗ at the current period in exchange for full information at

the next period. As we shall see later, the optimal policy τq∗ may require q∗ < q1,

in order to guarantee that the principal’s value function is concave, a necessary

requirement to minimize the cost of incentivizing the agent relative to the benefit

to the principal. As in region W1
q , the promise-keeping constraint is also slack in

this region whenever (p, w) satisfies w < 1−p
1−qm(q) + p−q

1−qm(1). This completes the

description of the policy τq.
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Before moving on, we first verify that our policy τq∗ is optimal under the two bench-

mark scenarios discussed in Section 3.3. Given the value function, we just need to

check whether τq∗ solves the Bellman Equation.

Corollary 2. The policy τq∗ is optimal both when |A| = 2 and when v(a∗,0)
v(a∗,1)

= m(0)−u(a∗,0)
m(1)−u(a∗,1)

.

We now illustrate our construction by revisiting Example 1.

3.5. Example 1 revisited. We have that M(p) = 1 + p, m(p) = max(1 − p, 2p)

and w(p) = 2 max(2p, 1 − p) − (1/2). Therefore, Q1 = [1/6, 1/2]. Assume that q =

1/3 (we will show that this choice is the optimal’s one). Remember that the prior

probability of ω1 is 1/3 and the discount factor is 1/2. Let us start with the pair

(p,m(p)) = (1/3, 2/3), which is in region W2
1/3. The policy recommends a∗ to the

agent and promises a continuation payoff of w(1/3) = 5/6. The next value of the

state variables is therefore (1/3, 5/6), which is again in W2
1/3. If the agent had

been obedient, the policy then splits the prior probability 1/3 into 3/11 and 1 with

probability 22/24 and 2/24, respectively. Indeed, we have:1
3

5
6

 =
22

24

 3
11

m( 3
11

)

+
2

24

 1

m(1)

 .

Conditional on the posterior 3/11, the policy recommends a∗ to the agent and promises

a continuation payoff of w(3/11) = 21/22. Conditional on the posterior 1, the policy

recommends a1 and promises a continuation payoff of m(1) = 2. Therefore, the next

value of the state variables is either (3/11, 21/22) or (1, 2), with the former again in

W2
1/3.

If the value of the state variables is (1, 2), the policy yet again recommends a1 and

a continuation payoff of 2. If the value of the state variables is (3/11, 21/22), the

policy splits 3/11 into 7/39 and 1, with probability 39/44 and 5/44, respectively. Con-

ditional on the posterior 7/39, the policy recommends a∗ to the agent and promises

a continuation payoff of w(7/39) = 89/78. Conditional on the posterior 1, the policy

recommends a1 and promises a continuation payoff of m(1) = 2.

Finally, at the state variables value of (7/39, 89/78), which is in region W4
1/3, the

policy does a penultimate split of 7/39 into 0, 1/6 and 1 with probability 113/156,

18/156 and 25/156, respectively. Conditional on the posterior 1/6, the policy recom-

mends a∗ and promises a continuation payoff of 7/6, i.e., full information disclosure



CONTRACTING OVER PERSISTENT INFORMATION 23

at the next period. The policy fully discloses the state in finite time to the agent.

See Figure 5 for the evolution of the beliefs at the beginning of each period. At all

beliefs other than 0 and 1, the agent is recommended to play a∗. The principal’s

expected payoff is 1285/1536, i.e., about 0.83.

Our optimal policy performs strictly better than the random full-disclosure policy

because it exploits the asymmetry in the agent’s opportunity cost of choosing a∗ in

the two states. At each period in which information is disclosed and a∗ is played,

our policy decreases the belief at which a∗ is played; the average discounted beliefs

is p∗ ≈ 0.197 < 1/3.

On the contrary, the random full-disclosure policy does not alter the belief that the

state is ω1 when a∗ is played; the belief stays fixed at the prior p0 = 1/3.

1
3

1
3

1

3
11

1

7
39

1

1
6

0

1

0
t = 1 t = 2 t = 3 t = 4 t = 5

FIGURE 5. Evolution of the beliefs.

It remains to explain how to choose the parameter q∗ to guarantee the optimality

of τq∗.

3.6. Construction of q∗ and optimality. For all q ∈ [q1, q1], let Vq : W → R be

the value function induced by the policy τq. For all q, note that Vq(1,m(1)) = 0 since

a∗ is not optimal at p = 1, and Vq(0,m(0)) = 0 if a∗ is not optimal at p = 0 (resp.,

Vq(0,m(0)) = v(a∗, 0) if a∗ is optimal at p = 0). Also, Vq(q1,m(q1)) = (1 − δ)v(a∗, q1)

if q1 > 0 (resp., Vq(0,m(0)) = v(a∗, 0) if q1 = 0, since a∗ is then optimal at p = 0).

Therefore, any two policies τq and τq′ induce the same values at all (p, w) ∈ W1
q ∪

W4
q = W1

q′ ∪W4
q′. (Remember that the regions W1

q and W4
q do not vary with q – see

Figure 3.)

Similarly, any two policies τq and τq′ induce the same values at all (p, w) ∈ W2
min(q,q′).

Thus, in particular, τq and τq1 induce the same values at all (p, w) ∈ W\W3
q . Finally,

at all (p, w) ∈ W3
q , Vq(p, w) = 1−p

1−qVq(q,m(q)) = 1−p
1−qVq1(q,m(q)). Hence, characterizing

Vq1 is enough to characterize Vq. (See Appendix B for more details.)
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Recall that V ∗ is the unique solution to the fixed-point problem – to be optimal, a

policy must therefore induce the value function V ∗. Let

q∗ = sup
{
p ∈ [q1, q1] : Vq1(p,m(p)) ≥ Vq1(p, w) for all w

}
.

We are now ready to state our main result.

Theorem 1. The policy τq∗ is optimal: Vq∗ = V ∗.

To understand the role of q∗, recall that for all p ∈ [q∗, 1], the policy leaves rents to

the agent.16 To minimize these rents, the principal therefore would like to have q∗

as high as possible, i.e., equal to q1, the highest belief at which the agent is willing

to play a∗ in exchange for full information disclosure at the next period. However,

Vq1(·,m(·)) is not guaranteed to be concave in p, a necessary condition for optimality.

To see that V ∗(·,m(·)) must be concave in p, consider any pair (p, p′) ∈ [0, 1] × [0, 1]

and α ∈ [0, 1]. We have

αV ∗(p,m(p)) + (1− α)V ∗(p′,m(p′)) ≤ V ∗(αp+ (1− α)p′, αm(p) + (1− α)m(p′))

≤ V ∗(αp+ (1− α)p′,m(αp+ (1− α)p′)),

where the first inequality follows from the concavity of V ∗ in both arguments and

the second from V ∗ decreasing in w and the convexity of m. The optimal choice of

q∗ is thus the largest q, which guarantees Vq(·,m(·)) to be concave.

More precisely, as we show in Appendix A.5, the definition of q∗ guarantees that Vq∗

is concave in both arguments and decreasing in w, so that Vq∗(·,m(·)) is a concave

function of p. We also prove that Vq∗(p,m(p)) ≥ Vq1(p,m(p)) for all p. Since it is

clearly the smallest such function, Vq∗ is the concavification of Vq1. In particular,

q∗ = q1 if Vq1(·,m(·)) is already concave. Figure 6 illustrates the concavification

for Example 1. In dashed red is the value function of policy τq1; in solid blue its

concavification – the value function of policy τq∗, with q∗ = 1
3
.

The policy τq∗ leaves rents to the agent, that is, the (ex-ante) participation con-

straint does not bind, for all priors in [0, q1) ∪ (q∗, 1]. This is quite natural for all

priors in [0, 1]\Q1 since the agent cannot be incentivized to play a∗ even once. In the

language of Ely and Szydlowski (2020), “the goalposts need to move,” that is, one

needs to disclose information at the ex-ante stage to persuade the agent to play a∗.
16That is, the agent is promised a payoff of 1−p

1−q∗m(q∗) + p−q∗
1−q∗m(1) > m(p).
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FIGURE 6. The concavification of Vq1(·,m(·)) in Example 1

However, our policy also leaves rents for all priors in (q∗, q1]. The intuitive reason

is that the initial information disclosure reduces the cost of incentivizing the agent

in subsequent periods sufficiently enough to compensate for the initial loss. (When

the realized posterior is 1, the agent never plays a∗, thus creating the loss.)

4. EVOLUTION OF BELIEFS IN THE OPTIMAL POLICY

The optimal policy discloses information gradually over time, with beliefs evolving

until either the agent learns the state or believes that a∗ is statically optimal. We

can be more specific. First, we consider the instances when the policy converges

with positive probability to a belief p ∈ P = [p, p], the set of beliefs at which a∗ is

optimal. Let Q∞ = [p, q∞], with q∞ the solution to

m(q∞) = (1− δ)u(a∗, q∞) + δ

(
1− q∞

1− p
m(p) +

q∞ − p
1− p

m(1)

)
,

if P is non-empty, and Q∞ = ∅, otherwise. Note that P ⊆ Q∞. See Figure 7 for a

graphical illustration.

Intuitively, the set Q∞ has the “fixed-point property,” that is, if one starts with a

belief p ∈ Q∞ and promised utility w(p), then the belief ϕ(p,w(p)) ∈ Q∞. To see

this, note that the pair (p,w(p)) is in regionW2
q . Since ϕ(p,w(p)) ≤ p (with a strict

inequality if p /∈ P ), we then have a decreasing sequence of beliefs converging to

an element in P . This is because, at all beliefs p ∈ Q∞, the policy splits p into

p′ = ϕ(p,w(p)) and 1, then splits p′ into p′′ = ϕ(p′,w(p′)) and 1, etc. The decreasing
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m(p)

u(a∗, p)

(1− δ)u(a∗, p) + δ
(

1−p
1−pm(p) +

p−p
1−pm(1)

)

q∞pp p

FIGURE 7. Construction of q∞

sequence (p, p′, p′′, . . . ) converges, either in finite time or asymptotically, to a belief

in P , at which no further splitting occurs and the agent plays a∗ forever. See panel

(B) of Figure 1 for an an illustration.

Recall that if the prior p0 is larger than q∗, the policy first splits p0 into q∗ and

1. Hence, if q∗ ≤ q∞, the agent’s belief enters the set Q∞ with strictly positive

probability.17 Therefore, if the agent’s prior belief is in the set Q∞q∗ , then there is a

strictly positive probability that the agent chooses action a∗ forever, where

Q∞q∗ :=

Q
∞ if q∗ > q∞,

[p, 1) otherwise.

Second, at all priors in [0, 1] \ Q∞q∗ , there exists Tδ < ∞ such that the belief pro-

cess is absorbed in the degenerate beliefs 0 or 1 after at most Tδ periods. In other

words, the agent learns the state for sure in finite time. The number of periods

Tδ corresponds to the maximal number of periods the agent can be incentivized to

play a∗. We provide an explicit computation in Appendix B. In Example 1, Tδ = 3.

Moreover, the number Tδ is increasing in δ and converges to +∞ as δ converges to 1.

(Note that the convergence is uniform in that it does not depend on p0 ∈ [0, 1]\Q∞q∗ .)

Thus, we have the following corollary:

Corollary 3. Under the optimal disclosure policy τq∗, there is a strictly positive

probability that the agent chooses action a∗ forever if, and only if, p0 ∈ Q∞q∗ . Alterna-

tively, if p0 /∈ Q∞q∗ , then there exists Tδ such that the agent perfectly learns the state

(i.e., p reaches either 0 or 1) with probability 1 after at most Tδ periods.
17From the definition of q∗, we have that q∗ ≥ p since Vq1(p,m(p)) = u(a∗, p) for all p ∈ P .



CONTRACTING OVER PERSISTENT INFORMATION 27

The interval Q∞q∗ includes the sub-interval [p, p̄], where the agent takes action a∗

with probability one. In the complementary set Q∞q∗ \ [p, p̄], the probability that

the agent takes action a∗ forever is strictly less than 1. That is, the principal dis-

closes the state with positive probability, and with the complementary probability

he lowers the agent’s belief so that it converges to the region where taking action

a∗ is statically optimal. Convergence may be asymptotic or may happen in finite

time.

As already mentioned, the promise-keeping constraint binds in regions W2
q∗ and

W4
q∗, but may not bind in the other two regions. We now argue that under our

policy τq∗, the promise-keeping constraint can only be slack in the first period. In

other words, the promised-keeping constraint binds from period two onwards. To

see this, suppose that (p0,m(p0)) is in regionW3
q∗, hence the prior belief p0 ∈ (q∗, 1).

