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Chaos and Unpredictability with Time Inconsistent Policy Makers∗

Abstract

We analyze the existence of equilibria with complex dynamics in a policy framework with time-inconsistency.

We consider an economy where, in each period, the policy maker in power determines the level of a durable

public good (or bad) that creates strategic linkages across policy periods. When the decision-making

process is time-consistent–such as when a benevolent planner sets policy in every period–the economy

exhibits a unique equilibrium where the state converges to a deterministic steady state. When the identity

of the decision-maker changes probabilistically over time as in a political equilibrium, the decision-making

process becomes time-inconsistent. In this scenario, we identify conditions under which equilibria with

cycles of more than two periods and chaotic dynamics can emerge. Depending on the economy’s funda-

mental parameters, these equilibria may produce ergodic distributions in which the state variable either

persistently overshoots the planner’s steady state or fluctuates around it. The extent of chaotic behavior

is influenced by the degree of time inconsistency: as the degree of time inconsistency approaches zero, the

size of the support of the ergodic distribution converges to zero as well.
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1 Introduction

Environments characterized by dynamic inconsistencies are pervasive in economics. They not only

include settings with time inconsistent preferences, but also many natural strategic interactions

in which the players have “standard” exponential preferences, such as voluntary contribution

games and common pool problems, various political economy problems such as positive models

of public debt, or models of durable public goods.1 In dynamic political economy games, time

inconsistency in decision making emerges from the fact that decision makers change over time

and have heterogeneous preferences; in voluntary contribution and common pool games, time

inconsistency stems from externalities in the individual decisions of multiple decision makers.2

Despite the importance of these problems, there is still a limited understanding of the strategic

behavior in stochastic games with time inconsistency. In applied work, the focus has been either

on simplified environments such as, for example, models with finite horizons or models in which

the players have dominant strategies, where equilibria are more readily characterized; or on envi-

ronments in which well-behaved equilibria exist and can be relied upon to make predictions. The

equilibria in these games often look like solutions to a constrained planner’s problems, in which

the state variable monotonically converges to a steady state —albeit too low as in dynamic public

good games, or too high, as in political economy models of public debt.3

In this paper we study a simple dynamic policy game with time inconsistency and we ask

whether it can generate equilibria with complex dynamics in generic economies, since most existing

models that generate complex dynamics rely on non-generic conditions. Specifically, we aim at

1 For examples of models of common pool problems or contribution games, see Levhari and Mirman [1980],

Feistman and Nitzan [1991], Marx and Matthews [2000], Battaglini et al. [2014], among others. For political

economy models of public debt, see Persson and Svenson [1989], Alesina and Tabellini [1990], Battaglini and Coate

[2008], and Yared [2010]. For models of durable public goods, see Battaglini and Coate [2007].

2 In all the example presented above a decision maker at +1 faces a different intertemporal rate of substitution

between  + 1 and  + 2 than a decisionmaker at . A more detailed discussion of the relationship between these

models and single agent models with time inconsistent preferences will be presented in Section 5.2.

3 Models in which political equilibria can be characterized as solutions of constrained planner’s problems have

been provided by, among others, Battaglini and Coate [2008], Klein et al. [2008], Yared [2010].
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characterizing conditions under which time inconsistency allows for the existence of equilibria with

cycles (with possibly arbitrarily long periods) and equilibria in which the state variables follow

chaotic trajectories. In the latter equilibria, the state variable can be considered unpredictable

because it is highly sensitive to the initial state: two identical economies, starting from arbitrarily

close but different initial conditions, can diverge significantly in the long term in ways that are

difficult to predict, even in the absence of shocks. If the initial state is observed with noise, as is

naturally assumed, then long-term behavior remains unpredictable, even if the noise is arbitrarily

small and there are no stochastic shocks to the economies.

To analyze the issue, we study an infinite-horizon game in which an incumbent policy maker

selects the level of a durable public good (or bad) that strategically links policy making periods.

We study the political equilibrium of this economy assuming that two parties alternate in power

as in the classic game by Alesina and Tabellini [1990].4

In the absence of time inconsistency, the economy has a unique equilibrium, and this equilib-

rium has simple dynamics in which the state variable monotonically converges to a unique steady

state. When policies are selected in a political equilibrium, however, the set of equilibria is very

different and equilibria with complex dynamics may emerge. We first focus the analysis to the

case in which preferences are quasilinear. We demonstrate that, regardless of the degree of time

inconsistency, Markov equilibria with persistent cycles and chaotic dynamics exist if the relative

importance of the public good component is sufficiently high or, ceteris paribus, if the degree of

time inconsistency is not excessively large. We then extend the analysis to a more general class

of utility functions.

In the equilibria with chaos, starting from almost any initial condition, the state variable

converges to a region with positive measure and then “wanders around” in its inside, following a

4 As we explain in detail below, the logic of the model can be applied with minor changes to other economic

environments, such as single agent consumption savings decision problems with quasi-hyperbolic discounting; dy-

namic free rider problems, such as voluntary contribution and common pool games; or more sophisticated political

economy games with non cooperative bargaining.
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deterministic but aperiodic trajectory. Under general conditions, the state variable behaves like a

random variable with a continuous distribution, in the sense that the ergodic distribution of the

state variable converges to an absolutely continuous distribution on the set (a phenomenon often

referred to as “ergodic chaos”). For some equilibria, this absolutely continuous distribution can be

characterized in closed form as a function of the parameters of the economy (such as the degree

of time inconsistency and the importance of the public good).

Existence and the properties of these equilibria are intimately connected to the presence of

time inconsistency. The size of the set in which the state wanders around depends on the degree

of time inconsistency: as time inconsistency converges to zero, chaotic equilibria continue to exist,

but the size of the set in which the state wanders around shrinks to zero. A similar phenomenon

occurs for equilibria with cycles: as time inconsistency converges to zero, the distance between

the states in the periods converges to zero. This implies that depending on the degree of time

inconsistency, equilibria with complex dynamics can be consistent with a variety of phenomena:

from describing environments with large, possibly cyclical policy swings, when time inconsistency

is large; to environments with small, noisy perturbations around a steady state generating a “fog

of predictions” around an expected long term value, when time inconsistency is small. Failure to

converge to a deterministic outcome in these equilibria highlights a novel source of inefficiency,

distinct from the typical inefficiencies highlighted in the literature, where steady states are usually

characterized as having too little of a good thing or too much of a bad thing. We show that when

there are equilibria with persistent cycles, or equilibria with chaos, we do not necessarily have a

simple “one dimensional” bias. It is possible to construct equilibria under which the state of the

economy fluctuates around the planner’s optimum. This outcome is even worse than reaching a

constant steady state equal to the inefficient expected value since preferences are concave in the

state variable.

A limitation of the results described above is that the chaotic behavior we characterize is not
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typical of all equilibria of our dynamic economy, but it is instead a feature of the specific class of

equilibria whose existence we prove. Our results can be collectively interpreted as an impossibility

result: for the simple yet natural economy we consider, it is impossible to predict equilibrium

behavior in the sense that there are always chaotic equilibria that make deterministic predictions

impossible even in the absence of shocks.

The paper contributes to three main lines of research: the economic literature on complex

dynamics and chaos; the literature on dynamic decision with time inconsistent decision makers;

and the literature in political economy and public economics in which time inconsistency emerges

in equilibrium despite players having standard exponential preferences.

The question of whether dynamic economic models can generate complex dynamics and chaos

has been studied extensively in the 80s and 90s. Identifying natural examples of economic envi-

ronments with robust chaotic dynamics occurring in equilibrium, however, has proven to be an

elusive task. Early economic examples of models with complex dynamics relied on a sufficient

condition proposed by Li and Yorke [1975] that, while relatively easy to establish, did not exclude

the typical case in which trajectories with complex dynamics are unstable and reachable only from

a measure zero of initial conditions, making cycles with more than 2 periods or chaotic behavior

unobservable (this form of unobservable chaotic behavior is sometimes refereed to as topological

chaos).5 Economic examples with more robust forms of complex dynamics, such as the ergodic

chaos mentioned above, have been presented in the subsequent literature. These applications,

however, relied on sufficient conditions that require the difference equation describing the dy-

namics to assume specific functional forms: piecewise linear maps, typically “V” or “inverse V”

shaped; or piecewise smooth, expansive maps (i.e. functions with non-differentiable “spikes” and

5 Early seminal work include Day [1982], Benhabib and Day [1983], Grandmont [1985], who study overlapping

generation models; Boldrin and Montrucchio [1983], Matsuyama [1999]; Bewley [1986] and Woodford [1988] who

study models with market impefections. A critique of the notion of topological chaos used in some of the early

literature is presented by Grandmont [1985] and Melese and Transue [1986]. More recent related work includes

Khan and Mitra [2005], Gardini et al. [2022] and Mignot et al. [2023]. See Majumdar et al. [2000], Hommes [2013],

Rosser [2021] and Bischi et al. [2024] for surveys of this literature and its implications for economics.
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derivative larger than one in absolute value on both side of the “spike”). These properties are not

naturally derived for optimal investment functions, except if specific technologies, or exogenous

constraints are imposed, such as credit constraints or other constraints that force the state vari-

able to become non monotonic.6 While there are environments in which these assumptions are

appropriate, our results rely neither on the assumptions nor on the techniques used in these works.

Alternatively, the literature allows for smooth difference equations for which it is easier to provide

a microeconomic foundations (S-unimodal maps), but only for nongeneric parametrizations. Our

contribution relies on the construction of a novel class of equilibria, one that is large enough to se-

lect an equilibrium with the right properties for complex dynamics, in each parametrization of the

environment. The characterization, in turn, is a consequence of the presence of time inconsistency.

