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Abstract

In the standard one-to-one agent-object matching model, I consider a central match-

ing authority that publicly announces a strategy-proof mechanism and then initiates

a matching. Following Akbarpour and Li (2020), the authority’s commitment to the

announced mechanism is limited to mechanisms rendering participants’ observations

indistinguishable from it. I call an announced mechanism transparent if any deviation

from it would be detected.

The main findings identify trade-offs regarding transparency and other desirable

properties: under stability or efficiency, strategy-proof mechanisms are transparent

if and only if they are dictatorial. At the same time, the agent-proposing Deferred

Acceptance (DA) mechanism is equivalent to committing to stability, while efficient

mechanisms often fail to commit to efficiency. This transparency trade-off between

stability and efficiency persists when strategy-proofness is guaranteed.
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1 Introduction

This paper examines to what extent participants can be confident that a central matching
authority follows its announced assignment rules. Several real-world examples illustrate that
the authority’s conduct can deviate from the rules it has promised. In 2020, Boston Public
Schools (BPS) incorrectly rejected dozens of students from the city’s most prestigious exam
schools, attributing the incident to internal miscommunication. Despite an external audit, a
similar error reappeared in 2023.1 Another prominent example is the bribery scandal at U.S.
colleges that surfaced in 2019 and involved university officials who used fabricated athletic
credentials and other tactics to influence admissions in favor of particular applicants.2

Likewise, misconduct occurred at the National Resident Matching Program (NRMP) and
Chicago Public Schools, uncovered only after thorough third-party investigations or explicit
audits.3 In contrast, the 2020 BPS admission flaw was detected by a student’s tutor who
noticed a discrepancy between the student’s grades and the official admissions scores. These
incidents raise a central question: Under which admission mechanisms can deviations
remain undetected by participants?

Motivated by these concerns, I employ the canonical one-to-one object-allocation
framework with privately known preferences and no monetary transfers. In this setting, an
authority publicly announces a strategy-proof direct mechanism but then may implement a
different mechanism behind the scenes, producing a publicly observed matching. Following
Akbarpour and Li (2020), the authority’s commitment is limited to safe deviations—those
for which each agent’s individual observation can still be explained by some recombination
of other agents’ reports under the announced mechanism. However, unlike Akbarpour and
Li (2020), I do not impose assumptions on the authority’s objectives; its deviations may
be intentional or purely erroneous. I call a mechanism transparent if it permits no safe
deviations.

The main analysis investigates how transparency interacts with three fundamental
properties widely regarded as desirable in practical settings: strategy-proofness, stability,

and efficiency. All three properties have been extensively examined in the literature and
were central to policy decisions influenced by transparency concerns. In 2005, for instance,

1The Boston Globe, August 31, 2020 and The Boston Globe, April 12, 2023.
2Press release of the U.S. Attorney’s Office, District of Massachusetts, March 12, 2019.
3In 1995, the NRMP faced claims that it had broken its promise to use a mechanism not manipulable by

residents (Williams, 1995)—a claim later independently verified by Roth and Peranson (1997). In Chicago, an
independent audit of the 2016–2017 admission process uncovered privileged treatment, documentation errors,
and additional screening of applicants (Grigoryan and Möller, 2024; Schuler, 2018).
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BPS considered two candidates, the stable DA and the efficient TTC. The committee
ultimately chose DA, stating that “the behind-the-scenes mechanized trading [in TTC]

makes the student assignment process less transparent” (Leshno and Lo, 2021). Yet while
both DA and TTC are strategy-proof, stability and efficiency themselves are mutually
incompatible (Balinski and Sönmez, 1999).

To identify potential trade-offs in terms of transparency, the analysis adopts an informa-
tional benchmark motivated by incomplete privacy. The idea is that while privacy protection
typically ensures that students’ reports remain confidential, their outcomes and certain
priority criteria (e.g., walk-zones, special abilities, sibling enrollment) can be difficult to
hide. Students thus may gauge their relative standing in a school’s priority score ranking;
and indeed, as the 2020 BPS case shows, such partial information sometimes suffices for
participants to detect deviations.

Specifically, I assume that agents’ preferences remain private, but other features—such
as the set of agents, objects, and scores—are publicly known. However, the key insights
of the paper also extend to the school-choice framework of Abdulkadiroğlu and Sönmez
(2003) under alternative informational benchmarks. With the exception of Proposition 3,
all priority-based allocation results carry over, including settings where participants only
learn their own priority scores and objects’ capacities and eventually observe only their own
assignment and objects’ cutoffs (i.e., for each object the score of the lowest-scoring agent
assigned to it).4

Main Results
The first set of results indicates a trade-off between strategy-proofness and transparency.
I show that any strategy-proof mechanism that is stable or efficient is transparent if and
only if it is dictatorial. In particular, DA is transparent exactly when it collapses to a
serial dictatorship (Proposition 1). Likewise, any strategy-proof and efficient mechanism
is transparent if and only if it is equivalent to a sequential dictatorship (Theorem 1). In
light of these findings, the remaining insights focus on the trade-off between stability and
efficiency under weaker transparency considerations.

Concretely, I ask whether the authority’s announcements can genuinely uphold its claims
of stability and efficiency. A central result of this paper establishes that announcing DA is
equivalent to a commitment to stability: a deviation from DA is safe precisely when the

4Naturally, many interesting scenarios lie outside this framework. One such scenario involves bribery that
influences agents’ private information or instances where agents are bribed directly to cover a deviation.
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deviation is itself a stable mechanism for the market’s underlying priorities (Theorem 3).
By contrast, for efficient mechanisms, the authority can often remain undetected even when
it induces inefficient outcomes (Theorem 2).

The transparency advantage of stability over efficiency persists when the authority can
guarantee that all its deviations are strategy-proof. Indeed, while every deviation from DA

is detected in this alternative setup, TTC is not transparent if the priority structure contains
cycles (Proposition 2). The absence of these cycles is directly linked to a condition making
TTC transparent (Proposition 3) and that is weaker than some other well-known acyclicity
condition characterizing TTCs with regard to various desirable properties.

Before turning to the main analysis, I briefly review the related literature and outline the
organization of the paper.

Related Work
This paper is among the first in the matching literature to relax the assumption that the
authority can fully commit. However, there are recent studies that offer complementary
perspectives on this topic in allocation problems.

Independently of this work, Grigoryan and Möller (2024) explore how much information
is needed to detect deviations. They introduce an index defined by the minimum-sized group
of individuals whose information is sufficient to detect any deviation. Under the Immediate

Acceptance mechanism, two agents suffice to detect any deviation; by contrast, under DA

and TTC or sequential dictatorships, detecting a deviation often requires access to all
agents’ information. Relatedly, Pycia and Ünver (2024) show that for group-strategy-proof
and efficient mechanisms, deviations from Arrovian efficiency can be verified by comparing
a single agent’s relative outcome ranking plus an unknown challenger alternative.