What the policy τq∗ does is to split p0 into q∗ and 1, so that the state variable transit

to either (q∗,m(q∗)) or (1,m(1)). In the latter case, the promise-keeping constraint

clearly binds and will continue to bind in all subsequent periods, since the agent

has learned that the state is ω1. In the former case, since (q∗,m(q∗)) ∈ W2
q∗, the

promise-keeping constraint binds and will continue to bind in all subsequent pe-

riods since the subsequent state variables will either be in regions W2
q∗ or W4

q∗ or

equal to (1,m(1)). A symmetric argument holds when (p0,m(p0)) is in regionW1
q∗.

Corollary 4. Under the optimal policy τ ∗q , the promise-keeping constraint can only

be slack in the first period.

All in all, information disclosure plays two roles in our optimal policy. First, the

promise of future information disclosure motivates the agent to take action a∗ in

early periods. The inter-temporal incentives make it possible to motivate to play

a∗ at beliefs outside P . Second, information disclosure decreases the discounted

average belief that the state is the high opportunity cost state ω1 and, therefore,

makes it easier to incentivize the agent to take action a∗ for a longer expected time.
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APPENDIX A. PROOFS

A.1. Mathematical preliminaries. We collect without proofs some useful re-

sults about concave functions. Let f : [a, b] → R be a concave function and a ≤

x < y < z ≤ b. The following properties hold:

(a) f(y)−f(x)
y−x ≥ f(z)−f(y)

z−y ,

(b) f(y)−f(a)
y−a ≥ f(z)−f(a)

z−a ,

(c) f(b)−f(x)
b−x ≥ f(b)−f(y)

b−y .

(d) f(y)−f(x)
y−x ≥ f(y+∆)−f(x+∆)

y−x for all ∆ ≥ 0 such that y + ∆ ≤ b.

Note that property (a) implies (d) and is true irrespective of whether x+ ∆ T y. We

will repeatedly use these properties in most of the following proofs.

To prove Lemma 3, we will use the following property: if f : [a, b] → R satisfies
f(x)−f(a)

x−a ≥ f(y)−f(a)
y−a for all a < x ≤ y ≤ b, then f is concave.

A.2. Proposition 2.

Proof of Proposition 2(i). By contradiction, assume that there exists s′ ∈ S such

that λs′ > 0 and

(1− δ) v (as′ , ps′) + δV ∗ (ps′ , ws′) < V ∗ (ps′ , (1− δ)u (as′ , ps′) + δws′) .

Let (λ∗s, p
∗
s, w

∗
s , a
∗
s)s∈S be the policy, which achieves V ∗(ps′ , (1− δ)u(as′ , ps′) + δws′), and

consider the new policy

((λs, ps, ws, as)s∈S\{s′}, (λs′λ
∗
s, p
∗
s, w

∗
s , a
∗
s)s∈S).

By construction, the new policy is feasible. Moreover, we have that∑
s∈S\{s′}

λs[(1− δ)v(as, ps) + δV ∗(ps, ws)] + λs′
∑
s∈S

λ∗s[(1− δ)v(a∗s, p
∗
s) + δV ∗(p∗s, w

∗
s)] =

∑
s∈S\{s′}

λs[(1− δ)v(as, ps) + δV ∗(ps, ws)] + λs′V
∗(ps′ , (1− δ)u(as′ , ps′) + δws′) >

∑
s∈S

λs[(1− δ)v(as, ps) + δV ∗(ps, ws)],

a contradiction with the optimality of (λs, ps, ws, as)s∈S. Thus, we must have (1− δ) v (as, ps)+

δV ∗ (ps, ws) ≥ V ∗ (ps, (1− δ)u (as, ps) + δws) for all s such that λs > 0.

Since the fixed point satisfies V ∗(ps, (1−δ)u(as, ps)+δws) ≥ (1−δ)v(as, ps)+δV
∗(ps, ws),

we have the desired result. �
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Proof of Proposition 2(ii). Let s ∈ S such that λs > 0 and as 6= a∗. We have

(1− δ)v(as, ps) + δV ∗(ps, ws) = δV ∗(ps, ws) ≥ V ∗(ps, (1− δ)u(as, ps) + δws) ≥ V ∗(ps, ws),

where the first inequality follows from Proposition 2(i) and the second follows from

V ∗ decreasing in w and ws ≥ u(as, ps) for

(1− δ)u(as, ps) + δws ≥ m(ps),

to hold. It follows that V ∗(ps, ws) = 0. �

Proof of Proposition 2(iii). The proof is by contradiction. Suppose to the contrary

that V ∗(ps, ws) = V ∗(ps, w
′
s) for some w′s ∈ (ws,M(ps)] and as = a∗. By Proposition

2(i), we have

V ∗(ps, (1− δ)u(a∗, ps) + δws) = (1− δ)v(a∗, ps) + δV ∗(ps, ws)

= (1− δ)v(a∗, ps) + δV ∗(ps, w
′
s)

≤ V ∗(ps, (1− δ)u(a∗, ps) + δw′s).

Since V ∗ is decreasing in w, the inequality cannot be strict, hence:

V ∗(ps, (1− δ)u(a∗, ps) + δws) = V ∗(ps, (1− δ)u(a∗, ps) + δw′s). (6)

We now show that

V ∗(ps, (1− δ)u(a∗, ps) + δws) = V ∗(ps, ws), (7)

hence

V ∗(ps, (1− δ)u(a∗, ps) + δw′s) = V ∗(ps, w
′
s) = v(a∗, ps),

where the last equality follows from as = a∗ and Proposition 2(i). This means that

after signal s, action a∗ is taken with probability one in all periods. This is the

required contradiction, since u(a∗, ps) ≤ (1− δ)u(a∗, ps) + δws < (1− δ)u(a∗, ps) + δw′s:

no feasible policy promising utility w′s guarantees that a∗ is chosen with probability

one in all periods.

It remains to prove that Equation (7) is true. Recall that (1−δ)u(a∗, ps)+δws ≤ ws <

w′s. We consider two cases. First, assume that (1− δ)u(a∗, ps) + δw′s < ws. Equation
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(7) then follows from

V ∗(ps, (1− δ)u(a∗, ps) + δws) ≥ V ∗ (ps, ws)

≥ αV ∗ (ps, (1− δ)u(a∗, ps) + δw′s) + (1− α)V ∗ (ps, w
′
s)

= αV ∗(ps, (1− δ)u(a∗, ps) + δws) + (1− α)V ∗ (ps, ws) ,

where α is the weight on (1− δ)u(a∗, ps) + δw′s such that the convex combination of

(1− δ)u(a∗, ps) + δw′s and w′s is equal to ws.

Second, if (1 − δ)u(a∗, ps) + δw′s ≥ ws, then Equation (7) follows from a similar

argument using a convex combination of (1− δ)u(a∗, ps) + δws and (1− δ)u(a∗, ps) +

δw′s. �

A.3. Proposition 3. Proof of Proposition 3(i)-part A. We show that we can restrict

attention to contracts where as = a∗ for at most one signal s such that λs > 0. Let

(λ′s, p
′
s, w

′
s, a
′
s)s∈S′ be a solution to the maximization program T (V ∗)(p, w). Let S∗ ⊆ S ′

be the set of signals such that as = a∗ and λs > 0. If S∗ is empty, there is nothing to

prove. If S∗ is non-empty, define p∗ as∑
s∈S∗

( λ′s∑
s∈S∗ λ

′
s

)
ps = p∗,

and
∑

s∈S∗ λ
′
s = λ∗. From the concavity of V ∗, we have that∑

s∈S∗
λ′s(v(a∗, p′s)(1− δ) + δV ∗(p′s, w

′
s)) = λ∗

(
v(a∗, p∗)(1− δ) + δ

∑
s∈S∗

(λ′s
λ∗

)
V ∗(p′s, w

′
s)
)

≤ λ∗
(
v(a∗, p∗)(1− δ) + δV ∗(p∗, w∗)

)
,

where

w∗ =
∑
s∈S∗

( λ′s∑
s∈S∗ λ

′
s

)
w′s.

Notice that w∗ ∈ [m(p∗),M(p∗)] since the convexity of m implies

M(p∗) =
∑
s∈S∗

( λ′s∑
s∈S∗ λ

′
s

)
M(p′s) ≥

∑
s∈S∗

( λ′s∑
s∈S∗ λ

′
s

)
ws ≥

∑
s∈S∗

( λ′s∑
s∈S∗ λ

′
s

)
m(p′s) ≥ m(p∗).

It is routine to verify that the new contract

((λ′s, p
′
s, w

′
s, a
′
s)s∈S′\S∗ , (λ

∗, p∗, a∗, w∗))

is feasible and, therefore, also optimal. �
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Proof of Proposition 3(ii). Let (λ′s, p
′
s, w

′
s, a
′
s)s∈S be a solution to the maximization

program T (V ∗)(p, w). From Proposition 3(i)-part A, we can assume that there ex-

ists a unique signal s∗ such that a′s∗ = a∗. We construct a new contract with three

messages, s∗, s0, and s1, as follows. First, (λs∗ , ps∗ , ws∗ , as∗) = (λ′s∗ , p
′
s∗ , w

′
s∗ , a

′
s∗). Sec-

ond, λs0 =
∑

s∈S\{s∗} λ
′
s(1−p′s), ps0 = 0, ws0 = m(0), and as0 ∈ arg maxa∈A u(a, 0). Third,

λs1 =
∑

s∈S\{s∗} λ
′
sp
′
s, ps1 = 1, ws1 = m(1), and as1 ∈ arg maxa∈A u(a, 1). It is routine to

verify that this new contract is feasible. (To check that the promise-keeping con-

straint is satisfied, we simply need to observe that (1− δ)u(a′s, p
′
s) + δw′s ≤ M(p′s) =

(1−p′s)m(0)+p′sm(1).) Since the new contract gives the same payoff to the principal,

it is optimal. �

Proof of Proposition 3(i)-part B. From part A and (ii), we can restrict attention to

contracts with three messages s∗, s0 and s1, such that ps0 = 0, ps1 = 1 and a∗ is rec-

ommended at s∗. To ease notation, we denote such a contract by (λ′s∗ , p
′
s∗ , w

′
s∗ , λ

′
s0
, λ′s1).

In words, the contract induces the beliefs p′s∗, 0 and 1, with probability λ′s∗, λ′s0 and

λ′s1 , respectively. At s∗, the contract recommends a∗ and promises a continuation

payoff of w′s∗. Throughout the proof, we refer to such a contract as a simple contract.

Among all optimal simple contracts at (p, w), fix one that minimizes the probability

of recommending a∗. Denote it (λs∗ , ps∗ , ws∗ , λs0 , λs1). The existence of such a con-

tract follows from standard arguments. (See Appendix C.2 for details.) We want to

show that (1− δ)u(a∗, ps∗) + δws∗ = m(ps∗) if λs∗ > 0.

Under this contract, the principal’s payoff is

V ∗(p, w) = λs∗ [(1− δ)v(a∗, ps∗) + δV ∗(ps∗ , ws∗)] = λs∗V
∗(ps∗ , (1− δ)u(a∗, ps∗) + δws∗),

where the second equality follows from Proposition 2(i).

We complete the proof by contradiction. Suppose that λs∗ > 0, but (1− δ)u(a∗, ps∗) +

δws∗ > m(ps∗). We will construct another simple contract, which is also optimal

and has a strictly lower probability of recommending a∗, thus contradicting the

hypothesis that (λs∗ , ps∗ , ws∗ , λs0 , λs1) minimizes the probability of recommending

a∗. We need the following lemma.

Lemma 1. For any (p, w) ∈ W such that w > m(p) and

V ∗(p, w) = (1− δ)v(a∗, p) + δV ∗
(
p,
w − (1− δ)u(a∗, p)

δ

)
,
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there exist (p̂s∗ , ŵs∗) ∈ W and (λ̂s∗ , λ̂s0 , λ̂s1) ∈ [0, 1]3 such that λ̂s∗ + λ̂s0 + λ̂s1 = 1,

λ̂s∗

 p̂s∗
ŵs∗

+ λ̂s0

 0

m(0)

+ λ̂s1

 1

m(1)

 =

p
w

 ,

V ∗(p, w) ≤ λ̂s∗V
∗(p̂s∗ , ŵs∗), and λ̂s∗ < 1.

Since

V ∗(ps∗ , (1− δ)u(a∗, ps∗) + δws∗) = (1− δ)v(a∗, ps∗) + δV ∗(ps∗ , ws∗),

an application of Lemma 1 at (ps∗ , (1− δ)u(a∗, ps∗) + δws∗) guarantees the existence

of (p̂s∗ , ŵs∗) ∈ W and (λ̂s∗λ̂s0 , λ̂s1) ∈ [0, 1]3 such that λ̂s∗ + λ̂s0 + λ̂s1 = 1, λ̂s∗ < 1,

λ̂s∗ p̂s∗ + λ̂s00 + λ̂s11 = ps∗ ,

λ̂s∗ŵs∗ + λ̂s0m(0) + λ̂s1m(1) = (1− δ)u(a∗, ps∗) + δws∗ ,

V ∗(ps∗ , (1− δ)u(a∗, ps∗) + δws∗) ≤ λ̂s∗V
∗(p̂s∗ , ŵs∗).