The second literature to which our paper contributes is the literature on dynamic decision

with time inconsistency. Phelps and Pollack [1968] started this literature by characterizing the

linear Markov equilibrium in a single agent model of intertemporal consumption allocation. A

general characterization of the Euler equations in similar problems is presented in Harris and

Laibson [2001], and analyses of saving dynamics for a representative agent with quasi-geometric

preferences are presented by Morris and Postlewaite [1997], Chatterjee and Eyigungor [2014], Cao

andWerning [2018], among others. Krusell and Smith [2003] also studied the issue of multiplicity of

equilibria in these problems, and highlighted indeterminacy due to multiple possible equilibrium

steady states. The problem we study in this paper is different: while we also obtain multiple

equilibria, our main result is the proof of the existence of equilibria with complex, deterministic

dynamics. In these equilibria, unpredictability occurs for a given equilibrium, not because of

multiplicity.

6 Economic examples with these properties have been presented, for example, by Day and Shafer [1987], Day

and Pianigiani [1991], Deneckere and Judd [1990] and more recently Matsuyama et al. [2016]. In these examples,

the state  evolves according to a system +1 = () in which (·) is assumed either piecewise linear and “V”
shaped; or to be “expansive,” i.e. satisfying inf(0())  1, so that if there is a maximum, it occurs in a non

differentiable “spike.” These results rely on sufficient conditions first presented by Lasota and Yorke [1973] and/or

its subsequent refinements.
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Finally, our work contributes to the study of applied models where time inconsistency emerges

in equilibrium despite players having standard exponential preferences. We have already cited

above works on voluntary contribution and common pool games and political economy. As men-

tioned, this literature has mostly focused on well behaved equilibria or environments in which the

state converges to a deterministic steady state. Among the exceptions, Boyland, Ledyard and

McKelvey [1996] and Bai and Lagunoff [2011] study the problem in a political economy setting,

while Battaglini, Palfrey and Nunnari [2012] study voluntary contributions to a public good. Boy-

land et al [1996] considers a model in which simple cycles with finite orbit may emerge when the

policy-maker selects policies that can be defeated by the smallest possible majority, and s/he can

commit for at least 3 periods into the future; the length of the commitment period determines

the length of the cycle in this model.7 Bai and Lagunoff [2011] study a dynamic political game

in which policies at  affect political turnover at  + 1. They show conditions under which the

equilibrium may converge to a stable steady state following a dampened cycle. Battaglini et al.

[2012] considers a model of free riding in which  agents independently contribute to a public

good: using numerical examples, they show the existence of Markov equilibria with dampened

cycles and with cycles of period 2.8 None of these papers, nor to our knowledge any other in the

political economy literature, has studied the emergence of complex cycles with period longer than

2 and/or chaotic behavior.9

7 The authors also show that in their model no cycles is possible if the policy makers can not commit to a policy.

8 The NBER working paper Battaglini et al. [2012] was published as Battaglini et al. [2014], but some of the

results on cyclical equilibria were omitted in the 2014 version.

9 A different (and less related to our work) body of research is the literature on the so called “political business

cycles.” This literature looks at models in which fluctuations in economic activity are generated by recurrent

stimuli right before an election by an incumbent attempting to signal his/her competence to influence the electoral

outcome; or right after an election as the uncertainty on the type of the winning party is resolved. These are

typically stationary models with no underlying state variable, in which fluctuations coincide with the electoral

cycle, not with a long term evolution of a state variable. See Alesina [1988], among others, for a survey.
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2 Model

Consider an economy in which two parties alternate in power, call them  and . Each party is

associated to a constituency of citizens. We assume that there is a continuum of citizens and we

normalize the size of the constituency of each party to one. The party in power at time  selects

a policy  from a set of feasible policies. The policy generates immediate costs or benefits for

the citizens, and it also contributes to a long term state variable  that also affects the citizens’

utility. For example,  may be a polluting activity that generates economic benefits to all (or a

subset of) the citizens, yet it increases the stock of pollution (as measured by ).

The state variable  takes values in the real line R, and it evolves according to: +1 =

(1 − ) + , where  is the rate of depreciation of .
10 The policy  takes values in

the set  = [−∞) for some   0, and thus it must be such that the state +1 satisfies

+1 ≥ (1− ) − . The lower bound reflects the fact that there may be limits on the feasibility

of a reduction in the state .

In every period , party  ∈ {} has a probability 12 to be in power. This assumption

reflects the idea that the constituencies of the two parties have the same size, so the identity of

the majority party at  is determined by chance. Citizens are assumed to be identical, except for

the party whose constituency they belong to. Define  ( ) as the indirect utility function of

a citizen in the constituency of party  when the party in office is , the state at the beginning of

the period is , and the policy is  =  − (1− ), where  is the state at the end of the period.

A policy  can be interpreted as the expenditure on local public goods, subsidies or other policies

that the party in office can target to its constituency. Utility  ( ) depends on the party in

power  because, even if the levels of expenditure is the same for the two parties, the policy mix

10 Depending on the interpretation of the model  may be interpreted as a stock of capital that may generate

positive or negative externalities, or just the stock of pollution (see Section 3.3 for a more extensive discussion of

this point). In the second case  should be interpreted as the regeneration rate (i.e. the natural decline in the stock

of pollutant).

7



chosen by each party would naturally be different. The function  ( ) is assumed to be weakly

concave in , strictly concave in , and continuously differentiable in both terms, with derivative

with respect to the th component equal to  (·) for  = 1 2. We assume 

1 (·)  


1 (·) and



1 (·)  0: citizens’ marginal utility for policies targeted to them is positive, and they derive

higher utility from policies targeted to them than from policies targeted to the other constituency.

The spillover of policies by policy maker  (targeted to district ) on district  can be positive (i.e.,



1 (·)  0), as in the case of an highway or bridge; or negative (i.e., 


1 (·)  0), as in the case

of a polluting power plant that benefits only to ’s constituency, but that yet pollutes the air of

both ’s and ’s constituencies. A specific example of these indirect utility functions is described

below.

In this economy, an allocation is described by an infinite sequence ∞ where ∞ = (0   )

and 0 is exogenously given. The intertemporal utility at  = 1 of an agent in party ’s constituency

is:  (∞) =
P∞

=1 
−1 £() ( − (1− )−1 −1)

¤
, where  is the discount factor, () is the

incumbent party in office at time .

In Section 3 we study the case in which preferences are quasi-linear and separable in  and .

Specifically, we assume the per period utility function:

 ( ) =  · − () (1)

where  is a strictly positive constant and () is strictly convex in .11 We assume that

 =  = 1 and  =   1 when  6= : so, for a member of constituency , the marginal

utility of  is 1 when ’s party is in office, and it is strictly lower than 1 otherwise. The parameter

 is a direct measure of the time inconsistency generated by the political alternation of power.

When  = 1 there is no political conflict and no time inconsistency, since the policies of the two

11 When () is increasing in , then −() may be interpreted as a cost generated by  (for example pollution
cost generated by the state ). But () is not necessarily increasing, as for example when (2) with   0 is

assumed. This implies that the model allows a variety of interpretations as it will be discussed in Section 3.3.
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parties have the same effects on all citizens.12 When  ∈ [0 1) the policy benefits both the

constituency of the party in power and the constituency of the party out of power, albeit less for

the latter if   1. When  ∈ (−∞ 0), instead, the policy benefits the constituency of the party

in power, but generates negative externalities for the rest of the citizens.13 Later in this section

and then in Section 3, we also assume a quadratic cost function

() = (2) (− b)2 (2)

where we assume   0 and b ≥ 0. We will relax this assumption in Section 4.
We focus the analysis on symmetric Markov perfect equilibria, in which the parties use the

same strategy, and in each period  these strategies are time-independent functions of the state .

Non-Markovian strategies will be discussed in Section 4.14 A Markovian strategy is a function

(·), where () is the policy of the party in power when the state is . Once (·) is defined, then

the state variable at  + 1 is automatically defined as:  :  → (1 − )+ (). In the following

it will be more convenient to define equilibria in terms of (·). We refer to (·) as the investment

function. Associated with any investment function  is a value function , which specifies the

expected discounted future payoff to an agent when the state is .

An investment function  and an initial state 0 define a dynamical system in which +1 =

(). We are interested in studying the dynamics that can emerge in equilibrium. It is worth

stressing that the dynamics of the state in a symmetric equilibrium is deterministic and fully

determined by the equilibrium . The two parties in power alternate in power with probability

12, but they adopt the same strategy  in equilibrium, so the evolution of  does not depend on

12 The fact that with  = 1 we do not have time inconsistency does not imply that policies are Pareto efficient:

even with  = 1 the policy maker in office ignores the externality on the constituency of the other policy maker.

13 The indirect utility function (1) has a simple microfoundation. Assume that there are two possible policies:

 that generates a marginal utility  on party ’s constituency and  on ’s constituency; and a symmetric

 that generates a marginal utility  on party ’s constituency and  on ’s constituency. In a Markov

equilibrium, for any level of expenditure , party  would spend all in , implying (1).

14 The main result of our analysis is in proving the existence of equilibria with cycles, and/or unpredictable and

chaotic behavior. The focus on Markov equilibria, therefore, is without loss of generality and makes the results

stronger as it relies on simpler strategies.
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the outcome of the election but only on the initial condition 0 and the shape of the investment

function (·).15 Define []
1
(·) = (·) and, for any  ≥ 1, [] (·) = ([]

−1
(·)). For any starting

condition 0, []

naturally defines a trajectory {1  +1 } in which  = []


(0). A

cycle of period  is a set {1  } such that  = []

() for all  = 1   ; any element

of a cycle with  element is called a periodic point of period  . The simplest, and most widely

studied, case of cycle is a steady state, which is a cycle of period 1. We define a cycle {1  }

to be attracting (or asymptotically stable) if for all points  in the cycle there exists an open

neighborhood  of  such that for all  ∈  , we have []

() ∈  for any integer  ≥ 1 and

lim→∞ []

() = . When a cycle is attracting, a small perturbation to the state variable

does not alter the long run behavior of the system.

The mathematical literature has offered various definition of “chaotic” behavior of deterministic

dynamical systems. The intuitive features of a “chaotic” system in a set  are that: a. the system

is invariant in ; b. it has an aperiodic trajectory dense in ; and it has sensitive dependence,

meaning that even an arbitrarily change in the initial condition leads to a large deviation in the

long term. Dynamical systems with these properties are said to be incomputable or unpredictable

in the sense that they give different predictions for arbitrarily close initial conditions (See, for

example, Devaney [1989]).

