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Abstract

A Bayesian agent experiences gain-loss utility each period over changes in
belief about future consumption (“news utility”), with diminishing sensitivity
over the magnitude of news. Diminishing sensitivity induces a preference over
news skewness: gradual bad news, one-shot good news is worse than one-shot
resolution, which is in turn worse than gradual good news, one-shot bad news.
So, the agent’s preference between gradual information and one-shot resolution
can depend on his consumption ranking of different states. In a dynamic cheap-
talk framework where a benevolent sender communicates the state over multiple
periods, the babbling equilibrium is essentially unique when the receiver is not
loss averse. Contrary to the commitment case, more loss-averse receivers may
enjoy higher news utility in equilibrium. We characterize the family of gradual
good news equilibria when facing such receivers and find the sender conveys

progressively larger pieces of good news.
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1 Introduction

People are sometimes willing to pay a cost to change how they receive news over time,
even when the information does not help them make better decisions. Consider the
following scenario:

A student applies for a selective summer program. He knows that accepted ap-
plicants will be notified by email some time during the first week of February, while
other applicants will not hear back until much later. In other words, each day of no
news during the first week of February is bad news. To avoid experiencing multiple
instances of disappointment during the week in case he does not hear back for several
days, the student sets up an email filter to automatically redirect any email from the
summer program into a holding tank, then releases all messages from the holding
tank into his inbox at the end of the week.

In this scenario, the student may be willing to exert costly effort to modify his
informational environment because he experiences diminishingly sensitive psycholog-
ical reactions to good and bad news. He is elated by good news and disappointed
by bad news in every period, and multiple congruent pieces of news carry a greater
total emotional impact if they are experienced separately in different periods than
if the aggregated lump-sum news arrives in a single period. This kind of psycholog-
ical consideration also influences how people convey news to others. When CEOs
announce earnings forecasts to shareholders and when organization leaders update
their teams about recent developments, they are surely mindful of their information’s
emotional impact (in addition to its possible instrumental value). Finally, the psycho-
logical effects of news also play a prominent role in designing entertainment content,
where the audience experiences positive and negative reactions over time to news and
developments that have no bearing on their personal decision-making.

In this paper, we study the implications of diminishingly sensitive reactions to
news for informational preference and dynamic communication. An individual’s fu-
ture consumption depends on an unknown state of the world. In each period, he
observes some information about the state and experiences gain-loss utility over the
change in his belief about said future consumption (“news wutility”). How does this
individual prefer to learn about the state over time? If there is another person who
knows the state and who wants to maximize the first individual’s expected welfare,

how will this informed person communicate her information?



Of course, we are not the first to model news utility (see K6szegi and Rabin
(2009)) or to study psychological considerations in dynamic games (see the survey
Battigalli and Dufwenberg (2022), for example). Our main innovation is the focus on
the implications of diminishing sensitivity — a classical but surprisingly under-studied
assumption. Diminishing sensitivity in reference dependence traces back to Kahne-
man and Tversky (1979)’s original formulation of prospect theory. Based on Weber’s
law and experimental findings about human perception, these authors envision a gain-
loss utility based on deviations from a reference point, where larger deviations carry
smaller marginal effects. But almost all subsequent work on reference-dependent pref-
erences use two-part linear gain-loss utility functions, so their results are driven by loss
aversion but not diminishing sensitivity.! Four decades since Kahneman and Tver-
sky (1979)’s publication, O’Donoghue and Sprenger (2018)’s review of the ensuing

literature summarizes the situation:

“Most applications of reference-dependent preferences focus entirely
on loss aversion, and ignore the possibility of diminishing sensitivity [...]
The literature still needs to develop a better sense of when diminishing

sensitivity is important.”

We show that diminishing sensitivity leads to novel and testable predictions for pref-
erence over information. First, when the agent commits to an information structure
ex-ante, diminishing sensitivity generates a preference over the direction of news skew-
ness. Any information structure where good news arrives all at once but bad news
arrives gradually in small pieces — such as waiting for the admission decision in sce-
nario above — is strictly worse than resolving all uncertainty in one period (“one-shot
resolution”). On the other hand, any information structure with the opposite skew-
ness — good news arrives gradually but bad news all at once — is strictly better than
one-shot resolution, provided loss aversion is weak enough. We relate this result to
recent experiments about preference over the skewness of information in Section 3.1.

As Készegi and Rabin (2009) point out, the two-part linear news-utility model
(without diminishing sensitivity) predicts that people prefer one-shot resolution over

any other dynamic information structure. At the same time, some other theories

Készegi and Rabin (2009)’s model of news utility allows for diminishing sensitivity and they
argue it is a realistic feature. But their results either work with a special case without diminish-
ing sensitivity, or are in a setting where news utility with and without diminishing sensitivity are
behaviorally equivalent.



(e.g., Ely, Frankel and Kamenica (2015)’s suspense and surprise utility) make the
opposite prediction that one-shot resolution is the worst possible information struc-
ture. By contrast, the skewness preference induced by news utility with diminishing
sensitivity implies the same person can make different choices between gradual infor-
mation and one-shot resolution in different situations — in particular, it depends on
his consumption ranking over the states.

Our second main result is that when an informed benevolent sender communicates
the state to the receiver through cheap talk, the receiver’s diminishing sensitivity leads
to credibility problems for the sender. We show that if the receiver has diminishing
sensitivity and low enough loss aversion, the lack-of-commitment problem is so severe
that every equilibrium is payoff-equivalent to the babbling equilibrium. The reason
is that the sender strictly prefers to lie and say the state is good even when it is bad.
This temptation is driven by the receiver’s diminishing sensitivity: even though the
sender is far-sighted and knows false hope creates additional disappointment when
the state is revealed, diminishing sensitivity limits the incremental disutility of this
extra future disappointment. Diminishing sensitivity thus drives a wedge between the
commitment solution and the equilibrium outcome, whereas the two coincide without
it. We also show that high enough loss aversion can restore the equilibrium credibility
of good-news messages by increasing the future disappointment cost of false hope in
the bad state. As a consequence, receivers with higher loss aversion may enjoy higher
equilibrium payoffs.

With enough loss aversion, there exist non-babbling equilibria featuring gradual
good news. We characterize the entire family of such equilibria and study how quickly
the receiver learns the state. For a class of news-utility functions that include a
tractable quadratic specification, the sender always conveys progressively larger pieces
of good news over time, so the receiver’s equilibrium belief grows at an increasing rate
in the good state. The idea is that in equilibrium, the sender must be made indifferent
between giving false hope and telling the truth in the bad state, and diminishing
sensitivity implies that sustaining said indifference requires a greater amount of false
hope when the receiver’s current belief is more optimistic. This conclusion also puts
a uniform bound on the number of periods of informative communication across all
time horizons and all equilibria in this family.

The rest of the paper is organized as follows. Section 2 defines the timing of

events and introduces a model of news utility with diminishing sensitivity. Section



3 studies how diminishing sensitivity leads to a preference over information struc-
tures with different skewness. Section 4 considers an environment where an informed
benevolent sender communicates the state to a receiver with news utility, focusing on
the credibility problems in the resulting cheap-talk game. Section 5 discusses related
literature and contrasts our results with the predictions of other models of preference
over non-instrumental information. In particular, it looks at the model’s prediction
that an agent’s choice between gradual information and one-shot resolution depends

on his consumption ranking of the states. Section 6 concludes.

2 Model

2.1 Timing of Events

We consider a discrete-time model with periods 0,1,2,...,7, where T" > 2. There
is a binary state space © = {A, B}. In the final period T, the agent experiences
consumption utility v(#) in state # € ©. There is no consumption in other periods,
and we assume that v(A) # v(B). For our analysis, it is without loss to normalize
v(A) =1 and v(B) = 0.

The agent starts with a prior probability 0 < 7y < 1 of the state being A. In every
period t = 1, ..., T, the agent observes some information and updates his belief about
{0 = A} to the Bayesian posterior 0 < m; < 1. The information is non-instrumental
in that no actions taken in these interim periods affect the state or the consumption
utility in period T'. In period T, he perfectly learns the true state 6 at the moment
of consumption, so we always have o =1if § = Aand 7y =0if 6 = B.

Given our normalization, m, is also the agent’s time-t expectation of the final-
period consumption utility. We refer to information that increases this expectation

good news and information that decreases it bad news.

2.2 News Utility

Although the agent only consumes in the final period, he experiences news utility over
consumption in every period. He has a gain-loss utility function, p : [—1,1] — R that
maps changes in expected final-period consumption utility into a felicity level. At the
end of period 1 < ¢ < T, the agent experiences news utility pu(m — m_1) — that is,

he derives joy or pain based on the recent belief update from m;_; to m,. Utility flow
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is undiscounted and the agent has the same p in all periods,? so his total payoff is
ST p(m — m—1) + v(#). The number of periods T is exogenous, with the length of
each period capturing the amount of time that the agent needs to process the new
information and to experience its psychological effect.

Throughout we assume g is continuous, strictly increasing, twice differentiable
except possibly at 0, and p(0) = 0. We make further assumptions on p to reflect

diminishing sensitivity and loss aversion.