In Hakimov and Raghavan (2023), transparency arises from designing information
structures implementable via sequential public disclosure of interim cutoffs and private
feedback. They show that there exist transparent information structures for DA and TTC

in which each agent reports only one object at a time. However, more generally, neither
private feedback nor cutoffs alone suffice to achieve a transparent protocol.

Unlike in these concurrent works, the notion studied here is a feature of the mechanism,
since communication is entirely private, mechanisms are direct and agents’ strategic behavior
is taken into account. The present paper also finds necessary and sufficient conditions
for entire classes of strategy-proof mechanisms and examines commitment to desirable
properties.

4



Akbarpour and Li (2020) analyze a framework with sequential private communication
between an authority and agents, that focuses on credible Bayes–Nash implementation
under imperfect information. Both Akbarpour and Li (2020) and Woodward (2020) study
partial commitment in auctions where every deviation is authority-initiated. The authority’s
objectives are publicly known, which is a suitable assumption in contexts where auctioneers
aim primarily to maximize revenue—giving bidders a clearer view of the auctioneer’s
incentives. By contrast, transparency does not require deviations to be incentive compatible
for the authority, nor does it assume any specific or known objective on the authority’s part.
In line with the motivating applications, it thus remains agnostic about possible motives or
mistakes behind deviations.

More broadly, this paper contributes to our understanding of the structure and verifiability
of matching mechanisms (Gangam et al., 2023; Gonczarowski and Thomas, 2024), and it
connects to the literature modeling limited commitment via agents’ observable outcomes
(Baliga et al., 1997; Bester and Strausz, 2000, 2001; Dequiedt and Martimort, 2015).

The paper proceeds as follows. Section 2 presents the formal model and the definition
of transparency. Sections 3 and 4 analyze efficient and stable mechanisms, respectively.
Section 5 extends the analysis to the case in which strategy-proofness is guaranteed. The
Appendix contains all proofs omitted from the main text.

2 The Basic Framework

2.1 Preliminaries

There are finite sets of agents I and indivisible objects X ∪ {∅}, where ∅ denotes the
outside option and |I| ≥ 2 and |X| ≥ 2.

Each agent i ∈ I has a strict preference relation Pi over X ∪ {∅}, where Ri is the
corresponding weak preference relation.5 Object x ∈ X is acceptable if xPi∅ for i,
and unacceptable otherwise. Let Pi be i’s preference ranking and let P ≡ (Pi)i∈I be a
(preference) profile with the corresponding domain P . Also, for any J ⊆ I , denote by
PJ = (Pj)j∈J the profile restricted to J . We denote by −i the set of all agents except i.

For each object x ∈ X and for each agent i ∈ I , assign a score sxi ∈ R++ ensuring
sxi ̸= sxj for any j ̸= i. For each pair of agents i, j ∈ I , we say i has higher priority or
score at x ∈ X than j if and only if sxi > sxj . Thus, for each x ∈ X , the collected scores

5That is, Ri is a complete, transitive and antisymmetric binary relation. For each pair of objects x, y ∈
X ∪ {∅}, we write xRiy if either xPiy or x = y.
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sx = (sxi )i∈I induce a strict (priority) score ranking over the agents. Let s = (sx)x∈X be a
score structure.

A matching µ : I → X ∪{∅} assigns each agent exactly one object, with no two agents
receiving the same object from X . Any agent receiving the outside option ∅, and any object
in X not assigned to an agent, is called unassigned. Let M collect the set of all possible
matchings.

We now recall several standard definitions used throughout the analysis. A matching µ

is non-wasteful if no unassigned object x ∈ X is strictly preferred by an agent i over µ(i).
It is individually rational if, for every i, µ(i)Ri∅. A matching µ is blocked by i at x ∈ X , if
there exists j such that xPi µ(i), µ(j) = x, and sxi > sxj . A matching µ is stable for s if it
is not blocked, individually rational, and non-wasteful. A matching µ is (Pareto) efficient if
there is no other matching ν such that ν(i)Ri µ(i) for all i ∈ I , and ν(j)Pj µ(j) for some
j ∈ I .

A mechanism g : P → M maps each profile to a matching. Denote gi(P ) as i’s
match under g(P ). A mechanism g is individually rational if it yields only individually
rational matchings, and non-wasteful if it generates only non-wasteful ones. Stable and
efficient mechanisms are defined analogously, and they are also individually rational and
non-wasteful by definition.

A mechanism g is strategy-proof if, for all P , there is no i ∈ I and P ′
i such that

gi(P
′
i , P−i) Pi gi(P ). In words, a mechanism is strategy-proof if no single agent can do

better by misrepresenting her preferences. A mechanism g is group strategy-proof if,
for all P , there is no J ⊆ I and P ′

J such that gi(P ′
J , P−J)Ri gi(P ) for each i ∈ J , and

gj(P
′
J , P−J)Pj gj(P ) for at least one j ∈ J . In words, group-strategy-proofness requires

that no group of agents can jointly misrepresent their preferences to weakly improve
everyone’s assignment while strictly benefiting at least one member. We say a mechanism
g is non-bossy if for all P , there is no i ∈ I , and P ′

i , such that gi(P ) = gi(P
′
i , P−i), but

g(P ) ̸= g(P ′
i , P−i). In other words, there is no agent that is bossy in the sense that changing

this agent’s preferences affects other agents’ assignments but not her own.

2.2 A Transparency Framework

Consider a central matching authority that makes an announcement g public to all agents.
Once agents report their preferences P , the authority uses a mechanism g̃ to induce a
publicly observable outcome g̃(P ). Yet the mechanism g̃ itself and the profile P remain
confidential. Hence, from the perspective of individual agents, the outcomes under g̃ may
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be indistinguishable from those following from announcement g. We now formalize when
agents can detect that the authority did not use g.

Assume that each agent i knows the elements I,X, s and how g operates. Also, let
i’s observation oi (P, g̃(P )) be the ordered pair

(
Pi, g̃(P )

)
. A mechanism g̃ is a deviation

if there is a profile P for which g̃(P ) ̸= g(P ). Following Akbarpour and Li (2020), an
observation oi (P, g̃(P )) under g̃ has an innocent explanation for agent i if there exists P ′

−i

such that oi (P, g̃(P )) = oi
(
(Pi, P

′
−i), g(Pi, P

′
−i)

)
. In other words, an observation has an

innocent explanation if the observation could follow from a configuration of other agents’
preferences under g. When i does not have an innocent explanation for her observation
oi (P, g̃(P )), then we say that i detects the deviation g̃ from g. A deviation is safe if for
every agent i and every profile P , observation oi (P, g̃(P )) has an innocent explanation.

We define the following transparency notion, which requires that any deviation can be
detected by at least one agent.

Definition 1. A mechanism g is transparent if it has no safe deviations.

In the remainder of the paper, we apply this notion to the two canonical classes of stable
and efficient mechanisms. Before doing so, consider the following observation that we rely
on repeatedly in the analysis.

Lemma 1. If g is non-wasteful and individually rational, then any safe deviation g̃ from g

is non-wasteful and individually rational.