A standard formal definition of chaotic behavior is provided by Devaney [1989]. We say that

an investment function  is transitive in  if for any open  ,  ⊂ , there exists a  such that

[]

() ∩  6= ∅. Intuitively, a topologically transitive map “wanders” in the invariant set ,

moving under iteration from one arbitrarily small neighborhood to any other. An investment

function  exhibits topological chaos in a set  if it is transitive and it has a set of periodic points

that is dense in . If the two conditions of this definition are satisfied, then it can be shown that

15 The fact that parties alternate in power stochastically is important only to the extent that it generates

dynamic time inconsistency. In Section 5.2, I present an alternative decision model with a single decision maker

with hyperbolic discounting and no shocks, as example in which time inconsistency emerges with no shocks. More

examples are presented in the working paper Battaglini [2024].
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 is sensitive on initial conditions in the sense that there exists a  such that, for any  ∈  and

any neighborhood  of  there exists a  ∈  and a  ≥ 0 such that |[] ()− [] ()|  .16

A dynamical system is said to display ergodic chaos if the system is ergodic and the unique

invariant distribution of the Perron-Frobenius operator is absolutely continuous with respect to

the Lebesgue measure. This definition implies that, starting from a generic initial condition, the

orbit described by  “fills up” the entire support of the ergodic distribution and thus defines

extremely complex dynamics. As we will see, our equilibria will satisfy both the topological and

the ergodic definition of chaos. We will formally define and discuss ergodic chaos in Section 3.2.

Before studying equilibrium behavior in the model described above, it is useful to charac-

terize the optimal policy when it is selected by a utilitarian planner (henceforth, the plan-

ner) under assumptions (1) and (2) as a benchmark. Define the feasible set as F(;  ) =

{ ∈ R|  ≥ (1− )− }. The planner solves the following problem:

 () = max
∈F(;)

{Γ( ; ) +  ()} (3)

where Γ( ; ) = (1 + ) ·( − (1− ))−2() and  () is the planner’s continuation value

function at . Note that Γ( ; ) is continuous, differentiable in  for a given , and concave

in  , strictly with respect to  alone. By a standard argument, we can show that there exists a

unique  ∗ satisfying (3); and that this  ∗ is strictly concave and differentiable. In the quasilinear

environment with quadratic (·) described above, the optimal policy  ∗ that solves (3) is also

uniquely defined and admits a unique steady state: ∗∗ = b+ [(1 + )  (2)] · (1 − (1− )).

The state variable monotonically converges to ∗∗ for any initial condition 0.

16 Devaney [1989] originally included sensitive dependence on initial conditions in the definition of topological

chaos; Banks et al. [1992] subsequently proved that it is implied by transitivity and a dense orbit. Indeed, for

continuous maps on an interval (the class of maps of interest in the analysis of this paper), Vellekoop and Berglund

[1994] proved that transitivity also implies a dense set of periodic points, so that topological transitivity is the

essential property defining chaos.
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3 Political Equilibrium

3.1 Existence of equilibria with no attracting steady state

We now turn to the study of the equilibria of the game in which policies are chosen by the

incumbent party (henceforth, the incumbent) under the assumption of quasi-linear preferences

(1). The goal of this subsection is to prove the existence of equilibria with cycles or aperiodic

dynamics. The exact type of dynamics that is possible is studied in the next subsection.

The incumbent’s problem can be written as follows:

max
≥(1−)−

{ [ − (1− )]− () + ()}  (4)

The incumbent maximizes the expected utility of her constituency taking the expected contin-

uation value  as given, thus ignoring the cost/benefit for the constituency of the other party,

 [ − (1− )]− (). In equilibrium, the expected continuation in state , the value function

 must satisfy:

() =
1

2
[(()− (1− )) + (())] +

1

2
[(()− (1− )) + (())]− ()

(5)

If  is the state, each party suffers a disutility () for sure; with probability 12 the incumbent

remains in office and selects (), obtaining (()− (1− )) + (()); with probability 12

the party is no longer in office and receives only  (()− (1− ))+ (()), since the policy

() is selected by the other party. An equilibrium is characterized by a pair of functions (·) and

(·) such that for all states , (·) solves (4) given (·) and (·) solves (5) given (·)

The incumbent’s trade-off can be described as follows. By increasing , s/he increases current

utility for his/her district; by increasing , however, s/he also affects future’s utility for all through

the effects on the expected continuation function  evaluated at . There are two key differences

between (4)-(5) and the planner’s problem (3). The first is that, as we mentioned above, in

any given period the incumbent selects a policy that maximizes the expected utility of his/her
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constituency alone, ignoring the spillover effects on the constituency of the other party. The

second (and most important) difference is that the value of the incumbent’s problem (4) does not

coincide with the incumbent’s continuation value function (5) except in the special case in which

 = 1. The value of (4) is the expected value for the incumbent; in the continuation of the game,

however, the incumbent at  will remain incumbent only with probability 12. This feature make

the incumbent’s problem time inconsistent since her objective function when selecting the policy

does not coincide with the expected continuation value.

In the planner’s solution the marginal effect of the state on the expected continuation value is

independent of expected future policy :

[ ∗]0 () = − (1 + ) (1− ) − 20() + £(1 + ) +  [ ∗]0 ( ∗())
¤
[ ∗]0 ()

= − (1 + ) (1− ) − 20()

where [ ∗]0 is the derivative of the planner’s policy function and the second equality follows from

the envelope theorem.

In the political equilibrium, however, the standard envelope theorem is not directly applicable,

making the optimal decision for the incumbent critically dependent on her expectation of future

behavior of the other party. The incumbent’s value function (5) can be written as:

() = [ (()− (1− )) + (())]− () (6)

−1
2
(1− ) · [()− (1− )]

where the first line on the right hand side is the objective function that is maximized by the

incumbent at  + 1, and the second line collects the wedge between the incumbent’s objective

function and the expected continuation value. Applying the envelope theorem to the first line of
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(6),17 we have:

0() = −0()− (1 + ) (1− ) 2− (1− )0()2 (7)

The key feature of this expression is that the marginal change in the value function depends on

the expected policies selected by future incumbents, i.e.  (·). If the incumbent at  expects the

incumbent in the following period (herself or the opponent) to rapidly increase the policy as a

function of the state (i.e. a high positive 0 (·)), then s/he will have higher incentives to keep the

state low; similarly, if s/he expects the future incumbent to reduce the state or increases it slowly

(i.e. a low or negative 0 (·)), then s/he will have higher incentives to increase the state. The

important question for predicting behavior in a political equilibrium is what kind of expectations

on  (·) are consistent with equilibrium behavior.

In equilibrium the policy must solve (4). At a state  that satisfies the first order condition

for optimality in (4), we therefore must have  = −0(). Ignoring the policy constraint for

the moment, an interior equilibrium satisfies both this condition and (7). Combining these two

conditions, we obtain:

 = 0() + (1 + ) (1− ) 2 + (1− )0()2 (8)

This is a simple differential equation that can be solved in closed form up to a free constant .

The solution can be written as:

Ψ( ) =
2 − (1 + ) (1− )

1− 
· − 2

(1− )
() +  (9)

Under assumption (2), a functional form that we will assume for the rest of this section and in

Section 4, the solution of (8) becomes:

( ) = 1 · − 2 · 2 +  (10)

17 The assumption of differentiability here is without loss of generality since, as we will show in Proposition 1, the

equilibrium is almost everywhere differentiable (and always in the relevant region). We assume here differentiability

only for ease of notation, since the same argument regarding the dependence of differentials of  on  can be made

without assuming differentiability.
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Figure 1: The equilibrium construction.

where:

1 =
2 − (1 + ) (1− ) + 2b

1− 
, and 2 =



(1− )

The following Proposition 1 characterizes a sufficient condition such that an equilibrium exists

in which the investment function coincides with (10) in all periods, except for at most a finite

transition period where the policy must accommodate the feasibility constraint.

Figure 1 illustrates the equilibrium construction. The figure shows ( ) (the dashed curve)

and its relationship with the full equilibrium investment function (the solid curve ∗( ), partly

15



overlapping with ( ), formally described below). The quadratic curve described by ( )

reaches a maximum  () = (∗ ) at ∗ = 1 (22), and has two fixed points at 
∗
− () and

∗+ (). If (· ) were the equilibrium investment function for the entire domain of , then the

policy would increase the state variable for states in
¡
∗− ()  

∗
+ ()

¢
, since in this region ( ) 

; and it would decrease the state variable for states   ∗− () and   ∗+ (), since in this

region ( )  . For high values of  above ∗+ (), or low values below ∗−(), however, we may

have ( )  (1− )− : a violation of the feasibility constraint. To avoid this, the equilibrium

construction of Proposition 1 truncates (· ) on the left, setting it equal to (∗−() ) for

 ≤ ∗−(); and, on the right, by setting it equal to max
©
(∗+() ) (1− )− 

ª
for  ≥ ∗+().

This gives us an “adjusted” investment function:

∗( ) =

⎧⎪⎪⎨⎪⎪⎩
max {( ()  ) ( )}  ≤  ()

max {( ()  ) (1− )− }    ()

 (11)

where  () = ∗− () and  () = (1(22) ). Proposition 1 proves that, for an appropri-

ately chosen set C∗ of integration constants , (11) is an equilibrium investment function with no

attracting steady states.

The proof has three steps. First, we show that, for an appropriate choice of , (· ) does not

have attracting steady states, and it is such that once the state enters the set [ ()   ()], it never

exits. Using this result, we then find conditions under which (11) does not violate the feasibility

constraint, it admits no attracting steady state, and it is such that the state variable enters the

set [ ()   ()] in finite time and never exits it. Finally, and most importantly, we prove that if

players expect (11) as an investment function, then they find it optimal to invest according to

(11).