Consider the following simple contract:(
λs∗λ̂s∗ , p̂s∗ ,

ŵs∗ − (1− δ)u(a∗, p̂s∗)

δ
, λs∗λ̂s0 + λs0 , λs∗λ̂s1 + λs1

)
.

We first argue that the contract is feasible at (p, w). Since ŵs∗ ≥ m(p̂s∗), the contract

satisfies:

(1− δ)u(a∗, p̂s∗) + δ
ŵs∗ − (1− δ)u(a∗, p̂s∗)

δ
= ŵs∗ ≥ m(p̂s∗),

i.e., obedience is guaranteed at s∗. We also have that

λs∗λ̂s∗

[
(1− δ)u(a∗, p̂s∗) + δ

ŵs∗ − (1− δ)u(a∗, p̂s∗)

δ

]
+ (λs∗λ̂s0 + λs0)m(0) + (λs∗λ̂s1 + λs1)m(1) =

λs∗
[
λ̂s∗ŵs∗ + λ̂s0m(0) + λ̂s1m(1)

]
+ λs0m(0) + λs1m(1) =

λs∗ [(1− δ)u(a∗, ps∗) + δws∗ ] + λs0m(0) + λs1m(1) ≥ w,

i.e., the contract satisfies the promise-keeping constraint. Finally, the splitting is

feasible since

λs∗λ̂s∗ × p̂s∗ + (λs∗λ̂s0 + λs0)× 0 + (λs∗λ̂s1 + λs1)× 1 = p.

The contract is therefore feasible.
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We next argue that the new contract is optimal, since under it the principal’s payoff

is:

λs∗λ̂s∗V
∗(p̂s∗ , ŵs∗) ≥ λs∗V

∗(ps∗ , (1− δ)u(a∗, ps∗) + δws∗).

Finally, since λ̂s∗ < 1, the new contract recommends a∗ with probability λs∗λ̂s∗ < λs∗,

the required contradiction. It remains to prove Lemma 1.

Proof of Lemma 1. We organize the proof around two claims.

CLAIM 1. For any w′ ∈ [m(p), w], we have that

V ∗(p, w′) = (1− δ)v(a∗, p) + δV ∗
(
p,
w′ − (1− δ)u(a∗, p)

δ

)
.

Proof of Claim 1. Fix any w′ ∈ [m(p), w). Since u(a∗, p) ≤ m(p), we have

w′ < min

{
w,
w′ − (1− δ)u(a∗, p)

δ

}
≤ max

{
w,
w′ − (1− δ)u(a∗, p)

δ

}
<
w − (1− δ)u(a∗, p)

δ
,

and

1

1 + δ
w′ +

δ

1 + δ

w − (1− δ)u(a∗, p)

δ
=

1

1 + δ
w +

δ

1 + δ

w′ − (1− δ)u(a∗, p)

δ
.

The concavity of V ∗ implies that

1

1 + δ
V ∗(p, w′) +

δ

1 + δ
V ∗
(
p,
w − (1− δ)u(a∗, p)

δ

)
≤

1

1 + δ
V ∗(p, w) +

δ

1 + δ
V ∗
(
p,
w′ − (1− δ)u(a∗, p)

δ

)
.

Rearranging, we obtain:

V ∗(p, w′)−δV ∗
(
p,
w′ − (1− δ)u(a∗, p)

δ

)
≤ V ∗(p, w)−δV ∗

(
p,
w − (1− δ)u(a∗, p)

δ

)
= (1−δ)v(a∗, p).

Since, by definition,

V ∗(p, w′) ≥ (1− δ)v(a∗, p) + δV ∗
(
p,
w′ − (1− δ)u(a∗, p)

δ

)
,

it follows that

V ∗(p, w′) = (1− δ)v(a∗, p) + δV ∗
(
p,
w′ − (1− δ)u(a∗, p)

δ

)
.

�

CLAIM 2. On the domain
[
m(p), w−(1−δ)u(a∗,p)

δ

]
, the map w′ 7→ V (p, w′) is linear.
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Proof of Claim 2. By contradiction, suppose that w′ 7→ V (p, w′) is not linear, i.e.,

suppose that there exists w′′ ∈
[
m(p), w−(1−δ)u(a∗,p)

δ

]
such that ∀α ∈ (0, 1):

V ∗(p, αm(p) + (1− α)w′′) > αV ∗(p,m(p)) + (1− α)V ∗(p, w′′). (8)

Without loss of generality, we can assume that w′′ ∈
(
m(p)−(1−δ)u(a∗,p)

δ
, w−(1−δ)u(a∗,p)

δ

]
.

(If w′′ ≤ m(p)−(1−δ)u(a∗,p)
δ

, then the concavity of V ∗ implies that (8) is also satisfied for

any larger w′′′.)

Note that

m(p) < min

{
(1− δ)u(a∗, p) + δw′′,

m(p)− (1− δ)u(a∗, p)

δ

}
≤ max

{
(1− δ)u(a∗, p) + δw′′,

m(p)− (1− δ)u(a∗, p)

δ

}
≤ w′′,

and, therefore, there exist a unique β ∈ (0, 1) and γ ∈ (0, 1] such that(1− δ)u(a∗, p) + δw′′ = βm(p) + (1− β)w′′

m(p)−(1−δ)u(a∗,p)
δ

= γm(p) + (1− γ)w′′,

which implies that β + δγ = 1. In addition, observe that

1

1 + δ
m(p) +

δ

1 + δ
w′′ =

1

1 + δ
[(1− δ)u(a∗, p) + δw′′] +

δ

1 + δ

m(p)− (1− δ)u(a∗, p)

δ
.

From Claim 1, we have that

V ∗(p,m(p)) = (1− δ)v(a∗, p) + δV ∗
(
p,
m(p)− (1− δ)u(a∗, p)

δ

)
δV ∗(p, w′′) = −(1− δ)v(a∗, p) + V ∗(p, (1− δ)u(a∗, p) + δw′′)

Together with the concavity of V ∗, we therefore have:

1

1 + δ
V ∗(p,m(p)) +

δ

1 + δ
V ∗(p, w′′)

=
1

1 + δ
V ∗(p, (1− δ)u(a∗, p) + δw′′) +

δ

1 + δ
V ∗
(
p,
m(p)− (1− δ)u(a∗, p)

δ

)
≥ 1

1 + δ
[βV ∗(p,m(p)) + (1− β)V ∗(p, w′′)] +

δ

1 + δ
[γV ∗(p,m(p)) + (1− γ)V ∗(p, w′′)]

=
1

1 + δ
V ∗(p,m(p)) +

δ

1 + δ
V ∗(p, w′′),

which contradicts (8), by setting α = 1
1+δ

. �



CONTRACTING OVER PERSISTENT INFORMATION 35

We now complete the proof of Lemma 1. Define the set

W :=

{
w′ ∈ (m(p),M(p)] : V ∗(p, w′) = (1− δ)v(a∗, p) + δV ∗

(
p,
w′ − (1− δ)u(a∗, p)

δ

)}
.

The set W is non-empty since w ∈ W . Let w := supW . From Claims 1 and 2, we

have that [m(p), w) ⊆ W and w′ 7→ V ∗(p, w′) is linear on the domain
[
m(p), w−(1−δ)u(a∗,p)

δ

)
.

(Claims 1 and 2 are valid for any w′ ∈ W .)

Fix w̃ ∈
(
w, w−(1−δ)u(a∗,p)

δ

)
. From the linearity of w′ 7→ V ∗(p, w′), there exists ζ ∈ (0, 1)

such that ζm(p) + (1− ζ)w̃ = w, and

ζV ∗(p,m(p)) + (1− ζ)V ∗(p, w̃) = V ∗(p, w).

Moreover, since w̃ > w, by the definition of w, we have that

V ∗(p, w̃) > (1− δ)v(a∗, p) + δV ∗
(
p,
w̃ − (1− δ)u(a∗, p)

δ

)
.

From part A and (ii), there exists a simple contract (λ̃s∗ , p̃s∗ ,
w̃s∗−(1−δ)u(a∗,p)

δ
, λ̃s0 , λ̃s1)

at (p, w̃) such that V ∗(p, w̃) = λ̃s∗V
∗(p̃s∗ , w̃s∗). It follows that

V ∗(p, w) = ζV ∗(p,m(p)) + (1− ζ)V ∗(p, w̃)

= ζV ∗(p,m(p)) + (1− ζ)λ̃s∗V
∗(p̃s∗ , w̃s∗)

≤ [ζ + (1− ζ)λ̃s∗ ]V
∗

(
ζp+ (1− ζ)λ̃s∗ p̃s∗

ζ + (1− ζ)λ̃s∗
,
ζm(p) + (1− ζ)λ̃s∗w̃s∗

ζ + (1− ζ)λ̃s∗

)
,

where the last inequality follows from the concavity of V ∗. To conclude the proof,

let

(p̂s∗ , ŵs∗) =

(
ζp+ (1− ζ)λ̃s∗ p̃s∗

ζ + (1− ζ)λ̃s∗
,
ζm(p) + (1− ζ)λ̃s∗w̃s∗

ζ + (1− ζ)λ̃s∗

)
,

(λ̂s∗ , λ̂s0 , λ̂s1) =
(
ζ + (1− ζ)λ̃s∗ , (1− ζ)λ̃s0 , λ̃s1

)
.

To verify that (p̂s∗ , ŵs∗) ∈ W, note that the convexity of m implies that

m(p̂s∗) ≤
ζ

ζ + (1− ζ)λ̃s∗
m(p) +

(1− ζ)λ̃s∗

ζ + (1− ζ)λ̃s∗
m(p̃s∗) ≤

ζ

ζ + (1− ζ)λ̃s∗
m(p) +

(1− ζ)λ̃s∗

ζ + (1− ζ)λ̃s∗
w̃s∗ .

Similarly,

ζ

ζ + (1− ζ)λ̃s∗
m(p) +

(1− ζ)λ̃s∗

ζ + (1− ζ)λ̃s∗
w̃s∗ ≤

ζ

ζ + (1− ζ)λ̃s∗
M(p) +

(1− ζ)λ̃s∗

ζ + (1− ζ)λ̃s∗
M(p̃s∗) = M(p̂s∗)
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as required. It is routine to verify the other constraints. This completes the proof

of Lemma 1. �

A.4. Corollary 2.

Proof. LetA = {a∗, a†}, and w.l.o.g. assume that the optimal action for the principal,

a∗, is optimal for the agent in state ω0 and hence also in the interval p ∈ [0, p̄], where

p̄u(a∗, 1) + (1− p̄)u(a∗, 0) = u(a∗, p̄) = u(a†, p̄) = p̄u(a†, 1) + (1− p̄)u(a†, 0).

This implies that
p̄

1− p̄
=
u(a∗, 0)− u(a†, 0)

u(a∗, 1)− u(a†, 1)
.

Assuming p0 > p̄, under our policy, the principal recommends the agent to take a∗

in the first period and promises to split p0 between 1 and p̃ with probability λ in the

second period, where (λ, p̃) solvesλp̃+ (1− λ)1 = p0

λu(a∗, p̃) + (1− λ)u(a†, 1) = w(p0) = u(a†,p0)−(1−δ)u(a∗,p0)
δ

.

Replacing λp̃ = λ− (1− p0) and λ(1− p̃) = (1− p0) into the second equation yields:

λu(a∗, p̃) + (1− λ)u(a†, 1) = λu(a∗, 1)− (1− p0)u(a∗, 1) + (1− p0)u(a∗, 0) + (1− λ)u(a†, 1)

= u(a∗, p0) + (1− λ)[u(a†, 1)− u(a∗, 1)]

=
u(a†, p0)− (1− δ)u(a∗, p0)

δ

=⇒ λ = 1− u(a†, p0)− u(a∗, p0)

δ[u(a†, 1)− u(a∗, 1)]
= 1− p0

δ
− 1− p0

δ

p̄

1− p̄
.

Then it follows that the principal’s payoff is

V = (1− δ)v(a∗, p0) + δλv(a∗, p̃) = [(1− δ)p0 + δλp̃]v(a∗, 1) + [(1− δ)(1− p0) + δλ(1− p̃)]v(a∗, 0)

= [p0 − δ(1− λ)]v(a∗, 1) + (1− p0)v(a∗, 0)

= v(a∗, p0)− δ(1− λ)v(a∗, 1)

= v(a∗, p0)−
[
p0 + (1− p0)

p̄

1− p̄

]
v(a∗, 1)

=
1− p0

1− p̄
v(a∗, p̄),
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which is exactly the payoff under the KG policy, which splits the initial belief p0

into p̄ with probability 1−p0
1−p̄ and 1 with the complementary probability.