Definition 1. Say p satisfies diminishing sensitivity if p” () < 0 and p"(—z) > 0 for
all © > 0. Say p satisfies (weak) loss aversion if —u(—x) > u(x) for all x > 0. There

is strict loss aversion if —u(—xz) > p(x) for all x > 0.

For instance, the gain-loss function p in Tversky and Kahneman (1992) where
p(x) =z for x > 0, p(x) = =Mz’ for z < 0 with 0 < o, 3 < 1, B3 < @, and X\ > 1
satisfies both diminishing sensitivity and strict loss aversion.

This model of diminishing sensitivity over the magnitude of news shares the same
psychological motivation as Kahneman and Tversky (1979), who base their theory of
human responses to monetary gains and losses on Weber’s law and on psychology ex-
periments about how people perceive changes in physical attributes like temperature
or brightness. In the realm of news, we make the analogous assumption that the mag-
nitude of news utility is strictly concave in the magnitude of belief update, both in
the direction of good news and in the direction of bad news. This translates into the
assumption that x4 must be strictly concave in the positive domain (i.e., good news)
and strictly convex in the negative domain (i.e., bad news). This pair of assumptions
about the curvature of u drives the results.?

This framework of deriving utility from changes in beliefs has been previously
discussed in Készegi and Rabin (2009), but they mostly focus on another model that
makes percentile-by-percentile comparisons between old and new beliefs and without
diminishing sensitivity.* The model we use allows us to characterize the implications

of diminishing sensitivity in the simplest setup with two states.

20ur preference satisfies Segal (1990)’s time neutrality axiom. We abstract away from preferences
for early or late resolution of uncertainty.

3If we instead assume that v(A) = 0 and v(B) = 1, then the agent experiences higher news utility
when he updates his posterior more in the direction of state B. Diminishing sensitivity would still
require that the magnitude of the agent’s news utility is strictly concave in the magnitude of belief
update in either direction.

4In their model, suppose F and G are the distributions over future consumption utility given
by the agent’s old and new beliefs. If F~1(q) and G~!(q) correspond to the q percentiles of these



2.2.1 Quadratic News Utility

We discuss another tractable functional form of g that is rich enough to exhibit
both diminishing sensitivity and loss aversion. The quadratic news-utility function

p:[—1,1] = R is given by

T — Bpr? x>0
() =

anx + Bux? x <0

with a,, By, an, B, > 0. So we have

) ap, — 28, x>0 " —26, x>0
p(x) = ;o w ()= :
a, + 20, <0 20, x <0
The parameters a,, cv, control the extent of loss aversion near 0, while 3, 3,, determine
the amount of curvature — i.e., the second derivative of p. The maintained general

assumptions on p imply the following parametric restrictions.

1. Monotonicity: o, > 23, and a,, > 23,,. These inequalities hold if and only if p

is strictly increasing.

2. Loss aversion: o, — o, > max(0, 5, — 3,). This condition is equivalent to loss

aversion from Definition 1 for this class of news-utility functions.

A family of quadratic news-utility functions that satisfy these two restrictions can
be constructed by choosing any o > 23 > 0 and A > 1, then set o, = o, oy, = A,
Bp = B, Bn = AB. Figure 1 plots some of these news-utility functions for different

values of «a, 3, and \.

3 Diminishing Sensitivity and Preference over News

Skewness

In this section, we show that news utility with diminishing sensitivity makes novel

predictions about preference over the skewness of information. When there is no loss

utility distributions for 0 < ¢ < 1, then the agent experiences news utility fol w(G=(q) — F~1(q))dg.
Készegi and Rabin (2009) focus on the case where p exhibits loss aversion but not diminishing
sensitivity.



Quadratic News-Ultility Function
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Figure 1: Examples of quadratic news-utility functions in the family o, = o, oy, = Ay,
Bp = B, Bn = AB. Shaded curve: o =2, 8 =1, A = 1. Dashed curve: o = 2, 8 =1,
A = 2. Solid curve: a =2, 5 =0.8, A =1.

aversion, one-shot resolution of uncertainty is neither the agent’s most preferred way
to get information nor the least preferred. Instead, the agent strictly prefers one-shot
resolution over an information structure that delivers piecemeal bad news over time,
and strictly prefers an information structure with the opposite skewness over one-shot
resolution. By continuity, the same conclusions hold when loss aversion is present but

sufficiently weak.

Definition 2. An information structure features gradual good news, one-shot bad

news if
e Plmp >m_qforalll1 <t<T|0=A]=1and
e P[m < m—; for no more than one 1 <t <7 |f§ = B]=1.

An information structure features gradual bad news, one-shot good news if
e Plmp<mforall1 <¢t<T|0=DB]=1and

o P[m; > m_ for no more thanone 1 <t <7 |0 =A] =1



In the gradual good news, one-shot bad news information structures, the agent gets
good news over time and gradually increases his expectation of future consumption.
When the state is bad, the agent gets all the negative information at once — in the
first period when his expectation m; strictly decreases, he fully learns that the state
is bad. Conversely, “gradual bad news, one-shot good news” refers to the opposite
kind of information structure.

An information structure features one-shot resolution if
P[m; # w1 for at most one 1 <t <T]=1.

That is, almost surely the agent’s belief only changes in one period (possibly the final
period when true state is perfectly revealed). Note that one-shot resolution falls into
both classes from Definition 2. We say that an information structure features strictly

gradual good news if
P[m, > 7y and 7, > 7w, for two distinct 1 < t,t <T |6 = A] > 0.

That is, there is positive probability that the agent’s expectation strictly increases at
least twice in periods 1 through 7'. Similarly define strictly gradual bad news.

We now prove that whenever p satisfies diminishing sensitivity and (weak) loss
aversion, information structures featuring strictly gradual bad news, one-shot good
news are strictly worse than one-shot resolution. The intuition is that an information
structure in this class delivers small pieces of bad news but large clumps of good news,
which is the exact opposite of what the agent wants when he experiences diminishing
sensitivity to news. When 6 = B, the information structure gives several pieces
of bad news, but the agent is better off getting all of the bad news in one period.
When 6 = A, the information structure gives several pieces of bad news followed by
conclusive good news. By diminishing sensitivity, this is worse than getting all of the
bad news in one period and then the conclusive good news in the subsequent period.
By loss aversion, this is in turn worse than directly learning the state in the first

period.

Proposition 1. Suppose p satisfies diminishing sensitivity and weak loss aversion.
Any information structure featuring strictly gradual bad news, one-shot good news pro-

vides strictly lower utility than one-shot resolution in expectation, and almost surely



weakly lower utility ex-post.

Proposition 1 identifies a class of information structures that are worse than one-
shot resolution for news utility with diminishing sensitivity, distinguishing it from
other models of information preference where one-shot resolution is the worst possible
information structure. Utility models that make this other prediction include suspense
and surprise (Ely, Frankel and Kamenica, 2015) and news utility with a two-part
linear, gain-loving (instead of loss-averse) value function (Chapman, Snowberg, Wang
and Camerer, 2022; Campos-Mercade, Goette, Graeber, Kellogg and Sprenger, 2022).

Next, we show that if the agent has diminishing sensitivity but not loss aversion,
then information structures with strictly gradual good news, one-shot bad news are

strictly better than one-shot resolution.

Proposition 2. Suppose i satisfies diminishing sensitivity and it is symmetric around
0 with —u(—x) = p(x) for all x > 0 (that is, it does not exhibit loss aversion). Any
information structure featuring strictly gradual good news, one-shot bad news provides
strictly higher utility than one-shot resolution in expectation, and almost surely weakly

higher utility ex-post.

In Készegi and Rabin (2009)’s model of news utility without diminishing sensi-
tivity, one-shot resolution is optimal among all information structures.’ By contrast,
Proposition 2 can be combined with continuity to show that for news-utility func-
tions with diminishing sensitivity and a small enough amount of loss aversion, there
are information structures that are strictly better than one-shot resolution. To make
this precise, consider the parametric class of A-scaled news-utility functions. We fix
some fipos : [0,1] — R, strictly increasing and strictly concave with fi,,s(0) = 0,
and consider the family of news-utility functions given by p(2) = fipos(x), pr(—z) =

—Mipos(z) for z > 0 as we vary the loss aversion parameter A > 1.

Corollary 1. Consider a class of A-scaled news-utility functions (ux)a>1 and any
information structure featuring strictly gradual good news, one-shot bad news. There
exists some X\ > 1 so that for any 1 < X\ < X, this information structure gives strictly

higher utility than one-shot resolution in expectation.

SKészegi and Rabin (2009) show this for their percentile-based model of news utility with binary
states, while Dillenberger and Raymond (2020) prove the same also holds for arbitrarily many states.



In summary, provided loss aversion is low enough, diminishing sensitivity induces
the following preference ranking: gradual good news, one-shot bad news is better
than one-shot resolution, which is in turn better than gradual bad news, one-shot

good news."