Lets us start from the first property. A key feature of ( ), as illustrated in panel 1.a of

Figure 1, is that for any  ∈ [ ()   ()] we have ( ) ∈ [ ()   ()], and the derivative 0( )

of ( ) with respect to  is larger than 1 in absolute value at any fixed point in [ ()   ()], so

16



the policy is repelled by them. These properties, however, depend on the choice of the constant

of integration . As we shift  up or down, we shift (· ) up or down: and we thus change

the dynamics associated to it. On the one hand, the parameter  cannot be selected too small,

otherwise ∗+() would be too close to 
∗, and the absolute value of the derivative at ∗+() would

be lower than 1, thus making ∗+() an attracting steady state. On the other hand,  cannot be

selected too high:  = (∗ ) would be too high, ( ) too small, and ( )  (): so ( )

would not be a self-map in [ ()   ()].

The following lemma characterizes the exact conditions on  for ( ) to be a self-map in

[ ()   ()] with no attracting steady state. To state it define the following correspondence:

∗() = [() ()], where the thresholds () and () are defined as above. Under the as-

sumption that () is quadratic as in (2), an assumption that is maintained in this and the next

sections, we have:

() =
1 − 1−

p
(1 − 1)2 + 42
22

, and () =
21 + 42

42

We can now state:

Lemma 1. Let  ∈ C∗, where C∗ is defined as:

C∗ =
∙
(3− 1) (1 + 1)

42
 (4− 1)(2 + 1) (42)

¸
(12)

Then (· ) has no attracting steady state and ( ) ∈ ∗() for any  ∈ ∗().

Proof. See Section 7.1 in the appendix.

We will now use Lemma 1 to find conditions under which ∗(· ) is feasible and admits no

attracting steady state. The policy function is feasible if ∗( ) ≥ (1− )−  for all  ∈ R. By

construction, it is certainly the case that ∗( ) is feasible for all  ∈ (0 1),   0 and  ≤ ∗− (),

since we must have (1 − )∗− () −   ∗− (). We might however have that (1 − ) () −  

∗( ()  ), which would imply ∗( ) violates feasibility in a neighborhood of  (). Naturally,

17



we can always find thresholds on  and  such that feasibility is satisfied. We can however

characterize a more general condition on the preferences of the players and the technology such

that feasibility is satisfied for any  and . Define  to be the ratio =. This ratio captures

the temptation for an incumbent to abuse its position in selecting the policy. The numerator

measures the importance of the externality generated by  on society; the denominator measures

the importance of the private benefit of the policy for the incumbent. To state Lemma 2 below,

define the threshold:

∗ () =
4 (1− ) (2− ) + (1 + ) (1− )  − 2

2 (b + )
(13)

We have:

Lemma 2. If  ≥ ∗ () and  ∈ C∗, then the investment function ∗(· ) as defined in (11)

is feasible, it has no attracting steady states, and it is such that the state variable enters the set

∗() in finite time and never leaves it.

Proof. See Section 7.2 in the appendix.

We will study in detail in the next section what type of dynamics is impressed by ∗( ) on

the state , i.e. the type of cycles that are feasible in equilibrium and whether chaotic trajectories

exist. Before turning to that, we complete here the equilibrium characterization by proving that

∗( ) is indeed a best response and thus an equilibrium. This is done in the proof of the following

proposition. We have:

Proposition 1. Consider an economy with  ≥ ∗():

• For any  ∈ ∗, ∗( ) is an equilibrium policy function with no attracting steady state.

• In this equilibrium, the state variable is in ∗() for all periods except at most for a finite

transition period.
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Proof. We have already proven in Lemmata 1-2 that ∗(· ) is a feasible self-map in [() ()]

that admits no attracting steady state. We now prove that if the players expect ∗(· ) to be

the equilibrium policy used by future policy makers, then they find it optimal to invest according

to ∗(· ). A policy maker chooses a policy  that solves (4) and thus maximizes the objective

function:  :  →  + (). We will show that  is almost everywhere differentiable (and

indeed differentiable in ( ()   ())), concave in R and maximal in [ ()   ()]. This implies that

that for any , it is optimal to choose a point ∗( ) ∈ [ ()   ()]. We proceed in 3 steps.

Step 1. Consider first policies  ∈ [ ()   ()]. In this region, we have ∗(·; ) = (· ), as

defined in (8). By the definition of (· ), we therefore have 0(·) = −, so  is constant and

differentiable in this interval. In ( ()   ()) the derivative of the objective function is such that:

 0() =  + 0() =  − 

∙
0() +

(1 + ) (1− )

2
+
(1− )

2
0( )

¸
= 0 (14)

where in the last equality we used (8).

Step 2. Consider now policies    () and    ()  In this region,  (·) is also obviously

differentiable, since the policy if constant in this region. Assume first    (). Note that:

() = (
1

22
 ) ≥ 1

42

h
21 + 1− (1 − 1)2

i
=

1

22
= ∗

where ∗ = argmax ( ). Since  () ≥ 1(22), (· ) is concave, and 0(1(22) ) = 0,

we conclude that 0( ) ≤ 0. We therefore have:

 0() ≤  − 

∙
0() +

(1 + ) (1− )

2

¸
(15)

≤  − 

∙
0() +

(1− )

2
((1− ) + 0( ))

¸
= 0

for any    (). Consider now    (). Naturally,  ()  1(22), so:

 0() =  − 

∙
0() +

(1 + ) (1− )

2

¸
≥  − 

⎡⎢⎢⎣ 0()

+
(1−)

2
((1− ) + 0( ))

⎤⎥⎥⎦ = 0
(16)
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Step 3. Conditions (15) and (16) imply that  (·) achieves a maximum at any point in [ ()   ()].

To see the concavity of  (·), note that it is continuous, concave with positive derivative in    (),

flat in  ∈ [ ()   ()], and concave with negative derivative in    (). To see that ∗( ) is

an optimal policy for the incumbent in state  note that by (14)-(16),  (·) achieves a maximum

in [ ()   ()] and that, when  ∈ C∗, ∗( ) ∈ [ ()   ()] for any  for which it is feasible;

and for a state  in correspondence of which no  in [ ()   ()] is feasible, then the policy is at

a constrained optimum. ¥

Figure 1 illustrates ∗(· ) and its relationship with the objective function in (4). In  ∈

[ ()   ()], ∗( ) is equal to ( ) and this function maps [ ()   ()] to itself. Because

of this, the players expect that the future dynamics is driven by (· ). By its definition, this

function keeps the expected utility of a policy maker (i.e. the objective function in (4)) constant

and at its maximal level. Because ∗( ) ∈ [ ()   ()] for any  ∈ R, not just  ∈ [ ()   ()],

the policy is optimal. The players are indifferent between all policies chosen in equilibrium in any

state just as in a mixed equilibrium, but the investment function is uniquely defined up to the

constant  since the derivative of (· ) (and thus ∗(· )) must be such that the policy makers

are indifferent in [ ()   ()].

We conclude this section with five remarks on this equilibrium. Readers interested in the

characterization of equilibrium dynamics may skip the rest of this section on a first read and

proceed directly to Section 3.2.

Why is the investment function hump shaped? A key feature of ∗(· ) which allows

it to be a self-map and, as we will see, to generate cycles and chaotic behavior is that it is non-

monotonic and hump-shaped. This shape endogenously emerges from the equilibrium condition

(8) discussed above when (·) is a convex function of . Recall that (· ) is chosen so that an

incumbent politician in state  is indifferent when choosing different values of +1. An increase
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in +1 generates a constant marginal benefit , and an increasing marginal cost 
0(+1), for

the policy maker. In order to make the policy maker at  indifferent between different levels of

+1, these effects must be compensated in equilibrium. This is achieved by a strategy where

future policy makers react to the increase in +1 by reducing the marginal rate of increase in

the state. In the pollution example, future policy makers move from strategic complements for

low states (when they respond to increases in pollution with increases), to strategic substitutes

for high states (when they respond to increase in pollution with reductions). In the equilibria

of Proposition 1 this induces hump-shaped investment functions in which the rate of investment

[∗]0 (· ) is declining, first positive and then negative as in Figure 2.

Multiplicity and the role of the constant of integration c. Proposition 1 characterizes

the set of values of  for which it is possible to construct an equilibrium in which the dynamics is

driven by the solution of (10), except for at most a finite transition period. As mentioned, these are

equilibria which are analogous to mixed strategy equilibria: the strategy is optimal because policy

makers at +1 choose policies in [ ()   ()] according to a strategy that makes the policy maker

at  indifferent between policies in [ ()   ()]. There is a continuum of equilibria in the model

because the condition under which policy makers are indifferent between values of  in [ ()   ()]

defines the investment function only up to a constant. The set of admissible constants is restricted

by other equilibrium conditions, but it is still a non empty compact set.

The value of the constant of integration  is important because it determines the slope of

the solution , and thus of the investment function, in correspondence to its fixed point ∗+().

Consider the example illustrated in Figure 1, in which  (∗ )  ∗. If we choose a very small ,

we have ∗ '  (∗ ): so ∗ ' ∗+(), implying 
0 ¡∗+() ¢ ' 0  −1. In this case, ∗+() is an

attracting steady state, and we cannot have stable cycles or chaos. For larger values of , Lemma

1 shows that we can have 0
¡
∗+() 

¢
 −1. In this case, ∗+() is repelling and we can’t have a

stable steady state in ∗(): the equilibrium must generate a stable cycle or chaos.
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In terms of economic interpretation, a higher value of , corresponds to situations in which,

in a neighborhood of the steady state ∗+(), the policy maker at  + 1 responds to a marginal

increase in the state  at  by a larger decrease in +1. If we interpret  as pure pollution,

therefore, equilibria with larger  correspond to situations in which in a neighborhood of the steady

state ∗+() policy makers respond to a marginal increase in pollution by reducing pollution more

aggressively, thus cleaning up more aggressively “the mess” inherited by the previous generation of

policy makers. Note that the marginal response of policy makers at ∗+() is important because it

determines how strongly the state is repelled from ∗+(): depending on how strongly it is repelled

(and therefore on ), we may have stable cycles or chaotic trajectories.