Let V R be the value function under the random full-disclosure policy. To show that

our policy τ is also optimal when v(a∗,0)
m(0)−u(a∗,0)

= v(a∗,1)
m(1)−u(a∗,1)

, we need to verify that

V R(p, w) =
∑

ps∈supp(τ)

τ(ps)[(1− δ)v(as, ps) + δV R(ps, ws)],∀(p, w) ∈ W .

Note that V R(p, w) = M(p)−w
M(p)−u(a∗,p)

v(a∗, p), since the probability of full disclosure α

satisfies αM(p) + (1− α)u(a∗, p) = w. Hence:∑
ps∈supp(τ)

τ(ps)[(1− δ)v(as, ps) + δV R(ps, ws)] = λ · [(1− δ)v(a∗, p̂) + δ
M(p̂)− w(p̂)

M(p̂)− u(a∗, p̂)
v(a∗, p̂)]

= λ
M(p̂)−m(p̂)

M(p̂)− u(a∗, p̂)
v(a∗, p̂),

where (λ, p̂) solves λp̂+ (1− λ)1 = p

λm(p̂) + (1− λ)m(1) = w
.

Since v(a∗,0)
m(0)−u(a∗,0)

= v(a∗,1)
m(1)−u(a∗,1)

, we have v(a∗,p̂)
M(p̂)−u(a∗,p̂)

= v(a∗,p)
M(p)−u(a∗,p)

= v(a∗,1)
M(1)−u(a∗,1)

. There-

fore, recalling that v(a∗, 1) = 0, we have

λ
M(p̂)−m(p̂)

M(p̂)− u(a∗, p̂)
v(a∗, p̂) = λ

M(p̂)−m(p̂)

M(p̂)− u(a∗, p̂)
v(a∗, p̂) + (1− λ)

M(1)−m(1)

M(1)− u(a∗, 1)
v(a∗, 1)

=
v(a∗, p)

M(p)− u(a∗, p)
(λ[M(p̂)−m(p̂)] + (1− λ)[M(1)−m(1)])

=
v(a∗, p)

M(p)− u(a∗, p)
(M(p)− w) = V R(p, w).

�

A.5. Theorem 1. To prove Theorem 1, we first introduce the following lemma.

Lemma 2. Consider any feasible policy inducing the value function Ṽ . If Ṽ is

concave in both arguments, decreasing in w and satisfies

Ṽ (p,m(p)) ≥ (1− δ)v(a∗, p) + δṼ (p,w(p)),

for all p ∈ Q1, then the policy is optimal.
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Proof. We argue that Ṽ is the fixed point of the operator T , hence Ṽ = V ∗. Let

(λs, ps, ws, as)s∈S be a solution to the maximization problem T (Ṽ )(p, w). We start by

the following observation. Consider any s such that as 6= a∗. We have

(1− δ)v(as, ps) + δṼ (ps, ws) = δṼ (ps, ws) ≤ Ṽ (ps, ws) ≤ Ṽ (ps, (1− δ)u(as, ps) + δws),

where the last inequality follows from the fact that Ṽ is decreasing in w andm(ps) ≤

(1− δ)u(as, ps) + δws ≤ (1− δ)m(ps) + δws ≤ ws.

Consider now any s such that as = a∗. Since (λs, ps, ws, as)s∈S is feasible, we have

(1− δ)u(a∗, ps) + δws ≥ m(ps),

hence ps ∈ Q1 and therefore,

Ṽ (ps,m(ps)) ≥ (1− δ)v(a∗, ps) + δṼ
(
ps,
−(1− δ)u(a∗, ps) +m(ps)

δ︸ ︷︷ ︸
w(ps)

)
.

The concavity of Ṽ implies that

Ṽ (ps, (1− δ)u(a∗, ps) + δws)− Ṽ (ps,m(ps)) ≥ δ
[
Ṽ (ps, ws)− Ṽ

(
ps,w(ps)

)]
,

where we use the identity (1−δ)u(a∗, ps)+δws−m(ps) = δ(ws−w(ps)) and observation

(a) about concave functions in Section A.1.

Combining the above two inequalities implies,

Ṽ (ps, (1− δ)u(a∗, ps) + δws) ≥ (1− δ)v(a∗, ps) + δṼ (ps, ws).

It follows that

T (Ṽ )(p, w) =
∑
s∈S

λs

[
(1− δ)v(as, ps) + δṼ (ps, ws)

]
≤

∑
s∈S

λs

[
Ṽ (ps, (1− δ)u(as, ps) + δws)

]

≤ Ṽ

(∑
s∈S

λsps,
∑
s∈S

λs((1− δ)u(as, ps) + δws))

)
≤ Ṽ (p, w),

where the second inequality follows from the concavity of Ṽ and the third inequal-

ity from Ṽ being decreasing in w.
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Conversely, since the policy inducing Ṽ is feasible, we must have that T (Ṽ )(p, w) ≥

Ṽ (p, w) for all (p, w). This completes the proof. �

Invoking Lemma 2, we only need to prove the following proposition to prove Theo-

rem 1.

Proposition 4. Let Vq∗ be the value function induced by the policy τ ∗, with

q∗ = sup
{
p ∈ Q1 : Vq1(p,m(p)) ≥ Vq1(p, w) for all w

}
.

Then, Vq∗ is concave in (p, w), decreasing in w, and satisfies:

Vq∗(p,m(p)) ≥ (1− δ)v(a∗, p) + δVq∗(p
∗,w(p)),

for all p ∈ Q1.

Proving Proposition 4 requires to construct the value function Vq induced by the

policy τq. The construction is tedious, and we postpone it to Appendix B. In the

rest of this section, we only report the properties we need to prove Proposition 4.

We start with an important identity, which we will use throughout. For any q ∈

[q1, q1], define the function mq : [0, 1]→ R as

(
1− p

q1

)
m(0) + p

q1
m(q1) if p ∈ [0, q1],

m(p) if p ∈ (q1, q],

1−p
1−qm(q) + p−q

1−qm(1) if p ∈ (q, 1].

Note that mq is convex, mq(p) ≥ m(p) for all p ∈ [0, 1], mq(0) = m(0) and mq(1) =

m(1). For a graphical illustration, see Figure 8.

m(·)

M(·)

q1 1

m(1)

q1q

mq(·)

FIGURE 8. The function mq
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It is straightforward to check that we have the following identity:

Vq(p, w) = λ(p, w)Vq(ϕ(p, w),mq(ϕ(p, w)), (9)

where the functions λ and ϕ are defined as in the main text, but with mq instead of

m – see Equation (5). This identity states that knowing Vq on the set {(p, w) ∈ W :

(p, w) = (p,mq(p))} suffices to reconstruct Vq at all points on its domain. We now

make two additional observations.

OBSERVATION A. For all q ∈ [q1, q1], we have the following identity:

Vq(p, w) =
1− p
1− p′

Vq

(
p′,

1− p′

1− p
w +

p′ − p
1− p

mq(1)

)
.

Proof of Observation A. Let w′ = 1−p′
1−p w + p′−p

1−pmq(1).

Assume that w′ > mq(p
′). Since

λ(p′, w′)

 ϕ(p′, w′)

mq(ϕ(p′, w′))

+
(
1− λ(p′, w′)

) 1

mq(1)

 =

p′
w′

 ,

we have

1− p
1− p′

λ(p′, w′)

 ϕ(p′, w′)

mq(ϕ(p′, w′))

+

(
1− 1− p

1− p′
λ(p′, w′)

) 1

mq(1)

 =

p
w

 .

Therefore, λ(p, w) = 1−p
1−p′λ(p′, w′) and ϕ(p′, w′) = ϕ(p, w) since the solution (λ(p′, w′), ϕ(p′, w′))

is unique when w′ > mq(p
′). The statement then follows from Equation (9).

Assume that w′ = mq(p
′). From the convexity of mq, this requires that w = mq(p),

so that mq(p
′) = 1−p′

1−pmq(p) + p′−p
1−pmq(1). The result follows from continuity as:

Vq(p,mq(p)) = lim
w→mq(p)

Vq(p, w),

= lim
w→mq(p)

1− p
1− p′

Vq

(
p′,

1− p′

1− p
w +

p′ − p
1− p

mq(1)

)
,

=
1− p
1− p′

Vq

(
p′,

1− p′

1− p
mq(p) +

p′ − p
1− p

mq(1)

)
,

=
1− p
1− p′

Vq (p′,mq(p
′)) .
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Note that this implies that

Vq(p,w(p) + c) = λ(p,w(p))Vq

(
ϕ(p,w(p)),mq(ϕ(p,w(p))) +

c

λ(p,w(p))

)
,

where c is a positive constant. �

OBSERVATION B. The value function Vq1(p, ·) : [mq1(p),M(p)] → R is concave in w,

for each p. See Lemma 3 in section B.2.

A.5.1. Proposition 4(a). We prove that Vq∗ is decreasing in w. To start with, fix

p ∈ [0, 1] and (w,w′) ∈ [mq∗(p),M(p)]× [mq∗(p),M(p)], with w′ > w.

First, assume that p ≤ q∗. If w = mq∗(p), then Vq∗(p, w
′) ≤ Vq∗(p, w) by construction

of q∗. If w > mq∗(p), we have that

Vq∗(p, w
′)− Vq∗(p, w)

w′ − w
=

Vq1(p, w
′)− Vq1(p, w)

w′ − w

≤
Vq1(p, w)− Vq1(p,mq∗(p))

w −mq∗(p)

=
Vq∗(p, w)− Vq∗(p,mq∗(p))

w −mq∗(p)
≤ 0,

where the inequality follows from the concavity of Vq1 with respect to w, for all

w ≥ mq1(p). (Recall that mq∗(p) = mq1(p) for all p ≤ q∗.)

Second, assume that p > q∗. We show in detail how to make use of Observation A

to deduce the result. We repeatedly use similar computations later on. We have

Vq∗(p, w
′) = λ(p, w′)Vq∗(ϕ(p, w

′),mq∗(ϕ(p, w
′)))

= λ(p, w′)
1− ϕ(p, w′)
1− ϕ(p, w)

Vq∗

(
ϕ(p, w),

1− ϕ(p, w)
1− ϕ(p, w′)

mq∗(ϕ(p, w
′)) +

(
1− 1− ϕ(p, w)

1− ϕ(p, w′)

)
mq∗(1)

)
= λ(p, w)Vq∗

(
ϕ(p, w),

λ(p, w′)

λ(p, w)
mq∗(ϕ(p, w

′)) +

(
1− λ(p, w′)

λ(p, w)

)
mq∗(1)

)
= λ(p, w)Vq∗

(
ϕ(p, w),mq∗(ϕ(p, w)) +

w′ − w
λ(p, w)

)
,

where the first line follows from the construction of Vq∗, the second line from Ob-

servation A, the third line from the definition of the functions λ and ϕ and the last
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line from the following computations:

λ(p, w′)

λ(p, w)
mq∗(ϕ(p, w

′)) +

(
1− λ(p, w′)

λ(p, w)

)
mq∗(1) =

1

λ(p, w)
w′ +

(
1− 1

λ(p, w)

)
mq∗(1)

=
1

λ(p, w)
w′ +

(
1− 1

λ(p, w)

)[
w − λ(p, w)mq∗(ϕ(p, w))

1− λ(p, w)

]
= mq∗(ϕ(p, w)) +

w′ − w
λ(p, w)

.

Thus, we are able to express Vq∗(p, w′) as λ(p, w)Vq∗(ϕ(p, w), w̃), with w̃ the above

expression. Moreover, ϕ(p, w) ≤ q∗ as w ≥ mq∗(p). We can use the (already estab-

lished) concavity of Vq∗ in w for each p ≤ q∗ to deduce the desired result. More

precisely, we have that:

Vq∗(p, w
′)− Vq∗(p, w)
w′ − w

=
λ(p, w)

(
Vq∗
(
ϕ(p, w),mq∗(ϕ(p, w)) +

w′−w
λ(p,w)

)
− Vq∗ (ϕ(p, w),mq∗(ϕ(p, w)))

)
w′ − w

≤ 0,

where the inequality follows from the concavity of Vq∗ in w at all p ≤ q∗.

Lastly, since Vq∗(p, w) = Vq∗(p,mq∗(p)) for all w ∈ [m(p),mq∗(p)], the result immedi-

ately follows for all (w,w′), with w ∈ [m(p),mq∗(p)].

A.5.2. Proposition 4(b). We prove the concavity of Vq∗ with respect to both argu-

ments (p, w).

Let W = {(p, w) : w ≥ mq∗(p)}. Let (p, w) ∈ W, (p′, w′) ∈ W and α ∈ [0, 1]. Write

(pα, wα) for

α

p
w

+ (1− α)

p′
w′

 .