It is easy to see that the statement follows from each agent observing her preference
ranking and the entire matching.

3 Efficient Mechanisms

This section studies the transparency features of efficient mechanisms. First, we demonstrate
that efficient mechanisms may admit safe deviations that lead to inefficient outcomes. To
motivate such a deviation, consider a public school assignment setting where the author-
ity seeks to enforce hidden distributional constraints (e.g., balanced representation across
regions, genders, or socioeconomic groups).6 If these constraints are incompatible with effi-
ciency, the authority may still announce an efficient mechanism to encourage participation,
but then deviates in order to comply with its hidden distributional objectives.

6See, for instance, the work on matching under regional constraints (Kamada and Kojima, 2015), affirmative
action (Abdulkadiroğlu and Sönmez, 2003; Abdulkadiroğlu et al., 2005; Kojima, 2012; Hafalir et al., 2013),
matching under complex constraints (Westkamp, 2013), or diversity constraints (Ehlers et al., 2014).
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Example 1. Let I = {i, j} and X = {x, y} and consider s such that sxi > sxj and syj > syi .
The authority announces TTCs, which is known to be efficient, strategy-proof (Roth, 1982b;
Abdulkadiroğlu and Sönmez, 2003) and induced via the TTC algorithm operating on s. We
now construct a safe deviation g̃ from TTCs, for which the preference profile in the table
below will be central:

Pi Pj P ′
i P ′

j

y x x y

x y y x

∅ ∅ ∅ ∅

Specifically, consider a deviation g̃ that differs from TTCs only with respect to the
outcome obtained for profile P , where

g̃(P ) = {(i, x), (j, y)} ≠ {(i, y), (j, x)} = TTCs(P ).

Since i and j prefer to exchange x and y under g̃(P ), deviation g̃ is not efficient. To see that
g̃ is safe, note that if agent j reports P ′

j , we have oi (P, g̃(P )) = oi
(
(Pi, P

′
j), TTC

s(Pi, P
′
j)
)
.

Similarly, from j’s view, if i reports P ′
i , then oj (P, g̃(P )) = oj ((P

′
i , Pj), TTC

s(P ′
i , Pj)).

Since for any other scenario, g̃ coincides with TTCs, all remaining observations trivially
have innocent explanations. Thus, deviation g̃ is safe and inefficient.

Recall that the TTC algorithm requires that, at each step t, any unassigned object points
to its highest-scored unassigned agent. A common interpretation of this pointing is that the
agent becomes the object’s owner, enabling her either to obtain it via a self cycle (a cycle of
length 1) or to trade it in a trading cycle. If an agent observes that another agent’s score
for the assigned object is high enough to envision her securing it via a self cycle, then this
self cycle scenario provides a straightforward explanation for why the observer herself did
not get that object. For instance, at profile P in Example 1, x and y are acceptable to their
respective owners i and j. Rather than inducing the trading cycle in which i trades x with j

for y, the authority can safely assign them via two self cycles (i.e., i points to x, j points to
y, and vice versa). The same reasoning applies if the trading cycle involves more agents and
objects. Conversely, if a deviation results in an observation from which an agent deduces
that she should have been the owner of a more-preferred object, then the deviation is not
safe.
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Next, we introduce sequential dictatorship mechanisms (Pápai, 2000, 2001), which
do not rely on trading cycles and are therefore inherently resistant to the kind of safe
deviations just discussed. For each X̃ ⊆ X and Pi, let top(Pi, X̃) be the highest-ranked
object on Pi among the outside option and all objects not in X̃ . Moreover, for each P , let
πP : {1, . . . , |I|} → I be a bijection representing a dictatorial ordering of the agents such
that for each n ∈ {1, . . . , |I|}, πP,n denotes the n-th dictator at P .

Definition 2. A mechanism g is a sequential dictatorship, if there are dictatorial orderings
{πP}P∈P such that for any pair P, P̃ and for each n ∈ {1, . . . , |I|}, the following two
conditions are satisfied:

(i) gπP,n
(P ) = top

(
PπP,n

,∪n−1
l=1 gπP,l

(P )
)
, and

(ii) if gπP,m
(P ) = gπP̃ ,m

(P̃ ) for each m < n, then πP,n = πP̃ ,n.

According to condition (i), a sequential dictatorship recursively defines matchings such
that, for each profile, the respective dictator is assigned her most preferred object still
available after all previous dictators have been assigned. Condition (ii) implies that the
first dictator is always the same, while the next dictator’s identity depends only on previous
dictators’ assignments and not on their detailed preferences.

The first main result of this section fully characterizes efficient and transparent an-
nouncements as sequential dictatorships.

Theorem 1. Take any efficient announcement g. Then, g is transparent if and only if it is a

sequential dictatorship.

To see why sequential dictatorships are transparent, note that at each step exactly one
agent is guaranteed to pick her favorite object from the remaining ones. Observing the
first dictator’s assignment reveals the identity of the second dictator, whose assignment
then reveals the third dictator, and so forth. Consequently, given her observation, each
agent can trace the correct ordering of dictators and the objects that each dictator should
have been able to choose from. Therefore, if the authority deviates from some profile,
the first agent who realizes she must have been the dictator at a given stage, yet did not
receive the supposed best available object, has no innocent explanation for her observation.
Accordingly, the deviation is not safe.
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The proof of the converse statement is divided into two parts. First, we consider
efficient announcements that are not group-strategy-proof. By Pápai (2000), group-strategy-
proofness is characterized by strategy-proofness and non-bossiness. If an efficient strategy-
proof mechanism is not group-strategy-proof, then strategy-proofness implies that there is
a bossy agent at a profile in which this agent receives her top choice. The safe deviation
we construct in this part of the proof, reproduces this agent’s bossiness at that very profile:
it preserves her assignment while altering other agents’ assignments as if the agent were
bossy. Such a deviation can be safe because efficiency of the announcement implies that the
bossy agent can innocently explain her observation with a scenario in which every other
agent has also received her top choice. At the same time, other agents can just attribute their
observations to the bossy agent’s possible preference shift.

The second part examines efficient and group-strategy-proof announcements. Each
such mechanism coincides with a Top-Cycle (TC) mechanism (Pycia and Ünver, 2017),
whose corresponding TC algorithm operates similarly to TTC but allows for more complex
pointing rules.7 If the mechanism is not a sequential dictatorship, one can find a profile and
step of the TC algorithm where a trading cycle forms (i.e., it contains at least two agents).
We then construct a safe and inefficient deviation centered around this trading cycle by
extending the key ideas as discussed for TTCs in the context of Example 1.

Together, these arguments lead directly to the following three-way equivalence for
efficient and group-strategy-proof mechanisms.

Theorem 2. If g is efficient and group-strategy-proof, then the following three statements

are equivalent:

1. g is transparent.

2. g is a sequential dictatorship.

3. g admits only efficient safe deviations.