How strong is the existence condition? A number of parameters in the model contribute

to making it easier or more difficult to have equilibria with a non converging orbit. For example,

it is clear that if both  = 0 and  is arbitrarily close to 0, then it is impossible to construct cycles

or non converging orbits. The reason is that in this case the policy constraint +1 ≥ (1−)− 

forces the policy to be monotonically increasing over time, since +1 = () ≥  for  = 0,

 → 0. And indeed, consistently with this observation, we have that ∗() → ∞ as both  → 0

and → 0. Remarkably, however, cycles and non-converging orbits exist even for arbitrarily small

(but strictly positive) values of  and , if we choose the other parameters  b and  appropriately.
For example, it can be verified that ∗(1)  0, so the equilibrium of Proposition 1 always exists

when  is sufficiently close to 1, i.e. when time inconsistency is not too large (as we will discuss

more extensively in Section 4.1). Two other important variables are the discount factor  and the

ideal point for society b. The threshold ∗() is increasing in , so the smaller is the discount

factor the easier is to satisfy the sufficient condition in Proposition 1. It is indeed interesting to

note that a small enough discount factor is sufficient for the existence of non converging equilibria.

A small discount factor, however is not necessary, and the sufficient condition can be satisfied for

any . On the contrary, the threshold ∗() is decreasing in b, so a larger ideal point makes non-
22



converging equilibria easier to achieve. Non-converging orbits are however possible even if b = 0.
The most interesting variable in ∗() is , which measures the degree of time inconsistency

in the economy. We postpone the discussion of the relationship between time consistency and

non-converging equilibria to Section 4.1. In the model of Section 2 we have assumed that b ≥ 0
and   0, although possibly both variables may be arbitrarily small. The result of Proposition

1 does not require these natural but simplifying assumptions. The general sufficient condition

for Proposition 1 is (31) in Section 7.2, where Lemma 2 is proven. If we assume b  0 and/or

 ≥ 0, but b+  ≥ 0, (31) continues to imply (32), so the analysis remains completely unchanged

(with the minor convention of defining ∗() = ∞ if b +  = 0). If b  0 and/or  ≥ 0, but

b +   0, instead (31) requires  ≤ ∗(). This means that when the ideal point b is negative
and sufficiently large in absolute value, then the feasibility condition in Proposition 1 holds if 

is sufficiently small.

Unstable steady states. In the equilibria characterized in Proposition 1, the state variable

never diverges to ±∞, since ∗( ) is bounded for any 0 ∈ R (see (11)). The equilibria, however,

besides the stable cycles and non-periodic trajectory that we will study in greater detail in the net

section, admit unstable steady states. For instance, consider the points ∗+() and ∗−() = ()

in Figure 1, where ( ) intersects the 45 line. These points are unstable because, for any

open neighborhood  containing them, there exist points within  from which the trajectory

moves away from the steady state. The first is unstable for perturbations that move the state

both to the right or left, while the second is unstable for perturbations that move the state to

the right. Starting from any generic initial state 0  ∗−() different from ∗+(), the equilibrium

investment function pushes the state away from ∗+() and (), making them “invisible.” The

unstable steady state ∗+() is inevitable and present in any equilibrium; however, the second,

(), can be eliminated in almost all parametrizations with a minor adjustment to the equilibrium

construction. To see this, note that in order to prevent the state from diverging to −∞ in (11)
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for 0  (), we require the investment function to remain constant and equal to ( ()) ) for

states to the right of (), creating a kink that “touches” the 45◦ line from above (see for instance

Figure 1). However, this is unnecessary for any  ∈ C∗∗, where

C∗∗ =
µ
(3− 1) (1 + 1)

42

(4− 1)(2 + 1)

42

¸


For  ∈ C∗∗, we have ( ) ∈ (()  ()] for any  ∈ (()  ()], so that we have ∗( ) ∈

(()  ()] for all  ∈ R if we define ∗( ) = max {( ()) +  ) ( )} when  ≤  (), for

some   0 sufficiently small. Let ( ) the point such that (( ) ) = ( ())+ . With this

modification, the investment function is flat and equal to ( ()) +  for  ≤ ( ), and equal

to (11) for   ( ); that is: it is just like (11), but it is flattened at a marginally higher value

for low values of . The resulting investment function intersects the 45◦ line only at the unstable

steady state ∗+(): starting from any 0 ∈ R, the state enters the set (()  ()] and never exits.

It is straightforward to verify that for sufficiently small  (which indeed can be made arbitrarily

small), the modified investment function satisfies the feasibility constraints and remains a best

response, as proven in Proposition 1. While the change described above slightly complicates the

formula for ∗( ), restricting  to C∗∗ does not qualitatively alter the results, as the equilibria

generated with  ∈ C∗∗ are sufficient to produce stable cycles with more than two periods and

chaotic behavior.

An upper-bound on investment. In the preceding analysis we assumed a lower-bound in

investments so that  ≥ (1 − ) −  for  ∈ (0 1) and   0, but no upper-bound. Bounds on

investments are implicit in the model because the marginal cost of large investments is increasing

in  and diverges to −∞ as →∞. The assumption of no explicit upper-bound, however, clearly

helps to simplify the presentation; we could have instead assumed, for example, an upper-bound

 ≤ Ω1+Ω2 for some Ω1  1 and Ω2  0. In Figure 1, this would appear as a positively sloped

line above the 45 line. For Ω1Ω2 sufficiently large, the constraint would not be binding, but it
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may be depending on the parametrization of the model.

3.2 Characterization of the dynamics

Proposition 1 does not specify whether the equilibrium dynamics is cyclical; and, if it is cyclical,

the period of the orbit. When the equilibrium orbit converges to a stable cycle, the equilibrium is

inefficient, but it is predictable since the orbit follows a well defined deterministic path. Unpre-

dictability becomes a problem only when the orbit is aperiodic and chaotic (as defined in Section

2). What kind of dynamics can we generate as we vary  in the set C∗?

To address this question, it is useful to “re-scale” (11) by an homeomorphism .18 Let us

denote the composition of two functions by  ◦ (·) = ((·)).

Definition 1. Let  : 1 → 1 and  : 2 → 2 be two maps, we say that  and  are topologically

conjugate if there exist a homeomorphism  : 1 → 2 such that  ◦  =  ◦ .

It is important to establish whether two functions  and  are topologically conjugate, because

topologically conjugate functions have the same dynamical properties. We have that [ ]

=£

−1 ◦  ◦ ¤ = −1 ◦  ◦ , so if  is a fixed point of [ ], then  must be a fixed point

of []

, since we have []

 ◦ (·) =  ◦ [ ] (·) = (·). Indeed, the function  gives a one-to-

one correspondence between the periodic points of  and . Periodic and aperiodic for  apply

to qualitatively similar orbits for  via homeomorphism ;  is topologically chaotic (following

Devaney [1989], Ch. 1.7.) and admits an absolutely continuous ergodic distribution if and only if

the same is true for . We can therefore study the properties of  by studying .

An adequate re-scaling of (10) by an homeomorphism simplifies the analysis of the equilibria

of Proposition 1 because it allows us to link equilibrium dynamics to the dynamics of the logistic

function  :  → (1 − ), one of the few nonlinear functions for which the dynamics has

been extensively studied (see for instance Ulam and von Neumann [1947], Ruelle [1977], Jakobson

18 A function between two topological spaces  and ,  :  →  , is said to be a homeomorphism if it is

one-to-one, onto, continuous, and its inverse −1 is also continuous.
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[1981]). Naturally, an equilibrium ∗(·; ) will never be conjugate to the logistic  on the entire

real line, since  is an unbounded function while the equilibrium must satisfy the feasibility

constraint  ≥ (1− )− . To characterize the equilibrium dynamics, however, it is sufficient to

have conjugacy on a superset of the support of the states reached in equilibrium. We have:

Lemma 3. Assume  ≥ ∗() as defined in Proposition 1. For any  ∈ [3 4], there is a constant:

 (;1 2) =
1

2
[(12)(1− 12)− (2) (1− 2)] (17)

such that the equilibrium investment function ∗(·  (;1 2)) on ∗( (;1 2)) is topologically

conjugate to  on [0 (12)].

Proof. See Section 7.3 in the appendix.

Consider an equilibrium with constant  ∈ C∗. By Proposition 1, once the state  enters ∗(),

it never exits. But what are the characteristics of the dynamic behavior in this set? Lemma 3

allows to characterize its dynamics. It tells us that there is a constant  = −1 (;1 2) such

that ∗(· ) is conjugate in ∗() to  in [0 (12)].19 It follows that the dynamics of ∗(· )

is qualitatively equivalent to the dynamics of .

Perhaps more interestingly, Lemma 3 allows to construct equilibria with cycles of various

periods. Given any type of dynamics generated by , we can find a constant  =  (;1 2)

such that there is an equilibrium function ∗(· ) having the same dynamics. It is well known that

for values  ∈ £3 1 +√6¤, the logistic has a unique stable cycle of period 2.20 We can therefore

construct an equilibrium with a cycle of period 2 by setting the constant ∗ in the equilibrium

∗( ∗) of Proposition 1 at ∗ =  (b;1 2) for any b ∈ £3 1 +√6¤. For example, the equilibrium
in the top panel of Figure 2 is constructed by setting ∗ in (10) equal to  (33;1 2).21 As 

19 Note that  (;1 2) is invertible in  ∈ [3 4]. We denote here its inverse −1 (;1 2) for  ∈ C∗.
20 See Devaney (1989), among others.