Without loss of generality, assume that p ≤ p′. We have that:
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αVq∗(p, w) + (1− α)Vq∗(p
′, w′)

= α
1− p
1− p′

Vq∗
(
p′,

1− p′

1− p
w +

p′ − p
1− p

mq∗(1)︸ ︷︷ ︸
≥mq∗ (p′)

)
+ (1− α)Vq∗(p

′, w′)

≤
(
α

1− p
1− p′

+ (1− α)

)
Vq∗

p′, α 1−p
1−p′

(
1−p′
1−p w + p′−p

1−pmq∗(1)
)

+ (1− α)w′

α 1−p
1−p′ + (1− α)


=

1− pα
1− p′

Vq∗

(
p′,

1− p′

1− pα
wα +

p′ − pα
1− pα

mq∗(1)

)
= Vq∗(pα, wα),

where the inequality follows from the concavity of Vq1 with respect to w for each p

and the property that Vq∗(p, w) = Vq1(p, w) for all (p, w) such that w ≥ mq∗(p). Notice

that we use twice Observation A.

Finally, for all (p, w) ∈ W, for all (p′, w′) ∈ W and for all α, we have that:

αVq∗(p, w) + (1− α)Vq∗(p
′, w′) = αVq∗(p,max(w,mq∗(p))) + (1− α)Vq∗(p

′,max(w′,mq∗(p
′)))

≤ Vq∗(pα, αmax(w,mq∗(p)) + (1− α) max(w,mq∗(p
′)))

≤ Vq∗(pα, wα),

since αmax(w,mq∗(p))+(1−α) max(w,mq∗(p
′)) ≥ wα and the fact that Vq∗ is decreas-

ing in w for all p. This completes the proof of concavity.

A.5.3. Proposition 4 (c). We prove that Vq∗(p,m(p)) ≥ (1 − δ)v(a∗, p) + δVq∗(p,w(p))

for all p ∈ Q1.

The statement is true for all p ≤ q∗ by definition since Vq∗(p, w) = Vq1(p, w) for all w.

Assume that p > q∗. From Lemma 4, there exists q such that ϕ(p,w(p)) ≥ ϕ(p′,w(p′))

for all p′ ≥ p ≥ q. Moreover, it follows from A.6.3 and A.6.4 that V (p,m(p)) ≥

V (p, w) for all w, for all p ≤ q. Therefore, we must have that q∗ ≥ q. It follows

that ϕ(p,w(p)) < ϕ(q∗,w(q∗)) ≤ q∗, hence w(p) ≥ mq∗(p). We therefore have that

Vq∗(p,w(p)) = Vq1(p,w(p)).

Since Vq1(p,m(p)) = (1 − δ)v(a∗, p) + δVq1(p,w(p)) for all p ∈ Q1 and Vq∗(p,m(p)) =

Vq∗(p,mq∗(p)) = Vq1(p,mq∗(p)), it is enough to prove that Vq1(p,mq∗(p)) ≥ Vq1(p,m(p)).
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Clearly, there is nothing prove if mq∗(p) = m(p) for all p ∈ Q1, i.e., if q∗ = q1 (remem-

ber that mq1(p) = m(p) for all p ∈ Q1).

So, assume that mq∗(p) > m(p) for some p ∈ (q∗, q1), hence mq∗(p) > m(p) for all

p ∈ (q∗, q1). We now argue that if Vq1(p, w) > Vq1(p,m(p)) for some w ≥ mq∗(p), then

Vq1(p
′,m(p′)) <

1− p′

1− p
Vq1(p, w),

for all p′ > p. To see this, observe that w > m(p) and, accordingly,

1− p′

1− p
w +

p′ − p
1− p

m(1)−m(p′) > 0,

since m is convex. Hence,

0 <
Vq1(p, w)− Vq1(p,m(p))

w −m(p)

=

1−p
1−p′

[
Vq1
(
p′, 1−p′

1−p w + p′−p
1−pm(1)

)
− Vq1

(
p′, 1−p′

1−pm(p) + p′−p
1−pm(1)

)]
w −m(p)

≤
Vq1
(
p′, 1−p′

1−p w + p′−p
1−pm(1)

)
− Vq1 (p′,m(p′))

1−p′
1−p w + p′−p

1−pm(1)−m(p′)
,

where the equality follows Observation A and the inequality from the concavity of

Vq1 in w for each p. Since

Vq1(p, w) =
1− p
1− p′

Vq1

(
p′,

1− p′

1− p
w +

p′ − p
1− p

m(1)

)
,

we have the desired result.

Finally, from the definition of q∗, for all n > 0, there exist pn ∈ (q∗,min(q∗ + 1
n
, q1)]

and wn ≥ m(pn) such that Vq1(pn,m(pn)) < Vq1(pn, wn). From the concavity of Vq1 in

w for all p, Vq1(pn,m(pn)) < Vq1(pn,mq∗(pn)) for all n.

From the above argument, for all p, for all n sufficiently large, i.e., such that pn < p,

we have that

Vq1(p,m(p)) <
1− p
1− pn

Vq1(pn,mq∗(pn)).

Taking the limit as n→∞, we obtain that

Vq1(p,m(p)) <
1− p
1− q∗

Vq1(q
∗,mq∗(q

∗)) = Vq1(p,mq∗(p)),

which completes the proof.
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APPENDIX B. CONSTRUCTING THE VALUE FUNCTION

This section characterizes the value function Vq induced by the policy τq. As ex-

plained in the text, it suffices to characterize Vq1 since Vq(p, w) = Vq1(p, w) for all

(p, w) ∈ W \W3
q and Vq(p, w) = 1−p

1−qVq1(q,m(q)) for all (p, w) ∈ W3
q . We first start with

the definition of important subsets of [0, 1].

B.1. Construction of the sets Qk. Let Q0 := [0, 1]. We define inductively the set

Qk ⊆ [0, 1], k ≥ 0. We write qk (resp., qk) for inf Qk (resp., supQk). For any k ≥ 0,

define the function Uk : [qk, 1]→ R:

Uk(q) :=
1− q
1− qk

m(qk) +
q − qk

1− qk
m(1),

with the convention that Uk ≡ m(1) if qk = 1. Note that U0(q) = M(q) and Uk(q) ≥

m(q) for all k. We define Qk+1 as follows:

Qk+1 = {q ∈ Qk : (1− δ)u(a∗, q) + δUk(q) ≥ m(q)}.

For a graphical illustration, see Figure 9.

m(·)

Uk(·)

u(a∗, ·)
qk

m(qk)

1

m(1)

(1− δ)u(a∗, ·) + δUk(·)

qk+1 qk+1

FIGURE 9. Construction of the thresholds

Few observations are worth making. First, we have that P ⊆ Qk for all k. Second,

we have a decreasing sequence, i.e., Qk+1 ⊆ Qk for all k. Third, if Qk and P are non-

empty, then they are closed intervals. Fourth, the limit Q∞ = limk→∞Q
k =

⋂
kQ

k

exists and includes P . Moreover, if P 6= ∅, then q∞ = p, where p := inf P . If P = ∅,

then Q∞ = ∅. Consequently, there exists k∗ <∞ such that ∅ = Qk∗+1 ⊂ Qk∗ 6= ∅.

The first to the third observations are readily proved, so we concentrate on the

proof of the fourth observation. The limit exists as we have a decreasing sequence

of sets.
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We prove that if P = ∅, then Q∞ = ∅. So, assume that P = ∅. We first argue that

it cannot be that Qk = Qk−1 6= ∅ for some k ≥ 0. To the contrary, assume that

Qk = Qk−1 6= ∅ for some k ≥ 0, hence Qk′ = Qk−1 for all k′ ≥ k. From the convexity

and continuity of m and the linearity of u, Qk−1 is the closed interval [qk−1, qk−1],

with the two boundary points solution to

(1− δ)u(a∗, q) + δUk−2(q) = m(q).

Therefore, if (qk, qk) = (qk−1, qk−1), we have that:

m(qk−1) = (1− δ)u(a∗, qk−1) + δm(qk−1),

m(qk−1) = (1− δ)u(a∗, qk−1) + δ
[1− qk−1

1− qk−1
m(qk−1) +

qk−1 − qk−1

1− qk−1
m(1)

]
,

≤ (1− δ)u(a∗, qk−1) + δm(qk−1).

This implies that u(a∗, qk−1) = m(qk−1) and u(a∗, qk−1) = m(qk−1) and, therefore,

∅ 6= Qk−1 ⊆ P , a contradiction.

We thus have an infinite sequence of strictly decreasing non-empty closed intervals.

Let ε := minp∈[0,1]m(p) − u(a∗, p). Since P = ∅, we have that ε > 0. For all p ∈ Q∞,

for all k,

m(p) ≤ (1− δ)u(a∗, p) + δUk(p),

≤ (1− δ)(m(p)− ε) + δUk(p).

Assume that Q∞ is non-empty and let q∞ its greatest lower bound. Since q∞ ∈ Qk

for all k, we have that Uk(q∞) ≥ m(q∞) + ε(1− δ)/δ for all k. Since limk→∞ U
k(q∞) =

m(q∞), we have that m(q∞) ≥ m(q∞) + ε(1− δ)/δ, a contradiction.

We now prove that if P 6= ∅, then q∞ = p. From above, we have that ifQk = Qk−1 6= ∅

for some k ≥ 0, hence Qk′ = Qk−1 for all k′ ≥ k, then P = Qk since P ⊆ Qk. If we

have an infinite sequence of strictly decreasing sets, for all q ∈ Q∞,

(1− δ)u(a∗, q) + δ
[ 1− q

1− q∞
m(q∞) +

q − q∞

1− q∞
m(1)

]
≥ m(q).

Taking the limit q ↓ q∞, we obtain that u(a∗, q∞) = m(q∞), i.e., q∞ ∈ P . Hence,

q∞ = p.

B.1.1. Derivation of Vq1. We first derive Vq1for all (p, w) ∈ W \W2
q1

.
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To start with, Vq1(1,m(1)) = 0 since a∗ is not optimal at p = 1. Similarly, Vq1(0,m(0)) =

0 if a∗ is not optimal at p = 0, while Vq1(0,m(0) = v(a∗, 0) if a∗ is optimal at p = 0.

Also, Vq1(q1,m(q1)) = (1 − δ)v(a∗, q1) if q1 > 0; while Vq1(0,m(0)) = v(a∗, 0) if q1 = 0,

since a∗ is then optimal at p = 0.

With the function Vq1 defined at these three points, it is then defined at all points

(p, w) inW1
q1
∪W4

q1
. In particular, it is easy to show that

Vq1(q
1, w) =

M(q1)− w
M(q1)−m(q1)

(1− δ)v(a∗, q1) =
M(q1)− w

M(q1)− u(a∗, q1)
v(a∗, q1),

for all w ∈ [m(q1),M(q1)].

At all points (p, w) ∈ W3
q1

,

Vq1(p, w) =
1− p
1− q1Vq1(q

1,m(q1)).

Therefore, Vq1 is well-defined at all (p, w) ∈ W \W2
q1

.

At all points (p, w) ∈ W2
q1

, Vq1(p, w) is defined via the recursive equation:

Vq1(p, w) = λ(p, w)[(1− δ)v(a∗, ϕ(p, w)) + δVq1(ϕ(p, w),w(ϕ(p, w))]

= λ(p, w)Vq1(ϕ(p, w),m(ϕ(p, w))).

Since Vq1(p, w) = λ(p, w)Vq1(ϕ(p, w),m(ϕ(p, w)), the value function is well-defined at

all (p, w) if it is well-defined at all (p,m(p)), which we now prove.

By construction of the setsQk, observe that if p ∈ Qk\Qk+1, then w(p) ∈ (Uk(p), Uk+1(p)]

and, therefore, ϕ(p,w(p)) ∈ [qk−1, qk) ⊂ Qk−1 \ Qk. Moreover, ϕ(qk,w(qk)) = qk. We

now use these observations to complete the derivation of Vq1.

For all p ∈ Q1 \Q2, we have that w(p) ∈ Q0 \Q1, so that (p,w(p)) ∈ W4
q1

. Since

Vq1(p,m(p)) = (1− δ)v(a∗, p) + δVq1(p,w(p)),

Vq1(p,m(p)) is well-defined for all p ∈ Q1 \Q2. By induction, assume that it is well-

defined for all p ∈
⋃
`<kQ

`\Q`+1. We argue that it is well-defined for all p ∈ Qk\Qk+1.

Fix any p ∈ Qk \ Qk+1. From our initial observation, ϕ(p,w(p)) ∈ [qk−1, qk) and,
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therefore, Vq1(p,m(p)) is well-defined since

Vq1(p,m(p)) = (1− δ)v(a∗, p) + δVq1(p,w(p))

= (1− δ)v(a∗, p) + λ(p,w(p))Vq1(ϕ(p,w(p)),m(ϕ(p,w(p))))︸ ︷︷ ︸
defined by the induction step

.

Therefore, Vq1(p,m(p)) is well-defined for all p ∈
⋃
`Q

` \Q`+1 = Q1 \Q∞. It remains

to argue that it is well-defined for all p ∈ Q∞.