With very similar arguments, a characterization akin to Theorem 1 and Theorem 2
holds for the entire class of TC mechanisms in the many-to-one framework.8 Also, by the

7For a brief discussion of the TC algorithm, see Appendix A. The characterization of group-strategy-proof
and efficient mechanisms of Pycia and Ünver (2017) extends to the setting with outside options as described in
(Pycia and Ünver, 2017, Supplement, p.6) and Pycia and Ünver (2014). The same holds for the characterization
of Pápai (2000) as shown in Pycia and Ünver (2014).

8TC mechanisms remain efficient and group-strategy-proof in the many-to-one environment (Pycia and
Ünver, 2011).
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same reasoning as described for the one-to-one setting, any efficient mechanism that is not
group-strategy-proof is not transparent. However, the example below illustrates that group
strategy-proofness cannot be relaxed to strategy-proofness in the statement of Theorem 2.

Example 2. Let I = {i, j, k} and X = {x, y}. Denote P̂ = {P̂ ∈ P | P̂i = Pi}, where
Pi : x, y,∅ and consider g such that given any P /∈ P̂ , agents select their favorite objects
among the remaining ones according to ordering i,j,k, while for any P ∈ P̂ , the ordering
changes to i,k,j.

Clearly, g is strategy-proof and efficient. To see that g is not group-strategy-proof,
consider profiles P = (Pi, P−i) and P ′ = (P ′

i , P−i) with Pi : x, y,∅ and Pi = Pj = Pk,
while P ′

i = x,∅, y. Announcement g leads to gi(P ) = gi(P
′) while gk(P ) = y and

gk(P
′) = ∅, revealing that g is bossy. Consequently, g is not group-strategy-proof.

Next, take any deviation g̃ from g. First, under any safe g̃, it is clear that gi(P ∗) = g̃i(P
∗)

for any P ∗. Now, consider a profile P̄ , where x is not ranked highest on P̄i. Hence,
oj

(
P̄ , g̃(P̄ )

)
reveals to j that P̄ /∈ P̂ . This means j detects g̃ unless g̃j(P̄ ) = gj(P̄ ) and

therefore, we obtain g̃(P̄ ) = g(P̄ ).
By Lemma 1, we know that if g is efficient and g̃ is safe, then g̃ is individually rational

and non-wasteful. We show that this implies that g̃ is efficient. Concretely, consider a
problem P̄ , where x is i’s top-choice on P̄i. First, since gi(P̄ ) = g̃i(P̄ ) = x, if only one
of P̄j and P̄k ranks y acceptable, then individual rationality would be violated whenever
g̃(P̄ ) ̸= g(P̄ ). Thus, g(P̄ ) = g̃(P̄ ) and therefore g̃(P̄ ) is efficient. Second, if P̄j and P̄k

both rank y over ∅, then by non-wastefulness of g either j or k must receive y implying
efficiency of g̃(P̄ ).

When |X| < |I|, then similar arguments apply to markets of any size and to mechanisms
that are not dictatorial. By contrast, when |X| ≥ |I|, any non-group-strategy-proof mecha-
nism induced by a TC algorithm admits an inefficient safe deviation. Such a deviation can
be constructed by applying the key ideas from Theorems 1 and 2.

4 Stable Mechanisms

This section analyzes the transparency properties of stable mechanisms. Since announce-
ments are strategy-proof, we focus on the agent-proposing DA, the unique strategy-proof
stable mechanism (Roth, 1982a; Dubins and Freedman, 1981; Alcalde and Barbera, 1994).
Denote the DA operating on s by DAs.
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We begin with an elementary observation. Denote Σs(P ) as the set of stable matchings
for P under s and let Σs(Pi) =

⋃
P̃−i

Σs(Pi, P̃−i) be the set of matchings that, given Pi and
s, satisfy the stability conditions from the perspective of i. Combining these definitions
leads directly to

Lemma 2. Σs(P ) =
⋂

i Σ
s(Pi).

Note that Lemma 2 implies that stability can be verified agent-by-agent. This observation
is central to proving the following core result of this paper.

Theorem 3. A deviation g̃ from DAs is safe if and only if g̃ is stable for s.

Proof. Consider a deviation g̃ that is not stable for s. Thus, there exists P such that
g̃(P ) /∈ Σs(P ). By Lemma 2, there exists i such that g̃(P ) /∈ Σs(Pi). Since DAs is stable
for s, we have DAs(Pi, P

′
−i) ∈ Σs(Pi) for any P ′

−i. Consequently, since g̃(P ) /∈ Σs(P ),
observation oi (P, g̃(P )) has no innocent explanation. Thus, g̃ is not safe.

Conversely, take any deviation g̃ that is stable for s. To establish that g̃ is safe, we
derive an innocent explanation for any i and P and for any of her observations oi (P, g̃(P )).
Consider any P ′

−i, such that for each j ̸= i, the object g̃j(P ) is j’s top choice on preferences
P ′
j . In this case, the fact g̃(P ) ∈ Σs(P ) also implies that g̃(P ) ∈ Σs(Pi, P

′
−i). However,

given profile (Pi, P
′
−i) all agents except i receive their top choice under g̃(P ). Therefore,

no other matching in Σs(Pi, P
′
−i) Pareto dominates g̃(P ) (i.e., no stable matching makes all

agents weakly better off, and at least one agent strictly better off). Since DAs produces this
agent-optimal stable matching, we have g̃(P ) = DAs(Pi, P

′
−i). Thus, oi (P, g̃(P )) has an

innocent explanation. Since i and P were arbitrary, g̃ is a safe deviation.

While Theorem 3 severely restricts the scope for deviations from DAs, it also implies
that DAs is transparent if and only if there is a unique stable matching for each profile. As
shown next, under these conditions, DAs reduces to a serial dictatorship (Satterthwaite and
Sonnenschein, 1981; Svensson, 1994).

Proposition 1. DAs is transparent if and only if it is a serial dictatorship.

To prove the result, one first shows that for DAs to be a serial dictatorship, all objects
must induce the same priority ranking. Because a serial dictatorship is simply a special
case of a sequential dictatorship with a fixed dictatorial ordering, its transparency follows
immediately. The need for such a strong restriction on s becomes clear from Example 1:
in that example, DAs coincides with TTCs, the constructed g̃ remains stable under s, and
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agent i holds the highest score on x while agent j holds the highest score on y. As detailed
in Appendix B, the straightforward priority and preference structures in Example 1 already
hint at how the same logic extends to larger markets under DAs.

However, although the logic behind DAs transparency shares many features with that of
efficient announcements, it is crucial to note that the constraints imposed on safe deviations
by Lemma 2 have no counterpart under efficient mechanisms. In particular, unlike instability,
inefficiency typically cannot be verified agent by agent, because it stems from mutual
gains from trade that cannot be inferred from a single agent’s report and outcome alone.
Consequently, the scope for an authority to deviate safely from an efficient mechanism may
be much broader.