3.1 Experiments on Information Preference

Our results relate to a number of experimental papers that test whether people prefer
one-shot resolution by asking subjects to choose how they wish to learn about their
prize for the experiment, with one-shot resolution as a feasible information structure.
After accounting for preference over the timing of resolution,” Falk and Zimmermann
(2023) and Bellemare, Krause, Kroger and Zhang (2005) find that subjects prefer
one-shot resolution, while Nielsen (2020); Masatlioglu, Orhun and Raymond (2017);
Zimmermann (2014); Budescu and Fischer (2001) find the opposite. News utility
with diminishing sensitivity may explain these mixed results, as it predicts one-shot
resolution is neither the best nor the worst information structure, so it may or may not
be chosen depending on what other information structures are feasible in a particular
experiment. On the other hand, these experimental results are harder to reconcile
with theories that either predict people always choose one-shot resolution or predict
people always avoid it.

Gul, Natenzon, Ozbay and Pesendorfer (2020) find in an experiment that 59%
of the subjects choose gradual information over early one-shot resolution when the
gradual information features gradual good news, one-shot bad news. But only 40% of
the subjects make the same choice when the gradual information features gradual bad
news, one-shot good news instead. These findings are consistent with the mechanism
discussed in this section.

Two experiments have examined people’s preference over the skewness of news,
with mixed results. Tables 10 and 11 in Nielsen (2020) report that subjects prefer neg-
atively skewed news, as predicted by news utility with diminishing sensitivity. But,

Masatlioglu, Orhun and Raymond (2017) find that agents prefer positively skewed

6Appendix B of the working paper version of this article (available at
https://arxiv.org/abs/1908.00084v5) contains additional results about preference over infor-
mation structures.

"Information structures that reveal the prize gradually will resolve uncertainty earlier than a
one-shot resolution structure that reveals the prize at the end of the experiment, but later than a
one-shot resolution structure that reveals the prize immediately.
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news. In showing that a classical assumption of reference dependence leads to a pre-
diction about preference over news skewness, we hope to stimulate further empirical

work on this topic.

4 Diminishing Sensitivity and the Credibility Prob-
lem

So far, we have assumed the agent commits to an information structure ex-ante. In
many economic settings, it is instead an informed individual who communicates the
state to the agent over time. Such communication often takes the form of unverifiable
cheap-talk messages, especially if the speaker wishes to convey inconclusive news
about the state.

We consider a cheap-talk game between a receiver who experiences news utility
with diminishing sensitivity, and a benevolent sender who knows the state and wishes
to maximize the receiver’s welfare. At first glance, one may think that the sender can
simply implement the receiver’s favorite information structure in the equilibrium of
the game, given that the two parties have aligned incentives. While this is true with
two-part linear news utility, we show that the receiver’s diminishing sensitivity leads

to a credibility problem for the sender.

4.1 Cheap Talk with an Informed and Benevolent Sender

Let a finite set of cheap-talk messages M with |M| > 2 be fixed. The sender learns the
true state of the world 6 € {A, B} in period t = 0. In every period t =1,2,...,T — 1,
the sender conveys a message m € M to the receiver. The sender’s communication
strategy in period ¢ is given by a mixture over messages o;(- | h'™1,0) € A(M) that
can depend on the history h!~! of messages so far and the true state . The sender
cannot commit to how she will communicate with the receiver in different states of
the world.

The sender is benevolent and wants to maximize the receiver’s welfare. At the
end of period T, if the receiver has experienced the belief path (m;)I_,, then the
sender’s total payoff in the game is 3L, u (7, — m_1) (we may ignore the physical

consumption term since neither party can affect it). The state of the world determines
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the final belief 71 and thus affects news utility in the final period, so the sender expects
different payoffs from sending the same sequence of messages in different states.®
We analyze perfect-Bayesian equilibria of the cheap talk game, under some off-

path belief refinements.

Definition 3. A perfect-Bayesian equilibrium consists of sender’s strategy o* =

(07)]=* together with receiver’s beliefs p* : UL ' H* — [0, 1], where:

e Forevery 1 <t < T -1, ! € H ! and 0 € {A, B}, 0* maximizes the
receiver’s total expected news utility in periods t,..., T — 1,T conditional on

having reached the public history h'~! in state @ at the start of period t.
o p* is derived by applying the Bayes’ rule to o* whenever possible.
We make two belief-refinement restrictions:

e If t < T —1, h' is a continuation history of ht, and p*(ht) € {0,1}, then
pr(h') = p*(h).

o The receiver’s belief 77 in period T" when state is 6 puts probability 1 on 6,

regardless of the preceding history h7 -t € HT-1,

We will abbreviate a perfect-Bayesian equilibrium satisfying our off-path belief
refinements as an “equilibrium.” Our definition requires that once the receiver updates
his belief to 0 or 1, this belief stays constant through the end of period T'—1. In other
words, the support of his belief is non-expanding through the penultimate period.’ In
period T, the receiver updates his belief to reflect full confidence in the true state of
the world, regardless of his (possibly dogmatically wrong) belief at the end of period
T—1.

Babbling equilibria always exist for any news-utility function u, message space M,
time horizon T, and prior my. In a babbling equilibrium, the sender mixes over mes-
sages in a state-independent way, and the receiver keeps his prior belief 7y after every
history up until period 7. A babbling equilibrium implements one-shot resolution for

the receiver, as his belief stays constant until the final period and then fully resolves.

8In particular, this is not a cheap-talk game with state-independent sender payoffs, as in Lip-
nowski and Ravid (2020).

9This standard refinement was first used in Grossman and Perry (1986). It rules out pathological
off-path belief updates if the sender deviates and sends a message perfectly indicative of one state
following a history where the receiver is fully convinced of the other state.

12



4.2 The Credibility Problem and Babbling

Are there equilibria where the sender gets a higher expected payoff than the babbling
payoff of mou(1l — m) + (1 — mo)pu(—me)? By Proposition 2, for a receiver who has
diminishing sensitivity but not loss aversion, there exists a class of information struc-
tures that is strictly better than one-shot resolution. But the next result proves none

of these information structures can be implemented in equilibrium.

Proposition 3. Suppose p is symmetric around 0 and p'(z) < 0 for all x > 0. For
any M, T, my, the sender’s payoff in every equilibrium is equal to the babbling payoff.

To understand why, consider the final period of communication ¢t = T —1. Suppose
the state is bad and the sender must decide between revealing the truth to decrease the
receiver’s belief from 7 to 0, or sending a positive message that increases the receiver’s
belief by z > 0. Such false hope in period T — 1 gives positive news utility today at
the cost of increasing disappointment in the final period. But diminishing sensitivity
implies the marginal utility of positive news today is larger than the marginal disu-
tility of the incremental future disappointment, pu(z) > pu(—m) — u(—(7 + z)). This
shows that in equilibrium, the sender cannot communicate good news in either state,
otherwise she will be tempted to mimic the good-news messages when the state is
bad, destroying the credibility of these messages. So the sender must babble in period
T — 1, so we could treat period T'— 2 as the last period of communication, and apply
the same arguments by backward induction.

In summary, diminishing sensitivity leads to a credibility problem that prevents
any informative communication, even though the players share the same payoff func-
tion. In a cheap-talk setting with instrumental information and anticipatory utility,
Ké&szegi (2006) shows that a benevolent sender also distorts equilibrium communi-
cation relative to the commitment benchmark. The breakdown in communication is
more complete in our setting, for the players get the same payoffs as when communi-
cation is impossible.

The intuition we gave for the uniqueness of babbling up to payoffs assumes the
receiver is not loss averse — that is, p is symmetric around 0. Babbling remains
unique with a small amount of loss aversion, but a high enough level of loss aversion
can restore the sender’s credibility and enable non-babbling equilibria. (In the next

section, we will construct a family of such non-babbling equilibria.)
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Equilibrium Payoff in the Cheap-Talk Game
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Figure 2: The babbling equilibrium is unique up to payoffs for low values of A\, but
there exists an equilibrium with gradual good news for A > 1 + /2 ~ 2.414. Due to
the role of loss aversion in sustaining credible partial news, a receiver with higher loss
aversion may experience higher expected news utility in equilibrium than a receiver
with lower loss aversion.

Example 1. To illustrate, consider the following case: u(z) = /x for x >0, u(z) =
M=z forx <0, T =2, and my = % The highest equilibrium payoft for different
values of \ is depicted in Figure 2. (Detailed calculations supporting these results are
available in Appendix A.5).

Receivers with higher A may have higher equilibrium payoffs. This non-monotonicity
is driven by the fact that, when A < 14 /2, the babbling equilibrium is unique up to
payoffs and increasing A decreases expected news utility linearly. A new, non-babbling
equilibrium emerges when A exceeds 1 + v/2. In this equilibrium, the sender induces
the belief 1 - [(A2+1)/(A* —1)]? in period ¢ = 1 if § = A, and induces either the belief
2-[(A2+1)/(A? = 1)]? or the belief 0 in period ¢ = 1 if § = B. Increasing loss aversion
then carries two countervailing effects: first, a non-strategic effect of hurting welfare
when 0 = B, as it increases the disutility when the receiver eventually hears the bad
news; second, an equilibrium effect of changing the relative amounts of good news in
different periods conditional on @ = A. As X increases above 1 + /2, the receiver
goes from getting all of the good news in the final period when 6 = A to getting
some partial good news in the first period when § = A. In other words, increasing
A helps by improving the equilibrium “consumption smoothing” of good news across

two periods.
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4.3 Deterministic Gradual Good News Equilibria

When the receiver’s loss aversion is high enough, there can exist non-babbling equilib-
ria in the cheap-talk game. We now analyze a family of such non-babbling equilibria,
where the receiver’s belief monotonically increases over time conditional on the good
state. These equilibria show that the gradual good news, one-shot bad news infor-
mation structures discussed in Section 3 can be sustained without commitment.