From the definition of Q∞, we have that w(p) ≤ 1−p
1−q∞m(q∞) +

p−q∞

1−q∞m(1) and, there-

fore, ϕ(p,w(p)) ∈ Q∞. In other words, if p ∈ Q∞, then ϕ(p,w(p)) ∈ Q∞, so that

the restriction of Vq1(·,m(·)) to Q∞ is entirely defined by its value on Q∞ via the

contraction:

Vq1(p,m(p)) = (1− δ)v(a∗, p) + δλ(p,w(p))Vq1(ϕ(p,w(p)),m(ϕ(p,w(p))).

The unique solution to this fixed point problem is given by:

Vq1(p,m(p)) = v(a∗, p)− m(p)− u(a∗, p)

m(1)− u(a∗, 1)
v(a∗, 1),

for all p ∈ Q∞. To see this, with a slight abuse of notation, write (λ, ϕ) for (λ(p, w), ϕ(p,w(p))),

and note that:

(1− δ)v(a∗, p) + δλ

[
v(a∗, ϕ)− m(ϕ)− u(a∗, ϕ)

m(1)− u(a∗, 1)
v(a∗, 1)

]
= (1− δ)v(a∗, p) + δ [v(a∗, p)− (1− λ)v(a∗, 1)]

− m(p)− (1− λ)m(1)− u(a∗, p)(1− δ)
m(1)− u(a∗, 1)

v(a∗, 1) + δ
u(a∗, p)− (1− λ)u(a∗, 1)

m(1)− u(a∗, 1)
v(a∗, 1)

= v(a∗, p)− m(p)− u(a∗, p)

m(1)− u(a∗, 1)
v(a∗, 1),

where we use the identities λϕ + (1 − λ)1 = p, λm(ϕ) + (1 − λ)m(1) = w(p), and

δw(p) = m(p)− (1− δ)u(a∗, p).

This completes the characterization of Vq1. Note that Vq1 and, therefore, all value

functions Vq, are continuous functions.

B.2. Concavity of Vq1 with respect to w for each p.

Lemma 3. For all p, the function Vq1(p, ·) : [mq1(p),M(p)]→ R is concave in w.
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We must prove that

Vq1(p,mq1(p) + η(mq1(1)− u(a∗, 1)))− Vq1(p,mq1(p))

η
≥

Vq1(p,mq1(p) + η′(mq1(1)− u(a∗, 1)))− Vq1(p,mq1(p))

η′
,

for all (η, η′) such that η′ ≥ η. (See the observations on concave functions.) We start

with some preliminary results.

B.2.1. Two Preliminary Results.

Lemma 4. There exists a non-empty interval [q, q] such that:

(1) For any p′ < p ≤ q or p′ > p ≥ q̄, ϕ(p,w(p)) ≥ ϕ(p′,w(p′)),

(2) The ratio m(1)−m(ϕ(p,w(p))
1−ϕ(p,w(p))

is constant for all p ∈ [q, q].

Proof. Observe that

m(1)−w(p)

1− p
=
m(1)−m(ϕ(p,w(p))

1− ϕ(p,w(p))
.

Therefore, the convexity of m implies that if m(1)−w(p)
1−p < m(1)−w(p′)

1−p′ , then ϕ(p,w(p)) <

ϕ(p′,w(p′)).

Consider the function h : [0, 1] → R, defined by h(p) = m(1)−w(p)
1−p . We argue that h is

quasi-concave. For all (p, p′) and α ∈ [0, 1], we have that

m(1)−w(αp+ (1− α)p′)

α(1− p) + (1− α)(1− p′)
≥ α(m(1)−w(p)) + (1− α)(m(1)−w(p′))

α(1− p) + (1− α)(1− p′)

=
α(1− p)

α(1− p) + (1− α)(1− p′)
m(1)−w(p)

1− p
+

(1− α)(1− p′)
α(1− p) + (1− α)(1− p′)

m(1)−w(p′)

1− p′

≥ min

(
m(1)−w(p)

1− p
,
m(1)−w(p′)

1− p′

)
,

where the first inequality follows form the convexity of w. (Note that the inequality

is strict if w(αp+ (1− α)p′) < αw(p) + (1− α)w(p′).)

It follows that if h(p′) ≥ h(p), then it is also true for all p′′ ∈ (p, p′). Since h is

quasi-concave and continuous, the set of maxima is a non-empty convex set [q, q],

and the function is increasing for all p < q and decreasing for all p > q. (Note that

m(1)−w(1) = (1−δ)(u(a∗,1)−m(1))
δ

< 0, hence the function is equal to −∞ at p = 1.) �
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We can make few additional observations about the interval [q, q]. Let k∗ := sup{k :

Qk 6= ∅}. Since ϕ(qk,w(qk)) = qk, the function h is decreasing for all p ≥ qk
∗.

Similarly, since ϕ(qk,w(qk)) = qk−1, the function h is increasing for all p ≤ qk
∗.

Therefore, [q, q] ⊂ Qk∗.

If P 6= ∅, so that k∗ =∞, then for all p ∈ P , the function h is increasing by convexity

of m since w(p) = m(p). (This is clearly true since ϕ(p,m(p)) = p in that region.)

Therefore, p ≤ q if P 6= ∅.

Finally, let p̃ := inf{p : m(p) = u(a1, p)}. By construction, m is linear from p̃ to 1, i.e.,

[p̃, 1] is the utmost right linear piece of m. We have that q < p̃. To see this, observe

that for all p ≥ p̃,

m(1)−w(p)

1− p
=

(1− δ)(
<0︷ ︸︸ ︷

u(a∗, 1)− u(a1, 1))

1− p
+

(u(a1, 0)− u(a1, 1))− (1− δ)(u(a∗, 0)− u(a∗, 1))

δ
,

hence it is decreasing in p. (If there are multiple optimal actions at p = 1, the

argument applies to all of them and, therefore, to the one that induces the smallest

p̃.)

The second preliminary result is technical. For any p ∈ (0, 1) and any η ∈
[
0,

M(p)−mq1 (p)

mq1 (1)−u(a∗,1)

]
,

define w(p; η) as

mq1(p) + η
[
mq1(1)− u(a∗, 1)

]
,

and write (λη, ϕη) for (λ(p, w(p; η)), ϕ(p, w(p; η))). To ease notation, we do not explic-

itly write the dependence of (λη, ϕη) on p. We have the following:

Lemma 5. ϕη, λη, and 1−λη
η

are all decreasing in η.

The proof follows directly from the definition of (λη, ϕη) and is omitted.

Finally, we conclude with the following implication of Observation A, which we will

use throughout. For all (p, w, w′) with w ≤ w′, we have that:

Vq1(p, w)− Vq1(p, w′) = λ(p, w)

[
Vq1(ϕ(p, w),mq1(p, w))− Vq1

(
ϕ(p, w),mq1(p, w) +

w′ − w
λ(p, w)

)]
.

We now turn to the proof of Lemma 3.

B.2.2. Proof of Lemma 3. We now prove that the gradient

G(p; η) :=
Vq1(p,mq1(p))− Vq1(p, w(p; η))

η
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is increasing in η ∈
[
0,

M(p)−mq1 (p)

mq1 (1)−u(a∗,1)

]
, for all p. We prove it on three separate inter-

vals I1, I2 and I3. If P = ∅, the three intervals are [0, q], (q, q] and (q, 1], respectively.

If P 6= ∅, the three intervals are [0, p], (p, q∞] and (q∞, 1], respectively.

Fact 1: For all p ∈ I1, G(p; η) is increasing in η.

We limit attention to the case P 6= ∅. (The case P = ∅ is identical.) The proof is

by induction. First, consider the interval [0, q1]. Remember that at q1, we have a

closed-form solution for Vq1(q1, w) for all w given by

Vq1(q
1, w) =

M(q1)− w
M(q1)− u(a∗, q1)

v(a∗, q1).

Therefore,

Vq1(q
1,mq1(q

1))− Vq1(q1, w(q1; η))

η
=

1

η

[
M(q1)−mq1(q

1)

M(q1)− u(a∗, q1)
v(a∗, q1)−

M(q1)− w(q1; η)

M(q1)− u(a∗, q1)
v(a∗, q1)

]
=

v(a∗, q1)

M(q1)− u(a∗, q1)

[mq1(q
1) + η(mq1(1)− u(a∗, 1))]−mq1(q

1)

η

=
q1v(a∗, 1) + (1− q1)v(a∗, 0)

q1[mq1(1)− u(a∗, 1)] + (1− q1)[mq1(0)− u(a∗, 0)]

w(q1; η)−mq1(q
1)

η

= v(a∗, 1)
q1 + (1− q1)v(a∗,0)

v(a∗,1)

q1 + (1− q1)
mq1 (0)−u(a∗,0)

mq1 (1)−u(a∗,1)︸ ︷︷ ︸
≥1 since v(a

∗,0)
v(a∗,1)≥

m
q1

(0)−u(a∗,0)

m
q1

(1)−u(a∗,1)

≥ v(a∗, 1).

We now consider any p ∈ [0, q1). From Observation A, we have that:
Vq1(p,mq1(p)) =

1− p
1− q1

Vq1

(
q1,

1− q1

1− p
mq1(p) +

(
1−

1− q1

1− p

)
mq1(1)

)
Vq1(p, w(p; η)) =

1− p
1− q1

Vq1

(
q1,

1− q1

1− p
mq1(p) +

(
1−

1− q1

1− p

)
mq1(1) +

1− q1

1− p
η
[
mq1(1)− u(a∗, 1)

])
It follows that
Vq1(p,mq1(p))− Vq1(p, w(p; η))

η

=
1− p

1− q1

Vq1
(
q1,

1−q1

1−p mq1(p) +
(
1− 1−q1

1−p

)
mq1(1)

)
− Vq1

(
q1,

1−q1

1−p mq1(p) +
(
1− 1−q1

1−p

)
mq1(1) +

1−q1

1−p η
[
mq1(1)− u(a∗, 1)

])
η

=
1− p

1− q1
1− q1

1− p

mq1(1)− u(a∗, 1)

M(q1)− u(a∗, q1
v(a∗, q1) =

1− p

1− q1
1− q1

1− p
v(a∗, 1)

q1 + (1− q1) v(a
∗,0)

v(a∗,1)

q1 + (1− q1)
m
q1

(0)−u(a∗,0)
m
q1

(1)−u(a∗,1)

>
1− p

1− q1
1− q1

1− p
v(a∗, 1) = v(a∗, 1).
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Therefore, G(p; η) ≥ v(a∗, 1) for all η, for all p ∈ [0, q1]. Moreover, the gradient G(p; η)

is independent of η for all p ∈ [0, q1], hence is (weakly) increasing.

By induction, assume that G(p; η) ≥ v(a∗, 1) for all p ∈ [0, qk] and is increasing in η,

we want to prove that both properties also hold for all p ∈ (qk, qk+1].

We rewrite Vq1(p, w(p; η)) as follows:

Vq1(p, w(p; η)) = ληVq1(ϕη,mq1(ϕη)) = λη
[
(1− δ)v(a∗, ϕη) + δVq1(ϕη,w(ϕη))

]
= (1− δ)ληv(a∗, ϕη) + δληVq1(ϕη,w(ϕη))

= (1− δ)ληv(a∗, ϕη) + δVq1
(
p, ληw(ϕη) + [1− λη]mq1(1)

)
= (1− δ)ληv(a∗, ϕη) + δVq1

(
p,w(p) +

η − (1− δ)(1− λη)
δ

[mq1(1)− u(a∗, 1)]

)
.

The second to last equality follows from Observation A, while the last equality

follows from:

ληw(ϕη) + [1− λη]mq1(1) = λη
−(1− δ)u(a∗, ϕη) +mq1(ϕη)

δ
+ [1− λη]mq1(1)

=
−(1− δ)

δ
ληu(a

∗, ϕη) +
1

δ
ληmq1(ϕη) + [1− λη]mq1(1)

=
−(1− δ)

δ
[u(a∗, p)− (1− λη)u(a∗, 1)] +

1

δ

[
w(p; η)− (1− λη)mq1(1)

]
+ [1− λη]mq1(1)

=
−(1− δ)

δ
[u(a∗, p)− (1− λη)u(a∗, 1)] +

1

δ

[
mq1(p) + η(mq1(1)− u(a∗, 1))− (1− λη)mq1(1)

]
+ [1− λη]mq1(1)

=

[
−(1− δ)

δ
u(a∗, p) +

1

δ
mq1(p)

]
+
η − (1− δ)(1− λη)

δ
[mq1(1)− u(a∗, 1)].