In the remainder of this section, we briefly discuss how this section’s findings extend
to the public school assignment and college admission contexts. Concretely, assume each
object has a publicly known capacity and that each agent’s observation comprises only her
own preferences, scores, assignment, and a single-number statistic per object. Suppose the
authority announces DAs and additionally promises that the disclosed statistics correspond
to the objects’ cutoffs: specifically, if an object’s capacity is filled, its cutoff is the lowest
object-specific score among the agents assigned to it; otherwise, it is set to zero.

As argued in the following, even in this coarser environment, any deviation from stability
for s will be detected. First, an agent’s observation under the deviation can have an innocent
explanation only if the disclosed statistic for her assignment does not exceed her own score
on that object. Consequently, the disclosed statistics must be weakly lower than the genuine
cutoffs of the induced matching. Second, because DAs is stable for s, there must exist a
configuration of other agents’ assignments, preferences, and scores such that the resulting
matching meets the stability constraints dictated by the agent’s own assignment, preferences,
scores, and the disclosed statistics. However, that matching is then stable under its genuine
(higher) cutoffs, and thus remains stable for s. Hence, by similar reasoning as in Theorem 3
any deviation not stable for s is detected. It is also clear that the converse part of the proof
of Theorem 3 applies, so the remaining results of this section follow immediately.

5 Strategic Agents

In this section, the authority commits ex ante to using a strategy-proof mechanism. This
choice is motivated by the idea that in case all deviations are intentionally chosen by
the authority, sophisticated agents could anticipate them. So the authority may decide to
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voluntarily guarantee strategy-proofness. Hence, we assume that any safe deviation must
itself be strategy-proof. In this setup, we revisit DAs and TTCs. Starting with DAs, we
can directly apply Theorem 3 to get the following corollary:

Corollary 1. DAs is transparent.

If s satisfies the acyclicity condition from Kesten (2006), then TTCs is equivalent
to DAs and thus transparent by Corollary 1. These insights extend to the many-to-one
framework of Abdulkadiroğlu and Sönmez (2003).9 As we demonstrate later, Kesten’s
condition is not necessary. Instead, we now introduce a new cycle condition that captures
the transparency of TTCs more directly.

Definition 3. A replacement cycle in s consists of four agents i, j, k, l ∈ I and two objects
x, y ∈ X , all distinct, such that one of the following holds:

(1) sxi > sxk > {sxj , sxl } and syj > syl > {syi , s
y
k}, or

(2) sxi > {sxk, sxl } > sxj and syj > {syk, s
y
l } > syi .

In other words, there are two ways a replacement cycle can arise: Condition (1) requires
that there are two pairs of agents who mutually outrank each other on two objects. To satisfy
condition (2), there must be one pair that completely encloses another pair on two objects,
with the top and bottom agents of the enclosing pair swapping positions across the objects.

Proposition 2. If s has a replacement cycle, then TTCs is not transparent.

To build intuition for the statement, imagine a setting with four agents i, j, l, k and two
objects x, y, where s contains a replacement cycle as in Definition 3 (1). Consider a problem
where all objects are acceptable, i and j trade x and y, and the deviation g̃ swaps their
assignments. The replacement cycle in s now ensures that agents k and l have sufficiently
high scores at x and y to “replace” i at x and j at y if i and j respectively misreport x
and y as unacceptable. In short, this replacement is necessary to prevent g̃ from producing
waste or making violations of the score-based pointing rules of TTCs apparent to i or j. By
contrast, without it, g̃ must violate strategy-proofness to remain safe, since otherwise i and
j could strategically forgo x and y to restore their TTC outcomes.

To see this more explicitly, assume we modify s so that i and j have the highest scores
on x and y leaving everything else unchanged. Now suppose i misreports x as unacceptable.

9The weaker condition in Ergin (2002) coincides with the condition in Kesten (2006) only in the one-to-one
framework (Haeringer and Klijn, 2009; Kesten, 2006).
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By individual rationality of TTCs, strategy-proofness of g̃ would require that i receives the
outside option. Then, for g̃ to be safe, j’s top choice x cannot be wasted. Moreover, since j

has a higher score at x than k and l, assigning one of them to x would mean j detects the
deviation. So, j must receive x. But i still ranks y as her top choice and since i owns x, j
can only acquire x by trading y in exchange for x with i. Hence, any safe g̃ must assign y to
i which violates strategy-proofness g̃.

Given these arguments, consider the following condition that ensures s contains no
replacement cycles.

Definition 4. A score structure s satisfies the imperfect replacement property if, for any
four agents i, j, k, l ∈ I , there exist no two distinct objects x, y ∈ X such that:

(1) sxi > {sxk, sxl } > sxj , and

(2) syl > {syi , s
y
j , s

y
k} or {syi , s

y
j , s

y
k} > syl .

This property is weaker than the acyclicity condition of Kesten (2006), yet it is still
sufficient for transparency of TTCs.

Proposition 3. If s satisfies the imperfect replacement property, then TTCs is transparent.

By definition, the imperfect replacement property holds in any market with at most
three agents. Hence, by Proposition 3, the acyclicity conditions from Kesten (2006) and
Mandal and Roy (2022) are not necessary for transparency of TTCs, because they restrict
top trading cycles in TTC to at most two agents.10 Finally, the condition of Mandal and
Roy (2022) is satisfied whenever there are at most two objects. Thus, by Proposition 2, it is
not sufficient for transparency of TTCs.

Appendix A Proofs of Section 3 and 5

This section contains the proofs of Section 3 and Section 5. In particular, subsection A.1
contains the proofs of Theorems 1 and 2 from Section 3, and subsection A.2 contains the
proofs of Propositions 2 and 3 from Section 5.

We briefly describe some basic concepts and notation needed in this section. Since
TTCs is a special case of a TC mechanism, we only introduce these concepts once and

10The acyclicity condition of Mandal and Roy (2022) characterizes priority structures for which TTCs is
obviously strategy-proof (Li, 2017; Mandal and Roy, 2022). See also Troyan (2019) for a similar condition.
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use them in both subsections. Given any J ⊆ I , a submatching restricted to J is a mapping
σ : J → X ∪ {∅}. Let Îσ ≡ I \ J and let X̂σ ⊆ X be the set of unassigned agents
and objects under σ, respectively. Note that the outside option ∅ is not in X̂σ because it
is always available. Nonetheless, recall that if an agent is mapped to ∅, we treat her as
assigned, so she does not appear in Îσ.

For any input P and any sequence of steps t = 1, 2, . . . denote by σt−1(P ) the sub-
matching of agents and objects matched at the beginning of step t. We say a submatching σ

is on-path (on TC or TTC) if there exists a profile P and a step t such that σ = σt−1(P ).

A.1 Proofs of Theorem 1 and Theorem 2

In the following, we prove Theorem 1 and Theorem 2. Lemma 3 presented first, implies
the sufficiency parts of both statements. The converse direction for Theorem 2 follows
from Lemma 4, while Theorem 1 needs Lemma 5 in addition. Thus, we first establish
transparency of sequential dictatorships.

Lemma 3. If g is a sequential dictatorship, then g is transparent.