21 Specifically, to construct the left panel of Figure 2, we assume that the exogenous parameters of the model (i.e.

    ) are such that 1 = 22876, 2 = 10 and  = 33. In this case, we have  (33;1 2) = −11832.
The periodic points of the attracting 2-perid cycle are 1 = 11372 and 2 = 12504.
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Figure 2: One economy, two equilibria with stable cycles of periods  = 2 and  = 3. The solid

(black) line are the investment function ∗( ), the dashed (green) line are the iterated maps
[∗]2 ( ) and [∗]3 ( ) for, respectively,  (33;1 2) and  (3839;1 2).

increases beyond 1+
√
6, cycles of order 2 for any  ≥ 1 emerge; and for   1+ 2√2 there are

isolated values of  for which cycles with period 3 appear.22 The equilibrium with a stable cycle

of period 3 in Figure 2 is indeed constructed setting ∗ = 3 =  (3839;1 2).
23

In addition to stable cycles, the literature has also identified specific values of  in [∞ ' 35699 4]

for which  displays chaotic behavior: for example  = 4 (see Ulam and von Neumann [1947]);

or the Ruelle’s constant ∗, which is approximately 36785735 (see Ruelle [1977]).24 Lemma 3

shows that both  (4;1 2) or  (
∗;1 2) are in C∗: we can therefore generate equilibria with

the same qualitative properties setting  = 4 =  (4;1 2) or  = ∗ =  (∗;1 2). The top

22 The existence of stable cycles of order 3 is particularly important because by the Sarkovski Theorem they imply

the existence of cycles of any order. This has sometimes been equated to the presence of chaos. This is however

not a completely legitimate interpretation. The logistic has a unique stable cycle and the dynamics converges to it

starting from all points in its support except from a subset of measure zero. The additional cycles are unstable

cycles that exist only for initial values in a set of measure zero. These cycles are often referred to as “invisible”

since for all practical purposes they are unobserved. The lower bound for the existence of a cycle of period 3 has

been proven to be 1 + 2
√
2 by, among others, Bechhoefer [1996].

23 Specifically, to construct the right panel of Figure 2, we assume that the exogenous parameters of the model

(i.e.     ) are such that 1 = 22876, 2 = 10 (as in the left panel), and  = 3839. In this case, we have

 (3839;1 2) = −11 762. The periodic points of the attracting 3-perid cycle are 1 = 10087, 2 = 11382 and

3 = 13181. Note that the critical point ∗ that maximizes (  (3839;1 2)) is not a periodic point, since
∗ = 11435.
24 Ruelle’s constant ∗ is the only real solution ∗ of (∗ − 2)2(∗ + 2) = 16.
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panel of Figure 3 presents the trajectories of two chaotic equilibria with  equal to  (4;1 2)

and  (∗;1 2), respectively (the parametrizations are always the same as in Figure 2).

The following result is an immediate implication of Proposition 1 and Lemma 3.

Proposition 2. Assume an economy with  ≥ ∗() as defined in (13):

• For every value  ≥ 2, there is at least an equilibrium ∗( ) associated to a point

 ∈ C∗ with a unique stable cycle of period at least . The orbit of this equilibrium

is in
h
[∗]2 (∗; ) ∗(∗; )

i
, and its periodic points belong to the set of fixed points of

[∗] (; ), as defined in (11).

• For values  ∈  = ( (∞;1 2)   (4;1 2)] where ∞ ' 35699, the equilibrium

∗(· ) has an invariant set in which the map is chaotic (topological chaos or ergodic) onh
[∗]2 (∗; ) ∗(∗; )

i
.

Proof. See Section 7.4 in the appendix.

Given Proposition 2, it is also natural to ask what the properties of the long term distribu-

tion of states induced by iterations of ∗ are. A particularly important property is whether the

distribution is absolutely continuous, invariant and ergodic.25

Definition 2. We say that a dynamical system displays ergodic chaos if there is an absolutely

continuous probability measure that is ergodic and invariant.

When we have ergodic chaos, the behavior of the dynamical system in the long term can be

described by a distribution function. Ulam and von Neumann [1947] have famously shown that 4

admits an ergodic distribution that can be characterized in closed form and is equal to the Arcsine

distribution with density function:  : → −1 ((1− ))
−12

(see Jakobson [1981]). While this is

25 A distribution  is said to be invariant if ∗ = , where ∗ is the push forward measure ∗() = (−1()).
A distribution is ergodic if lim→∞


=1 ([]

 ()) =

 for almost all .
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the only case (apart from topological conjugacy) for which the ergodic distribution of the logistic

has been characterized in closed form (and one of the very few dynamical systems for which it can

be characterized), subsequent work has shown that there is a set of positive measure of values of

 such that  admits an ergodic distribution, one of which is Ruelle’s number 
∗ (see Jacobson

[1981] and Benedicks and Carleson [1985]).

By Lemma 3, for each of these values, there is an equilibrium of the policy game that qualita-

tively inherits the same properties. The equilibrium investment function ∗( 4) in ∗() with

4 =  (4;1 2) has the same properties of the logistic function 4 on [0 1]. This implies that

the distribution generated by the equilibrium correspondent to 4 can be characterized in closed

form, although now its “shape” depends on the fundamentals of the economy. Define the following

density (;) on ∗(4):

(;) =
2



⎛⎜⎜⎝16 (1− )
2 −

⎛⎜⎜⎝2−
⎡⎢⎢⎣ 2


− (1 + ) (1− )

+2 · b
⎤⎥⎥⎦
⎞⎟⎟⎠
2⎞⎟⎟⎠
−12

 (18)

where  = (   b) is the vector of parameters characterizing the economy. We have:
Proposition 3. Assume an economy with  ≥ ∗(). There is a subset of C ⊂ C with positive

measure such that the equilibria ∗(· ) with  ∈ C display ergodic chaos in
h
[∗]2 (∗; ) ∗(∗; )

i
.

Among these equilibria, the equilibrium ∗( 4) admits the invariant distribution (;) inh
[∗]2 (∗; 4) ∗(∗; 4)

i
defined in (18).

Proof. See Section 7.5 in the appendix.

As it can be seen from Figure 3, the density associated to (;) does not look like the familiar

unimodal densities, such as the normal: it has modal values at the extremes, instead than in the

interior of its support.26 This occurs because ∗(· 4) is topologically conjugate on ∗() to

26 Figure 3 has the same parametrization as Figure 2, except that  (4;1 2) is used to construct the solid

trajectory in the top panel and the darker ergodic density in the bottom panel; and  (∗;1 2) is used for the
dashed trajectory in the top panel and the lighter density in the bottom panel.
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4(·) on [0 1], and the ergodic distribution generated by 4 is the Arcsine Law, which has model

values at the extremes and thus looks like a “”. It should however be noted that the Arcsine

Law naturally emerge in simple examples. It can be proven that the proportion of time that

the one-dimensional Wiener process is positive follows an Arcsine distribution (see Theorem 2

in Feller [1950]), which perhaps suggests that extreme realizations should be less surprising than

they are generally expected to be. A nice feature of this example is that despite the equilibrium

being chaotic, we can derive a precise relationship between the fundamentals of the model and

the ergodic distribution of the state in equilibrium.

It is important to note that, if we take the investment function ∗( ∗) = 1−2+ ∗ as an

exogenous function of  (i.e. with fixed, exogenous parameters  = (1 2) and 
∗), the existence

of an ergodic distribution generated by its dynamics would not be a robust phenomenon, since

the set of parameters ∗ for which ∗( ∗) converges to stable cycle is open and dense set in

[ (1;1 2)   (4;1 2)].
27 For any ∗( ∗) that displays ergodic chaos, we have an arbitrarily

close investment function that does not. The cases in which the investment function is exogenous

are a relevant benchmark since in the literature the investment function is either assumed as

exogenous, or derived in simple models with a unique equilibrium, in which case the function

is determined by the parametrization of the environment (i.e. the parameters corresponding to

1 2)
28 . The key observation here is that the existence of the equilibrium with chaos is a robust

phenomenon. Proposition 2 shows that if we perturb to the economy (1 2) to a nearby economy

(e1 e2), then there is a “nearby” equilibrium ∗(e) = e1− e2+ ¡−1 (∗;1 2) ; e1 e2¢ that
generates chaotic behavior (here −1 (·;1 2) is the inverse of  (·;1 2)). The constant  in

the equilibrium construction is indeed an endogenous variable, not a parameter given by nature

27 This follows from the fact that by Lemma 3 ∗(  (;1 2)) for  ∈ [1 4] is topologically conjugated to the
logistic with parameter , and a fundamental theorem in Graczyk and Światek [1997] proving that the logistic has

an attracting cycle for an open and dense set of parameters  in.[1 4].

28 See for instance Day [1982], Benhabib and Day [1983].
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Figure 3: Two equilibria with ergodic chaos existing for the same economy. The first equilibrium

is topologically conjugate to von Neumann and Ulam’s example, the second to Ruelle’s example.

The top panel displays the state trajectories; the second the ergodic distributions.

such as 1 2.
29

We conclude this section discussing the geometric properties characterizing the investment

functions ∗(· ) for  ∈ C , that generate ergodic chaos. First, note that all equilibrium invest-

ment functions ∗(· ) of Proposition 1, both with and without stable cycles, qualitatively look

like the hump shaped functions illustrated in Figure 2. While there is no general characterization

of necessary and sufficient conditions on the shape of the investment function  to generate ergodic

29 To evaluate the comparative statics of the equilibrium dynamics with respect to the change of an exogenous

variable, we therefore need a theory of how the players select an equilibrium after the change. A reasonable

hypothesis is that after marginal change in the environment, the players would select an equilibrium that leads to

similar behavior.
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(or topological) chaos, there is a known general sufficient condition that gives us insights on the

geometric features of  that are associated to chaotic behavior.30 Recall that ∗ is the critical

point of ∗(· ), i.e. the point that maximizes ∗(· ); and ∗− () and ∗+ () are the lower and

higher fixed points of ∗(· ), respectively. For these investment functions, ∗ ∈ ¡∗− ()  ∗(∗ )¢,
so the maximum ∗(∗ ) is above the 45 line: for any initial 0 ∈

£
∗− ()  

∗(∗ )
¤
, the state

remains in
£
∗− ()  

∗(∗ )
¤
for all iterations. Moreover, we have no stable steady state because

the slope of  is larger in absolute value than one at ∗− () and ∗+ () (the two unstable steady

states). Given this, there are three forces “pushing around” the state. When the state is close to

∗+ (), it is repelled by it since [
∗]0 (∗+ ()  )  −1. The state can move down below ∗+ (), or up

above ∗+ (). If the state is pushed down toward 
∗
− (), then it is repelled again to a higher state,

so the state must be eventually be pushed up, above ∗+ (). In this case, however, it eventually

reaches a point   ∗(∗ ) at which ∗( )  , so it will have to move down. These dynamics

may induce the system to converge to a cycle with periodic points in
¡
∗− ()  