For future reference, recall that

ληw(ϕη) + (1− λη)mq1(1) = λη
[
λ(ϕη,w(ϕη))mq1(ϕ(ϕη,w(ϕη))) + (1− λ(ϕη,w(ϕη))mq1(1)

]
+(1− λη)mq1(1), so that

ϕ

(
p,w(p) +

η − (1− δ)(1− λη)
δ

[mq1(1)− u(a∗, 1)]

)
= ϕ(ϕη,w(ϕη)), and

λ

(
p,w(p) +

η − (1− δ)(1− λη)
δ

[mq1(1)− u(a∗, 1)]

)
= ληλ(ϕη,w(ϕη)).

Since ϕη is decreasing in η, we have ϕη′ ≤ ϕη when η′ > η and hence ϕ(ϕη,w(ϕη)) ≤

ϕ(ϕη′ ,w(ϕη′)), as ϕη′ ≤ ϕη ≤ p ≤ q. Similarly, since ϕη < p ≤ q, we have that

ϕ(ϕη,w(ϕη)) ≤ ϕ(p,w(p)) and, therefore, η−(1−δ)(1−λη)

δ
> 0.
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We now return to the computation of the gradient. We have:

=

[
(1− δ)v(a∗, p) + δVq1(p,w(p))

]
−
[
(1− δ)ληv(a

∗, ϕη) + δVq1
(
p,w(p) +

η−(1−δ)(1−λη)
δ

[m(1)− u(a∗, 1)]
)]

η

=
(1− δ)

η
[v(a∗, p)− ληv(a

∗, ϕη)] +
δ

η

[
Vq1(p,w(p))− Vq1

(
p,w(p) +

η − (1− δ)(1− λη)

δ
[m(1)− u(a∗, 1)]

)]
=

(1− δ)

η
(1− λη)v(a

∗, 1) +
δ

η

[
Vq1(p,w(p))− Vq1

(
p,w(p) +

η − (1− δ)(1− λη)

δ
[m(1)− u(a∗, 1)]

)]
.

(10)

We further develop the above expression. To ease notation, we write (ϕ(p), λ(p))

for (ϕ(p,w(p)), λ(p,w(p))). Note that ϕ(p) ∈ (qk−1, qk], since p ∈ (qk, qk+1]. As
η−(1−δ)(1−λη)

δ
> 0, we have that:

=
(1− δ)

η
(1− λη)v(a

∗, 1) +
δ

η

[
Vq1(p,w(p))− Vq1

(
p,w(p) +

η − (1− δ)(1− λη)

δ
[m(1)− u(a∗, 1)]

)]

=
(1− δ)

η
(1− λη)v(a

∗, 1) +
δ

η

η − (1− δ)(1− λη)

δ

Vq1(p,w(p))− Vq1
(
p,w(p) +

η−(1−δ)(1−λη)
δ

[m(1)− u(a∗, 1)]
)

η−(1−δ)(1−λη)
δ

=
(1− δ)

η
(1− λη)v(a

∗, 1) +

[
1− (1− δ) (1− λη)

η

] λ(p) [Vq1(ϕ(p),mq1(ϕ(p)))− Vq1
(
ϕ(p),mq1(ϕ(p)) +

η−(1−δ)(1−λη)
δλ(p)

[m(1)− u(a∗, 1)]
)]

η−(1−δ)(1−λη)
δ

=
(1− δ)

η
(1− λη)v(a

∗, 1) +

[
1− (1− δ) (1− λη)

η

] Vq1(ϕ(p),mq1(ϕ(p)))− Vq1
(
ϕ(p),mq1(ϕ(p)) +

η−(1−δ)(1−λη)
δλ(p)

[m(1)− u(a∗, 1)]
)

η−(1−δ)(1−λη)
δλ(p)

>
(1− δ)

η
(1− λη)v(a

∗, 1) +

[
1− (1− δ) (1− λη)

η

]
v(a∗, 1) = v(a∗, 1),

where we use Observation A and the induction step.

We now show that the gradient is increasing in η. To start with, note that η−(1−δ)(1−λη)

δ

is increasing in η since 1−λη
η

is decreasing in η (see Lemma 5). For any η > η′, we

have the following

Vq1(p,w(p))− Vq1
(
p,w(p) + η−(1−δ)(1−λη)

δ

[
mq1(1)− u(a∗, 1)

])
η−(1−δ)(1−λη)

δ

=
λ(p)Vq1(ϕ(p),mq1(ϕ(p)))− λ(p)Vq1

(
ϕ(p),mq1(ϕ(p)) + η−(1−δ)(1−λη)

δλ(p)

[
mq1(1)− u(a∗, 1)

])
η−(1−δ)(1−λ)

δ

=
Vq1(ϕ(p),mq1(ϕ(p)))− Vq1

(
ϕ(p),mq1(ϕ(p)) + η−(1−δ)(1−λη)

δλ(p)

[
mq1(1)− u(a∗, 1)

])
η−(1−δ)(1−λ)

δλ(p)
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>
Vq1(ϕ(p),mq1(ϕ(p)))− Vq1

(
ϕ(p),mq1(ϕ(p)) +

η′−(1−δ)(1−λη′ )
δλ(p)

[
mq1(1)− u(a∗, 1)

])
η′−(1−δ)(1−λη′ )

δλ(p)

=
Vq1(p,w(p))− Vq1

(
p,w(p) +

η′−(1−δ)(1−λη′ )
δ

[
mq1(1)− u(a∗, 1)

])
η′−(1−δ)(1−λη′ )

δ

,

where the inequality follows from the fact that ϕ(p) ∈ (qk−1, qk] and, therefore, the

gradient G(ϕ(p); η) being increasing in η by the induction hypothesis.

Finally, we have that

1

η

[
Vq1(p,mq1(p))− Vq1(p, w(p; η))

]
=

(1− δ) (1− λη)

η
v(a∗, 1) +

[
1− (1− δ) (1− λη)

η

] Vq1(p,w(p))− Vq1
(
p,w(p) +

η−(1−δ)(1−λη)
δ

[m(1)− u(a∗, 1)]
)

η−(1−δ)(1−λη)
δ

>
(1− δ) (1− λη)

η
v(a∗, 1) +

[
1− (1− δ) (1− λη)

η

] Vq1(p,w(p))− Vq1

(
p,w(p) +

η′−(1−δ)(1−λη′ )
δ

[
mq1(1)− u(a∗, 1)

])
η′−(1−δ)(1−λη′ )

δ

=
(1− δ) (1− λη′)

η′
v(a∗, 1) +

[
1− (1− δ) (1− λη′)

η′

] Vq1(p,w(p))− Vq1

(
p,w(p) +

η′−(1−δ)(1−λη′ )
δ

[
mq1(1)− u(a∗, 1)

])
η′−(1−δ)(1−λη′ )

δ

+

[
(1− δ) (1− λη′)

η′
− (1− δ) (1− λη)

η

]Vq1(p,w(p))− Vq1

(
p,w(p) +

η′−(1−δ)(1−λη′ )
δ

[
mq1(1)− u(a∗, 1)

])
η′−(1−δ)(1−λη′ )

δ

− v(a∗, 1)


>

1

η′
[
Vq1(p,mq1(p))− Vq1(p, w(p; η

′))
]

+

[
(1− δ) (1− λη′)

η′
− (1− δ) (1− λη)

η

]

×

Vq1(ϕ(p),mq1(ϕ(p)))− Vq1

(
ϕ(p),mq1(ϕ(p)) +

η′−(1−δ)(1−λη′ )
δλ(p)

[
mq1(1)− u(a∗, 1)

])
η′−(1−δ)(1−λη′ )

δλ(p)

− v(a∗, 1)


>

1

η′
[
Vq1(p,mq1(p))− Vq1(p, w(p; η

′))
]
.

The last inequality follows from the fact that the gradient in the second bracket

is weakly larger than v(a∗, 1) by the induction hypothesis and the fact that 1−λη
η

<
1−λη′
η′

(Lemma 5).

Since limk→∞ q
k = p when P 6= ∅, this completes the proof that the gradient is

greater than v(a∗, 1) for all p ∈ [0, p].

Fact 2: For all p ∈ I2, G(p; η) is increasing in η.
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We first treat the case P 6= ∅. Recall that for all p ∈ (p, q∞], we have an explicit

definition of the value function Vq1(p,mq1(p)) as:

v(a∗, p)−
mq1(p)− u(a∗, p)

mq1(1)− u(a∗, 1)
v(a∗, 1).

Define η̄(p) as the solution to ϕη̄(p) = ϕ(p, w(p; η̄(p))) = p. Note that for any p ∈

(p, q∞], for any η ≤ η̄, ϕη ∈ [p, q∞]. Therefore,

Vq1(p, w(p; η)) = ληVq1(ϕη,mq1(ϕη)) = λη

[
v(a∗, ϕη)−

mq1(ϕη)− u(a∗, ϕη)

mq1(1)− u(a∗, 1)
v(a∗, 1)

]
= v(a∗, p)− w(p; η)− u(a∗, p)

mq1(1)− u(a∗, 1)
v(a∗, 1).

It follows that the gradient is equal to v(a∗, 1) for all p ∈ (p, p∗], for all η ≤ η̄.

Consider now η > η̄. We rewrite the gradient G(p; η) as follows:

Vq1(p,mq1(p))− Vq1(p, w(p; η))

η

=
Vq1(p,mq1(p))− Vq1(p, w(p; η1(p)))

η
+
Vq1(p, w(p; η1(p)))− Vq1(p, w(p; η))

η

=
η1(p)

η

Vq1(p,mq1(p))− Vq1(p, w(p, η1(p)))

η1(p)
+
η − η1(p)

η

Vq1(p, w(p; η1(p)))− Vq1(p, w(p; η))

η − η1(p)

=
η1(p)

η
v(a∗, 1) +

η − η1(p)

η

1−p
1−p

[
Vq1(p,mq1(p))− Vq1

(
p, w

(
p; η−η1(p)

1−p
1−p

))]
η − η1(p)

=
η1(p)

η
v(a∗, 1) +

η − η1(p)

η
G

(
p;
η − η1(p)

1−p
1−p

)
.

Since we have already shown that G(p; η) is increasing in η and weakly larger than

v(a∗, 1), we have that the gradient G(p; η) is also weakly increasing in η (and greater

than v(a∗, 1)).

We now treat the case P = ∅. Define η̄(p) as the solution to ϕη̄(p) = ϕ(p, w(p; η̄(p))) = q.

Note that for any p ∈ [q, q], for any η ≤ η̄, ϕη ∈ [q, q]. Therefore, for all η ≤ η̄,

η = (1− δ)(1− λη) since the ratio
mq1 (1)−w(ϕη)

1−ϕη is constant in η and so is ϕ(ϕη,w(ϕη)).

(Recall that we vary η at a fixed p.) It follows then from Equation (10) that

G(p; η) = (1− δ)
η

(1− λη)v(a∗, 1) +
δ

η

[
Vq1(p,w(p))− Vq1

(
p,w(p) +

η − (1− δ)(1− λη)
δ

[m(1)− u(a∗, 1)]
)]

,

=
(1− δ)
η

(1− λη)v(a∗, 1) = v(a∗, 1).
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We have that the gradient G(p; η) is equal to v(a∗, 1) for all p ∈ (q, q], for all η ≤ η̄.

Finally, when η > η̄, the same decomposition as in the case P 6= ∅ completes the

proof.

Fact 3: For all p ∈ I3, the gradient G(p; η) is increasing in η.

We only treat the case P 6= ∅. (The case P = ∅ is treated analogously.) Define η̄(p)

as the solution to ϕη̄(p) = ϕ(p, w(p; η̄(p))) = q∞. By construction, for all p ∈ (q∞, 1],

for all η ≤ η̄(p), we have that ϕη ∈ (q∞, 1]. Therefore, ϕη > q.

Choose η̄(p) ≤ η′ ≤ η. We have that ϕη′ ≥ ϕη ≥ q since q∞ ≥ q and, therefore,

ϕ

(
p,w(p) +

η − (1− δ)(1− λη)
δ

[mq1(1)− u(a∗, 1)]

)
= ϕ(ϕη,w(ϕη)) ≥

ϕ(ϕη′ ,w(ϕη′) = ϕ

(
p,w(p) +

η′ − (1− δ)(1− λη′)
δ

[mq1(1)− u(a∗, 1)]

)
.

Also, since q ≤ ϕη ≤ p, we have that ϕ(ϕη,w(ϕη)) ≥ ϕ(p,w(p)) and, therefore,
η−(1−δ)(1−λη)

δ
≤ 0. The same applies to η′. Finally, as already shown,

η − (1− δ)(1− λη)
δ

<
η′ − (1− δ)(1− λη′)

δ
.

To ease notation, define (λ̃η, ϕ̃η) as follows:
λ̃η = λ

(
p,w(p)− (1− δ)(1− λη)− η

δ
[m(1)− u(a∗, 1)]

)
ϕ̃η = ϕ

(
p,w(p)− (1− δ)(1− λη)− η

δ
[m(1)− u(a∗, 1)]

) (11)

Notice that ϕ̃η = ϕ(ϕη,w(ϕη)) ∈ I1 since ϕη > q∞.