Proof. Consider an arbitrary sequential dictatorship g. Let g̃ be an arbitrary deviation from
g and select P such that g̃(P ) ̸= g(P ). Given πP , for each i ∈ I , denote ni = π−1

P (i). Also,
let I ′ = {i′ ∈ I| gi′(P ) ̸= g̃i′(P )} and select i ∈ I ′ such that, for all i′ ∈ I ′ \ {i}, it holds
ni ≤ ni′ . We show that oi (P, g̃(P )) has no innocent explanation.

First, note that for each P̃−i such that gk(P ) = gk(Pi, P̃−i) for all k with nk < ni,
Definition 2 (ii) implies that ni = π−1

(Pi,P̃−i)
(i). However, then Definition 2 (i) means

that gi(P ) = gi(Pi, P̃−i). This implies that given gi(P ) ̸= gi(Pi, P̃−i), i has no innocent
explanation for oi (P, g̃(P )). Therefore, g̃ is not safe. Thus, g is transparent.

Next, we proceed with the sufficiency parts of Theorem 1 and Theorem 2.

Lemma 4. If g is efficient, group-strategy-proof and not a sequential dictatorship, then

there exists a safe and inefficient deviation g̃ from g.

In the proof, we rely on the TC algorithm and the characterization by Pycia and Ünver
(2017). We briefly recap the basics needed to describe the pointing specification under the
TC algorithm.

First, for each on-path submatching σ, each unassigned object x ∈ X̂σ points to an
unassigned agent i ∈ Îσ, thereby making i either the owner or the broker of x. If i owns x at

16



σt−1(P ), then from step t onward, i can obtain x by forming a self cycle (where i points to
x and x points back to i) or by trading x via a trading cycle with another agent. By contrast,
if i is the broker of x, then i can only trade x in a trading cycle; i cannot form a self cycle
with x unless i’s status changes to become the owner of x. No agent is ever the owner or
broker of the outside option ∅.

Second, we use the TC algorithm for outside options as described in Pycia and Ünver
(2014) and (Pycia and Ünver, 2017, Supplement, p.5). Because we have a common outside
option ∅, we apply a slightly modified version in which ∅ does not point to anyone, and
any owner who assigns herself to ∅ is immediately assigned to it.

Third, to ensure that the TC algorithm induces a group-strategy-proof and efficient g,
the pointing must be consistent across on-path submatchings (Pycia and Ünver, 2017). The
interested reader is kindly referred to an excellent description of the TC algorithm along
with a rigorous discussion and interpretation of these consistency conditions in Pycia and
Ünver (2017) and Pycia and Ünver (2014). We use some of the implications of consistency
in the proof below. Especially, we use that once an agent has become an owner of an object,
this ownership persists as long as the agent is still unassigned.

Proof. Consider any efficient and group-strategy-proof g that is not a sequential dictatorship.
Our goal is to construct a deviation g̃ from g that is safe but inefficient. Since g is equivalent
to a TC mechanism, it can be induced via the TC algorithm with consistent pointing rules.

We first make two preliminary observations. First, according to Pycia and Ünver (2017)
(Theorem 6) and Pycia and Ünver (2014) (Proposition 3), given any on-path submatching σ,
if there is a single agent who owns all objects in X̂σ, then there is no broker at σ. Second, if
there is no on-path submatching with strictly more than one owner, then it is easy to see that
g is equivalent to a sequential dictatorship as defined by Definition 2.

These observations thus imply that since g is not a sequential dictatorship, there exists
an on-path submatching σ∗ with two agents i, j ∈ Îσ∗ and two objects x, y ∈ X̂σ∗ such
that i owns x and j owns y at σ∗. Let K be the set of agents assigned under σ∗. Consider
preferences PK such that for each k ∈ K, the top choice under Pk is σ∗(k). Because g is
non-bossy, for any profile (PK , P̃Îσ∗ ) where P̃Îσ∗ is chosen arbitrarily, the TC algorithm
reaches σt∗−1(PK , P̃Îσ∗ ) = σ∗ at some step t∗.

For the construction of a deviation g̃, the following preferences of agents i and j are
central. For i consider Pi, P

′
i such that

• yPix and for all x′ ∈ X ∪ {∅} \ {x, y}: xPix
′,
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• xP ′
iy and for all x′ ∈ X ∪ {∅} \ {x, y}: yP ′

ix
′.

For agent j, let the preferences Pj, P
′
j be

• xPjy and for all x′ ∈ X ∪ {∅} \ {x, y}: yPjx
′,

• yP ′
jx and for all x′ ∈ X ∪ {∅} \ {x, y}: xP ′

jx
′.

Also, denote L = I\{K∪{i, j}} and let PL be specified arbitrarily. Given P−ij = (PK , PL),
let P ′ = (P ′

i , P
′
j , P−ij).

Next, consider g̃ such that g̃(P ) = g(P ′), and for all P̃ ̸= P , let g̃(P̃ ) = g(P̃ ). We first
establish that g̃ is a deviation from g. Given agents in K report PK , we reach σ∗ in step t∗

and thus for all k ∈ K,

g̃k(P ) = gk(P
′) = gk(P ).

Moreover, given P at step t∗, there is a trading cycle

x → i → y → j → x,

which implies gi(P ) = y and gj(P ) = x. By contrast, if agents report P ′, then there are
two self cycles

x → i → x and y → j → y,

at step t∗, thus gi(P ′) = x and gj(P
′) = y and consequently

g̃(P ) = g(P ′) ̸= g(P ).

We conclude that g̃ is a deviation. In addition, it directly follows that g̃ is not efficient, since
agents i and j prefer to trade x and y given P under g̃(P ).

The final step is to show that g̃ is safe. For each i′ ∈ I , we need to find innocent
explanations for observation oi′ (P, g̃(P )). Since g̃(P ) = g(P ′) it is clear that for each
i′ ̸= i, j, one obtains

oi′ (P, g̃(P )) = oi′ (P
′, g(P ′)) .

To find innocent explanations for the remaining agents i and j, consider profiles (P ′
i , P−i)

and (P ′
j , P−j). Since for each k ∈ K the assignment is identical under the deviation, we
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must have σt∗−1(P ′
i , P−i) = σt∗−1(P ′

j , P−j) = σ∗. Given σt∗−1(P ′
j , P−j) at step t∗, there is

a self cycle y → j → y that assigns y to j. This implies that i is assigned x, since i owns x
at σ∗, i is unassigned at σt∗(P ′

j , P−j), and x is her favorite among the remaining objects at
step t∗ + 1. A symmetric argument applies to profile (P ′

i , P−i), where i forms a self cycle
with x at step t∗. Hence, for both i∗ ∈ {i, j} it holds

gi∗(P
′) = gi∗(P

′
i , P−i) = gi∗(P

′
j , P−j).

Finally, by non-bossiness of g, for all l ∈ L, it is clear that

gl(P
′) = gl(P

′
i , P−i) = gl(P

′
j , P−j).