∗(∗ )
¢
, as in

Figure 2. It can however be shown that under regularity conditions satisfied by the equilibria of

Proposition 1, a necessary condition for this to occur (and thus for the existence of a stable cycle)

is that the orbit originated from the critical point ∗ converges to a stable cycle (see Theorem

II.4.1 in Collet and Eckmann [1980]). It follows that whenever the orbit starting from the critical

point does not converge to a stable cycle, then a stable cycle of any period does not exist. While

this does not necessarily imply that we have ergodic chaos, it is indeed the case with sufficient

regularity — as the equilibria of Proposition 1.31

30 The examples presented in Figure 3 satisfy this condition.

31 Ergodic chaos requires convergence of the ergodic distribution to an absolutely continuous distribution. A

“geometric” sufficient condition is presented by Misiurewicz [1981]; it requires that the orbit starting from the

critical point ∗ enters an unstable cycle. This condition is satisfied by both examples in Figure 3.
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3.3 On the interpretations of the model

In light of the characterizations of Proposition 1 and 2, it is useful to return on the interpretation of

the model. An advantage of its simplicity is that it easily lends itself to alternative interpretations,

depending on the choice of its parametrization. Two interpretations stand out. In the first, 

is a stock of investments that generates local effects and global externalities. Examples of these

investments include investments in highways, airports or power plants, which are typically at the

center of political economic decisions. Power plants have positive effects near their location since

they provide cheaper and more reliable electricity, but they may also generate positive or negative

externalities to other far away localities (because of, say, pollution). In this interpretation, we may

have a positive marginal impact on utility of  for low values, and negative for large values. In

this interpretation the strictly concave function − (·) is the instantaneous utility for setting the

state at . This is a completely standard assumption in dynamic public finance models (see for

example Battaglini and Coate [2007, 2008] and references therein).32 Under this interpretation,

it is natural to assume b  0. A superficial objection to this interpretation is that the impact of

the state enters the utility as a “−(),” so as a negative value. But this is conceptually irrelevant.

We could have assumed that the impact of  was, say, 1 + 2() for 1  0, and the analysis

would have been analogous. Adding a constant 1 to the utility function does not really change

the preferences in a qualitative way. The feature that is important for the analysis is the marginal

effect of  on the utility. The key assumption that we make is that the players utility is strictly

concave in .33

An alternative appealing interpretation of the model is that  is just a stock of pollution. In

this interpretation, it would be appropriate to assume 0()  0 for all  ∈ R. This interpretation

32 In Battaglini and Coate [2008], choosing an investment  at  generates an investment cost  − (1− )−1
at , and a concave utility () at  + 1. This implies that at  the instantaneous utility of an investment  is

 + (), plus a constant. This corresponds to the model presented here in which () = −()
33 Naturally, the specific thresholds characterized in Proposition 1 depend on the functional form in (2), but as

we discuss in Section 3.1 they can be generalized to a general class of convex and smooth function ().
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is absolutely consistent with the model. For example, it is consistent with the assumption of

a quadratic cost function as (2) with b = 0 when the state variable is only positive (so that

0()  0 for all  ∈ R). Examples of this situation can be easily illustrated. Assume  = 09,

 = 09,  = 01, b = 0 and some  ∈ (0 1) and   0. Suppose, for example, we choose

 so that we have 2-period cycle. Despite having 0()  0, we have 1 = 51222, 2 = 1 and

 = (33 1 2) = −29256, so: ( ) = 51222 ·  − 2 − 29256, which is a hump shaped

function with an attractive 2-period cycle with periods 1 = 3629 and 2 = 24932. If   (),

Proposition 1 shows that we can construct an equilibrium investment function ∗(· ) that has a

unique stable cycle with periods 1 = 3629 and 2 = 24932. Another assumption that would be

completely consistent with the assumption of  as pollution is the assumption of an exponential

cost function () = 1 · exp(− 2) for some 1 2  0, discussed in Example 1 below. Looking

at (10) we can see that it is not necessary for the results that (·) has minimum (as, say, in (2)

when b  0): to obtain cycles and chaos, we really need (· ), not (·), to be “hump shaped” as

in the figures. For this property, the assumption that () has a minimum at b (and so that −()
has a maximum) is not necessary. Since the first term of ( ) (i.e. 1 · ) has always positive

derivative, (· ) is hump shaped even if the “cost function” (·) is always increasing (which is

consistent with the interpretation of the state as pure pollution).

4 The effect of time inconsistency

4.1 Time inconsistency and the “size” of the chaotic region

In the model of Sections 2-4, the degree of time inconsistency impressed on the economy by the

decision process plays a particularly important role in determining “how much” chaos we can

observe in equilibrium. Time inconsistency consists in the discrepancy between objective function

maximized by the incumbent selecting the policy (i.e. (4)), and the expected continuation value

function at  before the incumbent at +1 is determined (i.e. (6)). In the planner’s problem there
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is no difference between these two functions. By comparing (4) and (6), we can see that in the

political game, instead, the functions differ by

−(1− )

2
[()− (1− )] 

The parameter  ∈ (−∞ 1] captures time inconsistency: as  → 1, time inconsistence converges

to zero; as we reduce , time inconsistency is increased.34 In this limit case as  → 1, 0() is

independent of 0() and the equilibrium qualitatively looks like the planner’s problem. Ignoring

the feasibility constraint, the incumbent’s optimal policy is

 = b+ 

2
· (1 − (1− )) 

and so the equilibrium policy is () = max { (1− )− }. This simple dynamical system

has a unique steady state  that differs from the planner’s steady state ∗∗ only because it is

lower. The effect of  on the “degree of chaos” in the equilibria constructed in the previous sections

can be seen from its effect on the size of the chaotic region K() =
°°°∗(∗ )− [∗]2 (∗ )°°°:

i.e. the difference between the maximal and minimal values assumed by the state in the chaotic

region. While this region depends on the specific equilibrium (and so on ), it is always the case

that it is contained in ∗() and, as it is easy to verify, we have k∗()k ≤ 4(1 − ). It

follows that K()→ 0 as  → 1. It is therefore the case that, as  → 1 we can still have chaos,

but the size of the set in which the state can “wander around” collapses to zero.

Time inconsistency is an important factor to allow complex dynamics in generic environments

because it is the reason why we have multiplicity of equilibria in the model. When  = 1,

(7) shows that the marginal impact of  in equilibrium depends only on the fundamentals of

the model (just as in the planner’s case): we cannot have multiple equilibria in this case, since

investment is uniquely defined by exogenous marginal cost and benefits. It is only when   1

34 When  = 1, the effect of private expenditure is the same on the constituencies of the party in power and of

the other party. The equilibrium policy is still not the utilitarian policy because the incumbent does not internalize

the negative externality of ; but it is time consistent.
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that the marginal impact of  on the policy maker’s utility also depends on the expected policy

(·) adopted by future policy makers: different policy can therefore be self generated by the

expectations that they generate. Thanks to the multiplicity of equilibria, for any parametrization

such that   ∗(), we can find a  ∈  (i.e. an equilibrium) such that complex dynamics

occurs.

4.2 Alternative economic models with time inconsistency

In the previous analysis we have assumed a stylized dynamic political economy model in which

two parties alternate in power. In this section, we show that the logic behind the type of equilibria

with cycles and chaotic behavior studied above applies to an environment in which there is a single

decision maker with Hyperbolic discounting (this continues to be a strategic environment in which

the players are the different selves of the agent). In the working paper Battaglini [2024], I also

illustrate how the analysis can be applied to dynamic multi-agent problems with free riding, and

to cases in which policies are decided in a process of non-cooperative bargaining as in Battaglini

and Coate [2007, 2008] and Battaglini [2011].

In the case of a single decision maker with - preferences as in Phelps and Pollak [1968] and

Laibson [1997], the policy solves:35

max
≥(1−)−

{ [ − (1− )]− () + ()}  (19)

where the only difference with (4) is that there is an additional term, the hyperbolic discount

factor   1. The decision maker plays a game against his/her future selves. The expected

continuation value (·), must satisfy: () = (()− (1− ))− () + (()), where () is

the expected future policy and  does not appear. This expression can be written as:

() = max
≥(1−)−]

{ [ − (1− )]− () + ()}+ (1− ) (()) (20)

35 The parameter  was used in Sections 3 and 4 in the definition of (). We use it it for the time preferences

since this is the traditional notation for hyperbolic discounting and there is no risk of confusion since (·) is can be
assumed here to be a general convex function.
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Condition (19) and (20) correspond to conditions (4) and (6) presented above. The second term

in (20), (1− ) (()), is the time inconsistency gap: i.e. the difference between the decision

maker’s objective function and the expected value function. Because of this additional term, the

shape of the expected value function directly depends on the expected future investment function

(·) as in (6). Differentiating (20) and using the first order necessary condition () = −0()

from (19), we obtain a condition analogous to (10) in the analysis of Section 3:

( ) =

∙
1− (1− )

 (1− )

¸
· − 

(1− ) 
· () + 

5 General preferences

In the previous analysis, we made two simplifying assumptions on the functional form of the utility

function. In (1), we assumed a quadratic cost function (·) and, more importantly, quasi-linear

preferences. We discuss and relax these assumptions in this section.

5.1 A sufficient condition for chaos with a general (·)

The assumption of a quadratic (·) allows us to provide a tractable solution for (· ) in (10) and

an exhaustive characterization of the possible equilibrium dynamics. Dispensing this assumption,

however, does not qualitatively change the analysis. As shown in (9), the differential equation

(8) does not require a quadratic functional form to be solved and, for a generic convex and

differentiable (·), it generates a non-monotonic, hump shaped investment function Ψ ( ), a

feature that is key to obtain cycles and complex dynamics (see Figure 2 for an illustration).