The rest of the proof is purely algebraic and mirrors the case p ∈ I1. First, we have

the following:

Vq1(p,w(p))− Vq1
(
p,w(p)− (1−δ)(1−λη)−η

δ

[
mq1(1)− u(a∗, 1)

])
(1−δ)(1−λη)−η

δ

=
λ̃ηVq1

(
ϕ̃η,mq1(ϕ̃η) + (1−δ)(1−λη)−η

δλ̃η

[
mq1(1)− u(a∗, 1)

])
− λ̃ηVq1

(
ϕ̃η,mq1(ϕ̃η)

)
(1−δ)(1−λη)−η

δ

=
Vq1
(
ϕ̃η, w

(
ϕ̃η;

(1−δ)(1−λη)−η
δλ̃η

))
− Vq1

(
ϕ̃η,mq1(ϕ̃η)

)
(1−δ)(1−λη)−η

δλ̃η

,
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where we again use Observation A. Similarly, we have:

Vq1(p,w(p))− Vq1
(
p,w(p)− (1−δ)(1−λη′ )−η′

δ

[
mq1(1)− u(a∗, 1)

])
(1−δ)(1−λη′ )−η′

δ

=
λ̃ηVq1

(
ϕ̃η, w

(
ϕ̃η;

(1−δ)(1−λη)−η
δλ̃η

))
− λ̃ηVq1

(
ϕ̃η, w

(
ϕ̃η;

(1−δ)(1−λη)−η
δλ̃η

− (1−δ)(1−λη′ )−η′

δλ̃η

))
(1−δ)(1−λη′ )−η′

δ

=
Vq1
(
ϕ̃η, w

(
ϕ̃η;

(1−δ)(1−λη)−η
δλ̃η

))
− Vq1

(
ϕ̃η, w

(
ϕ̃η;

(1−δ)(1−λη)−η
δλ̃η

− (1−δ)(1−λη′ )−η′

δλ̃η

))
(1−δ)(1−λη′ )−η′

δλ̃η

,

where again we use Observation A and the fact

(1− δ)(1− λη)− η
δλ̃η

>
(1− δ)(1− λη′)− η′

δλ̃η
.

Since ϕ̃η ∈ I1, we have that:

Vq1
(
ϕ̃η, w

(
ϕ̃η;

(1−δ)(1−λη)−η
δλ̃η

))
− Vq1

(
ϕ̃η, w

(
ϕ̃η;

(1−δ)(1−λη)−η
δλ̃η

− (1−δ)(1−λη′ )−η′

δλ̃η

))
(1−δ)(1−λη′ )−η′

δλ̃η

6
Vq1
(
ϕ̃η, w

(
ϕ̃η;

(1−δ)(1−λη)−η
δλ̃η

))
− Vq1

(
ϕ̃η,mq1(ϕ̃η)

)
(1−δ)(1−λη)−η

δλ̃η

,

where the inequality follows from our previous argument on the interval I1.

It follows that:

Vq1(p,w(p))− Vq1
(
p,w(p)− (1−δ)(1−λη′ )−η′

δ

[
mq1(1)− u(a∗, 1)

])
(1−δ)(1−λη′ )−η′

δ

6
Vq1(p,w(p))− Vq1

(
p,w(p)− (1−δ)(1−λη)−η

δ

[
mq1(1)− u(a∗, 1)

])
(1−δ)(1−λη)−η

δ

.

From Equation (10), we then have that

1

η

[
Vq1(p,mq1(p))− Vq1(p,w(p; η))

]
=

(1− δ) (1− λη)

η
v(a∗, 1) +

[
(1− δ) (1− λη)

η
− 1

] Vq1(p,w(p))− Vq1
(
p,w(p)− (1−δ)(1−λη)−η

δ
[m(1)− u(a∗, 1)]

)
(1−δ)(1−λη)−η

δ
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>
(1− δ) (1− λη)

η
v(a∗, 1) +

[
(1− δ) (1− λη)

η
− 1

] Vq1(p,w(p))− Vq1

(
p,w(p)− (1−δ)(1−λη′ )−η

′

δ

[
mq1(1)− u(a∗, 1)

])
(1−δ)(1−λη′ )−η′

δ

=
(1− δ) (1− λη)

η
v(a∗, 1) +

[
1− (1− δ) (1− λη)

η

] Vq1 (p,w(p)− (1−δ)(1−λη′ )−η
′

δ

[
mq1(1)− u(a∗, 1)

])
− Vq1(p,w(p))

(1−δ)(1−λη′ )−η′

δ

=
(1− δ) (1− λη′)

η′
v(a∗, 1) +

[
1− (1− δ) (1− λη′)

η′

] Vq1 (p,w(p)− (1−δ)(1−λη′ )−η
′

δ

[
mq1(1)− u(a∗, 1)

])
− Vq1(p,w(p))

(1−δ)(1−λη′ )−η′

δ

+

[
(1− δ) (1− λη′)

η′
− (1− δ) (1− λη)

η

]Vq1
(
p,w(p)− (1−δ)(1−λη′ )−η

′

δ

[
mq1(1)− u(a∗, 1)

])
− Vq1(p,w(p))

(1−δ)(1−λη′ )−η′

δ

− v(a∗, 1)


>

1

η′
[
Vq1(p,mq1(p))− Vq1(p, w(p; η

′))
]
,

where the last inequality follows from:

Vq1
(
p,w(p)− (1−δ)(1−λη′ )−η′

δ

[
mq1(1)− u(a∗, 1)

])
− Vq1(p,w(p))

(1−δ)(1−λη′ )−η′
δ

=
λ̃η′Vq1(ϕ̃η′ ,mq1(ϕ̃η′))− λ̃η′Vq1

(
ϕ̃η′ , w

(
ϕ̃η′ ;

(1−δ)(1−λη′ )−η′

δλ̃η′

))
(1−δ)(1−λη′ )−η′

δ

> v(a∗, 1).

We now show that the the gradient G(p; η) is smaller than v(a∗, 1) for any η ≤ η̄(p).

From Equation (10), we have that:

1

η

[
Vq1(p,mq1(p))− Vq1(p,w(p; η))

]
=

(1− δ)(1− λη)

η
v(a∗, 1)−

[
(1− δ) (1− λη)

η
− 1

] Vq1 (p,w(p)− (1−δ)(1−λη)−η
δ

[m(1)− u(a∗, 1)]
)
− Vq1(p,w(p))

(1−δ)(1−λη)−η
δ

= v(a∗, 1)−
[
(1− δ) (1− λη)

η
− 1

]Vq1
(
p,w(p)− (1−δ)(1−λη)−η

δ
[m(1)− u(a∗, 1)]

)
− Vq1(p,w(p))

(1−δ)(1−λη)−η
δ

− v(a∗, 1)


= v(a∗, 1)−

[
(1− δ) (1− λη)

η
− 1

] λ̃ηVq1(ϕ̃η,mq1(ϕ̃η))− λ̃ηVq1
(
ϕ̃η, w

(
ϕ̃η;

(1−δ)(1−λη)−η
δλ̃η

))
(1−δ)(1−λη)−η

δ

− v(a∗, 1)


= v(a∗, 1)−

[
(1− δ) (1− λη)

η
− 1

]
︸ ︷︷ ︸

≥0

Vq1(ϕ̃η,mq1(ϕ̃η))− Vq1
(
ϕ̃η, w

(
ϕ̃η;

(1−δ)(1−λη)−η
δλ̃η

))
(1−δ)(1−λη)−η

δλ̃η

− v(a∗, 1)


︸ ︷︷ ︸

≥0

6 v(a∗, 1),

where the inequality follows from the fact that ϕ̃η ≤ p (therefore, from our argu-

ments on the interval I1, where we show that the gradient is larger than v(a∗, 1)).

Finally, we can use a similar decomposition as in the case p ∈ I2 to prove that the

gradient is increasing for all η.
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APPENDIX C

C.1. Recursive formulation: A proof. Ely (2015) proves that the principal’s

maximal payoff is maxw∈[m(p0),M(p0)] V̂
∗(p0, w), with V̂ ∗ the unique fixed point of the

contraction T̂ , with the operator T̂ differing from the operator T in that the promise-

keeping constraint is written as an equality in all maximization problems T̂ (V )(p, w);

all other constraints are the same. Note that, like T , the operator T̂ is monotone.

For any (p, w) ∈ W, let Ṽ ∗(p, w) := maxŵ∈[w,M(p)] V̂
∗(p, ŵ) and w̃∗(p, w) a maximizer.

(If there are multiple maximizers, choose an arbitrary one.)

We prove that V ∗ = Ṽ ∗. To do so, we prove that T (Ṽ ∗) = Ṽ ∗. Since T is a contrac-

tion, hence has a unique fixed point, it follows that V ∗ = Ṽ ∗. (Note that we are not

arguing that T = T̂ .)

We start with two simple observations: (i) T (V )(p, w) ≥ T̂ (V )(p, w) for all (p, w) ∈ W,

for all V , and (ii) Ṽ ∗(p, w) ≥ V̂ ∗(p, w) for all (p, w) ∈ W. The first observation follows

from the fact the promised-keeping constraint is an equality in T̂ (V )(p, w), while

it is an inequality in T (V )(p, w). The second observation follows immediately from

the definition of Ṽ ∗.

We now prove that T (Ṽ ∗) ≥ Ṽ ∗. For all (p, w) ∈ W, we have

Ṽ ∗(p, w) = V̂ ∗(p, w̃∗(p, w)) = T̂ (V̂ ∗)(p, w̃∗(p, w)),

≤ T (V̂ ∗)(p, w̃∗(p, w)),

≤ T (V̂ ∗)(p, w),

≤ T (Ṽ ∗)(p, w),

where the first line follows from the definitions of Ṽ ∗, V̂ ∗ and T̂ , and the fact that

V̂ ∗ = T̂ (V̂ ∗); the second line from observation (i); the third line from the fact

that w̃∗(p, w) ≥ w, so that all feasible solutions to T (V̂ ∗)(p, w̃∗(p, w)) are also fea-

sible for T (V̂ ∗)(p, w); and the fourth line from observation (ii) and the definition of

T (V )(p, w), V = V̂ ∗, Ṽ ∗.

We next prove that T (Ṽ ∗) ≤ Ṽ ∗. By contradiction, suppose that there exists (p, w) ∈

W and a feasible policy (λs, ps, as, ws)s∈S such that

Ṽ ∗(p, w) <
∑
s∈S

λs[(1− δ)v(as, ps) + δṼ ∗(ps, ws)].



60 WEI ZHAO, CLAUDIO MEZZETTI, LUDOVIC RENOU, AND TRISTAN TOMALA

Moreover, we have that∑
s∈S

λs[(1− δ)v(as, ps) + δṼ ∗(ps, ws)] =
∑
s∈S

λs[(1− δ)v(as, ps) + δV̂ ∗(ps, w̃
∗(ps, ws))]

≤ V̂ ∗
(
p,
∑
s∈S

[(1− δ)u(as, ps) + δw̃∗(ps, ws)]
)

≤ Ṽ ∗(p, w),

where the first line follows from the definition of Ṽ ; the second line from the

observation that (λs, ps, as, w̃
∗(ps, ws))s∈S is feasible for the maximization problem

T̂ (V̂ ∗)(p,
∑

s∈S[(1 − δ)u(as, ps) + δw̃∗(ps, ws)) and the fact that T̂ (V̂ ∗) = V̂ ∗; and the

third line from the fact that

M(p) ≥
∑
s∈S

[(1− δ)u(as, ps) + δw̃∗(ps, ws)] ≥
∑
s∈S

[(1− δ)u(as, ps) + δws] ≥ w,

since w̃∗(ps, ws) ∈ [ws,M(ps)], for all s ∈ S, and the definition of Ṽ ∗. We have the

required contradiction, which completes the proof.

C.2. Proof of Proposition 3-part B. The existence of an optimal contract, which

is simple and minimizes the probability of recommending a∗, follows from the com-

pactness of the set of optimal contracts, and Proposition 3(i). To prove compactness,

recall that T (V ∗)(p, w) is a constrained maximization problem, parameterized by

(p, w). Moreover, if V ∗ is continuous, so is T (V ∗)(p, w). Berge maximum theorem

implies the compactness of the set of optimal solutions of T (V ∗)(p, w) at all (p, w)

and the continuity of T (V ∗). Thus, T is mapping continuous, concave and bounded

functions into continuous, bounded and bounded functions. Since the space of con-

tinuous, concave and bounded functions is complete with respect to the sup-norm,

the fixed point V ∗ is continuous, concave and bounded (and its existence follows by

Banach fixed point theorem).

Next, since the set of optimal contracts is compact, there exists an optimal con-

tract, which minimizes the probability of recommending a∗. Finally, the proof of

Proposition 3(i) shows that there exists another optimal contract, which is simple

and recommends a∗ with the same probability.
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