Hence,

g̃(P ) = g(P ′) = g(P ′
i , P−i) = g(P ′

j , P−j)

which leads directly to

oi
(
(P ′

j , P−j), g(P
′
j , P−j)

)
= oi (P, g̃(P )) and oj ((P

′
i , P−i), g(P

′
i , P−i)) = oj (P, g̃(P )) .

We thus conclude that each i′ ∈ I has an innocent explanation for oi′ (P, g̃(P )).
Since the remaining observations under g̃ coincide with those under g, we obtain that g̃

is a safe and inefficient deviation from g. This completes the proof.

This concludes the proof for Theorem 2. The final lemma of this section shows that if
g is efficient and not group-strategy-proof, then we can find a safe deviation and thereby
finish the proof for Theorem 1.

Lemma 5. If g is efficient and not group-strategy-proof, then g is not transparent.

Proof. Since g is not group-strategy-proof, but strategy-proof, we know that g is bossy. Thus,
there exists an agent i ∈ I and two profiles P and P ′ = (P ′

i , P−i) such that g(P ) ̸= g(P ′)

and gi(P ) = gi(P
′). Because g is strategy-proof, for any P ∗ = (P ∗

i , P−i) where gi(P ) is
ranked highest on P ∗

i ,

gi(P
∗) = gi(P ) = gi(P

′).
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Thus, since g(P ) ̸= g(P ′), it is either true that g(P ∗) ̸= g(P ) or g(P ∗) ̸= g(P ′) or both.
Let g(P ∗) ̸= g(P ). A symmetric argument applies to the case where g(P ∗) ̸= g(P ′).

Next, consider a deviation g̃ with g̃(P ∗) = g(P ′) ̸= g(P ∗) and g̃(P̃ ) = g(P̃ ) for all
P̃ ̸= P ∗. We show that g̃ is safe. Since all observations under g and g̃ coincide except for
P ∗, we only need to find innocent explanations for oj (P ∗, g̃(P ∗)) for each agent j ∈ I .
Concretely, if j = i, consider P̂−i such that for each agent j ̸= i, P̂j ranks gj(P ) at the
top position. Then, since the unique efficient matching under (P ∗

i , P̂−i) is g(P ), we have
g(P ∗

i , P̂−i) = g(P ). Thus, oi
(
(P ∗

i , P̂−i), g(P
∗
i , P̂−i)

)
= oi (P

∗, g̃(P ∗)). Second, for each
j ̸= i, we have oj (P

∗, g̃(P ∗)) = oj (P
′, g(P ′)). Hence, g̃ is a safe deviation from g. This

completes the proof.

A.2 Proofs of Proposition 2 and Proposition 3

Let TTCs = g.

Proof of Proposition 2. By hypothesis, we have agents i, j, k, l and objects x, y that satisfy
the replacement cycle inequalities from Definition 3. We focus on the case in which
Definition 3 (1) is satisfied. Similar arguments apply for Definition 3 (2).

For the construction of the safe and strategy-proof deviation from g, we need the
following preferences. Let P̂ be the set of all profiles P such that, Pi ranks y first, and
x second, Pj ranks x first and y second, Pk and Pl only find x and y acceptable and for
each i′ /∈ {i, j, k, l}, Pi′ ranks ∅ first. The rest of these rankings are specified arbitrarily.
Moreover, given any such Pi for agent i, let P̄i rank y last while keeping the same relative
order of all other objects as under Pi. Similarly, for Pj , define P̄j so that x is ranked last,
while the relative ranking among the remaining objects is the same as under Pj .

Consider the following deviation g̃. For any profile P ∈ P̂ , let g̃(P ) = g(P̄i, P̄j, P−ij)

and for any profile P ′ /∈ P̂ , set g̃(P ′) = g(P ′). Since for every P ∈ P̂ , we have g(P ) ̸=
g(P̄i, P̄j, P−ij), it follows that g̃ is indeed a deviation.

To see that g̃ is safe, we can concentrate on profiles P ∈ P̂ . Recall that i has the highest
score for x and j has the highest score for y among those agents ranking it acceptable.
Thus, for each i′ ̸= i, j, the profile (P̄i, P̄j, P−ij) supports an innocent explanation for
oi′
(
P, g̃(P )

)
, since in this case i is assigned to x, j to y and all remaining agents receive the

outside option. Since the same holds for profiles (Pi, P̄j, P−ij) and (P̄i, Pj, P−ij), innocent
explanations for oi

(
P, g̃(P )

)
and oj

(
P, g̃(P )

)
follow directly.

It remains to show that g̃ is strategy-proof. First, for any i′ /∈ {i, j, k, l}, the deviation
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g̃ yields exactly the same assignments as g. Since g is strategy-proof, i′ cannot gain by
misreporting under g̃. Now fix any arbitrary profile P ′. Consider the following arguments
for agents in {i, j, k, l}:

For agent l and each P ′, either gl(P ′) = g̃l(P
′) or g̃l(P ′) Pl gl(P

′). First, for each P ′

such that g(P ′) = g̃(P ′), we have gl(P̂l, P
′
−l) R

′
l g̃l(P̂l, P

′
−l) for all P̂l ∈ Pl. Second, for

each P ′ such that g(P ′) ̸= g̃(P ′), we have g̃l(P
′) R′

l g̃l(P̂l, P
′
−l) for all P̂l. Together, this

implies that l has no incentive to deviate under g̃. Similar arguments apply to k.
For agent i and each P ′, either gi(P ′) = g̃i(P

′) or gi(P ′) Pi g̃i(P
′). First, for each P ′

such that g(P ′) = g̃(P ′), we have gi(P̂i, P
′
−i) R

′
i g̃i(P̂i, P

′
−i) for all P̂i ∈ Pi. Also, for each

P ′ such that gi(P ′) ̸= g̃i(P
′), we obtain g̃i(P

′) R′
i g̃i(P̂i, P

′
−i) for all P̂i. Similar arguments

apply to j. This completes the proof.

Next, we show that the imperfect replacement property is sufficient for transparency of
TTCs.

Proof of Proposition 3. Suppose that s satisfies the imperfect replacement property. We
show that there is no safe, strategy-proof deviation from g. Let g̃ be an arbitrary deviation
from g and assume that g̃ is strategy-proof. We demonstrate that g̃ cannot be safe. Recall that
by Lemma 1, any safe deviation g̃ from g must be non-wasteful and individually rational.

The following preference profile will be central to the arguments: Among all P ∈ P ,
choose the P with the smallest t such that the realized submatching at the end of step t,
σt(P ), implies g(P ) ̸= g̃(P ). Denote σt−1(P ) = σmin. For each P ′, we say we are at σmin

under P ′ if we are at the beginning of step t∗ and σt∗−1(P ′) = σmin.
Next, consider the TTC algorithm under P . Let I t be the set of agents who own an

object at step t, and let Î t ⊆ I t be those agents assigned at step t for whom g̃i′(P ) ̸=
gi′(P ). Since we are at σmin, it follows from strategy-proofness and efficiency of g, that
gi′(P )Pi′ g̃i′(P ) for every i′ ∈ Î t.