An equilibrium (M, o*,p*) features deterministic'®gradual good news (GGN equi-
librium) if there exists a sequence of constants py < p; < ... < pr_; < pr with
po = 7o, pr = 1, and the receiver always has belief p; in period ¢t when §# = A. By
Bayesian beliefs, in any GGN equilibrium the sender must induce a belief of either 0
or p; in period ¢t when 6 = B, as any message not inducing belief p; is a conclusive
signal of the bad state.

The class of GGN equilibria is non-empty, for it contains the babbling equilibrium
where mp = pg = p1 = ... = pr_1 < pr = 1. The number of intermediate beliefs in a
GGN equilibrium is the number of distinct beliefs in the open interval (7, 1) along
the sequence py, p1, ..., pr—1. The babbling equilibrium has zero intermediate beliefs.

The next proposition characterizes the set of all GGN equilibria with at least one

intermediate belief.

Proposition 4. Let P*(m) C (m,1] be those beliefs x > w satisfying pu(x — m) +
u(—x) = p(—m). Suppose p exhibits diminishing sensitivity and loss aversion. For
1< J T —1, there exists a gradual good news equilibrium with the J intermediate
beliefs ¢V < ... < ¢ if and only if ¢¥) € P*(qVY) for every j = 1,...,.J, where

¢ :=m,.

To interpret, P*(m) contains the set of beliefs > 7 such that the sender is
indifferent between inducing the two belief paths 7 — * — 0 and 7 — 0. When
i is symmetric, this indifference condition is never satisfied, which is the source of
the credibility problem for good-news messages. The same indifference condition pins
down the relationship between successive intermediate beliefs in GGN equilibria. This
condition ensures that in the bad state, the sender is willing to randomize between
revealing the state and lying with an inconclusive piece of good news that moves the

receiver to the next intermediate belief.

10T his class of equilibria is slightly more restrictive than the gradual good news, one-shot bad news
information structures from Definition 2, because the sender may not randomize between several
increasing paths of beliefs in the good state.
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We illustrate this result with the quadratic news utility.

Corollary 2. 1) With quadratic news utility,

" - .ﬁp+ﬁn_an_ap
P(W)—{W 5= 6p_ﬁn}ﬂ(7r,1).

2a) If B, > B,, there cannot exist any gradual good news equilibrium with more
than one intermediate belief.

2b) If By, < By, there can exist gradual good news equilibria with more than one
intermediate belief. For a given set of parameters of the quadratic news-utility function
and prior my, there exists a uniform bound on the number of intermediate beliefs that
can be sustained in equilibrium across all T'.

3) In any GGN equilibrium with quadratic news utility, intermediate beliefs in the

good state grow at an increasing rate.

For the case of quadratic news utility, this result provides a closed-form charac-
terization of the successive intermediate beliefs. It also shows every GGN equilibrium
involves progressively larger pieces of good news in the good state, ¢+ — ¢l >
¢ — ¢U=Y. The convex time-path of equilibrium beliefs is due to diminishing sen-
sitivity. If the sender is indifferent between providing d amount of false hope and
truth-telling in the bad state when the receiver has prior belief 7, then she strictly
prefers providing the same amount of false hope over truth-telling at any more opti-
mistic prior belief 7y > 7. The false hope generates the same positive news utility
in both cases, but an extra d units of disappointment matters less when added a
baseline disappointment level of 7y rather than 7y, thanks to diminishing sensitivity.

Equilibrium beliefs in the good state grow at an increasing rate, but must be
bounded above by 1. So, there exists some uniform bound J on the number of
intermediate beliefs depending only on the prior belief 7y and parameters of the
news-utility function.

As an illustration, consider the quadratic news utility with o, = 2, o, = 2.1,
Bp = 1, and 8, = 0.2. Starting at the prior belief of 7y = %, Figure 3 shows
the longest possible sequence of intermediate beliefs in any GGN equilibrium for
arbitrarily large T'. Since the P* sets are either empty sets or singleton sets for the
quadratic news utility, Figure 3 also contains all the possible beliefs in any state of

any GGN equilibrium with these parameters.
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GGN equilibrium, ap =2, 0,=2.1,B,=1, B, =0.2
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Figure 3: The longest possible sequence of GGN intermediate beliefs starting with
the prior myp = % For quadratic news utility, equilibrium GGN beliefs always increase
at an increasing rate in the good state.

Beyond the quadratic case, the intuition that diminishing sensitivity should cause
the receiver to have a convex time-path of equilibrium beliefs holds more generally.
The next result formalizes this relationship. It shows that when diminishing
sensitivity is combined with a pair of sufficient regularity conditions, intermediate
beliefs grow at an increasing rate in any GGN equilibrium. These conditions are

satisfied, for example, by the square-roots news utility with loss aversion.

Proposition 5. Suppose u exhibits diminishing sensitivity, |P*(m)| < 1 for all 0 <
m <1, and 1/ (0-) < p/'(04). Then, in any GGN equilibrium with intermediate beliefs
g < .. < ¢, we get ¢V — gD < gUt) — U forall1 <j < J—1.

The first regularity condition requires that the sender is indifferent between the belief
paths 7 — x — 0 and 7 — 0 for at most one = > 7. It is a technical assumption that
lets us prove our result, but we suspect the conclusion also holds under some relaxed
conditions. The second regularity condition implies that in the bad state, the total
news utility associated with an e amount of false hope is higher than truth-telling for

small € > 0. It is satisfied if 1/(04) = oo or if p is differentiable at 0.
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5 Related Literature and Predictions of Other Belief-
Based Utility Models

5.1 Predictions of Other Belief-Based Utility Models

In general, papers on belief-based utility have highlighted two sources of felicity: levels
of belief about future consumption utility (“anticipatory utility,” e.g., Készegi (2006);
Eliaz and Spiegler (2006); Schweizer and Szech (2018)) and changes in belief about
future consumption utility (“news utility” and “suspense and surprise” (Ely, Frankel
and Kamenica, 2015)). For the latter, some function of both the prior belief and the
posterior belief serves as the carrier of utility. For the former, a given posterior belief
brings the same anticipatory utility for all priors (Eliaz and Spiegler, 2006). The
rich information preference under news utility with diminishing sensitivity contrast

against more stark predictions of these other commonly used models.

5.1.1 News Utility without Diminishing Sensitivity

The literature on reference-dependent preferences and news utility has focused on
two-part linear gain-loss utility functions, which violate diminishing sensitivity. If u
is two-part linear with loss aversion, then it follows from the martingale property of
Bayesian beliefs that one-shot resolution is weakly optimal for the agent among all
information structures. If there is strict loss aversion, then one-shot resolution does

strictly better than any information structure that resolves uncertainty gradually.

5.1.2 Anticipatory Utility

Eliaz and Spiegler (2006) study a representation of anticipatory utility. The decision-
maker has a utility u defined over posterior beliefs, and the ex-ante anticipatory
utility of an information structure is the expectation of u evaluated at the Bayesian
posterior beliefs. K0szegi (2006) considers a cheap-talk setting where the receiver
gets a message from the sender, updates his belief about the state, then takes an
action. He experiences anticipatory utility proportional to the expectation of his
future utility, based on his action choice and his belief about the state.

In our setup where the agent does not take any actions, the analogous model of

the agent’s anticipatory utility in period ¢ is m, given our normalization v(A) = 1
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and v(B) = 0. Our results would be unchanged if we let the agent experience both
anticipatory utility and news utility. This is because by the martingale property, the
agent’s ex-ante expected anticipatory utility in a given period is the same across all
information structures. So, the ranking of information structures entirely depends on
the news utility they generate.

More generally, one could model anticipatory utility in period ¢ as W (m;), where
W : R — R is a strictly increasing anticipatory-utility function. If the agent only
experiences anticipatory utility, not news utility, then there exists an optimal infor-
mation structure that only releases information in ¢ = 1 (see Appendix B.1). By
contrast, this kind of information structure is in general not optimal when the agent
has diminishing sensitivity and weak enough loss aversion.

Another difference is that under anticipatory utility, the agent prefers any setting
where state A has any positive probability 7y > 0 to a setting where 7y = 0. By
contrast, an agent with news utility may prefer the latter (see Appendix B.2). Even
though the former always gives the agent weakly better outcomes and weakly higher
expectation of future consumption utility, it does not always give better news. For
agents who derive utility from changes in beliefs, the incentive to avoid disappointing

news could make them choose to lower my to 0 (Dreyfuss, Heffetz and Rabin, 2022).