To establish that g̃ cannot be safe, we distinguish cases according to the cardinality of
I t. To begin with, it is clear from Definition 4 that |I t| ≤ 3 must hold. In the following, for
each i, let P ∗

i be such that for all x ∈ X with x ̸= gi(P ), we have gi(P )R∗
i∅P ∗

i x.

Case 1 Let |I t| = 1. In this case, there must be a self cycle at step t. Using similar
arguments as in the proof of Lemma 3, we conclude that g̃ cannot be safe. Moreover, we
can apply the same reasoning in subsequent cases whenever an agent in Î t forms a self
cycle. For any such instance, g̃ is not safe.
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Case 2 Let |I t| = 2. Hence, by Case 1, there exist i, j ∈ Î t such that a trading cycle
j → gj(P ) → i → gi(P ) → j forms at step t under P .

We first establish that g̃i(P ∗
i , P−i) ̸= gi(P ) implies g̃j(P

∗
i , P−i) ̸= gj(P ). To start,

strategy-proofness of g̃ implies that g̃i(P ) ̸= gi(P ) leading to g̃i(P
∗
i , P−i) ̸= gi(P ). In

particular, g̃i(P ∗
i , P−i) = ∅ by individual rationality of g. By contradiction, assume

g̃j(P
∗
i , P−i) = gj(P ). Since gj(P ) points to i at σmin and i points to gi(P ), whenever

gj(P
∗
i , P−i) = gj(P ), then by definition of σmin and the pointing rules of TTC, observa-

tion oi ((P
∗
i , P−i), g̃(P

∗
i , P−i)) has no innocent explanation if there is l ∈ Îσmin

such that
g̃l(P

∗
i , P−i) = gi(P ). Thus, also gj(P ) ̸= g̃j(P

∗
i , P−i). Using a symmetric argument, we

also know g̃i(P
∗
j , P−j) ̸= gi(P ) since g̃j(P

∗
j , P−j) ̸= gj(P ).

Given these arguments, note that strategy-proofness of g̃ requires g̃i(P ∗
i , P

∗
j , P−ij) =

g̃j(P
∗
i , P

∗
j , P−ij) = ∅. Moreover, by non-wastefulness of g̃ and the definition of σmin, there

must exist l,l′ ∈ Îσmin
\ {i, j} with g̃l(P

∗
i , P

∗
j , P−ij) = gi(P ) while g̃l′(P

∗
i , P

∗
j , P−ij) =

gj(P ). However, l, l′ /∈ I t, since |I t| ≤ 2. W.l.o.g., let l /∈ I t. Then, since s satis-
fies the imperfect replacement property, there is no x ∈ X such that sxl > sxi . There-
fore, i cannot have an innocent explanation for oi

(
(P ∗

i , P
∗
j , P−ij), g̃(P

∗
i , P

∗
j , P−ij)

)
with

g̃l(P
∗
i , P

∗
j , P−ij) = gi(P ), since gi(P ) cannot be assigned to l whenever gi(P ) is i’s top

choice. Hence, if |Î t| = 2, then g̃ is not safe.

Case 3 Let |I t| = 3. Note that whenever there is no cycle with at least three agents and
objects, or Î t < 3, then the arguments in Case 1 and Case 2 can be applied to conclude that
g̃ is not safe. Thus, in the remaining scenario there are exactly three agents Î t = {i, j, k}
that form a trading cycle i → gi(P ) → j → gj(P ) → k → gk(P ) → i at step t under P .

By strategy-proofness, g̃i(P ∗
i , P−i) ̸= gi(P ). Hence, g̃i(P ∗

i , P−i) = ∅ by individual
rationality of g. However, since |Î t| = |I t| = 3 and g̃ is non-wasteful, we can use similar
arguments as in Case 2. Specifically, there must exist l ∈ Îσmin

\ Î t with l /∈ I t, but
g̃l(P

∗
i , P−i) = gi′(P ) for some i′ ∈ Î . This implies that gi′(P )Pi′ g̃i′(P ). Then, because s

satisfies the imperfect replacement property, there is no x ∈ X such that sxl > sxi . However,
l can never be assigned to gi′(P ) under g, as long as i′ prefers gi′(P ) to all objects in X̂σmin

.
Therefore, i′ cannot have an innocent explanation for observation oi′ ((P

∗
i , P−i), g̃(P

∗
i , P−i))

with g̃l(P
∗
i , P−i) = gi′(P ).

This completes the case distinction. Hence, whenever g̃ is strategy-proof, then it is not
safe.
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Appendix B Proof of Proposition 1

If DAs is a serial dictatorship, then for any given pair of agents i, j ∈ I and objects
x, y ∈ X , it holds sxi > sxj if and only if syi > syj . Given any P , following the ordering of
the induced score ranking for some x ∈ X , for each n ∈ {1, . . . , |I|}, the n-th ranked agent
is guaranteed her top choice among the remaining objects after all previous agents in line
have left. The first ranked agent must receive her top choice under any stable matching in
Σs(P ). Next, the second-ranked agent receives, under any stable matching in Σs(P ), her
top choice among objects once the first agent is left, and so forth. For each P , it is clear that
Σs(P ) is a singleton. Therefore, Theorem 3 implies that there exists no safe deviation from
DAs, and thus DAs is transparent.

If DAs is not a serial dictatorship, then there exist two agents i, j ∈ I and two objects
x, y ∈ X , such that sxi > sxj and syj > syi . We first construct a deviation g̃ from DAs, for
which we need the following preferences. For each k ̸= i, j, consider Pk that ranks ∅ first.
Moreover, let Pi, P

′
i be such that

• yPix and for all x′ ∈ X ∪ {∅} \ {x, y}: xPix
′, and

• xP ′
iy, and for all x′ ∈ X ∪ {∅} \ {x, y}: yP ′

ix
′.

Similarly, consider Pj, P
′
j such that

• xPjy and for all x′ ∈ X ∪ {∅} \ {x, y}: yPjx
′, and

• yP ′
jx and for all x′ ∈ X ∪ {∅} \ {x, y}: xP ′

jx
′.

Next, for the profile P = (Pi, Pj, P−ij), let g̃(P ) yield g̃i(P ) = x, g̃j(P ) = y, and for
all k ̸= i, j, g̃k(P ) = ∅. Also, for any P ′ ̸= P , let g̃(P ′) = DAs(P ′). Since for P , the DA

algorithm yields DAs
i (P ) = y, DAs

j(P ) = x, we know that g̃ is a deviation.
It remains to show that g̃ is safe. Except for profile P , innocent explanations are

immediate. For the remaining case with preferences P , we have

DAs(P ′
i , Pj, P−ij) = DAs(Pi, P

′
j , P−ij) = g̃(P ).

Hence, for each agent i′ ∈ I , observation oi′ (P, g̃(P )) has an innocent explanation. Thus, g̃
is a safe deviation and hence DAs is not transparent.
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