5.1.3 Suspense and Surprise

Ely, Frankel and Kamenica (2015) propose and study an original utility function
over belief paths where larger belief movements always bring greater felicity. By
contrast, changes in beliefs may increase or decrease the receiver’s utility in our
setting. Information structures featuring gradual bad news, one-shot good news are
worse than one-shot resolution in our problem, while one-shot resolution is the worst
possible information structure in Ely, Frankel and Kamenica (2015)’s problem. Ely,
Frankel and Kamenica (2015) also discuss state-dependent versions of suspense and

surprise utilities, but this extension does not embed our model (see Appendix B.3).

5.2 Related Work in Decision Theory

Several paper in decision theory have studied models of preference over dynamic
information structures. Dillenberger (2010) shows that preference for one-shot reso-

lution of uncertainty is equivalent to a weakened version of independence, provided
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the preference satisfies recursivity. This result does not apply here because our model
of news utility violates recursivity (see Appendix B.2). Dillenberger and Raymond
(2020) axiomatize a general class of additive belief-based preferences in the domain
of two-stage lotteries, relaxing recursivity and the independence axiom. In the case
of T' = 2, our news-utility model belongs to the class they characterize. Under this
specialization, our work may be thought of as studying information preference and
strategic communication using some of Dillenberger and Raymond (2020)’s additive
belief-based preferences. Gul, Natenzon and Pesendorfer (2021) axiomatize a class of
preferences over non-instrumental information that they call risk consumption prefer-
ences. In contrast, we study the implications diminishing sensitivity in a model that

is not a risk consumption preference (see Appendix B.4).

5.3 Consumption Preference and Information Preference

To further illustrate how diminishing sensitivity leads to different predictions than
the models in Section 5.1, we study an extension of the baseline model from Section 2
by considering a heterogeneous population of agents who differ in their consumption
preferences over the two states.

There is a binary state space © = {A, B}, but some agents prefer A to B (so
v(A) =1, v(B) = 0 as in Section 2) while other agents prefer B to A (so v(A) = 0,
v(B) = 1). All agents use the same gain-loss utility function p to map changes in
expected future consumption utility into a felicity level. Using m; to denote Bayesian
posterior belief about {# = A} in period ¢, total news utility is 3~ pu(m — m_1) for
someone with v(A) = 1,v(B) = 0, and it is Y7, u(—(m — m_1)) for someone with
v(A) =0,v(B) = 1.

Consider a setting where a sequence of signal realizations gradually determine
the binary state. In each period ¢t = 1,2,...,T, a binary signal X; realizes, where
P[X; = 1] = ¢; with 0 < ¢; < 1. Each X, is independent of the other ones. If X; =1
for all ¢, then the state is A. Otherwise, when X; = 0 for at least one t, the state is
B.1' At time 0, each agent chooses between observing the realizations of the signals

(X)L, in real time (gradual information), or only learning the state of the world at

HEquivalently, we can think of state A having probability II/_,q; and state B having the
complementary probability. Conditional on § = A, we always have X3 = ... = Xp = 1.
Conditional on § = B, for a sequence of signal realizations (z1,z2,...,27) € {0,1}1, we have
P[(X1,.... X7) = (T1,..,o7) | 0 = B] = [l q7" - (1 — q)*~%]/[1 — ITL_,q] if at least one z; is 0,
otherwise ]P)[(Xl, ...,XT) = (1‘1, ...,IT) | 0= B] =0.
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the end of period T' (one-shot resolution).

For a concrete example, imagine a televised debate between two political candi-
dates A and B where A loses as soon as she makes a “gaffe” during the debate. If A
does not make any gaffes, then A wins. In this example, {X; = 1} corresponds to the
event that candidate A does not make a gaffe during the ¢-th minute of the debate.
States A and B correspond to candidates A and B winning the debate.

For someone who prefers candidate A, the debate provides gradual good news, one-
shot bad news. For someone who prefers candidate B, the debate provides gradual
bad news, one-shot good news. Proposition 1 and Corollary 1 imply that these
two types of agents can make different choices about whether to watch the debate.
So, heterogeneous consumption preferences can generate heterogeneous information
preferences. By contrast, the related theories reviewed in Section 5.1 predict that
the agent either always prefers one-shot resolution in all situations, or always prefers

every other information structure to one-shot resolution in all situations.

Proposition 6. The following models predict that the agent will not change his choice
between gradual information and one-shot resolution when the sign of v(A) — v(B)

changes.

1. News utility with a two-part linear u, where u(x) = x for x > 0 and p(r) = Az
for x <0, with any A > 0.

2. Anticipatory utility where the agent gets W (my - v(A) + (1 — ;) -v(B)) in period

t, with W an increasing, weakly concave function.

3. Ely, Frankel and Kamenica (2015)’s “suspense and surprise” utility.

5.4 Related Work on News Utility and Information Design

Since Készegi and Rabin (2009), several other authors have analyzed the implications
of news utility in different settings (Pagel, 2016, 2017, 2018; Duraj, 2019). These
papers focus on Bayesian agents with two-part linear gain-loss utilities and do not
study the role of diminishing sensitivity to news.

Interpreting monetary gains and losses as news about future consumption, ex-
periments that show risk-seeking behavior when choosing between loss lotteries and
risk-averse behavior when choosing between gain lotteries provide evidence for dimin-

ishing sensitivity over consumption news (see e.g., Rabin and Weizsacker (2009)). In
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the same vein, papers in the finance literature that use diminishing sensitivity over
monetary gains and losses to explain the disposition effect (Shefrin and Statman,
1985; Kyle, Ou-Yang and Xiong, 2006; Barberis and Xiong, 2012; Henderson, 2012)
also provide indirect evidence for diminishing sensitivity over consumption news.

Bowman, Minehart and Rabin (1999) study a consumption-based reference-dependent
model with diminishing sensitivity. A critical difference is that their reference points
are based on past habits, not rational expectations.

Ebert and Strack (2015, 2018) study dynamic gambling for agents with cumulative
prospective theory preferences. The gambler’s wealth process forms a martingale if the
bets are fair, a property shared by the belief process in learning models. The results
in these papers are driven by probability weighting, not diminishing sensitivity.

Lipnowski and Mathevet (2018) study a static model of information design with a
psychological receiver whose welfare depends directly on posterior belief. They discuss
an application to a mean-based news-utility model without diminishing sensitivity in
their Appendix A, finding that either one-shot resolution or no information is optimal.
We focus on the implications of diminishing sensitivity. Our work also differs in that
we study a dynamic problem and examine equilibria without commitment.

Caplin and Leahy (2004) consider a psychological game where an informed sender
interacts with a receiver who experiences both anticipatory utility and a preference
over the timing of resolution of uncertainty. By contrast, we examine the implications
of a different behavioral preference for news. Another difference is that they study a

setting with verifiable evidence, but our sender uses cheap-talk messages.

6 Conclusion

In this work, we have studied how diminishingly sensitive gain-loss utilities applied
to changes in beliefs affect the agent’s informational preferences. If we think that
diminishing sensitivity to the magnitude of news is psychologically realistic in this
domain, then the stark predictions of the ubiquitous two-part linear models may be
misleading. In the presence of diminishing sensitivity, richer informational preferences
emerge.

An agent’s consumption ranking over the states can determine his preference be-
tween an information structure that delivers news about the state gradually and

another that results in one-shot resolution. In general, one-shot resolution is neither
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the best way to get information nor the worst way — skewness matters. One-shot res-
olution is strictly better than information structures with strictly gradual bad news,
one-shot good news. But, it is strictly worse than information structures with strictly
gradual good news, one-shot bad news, provided loss aversion is not too high.

For an informed sender who lacks commitment power, diminishing sensitivity leads
to novel credibility problems that inhibit any meaningful communication when the
receiver has no loss aversion. High enough loss aversion can restore the equilibrium
credibility of good-news messages, and the receiver’s equilibrium welfare may be non-
monotonic in loss aversion. We construct a family of non-babbling equilibria with
gradual good news when loss aversion is high enough, finding that the sender must

communicate increasingly larger pieces of good news over time in the good state.

Appendix

A  Proofs

This appendix contains the proofs of the results stated in the main text.
In the proofs, we will often use the following fact about news-utility functions

with diminishing sensitivity. We omit its simple proof.
Fact 1. Let dy,dy > 0 and suppose p(0) = 0.

o (sub-additivity in gains) If i’ (x) < 0 for all x > 0, then p(dy + do) < p(dy) +
1(dz).

o (super-additivity in losses) If ' (x) > 0 for all x < 0, then p(—d; — do) >
p(—dn) + pi(—dy)

A.1 Proof of Proposition 1

Proof. When 6 = B, the agent gets u(—m) with one-shot resolution, but S/, (7 —
m—1) with gradual bad news, one-shot good news. For each t, my — w1 < 0, and
furthermore Z?zl m—m_1 = —Tp by telescoping and using the fact that & = B. Due to
super-additivity in losses, we get that u(—mg) > S, p(m —m_1) almost surely when
the state is bad. Also, because there is strictly gradual bad news, E[>>F, pu(m—m_1) |
0 = B] < u(—m).
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When 6 = A, the agent gets p(1 —my) with one-shot resolution. With gradual bad
news, one-shot good news, let T < T be the first period where 7; > m;_,. His news
utility is {Zf;f (g — Wt,l)} +u(l1—ms ) where each mp—m_; < 0Oforl1 <t < T-1.
Again by super-additivity in losses, ST ju(m, — m_y) < p(mp_, — m). By sub-
additivity in gains, p(1—ms ;) < p(mo—ms_)+p(l—m) < —pms_ —m0)+p(1—mp),
where the last inequality is due to loss aversion. Putting these pieces together,

T-1

Z p(my — 1)

t=1

+ p(l = 7p_y) < pulmp_y — o) — plmp_y — mo) + p(1 — 7o) = p(1 — mo).

Therefore, strictly gradual bad news, one-shot good news gives strictly lower utility
than one-shot resolution in expectation, and almost surely weakly lower utility ex-

post. [

A.2 Proof of Proposition 2

Proof. When 6 = A, the agent gets (1 —mp) with one-shot resolution, but S>7, pu(m—
m—1) with gradual good news, one-shot bad news. For each t, my — m_1 > 0, and
furthermore Zthl m — m_1 = 1 — my by telescoping and using the fact that 6 = A.
Due to sub-additivity in gains, we get that 7 | u(m — m_1) > (1 — m) when the
state is good. Also, because there is strictly gradual good news, E[SL | pu(m, —m_1) |
0=A] > p(l—m).

When 6 = B, the agent gets pu(—mg) with one-shot resolution. With gradual good
news, one-shot bad news, let T < T be the first period where the X; = 0. His news
utility is [Zf;ll p(me — Wt_l)} + pu(—m4_,) where each m —m,_y > 0for 1 <t <T —1.
Again by sub-additivity in gains, ZtT:_ll p(my — m—1) > p(my_, — m). By super-
additivity in losses, u(—m4_,) > p(—(mp_; —m0)) +p(—mo) = —p(ms_; —mo) +p(—m0),
where we used the symmetry of 1 around 0 in the last equality. Putting these pieces

together,

+ M(—WT_l) > M(Wf_l — 7o) — M(WT_1 — 7o) 4 p(—mo) = p(—mo).

T-1
Z p(me — 1)
t=1

Therefore, strictly gradual good news, one-shot bad news provides strictly higher

utility than one-shot resolution in expectation, and almost surely weakly higher utility
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ex-post. O

A.3 Proof of Corollary 1

Proof. This follows from Proposition 2 by continuity. O]

A.4 Proof of Proposition 3

We begin by giving some additional definition and notation. For p,m € [0,1], let
Np(x;m) := p(z — m) + p(—z) denote the total amount of news utility across two
periods when the receiver updates his belief from 7 to x > 7 today and updates it
from 2 to 0 tomorrow. Similarly, Ns(p;7) := pu(p — 7) + (1 —p).

We state some preliminary lemmas about N4 and Np.

Lemma A.1. If p is symmetric around 0 and ' (x) < 0 for all z > 0, then for any
0<m<z<1itholds Ng(0;m) < Np(z;7).

Proof. Due to sub-additivity,

p(p) < pu(p — ) + p(r). (1)

Note that symmetry implies u(—p) = —u(p) and that u(—mn) = —u(w). Rearranged,
Equation (1) is precisely N(0;7) < N(p;n). O

Say p exhibits greater sensitivity to losses if ' (x) < p'(—x) for all z > 0.

Lemma A.2. Suppose p exhibits diminishing sensitivity and greater sensitivity to
losses.  Then, p — Na(p;m) is strictly increasing on [0, 7| and symmetric on the
interval [m,1]. For each py € [m,1], there exists exactly one point py € [m,1] so that
Na(p1;m) = Na(pa; ). For every pp, < m and py > m, Na(pr;m) < Na(py;m). Also,
Ng(p;m) is symmetric on the interval [0, 7). For each py € [0, 7|, there exists exactly

one point py € [0, 7] so that Ng(p1;m) = Np(pa; ).

Proof. We have ON4(p;7)/0p = p'(p — 1) — i’ (1 — p). For 0 < p < 7 and under
greater sensitivity to losses, u'(p — ) > p' (7 — p). Since u"(z) < 0 for z > 0,
p (7 —p) > i (1 — p). This shows ON4(p;7)/0p > 0 for p € [0, 7).

The symmetry results follow from simple algebra and do not require any assump-

tions.
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Note that 0?Ny(p;7)/0p* = ' (p — 7) + p'(1 —p) < 0 for any p € [r, 1],
due to diminishing sensitivity. Combined with the required symmetry, this means
ON4(p;m)/Op crosses 0 at most once on [, 1], so for each p; € [m, 1], we can find
at most one py so that Na(pi;m) = Na(pe;m). In particular, this implies at ev-
ery intermediate p; € (m,1), we get Na(pi;m) > Na(m;m) since we already have
Na(1l;7) = Ny(m;m). This shows Ny(+; ) is strictly larger on [, 1] than on [0, 7).

A similar argument, using z (z) > 0 for z < 0, establishes that for each p; € [0, 7],
we can find at most one py so that Ng(p1;7) = Np(pe; 7). ]

Consider any period T — 2 history hr_, in any equilibrium (M,c*, p*) where
p*(hr—2) =7 € (0,1). Let P4 and Pp represent the sets of posterior beliefs induced
at the end of T" — 1 with positive probability, in states A and B. The next lemma

gives an exhaustive enumeration of all possible Py, Pg.

Lemma A.3. Suppose p exhibits diminishing sensitivity and greater sensitivity to

losses. The sets Py, Pg belong to one of the following cases.
1. Py =P ={r}
2. Py ={1}, Pp ={0}
3. Py ={p:1} for some p; € (7,1) and Pg = {0,p1}
4. Py = {nm,1} and Pg = {0, 7}
5. Py ={p1,pa} for some p; € (7, (1 4+m)/2), po=1—p1 + 7, Pg ={0,p1,p2}.

Proof. Suppose |P4| = 1.

If Py = {n}, then any equilibrium message not inducing 7 must induce 0. By
Bayes’ rule, the sender cannot induce belief 0 with positive probability in the bad
state, so Pg = {7} as well.

If P4 = {1}, then any equilibrium message not inducing 1 must induce 0. Fur-
thermore, the sender cannot send equilibrium messages inducing belief 1 with positive
probability in the bad state, else the equilibrium belief associated with these messages
should be strictly less than 1. Thus Pp = {0}.

If Py = {p;} for some 0 < p; < 7, then any equilibrium message not inducing p;
must induce 0. This is a contradiction since the posterior beliefs do not average out

to .
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This leaves the case of P4 = {p1} for some m < p; < 1. Any equilibrium message
not inducing p; must induce 0. Furthermore, the sender must induce the belief p; in
the bad state with positive probability, else we would have p; = 1. At the same time,
the sender must also induce belief 0 with positive probability in the bad state, else
we violate Bayes’ rule. So Pg = {0, p;}.

Now suppose |P4| = 2.

In the good state, the sender must be indifferent between two beliefs p;, po both
induced with positive probability. By Lemma A.2, N4(p; ) is strictly increasing on
[0, 7] and strictly higher on [, 1] than on [0, 7), while for each p; € [, 1], there exists
exactly one point py € [, 1] so that N4 (p1; ) = Na(pe; 7). This means we must have
pr€[m(1+m)/2], pp=1—p1+m.

If Py = {m, 1}, any equilibrium message not inducing 7 or 1 must induce 0. Also,
1 ¢ Pp, because any message sent with positive probability in the bad state cannot
induce belief 1. We cannot have Pg = {0}, because then the message inducing belief
7 actually induces 1. We cannot have Pp = {r} for then we violate Bayes’ rule. This
leaves only Pg = {0, 7}.

If Py = {p1,ps} for some p; € (m, (1 + 7)/2), then any equilibrium message not
inducing p; or p, must induce 0. Also, p;,p2 € Pg, else messages inducing these
beliefs give conclusive evidence of the good state. By Bayes’ rule, we must have
Pp ={0,p1,p2}-

It is impossible that | P4| > 3, since, by Lemma A.2, N4(p; ) is strictly increasing
on [0, 7] and strictly higher on [m, 1] than on [0, ), while for each p; € [, 1], there
exists exactly one point ps € [m,1] so that Na(p1;m) = Na(pa; 7). So the sender
cannot be indifferent between 3 or more different posterior beliefs of the receiver in
the good state. O]

We now give the proof of Proposition 3.

Proof. The hypothesis that p is symmetric also implies that it exhibits greater sensi-
tivity to losses. So, Lemmas A.1 and A.3 apply. Consider any period 7" — 2 history
hT=2 with p*(hT=2) € (0,1). By Lemma A.1, Np(p;p*(hT=%)) > Np(0;p*(hT2)) for
all p € (p*(hT72),1]. Therefore, cases 3 and 5 are ruled out from the conclusion of
Lemma A.3. This shows that after having reached history h? =2, the receiver will get
total news utility of (1 — p*(h*=2)) in the good state and pu(—p*(hT=2)) in the bad

state. This conclusion applies to all period T — 2 histories (including those with equi-
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librium beliefs 0 or 1). So, the sender gets the same utility as if the state is perfectly
revealed in period T — 1 rather than 7', and the equilibrium up to period T'— 1 form
an equilibrium of the cheap talk game with horizon 7' — 1. By backwards induction,
we see that along the equilibrium path, whenever the receiver’s belief updates, it is
updated to the dogmatic belief in 6. m

A.5 Detailed Calculations for Example 1

Example 1’s p exhibits diminishing sensitivity and greater sensitivity to losses, so
Lemma A.3 applies. We use the classification from Lemma A.3 with 7" = 2 and
= 1/2. An equilibrium belonging to case 1 or case 2 gives the same payoff as
the babbling equilibrium, since all uncertainty is resolved in one period. For an
equilibrium belonging to case 4, in each state, the sender fully reveals the state with
positive probability. The indifference condition implies the sender must get the same
payoff as she would from always fully revealing the state in period ¢t = 1. So, such an
equilibrium would again have the same payoff as the babbling equilibrium.

Since only cases 3 and 5 remain, there is an equilibrium with a payoff different
than that of the babbling equilibrium only if there exists some x € (1/2,1) so that
VT — 0.5 — A\y/T = —X\/0.5 — that is, when # = B, the sender is indifferent between
inducing the belief = and revealing the state in period t = 1. By straightforward
algebra, the two solutions for z are § - [(A2 4+ 1)/(A\* —1)]? and 3. The latter is not in
the open interval (1/2, 1), and the former is in this interval if and only if A > 1+ /2.

This analysis shows the sender can be indifferent between 0 and up to one belief
in the interval (1/2,1) when the § = B, so case 5 from Lemma A.3 is also ruled out.
There exists an equilibrium with strictly higher payoff than the babbling equilibrium
if and only if A > 1 + /2. In this other equilibrium, case 3 must hold: that is, the
sender induces the belief 1 - [(A241)/(A? —1)]? in period ¢ = 1 if § = A, and induces
either the belief 3 - [(A? +1)/(A? — 1)]? or the belief 0 in period ¢t =1 if § = B

A.6 Proof of Proposition 4

Proof. Let J intermediate beliefs satisfying the hypotheses be given. We construct
a gradual good news equilibrium where p;, = ¢ for 1 < t < J, and p; = ¢ for
J+1<t<T—-1.

Without loss of generality, let M = {a,b} and consider the following strategy
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profile. In period ¢ < .J where the public history so far h*~1 does not contain any b,
let o(ht™'; A)(a) = 1, o(h'™'; B)(a) = x where x € (0,1) satisfies p;_1/(ps—1 + (1 —
pi—1)r) = p;. But if public history contains at least one b, then o(hi~'; A)(b) = 1
and o(h'~1; B)(b) = 1. Finally, if the period is ¢ > J, then o(h'~'; A)(b) = 1 and
o(ht=1; B)(b) = 1. In terms of beliefs, suppose h' has ¢t < J and every message so far
has been a. Such histories are on-path and get assigned the Bayesian posterior belief.
If bt has t < J and contains at least one b, then it gets assigned belief 0. Finally, if i
has t > J, then h' gets assigned the same belief as the subhistory constructed from
its first J elements. It is easy to verify that these beliefs are derived from Bayes’ rule
whenever possible.

We verify that the sender has no incentive to deviate. Consider period ¢t < J
with history h'~! that does not contain any b. The receiver’s current belief is p,_; by
construction.

In state B, we first calculate the sender’s equilibrium payoff after sending a. The
receiver will get some I periods of good news before the bad state is revealed, either
by the sender or by nature in period 7. That is, the equilibrium news utility with 7
periods of good news is given by Zilzl p(Pe—14i — Prayi) + (=pe—141). Since p_141 €
P*(pt—o41), we have Np(pi—1+1;pt—2+1) = Np(0;pi—a+1), that is to say p(pi_14r —
Pi—o+1) + p(=pi—1+1) = p(—pi—217). We may therefore rewrite the receiver’s total
news utility as >/ 2! ju(pr_145 — pi_24i) + p(—pi_o47). But by repeating this argument,
we conclude that the receiver’s total news utility is just pu(—p;—1). Since this result
holds regardless of I’s realization, the sender’s expected total utility from sending a
today is pu(—p;_1), which is the same as the news utility from sending b today. Thus,
sender is indifferent between a and b and has no profitable deviation.

In state A, the sender gets at least u(1 — p;_1) from following the equilibrium
strategy. This is because the receiver’s total news utility in the good state along
the equilibrium path is given by Z;]:_l(t_l) w(pi—14i — Pr—2+i) + (1 —pi_147). By sub-
additivity in gains, this sum is strictly larger than p(1 — p,_1). If the sender deviates
to sending b today, then the receiver updates belief to 0 today and belief remains
there until the exogenous revelation, when belief updates to 1. So this deviation gives
the total news utility pu(—p;—1) + p(1). We have

u(1) < (1~ pes) + p(prr)
< (1 = peq) — p(=pe-1),
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where the first inequality comes from sub-additivity in gains, and the second from
weak loss aversion. This shows pu(—p;—1) + p(1) < p(l — pi_1), so the deviation is
strictly worse than sending the equilibrium message.

Finally, at a history containing at least one b or a history with length J or longer,
the receiver’s belief is the same at all continuation histories. So the sender has no
deviation incentives since no deviations affect future beliefs.

For the other direction, suppose by way of contradiction there exists a gradual
good news equilibrium with the J intermediate beliefs ¢ < ... < ¢!/). For a given
1 < j < J, find the smallest ¢ such that p, = ¢* Y and py1 = ¢*). At every
on-path history h* € H* with p*(h') = p;, we must have o*(h'; B) inducing both 0
and ¢U) with strictly positive probability. Since we are in equilibrium, we must have
w(—qU=Y) being equal to (¢ — qU=) plus the continuation payoff. If j = .J, then
this continuation payoff is u(—q(j)) as the only other period of belief movement is in
period T" when the receiver learns the state is bad. If 5 < J, then find the smallest
t so that pz; = ¢UtY. At any on-path h* € H' which is a continuation of ht, we
have p*(ht_) = ¢ and the receiver has not experienced any news utility in periods
t+2,..,t. Also, a*(hf; B) assigns positive probability to inducing posterior belief
0, so the continuation payoff in question must be u(—q"). So we have shown that
(—qU=DY) = pu(qW) — qU=D) + p(—qD), that is Np(¢¥; qU=1) = Np(0;q0~D). O

A.7 Proof of Corollary 2

Proof. We apply Proposition 4 to the case of quadratic news utility. Recall the

relevant indifference equation in the good state.
(=) = pl(qr1 — @) + p(—aes1). (2)
Plugging in the quadratic specification and algebraic transformations lead to

0= (O‘p — ) (1 — @) — ﬁp(C]tH — @) + Bn(@+1 — @) (@1 + q)

Define r = ¢;11 — q;- Then this relation can be written as

(Bp - Bn)r2 + (an — 0y — QBth)T = O,
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i.e. r is a zero of a second-order polynomial. For P* to be non-empty we need
this root r to be in (0,1 — ¢;). In particular the critical point 7 of the second-
order polynomial should satisfy 7 € (0, (1 — ¢;)/2). Given that ¥ = [20,¢ — (o, —
a,)]/[2(B, — Bn)] for the case that 8, # (,, we get the equivalent condition on the
primitives 0 < [28,q: — (an — 0,)]/[2(8p — Bn)] < (1 —q:)/2. The root r itself is given
by 7 = [26,q: — (an — )]/ [Bp — Br], which leads to the recursion

Bp+ Bn o —

Qi1 = qt/Bp_Bn "B, =B (3)

This leads to the formula for P*(7) in the statement of the corollary.
Case 1: When 3, < (3, the coefficient in front of ¢ is negative so that the

recursion in Equation (3) leads to

20 Q, — Q

n P
qi+1 — Gt = Q¢ — < 0.
ﬁp - Bn 5;0 - 671

This also shows that for the case that 3, < ,, a GGN equilibrium with 1 or more
intermediate beliefs only exists when the prior is low enough: namely 7y < (o, —
ap)/(26n)-

Case 2: When 3, > (3, the slope in Equation (3) is above 1. So, for all priors m
large enough, we get an increasing sequence ¢; which satisfies Equation (2). It is also

easy to see from Equation (3) that

(Bp+6”—1>>0,

(G+2 — @1) — (1 — @) B, — B

proving the final statement of the corollary.
The existence of an equilibrium with more than one intermediate belief is shown

by the example in Figure 3. [

A.8 Proof of Proposition 5

Proof. Let any 0 < m < 1 be given, and consider Ng(p;7) — Np(0;7) as a function
of p > m. When p = 7, we have Ng(p;7) — Np(0;7) = 0. For any € > 0 such
that 7 4+ ¢ < 1, we get Np(m + ;) — Np(0;7) = [5 i/ (x)de — [Z7 i/ (x)dz. Since
@ (0-) < u(04) and g is strictly increasing in [—1,0), p/(z) < p/(04) for all x < —.
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Also, since p' is continuous in (0, 1], for small enough € > 0 we also get p/'(z) < p/'(y)
forall z < —m, y € (0,¢]. Thus, [; p/(x)dx — [Z7_ 1/ (x)dx > 0 for € > 0 close enough
to 0.

This analysis shows Ng(p;7m) — Np(0;m) is strictly positive for some range of p
slightly above 7. Given that |P*(7)| < 1, if we find some p' > 7 with Np(p';7) —
Ng(0;7) > 0, then any solution to Ng(p;m) — Np(0;7) = 0 in (7, 1) must lie to the
right of p’.

If ¢, qU*Y are intermediate beliefs in a GGN equilibrium, then by Proposition
4, qU) € p*(q(j—l)) and ¢Vt € P*(¢)). Let p =q9 + (q(j) — q(j—l))_ Then,

Np(p':q") = Np(0:4”) = u(p’ = ¢) + p(=p) — p(—q")
M(q(j) — q(j—l)) + u(—q(j) — (q(j) — q(j—l))) — M(—q(j))
> gV = qU™D) 4 (=g = (V) = gY)) — u(—qVY),

where the last inequality comes from diminishing sensitivity. But, the final expression
is Np(q;qU=1) — Np(0;¢U=V), which is 0 since ¢¥) € P*(¢V~"). This shows we

A.9 Proof of Proposition 6

Proof. (1) Suppose p is two-part linear with u(x) = z for x > 0, u(x) = Az for x < 0,
where A > 0. Suppose v(A) = 1, v(B) = 0. In each period, E[u(m; — m—1)] = E[(m —
1)t = A —m_1)7]. By the martingale property, E[(m, —m_1)"] = E[(m; —m_1) ],
so E[u(m — m—1)] = (1 — N)E[|m, — m—q|]. This shows total expected news utility
is B[ pu(m — m—1)] = 2(1 = ME[ZZ, |7 — ma|]. Note that E[Y°/, |7 — ma]
is strictly larger for gradual information than for one-shot resolution. If A > 1, the
agent strictly prefers one-shot resolution. If 0 < A < 1, the agent strictly prefers
gradual information. If A = 1, the agent is indifferent.

Now suppose v(A) = 0, v(B) = 1. By the same arguments, total expected news
utility is B[, p(—(m—m1))] = (1= NE[XZ [, |7 —m_1]]. Note that [/, [ —
m—1|] is strictly larger for gradual information than for one-shot resolution. So again,
if A > 1, the agent strictly prefers one-shot resolution. If 0 < \ < 1, the agent strictly
prefers gradual information. If A\ = 1, the agent is indifferent.

(2) If W is linear, then the agent is indifferent between gradual information and
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one-shot resolution regardless of the sign of v(A) — v(B). If W is strictly concave,
let p; = m - v(A) 4+ (1 — m) - v(B) be the agent’s expectation of future consumption
utility in period ¢t. For 1 <t < T —1, E[W (p;)] < W(po) by combining the martingale
property and Jensen’s inequality. So the agent strictly prefer to keep his prior beliefs
until the last period and will therefore choose one-shot resolution, regardless of the
sign of v(A) — v(B).

(3) Ely, Frankel and Kamenica (2015) mention a “state-dependent” specification
of their suspense and surprise utility functions. With two states, A and B, their
specification uses weights a4, ap > 0 to differentially re-scale belief-based utilities
for movements in the two different directions. Specifically, their re-scaled suspense
utility is

T-1

du <Et [CVA (T —m)? +ap - (1 —mq) — (1 - Wt))z])

t=0

and their re-scaled surprise utility is

T
E [ZU (CYA . <7Tt+1 - 7Tt)2 + ap - ((1 — ’/Tt+1) — (1 — Wt))Q)] .

t=1

We may consider agents with opposite preferences over states A and B as agents with
different pairs of scaling weights (a4, ap). Specifically, say there are aligh > aov > 0.
High

For an agent preferring A, a4 = « ap = a™V. For an agent preferring B, ay =

aLow’ ap = angh

. But note that we always have my, 1 —m = —[(1—m41) — (1 —1)], s0
along every realized path of beliefs, (7,11 —m)? = ((1—m41) — (1 —7;))?. This means
these two agents with the opposite scaling weights actually have identical objectives
and therefore will have the same preference over gradual information or one-shot

resolution. O

B Further Results

B.1 Optimal Information Structure for Anticipatory Utility

We show that if the agent has anticipatory utility and gets W (m;) when he ends
period t with posterior belief 7;, then with commitment power, there exists an optimal

information structure that only discloses information in period ¢ = 1.
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Consider any information structure. Find the period ¢* with the highest ex-ante

anticipatory utility under this information structure, i.e., t* € argmaxE [W(m)].
1<t<T—1

Consider another information structure that generates the (feasible) distribution of
beliefs 7y« in period 1, then reveals no additional information in periods 2,...,7 — 1.
This new information structure gives weakly higher expected anticipatory utility than
the given information structure in every period. Therefore there exists an optimal

information structure that only discloses information in t = 1.

B.2 Preference for Dominated Consumption Lotteries

So far, we have taken the prior distribution over states my, as exogenously given.
Fixing an information structure, a news-utility agent may strictly prefer a dominated
distribution over states. This distinguishes our news-utility preference from other
preferences, such as recursive preferences and Gul, Natenzon and Pesendorfer (2021)’s
risk consumption preference.

We now give an example. Suppose T' = 2 and there are two states, © = {A, B}.
Normalize consumption utility to be v(A) = 1, v(B) = 0. Let the news utility function
be u(z) = /z for z > 0, pu(z) = —A\y/—2z for z < 0, where A > 1. At time t = 0, the
agent holds a prior belief o € [0, 1]. At time ¢ = 1, the agent learns the state perfectly,
so 7 is degenerate with probability 1. Consumption takes place at time ¢ = 2. For any
A, the agent strictly prefers state A for sure (mg = 1) over state B for sure (my = 0), as
both environments provide zero news utility. But, the agent may strictly prefer state
B for sure over an interior probability of state A, 7y = p € (0, 1). In fact, this happens
when p 4+ py/T—p — A(1 — p)/p < 0, which says A > [\/p(1 + /T —=p)]/[1 —p]. A
sufficiently loss-averse agent may strictly prefer no chance of winning a consumption

lottery than a low chance of winning.

B.3 State-Dependent Suspense and Surprise

Suppose there are two states, © = {A, B}, and suppose that the agent has either
the suspense objective Y7 ' u (Ey(Xg ap - (w151 (0) — m(6))?) or the surprise objec-
tive S u (Xpap - (m(0) — m_1(0))?), where as,ap > 0 are state-dependent scal-
ing weights. We must have m1(A) — m(A) = —(m1(B) — m(B)), so pathwise
(mi41(A) — 7 (A))? = (m41(B) — m(B))%. This shows that the new objectives ob-
tained by applying two possibly different scaling weights a4 # ap to states A and B
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are identical to the ones that would be obtained by applying the same scaling weight
a = (s + ap)/2 to both states. Due to this symmetry in preference, the optimal
information structure for entertaining an agent with state-dependent suspense or sur-
prise utility treats the two states symmetrically, in contrast to a central prediction of

diminishing sensitivity in our model.

B.4 Risk Consumption Preferences

Gul, Natenzon and Pesendorfer (2021) study a model of preference over random
evolving lotteries and propose a class of risk consumption preferences. Translated
into our setting, an agent with risk consumption preference values an information

structure (M, o) according to utility function

E [/U(Ug(ﬂt>)d7]:| :

Here uy : A(©) — Riis affine and v is strictly increasing. The term v(ug (7)) is viewed
as a function from the time periods {0, 1,...,7 — 1} into the reals and dn denotes the
Choquet integral with respect to a capacity n on {0,1,...,T — 1}.

To show that our model of mean-based news utility is not nested under the class
of risk consumption preferences, we show that risk consumption preferences cannot
exhibit the preference patterns from Appendix B.2: that is, strictly preferring winning
a lottery for sure to not winning it for sure, but also strictly preferring not winning
for sure to winning with some interior probability p € (0,1) in the 7" = 2 setup.

By an abuse of notation, the belief assigning probability ¢ to state A will simply
be denoted q. The first part of the preference gives v(uz(1)) > v(u2(0)), since Choquet
integral of a constant function returns the same constant. When the prior winning
probability is p € (0,1), the Choquet integrand is either f4 : {0,1} — R with
fa(0) = v(uz(p)) and fa(1) = v(uz(1)), or fp : {0,1} = R with f5(0) = v(ua(p)) and
fB(0) = v(uz(0)). The two integrands correspond to belief paths where the agent wins
or loses the lottery. Since v is strictly increasing, us is affine, and v(ua(1)) > v(ug(0)),
we have v(uz(p)) > v(u2(0)). Thus both fi and fp dominate the constant function
v(u2(0)) in every period. By monotonicity of the Choquet integral, the agent must

prefer p probability of winning the lottery to no chance of winning it.
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