Whether such an investment function generates an attracting cycle or a chaotic trajectory depends

on the shape of (·).36 To generalize the analysis we only need a mild strengthening of the

assumptions on (·).
36 Li and Yorke [1975] have shown that, if continuous in , a dynamical system () has cycles of any order in a

set  if there is a 0 ∈  such that: []3 (0)  0   (0)  []2 (0). Li and Yorke’s condition is relatively easy
to verify, but it does not generally guarantee that the region in which Ψ(; ) is chaotic (the scrambling set) has

positive measure, leaving open the possibility that the chaotic region is reached only from a measure zero set of

states.
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Assumption 1. The function Ψ ( ) defined in (9) is strictly concave and thrice continuously

differentiable with negative Schwarzian derivative with respect to .

Many common functions have negative Schwarzian derivative including, for instance, any poly-

nomial of degree larger than or equal to 2 with real valued critical points (and thus the quadratic

used in Section 4) and the exponential function.37 Note that the specific value of  is irrelevant

for Assumption 1, so it is just an assumption on the exogenous function 1− 2(), where ()

is exogenous and 1 and 2 are the coefficients in (9), defined by the parameters of the model. Let

∗ be the critical point of Ψ(· ) and define ∆23() = [Ψ]3 (∗ ) − [Ψ]2 (∗ ). This is the gap

between the third and the second iteration starting from the critical point ∗ (i.e., the point at

which the maximum is attained), which is an easily computed function of  given (10). We have:

Proposition 4. Assume that Ψ ( ) satisfies Assumption 1 and there is a c such that ∆23()  0,

then there exists a ∗ such that Ψ( ∗) defined in (9) is topologically conjugate to 4(·) and thus

displays ergodic chaos on [[Ψ]
2
(∗ ∗)Ψ(∗ ∗)].

Proof. See Section 7.6 in the appendix.

Given Assumption 1, the requirement in Proposition 4 that there exists a  such that ∆23() 

0 is easy to satisfy: for example it is always satisfied when (·) is quadratic; and it is always satisfied

if [2 − (1 + ) (1− )]  (1− )  1 when (·) is exponential. The following examples illustrates

Proposition 4 with an exponential cost function:

Example 1 Assume that  = 8,  = 95  = 5  = 5 = 2, but () = 5 exp(− 10). Using

(9) it is easy to verify that for  = 58, ∆23() = −30099  0. The value ∗ is found solving

∆23(∗) = 0, which gives us ∗ = 15692453. We thus have: Ψ( ) = 60263 (− 10)− 5 exp(−

10) + 15692453. It is easy to verify that this function has a critical point at ∗ = 1018670, it is

S-unimodal and chaotic in [94301 107912].

37 For a definition of the Schwarzian derivative, see Collet and Eckmann [1980], Section II.4.

38



The requirement in Proposition 4 that there exists a  such that ∆23()  0 is neces-

sary for the existence of a  such that Ψ(· ) is topologically conjugate to 4(·), and it is

not always satisfiable. For example, when (·) is exponential, if the parameters are such that

[2 − (1 + ) (1− )]  (1− ) = 12 and 2 [(1− )] = 1, then Ψ(· ) satisfies Assumption 1,

but we have ∆23()  0 for all : indeed, in this case, Ψ(· ) has a unique fixed point for all , so

it is never topologically conjugate to 4(·).

Proposition 4 is a simple application of the equilibrium construction in Proposition 1 leading

to (9), and of a theorem by Misiurewicz [1981]. Misiurewicz’s theorem proves that if a dynamical

system  is -unimodal and such that the iterates []

(∗) of the critical point ∗ converge to an

unstable cycle, then  has exactly one absolutely continuous invariant measure.38 Proposition 4

shows a condition under which at least a solution of (9) satisfies this property.

Clearly the condition requiring []

(∗) to enter an unstable cycle as  → ∞ is a knife edge

condition. Proposition 4 however allows to construct equilibria with ergodic chaos that exist for

generic parametrizations because  is endogenous and it can generically be selected to make sure

that there is an  and a ∗ such that [Ψ] (∗ ∗) enters an unstable cycle (in the construction of

Proposition 4, an unstable steady state corresponding to the lowest fixed point of Ψ(; )). Note

that the condition in Proposition 4 is only sufficient and indeed it can be easily extended using

the same logic if we are willing to check conditions on higher iterates of Ψ(; ).39

5.2 Other preferences

Relaxing the assumption of quasi-linear preferences has a more interesting impact on the analysis

because, although the logic remains the same, it requires a generalization of the equilibrium

construction. We discuss this point in the reminder of this section. Consider the more general

38 See Corollary 6 in Grandmont [1992] and Theorem II.8.3 and Corollary II.8.4 in Collet and Eckmann [1980].

39 The condition in Proposition 4 is indeed sufficient to have the second iterate enter the repelling steady state

∗−(). It is easy to verify that the second example in Figure 1 (the one constructed with Ruelle’s constant) has
the property that it is the third iterate to enters the repelling steady state ∗+().
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utility functions described in Section 2 and define for convenience:  ( ) =  ( − (1− ) ),

and  ( ) =  ( − (1− ) ) for  and  6=  to be, respectively, the citizens’ utilities when

their party is in office, and when their party is out of office. To study this environment it is useful

to move beyond the special case of Markov equilibria and define a slightly more general strategy

function ( ) with one period memory, depending on the current state  and the precedent state

. The strategy defined in the previous section can be seen as a special case of ( ).

The problem of the incumbent at − 1 in state −1 =  is to find a state  that solves:

max
≥(1−)−

{ ( ) + ( )}  (21)

where ( ) is the expected value function evaluated at  when the state chosen at  is  = ,

and the state at − 1 was −1 =  (the state −2 is irrelevant for the set of solutions of (21), so

it can be ignored for the discussion here). As in Section 3.1, ( ) can be written as:

( ) =
1

2
 (( ) ) +

1

2
 (( ) ) + (( ) )

=  (( ) ) + (( ) )−Φ (( ) ) (22)

where we define Φ (( ) ) = (12) [(( ) )− (( ) )]. Assuming (without loss of

generality) differentiability, the envelope theorem allows us to differentiate the value function

with respect to the first argument, :

1( ) = 2(( ) )−Φ1(( ) )1( )−Φ2(( ) ) + 2(( ) ) (23)

where ,  and Φ for  = 1 2 are the derivatives with respect to the th arguments of ,  and

Φ. This condition still depends on the value function, through its derivative with respect to the

second term. Using (22) again, we can see that this derivative in a state   can be written as:

2( ) = [1(( ) ) + 1(( ) )] 2( )−Φ1(( ) ) · 2( ) = −Φ1(( ) ) · 2( )

where in the last equality we again apply the envelope theorem. Combining the equation above
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with (23), and using the first order necessary condition from (21), we obtain:

−1( )


= 2(( ) )−Φ1(( ) )1( )−Φ2(( ) ) (24)

−Φ1((( ) ) ( )) · 2(( ) )

Condition (24) and the function ( ) that satisfies it play the same role as condition (8) and

Ψ(· ) studied in Section 3.1. The key difference is that while (8) defines a simple differential

equation, now the functional equation (24) defines a significantly more complex partial differential

equation (PDE). The reason for this is intuitive. As the policy maker in  selects  at  − 1, a

marginal change in  affects the future in two ways. First, it affects the policy ( ) chosen at ,

which is a function of  as in Section 3. The policy change at  affects the expected value function

at  because the envelope theorem does not fully apply given that the problem is time inconsistent.

But now we have a novel second effect. A marginal change of the policy  at − 1 also affects the

way in which the policy maker at + 1 reacts to the policy maker at : i.e., for any choice ( )

made at , now a marginal change in  induces a policy change at  + 1 by 2(( ) ). Once

again, part of this effect is “neutralized” by the envelope theorem applied at + 1; but part of it

remains through the marginal effect on Φ((( ) ) ( )).

The second effect described above is present because we have assumed a strategy ( ) with

one period memory. Condition (24) makes it clear why it is necessary to consider a strategy

( ) with one period memory. When ( ) is quasi-linear as in the previous sections, 1( )

is independent of . It follows that the right hand side of (24) is also independent of , implying

that the equilibrium strategy satisfying (24) must be only a function of . In the general case,

however, 1( ) is a function of , implying that we need to allow ( ) to be a function of 

as well to satisfy (24). The reason is that ( ) is designed to make the policy maker in state 

indifferent with respect to : if the marginal utility of a change in  at − 1 depends on , then

future policy makers must adjust accordingly.
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The functional equation (24) combines elements of a PDE, since it is a function of the partial

derivatives 1( ) and 2(( ) ); and elements of a difference equation, since the partial

derivatives are evaluated at states −1 = ,  =  and states  = , +1 = ( ). Because of

this (24) does not allow to have a simple analytical characterization, except for the quasi linear

case studied in the previous section (which can be seen as just a special case of ((24))). The

analysis of the previous section helps because it gives us a closed form solution in the limit case

with quasi linear utilities that can be used compute numerical solutions. A numerical study of

(24) with examples of cycles and aperiodic behavior is presented in the working paper Battaglini

[2024].

6 Conclusions

We have studied a simple dynamic game in which in every period a politically motivated decision

maker selects a policy that affects a state variable strategically linking policy making periods.

Because of political turnover, the preference of the policy maker may change over time, causing

the decision process to be time inconsistent. We ask the question: under what conditions can such

a simple model generate cycles and complex, unpredictable dynamics? Complex dynamics are

impossible when policies are selected by a benevolent, time consistent policy maker. In the presence

of time inconsistency generated by the political process, however, simple sufficient conditions

guarantee the existence of equilibria with cycles of any order and even chaos for generic economies.

The degree of instability and unpredictability depends on the degree of time inconsistency: as

time inconsistency converges to zero, chaotic equilibria continue to exist, but the size of the region

containing the chaotic or cycling trajectory vanishes.

A limitation of our results is that the chaotic behavior we characterize is not typical of all

equilibria of our dynamic economy, but instead of the specific class of equilibria that we have

characterized. Still, they show simple yet realistic environments in which predicting dynamic

42



public policies is impossible in the sense that there are always chaotic equilibria that make it

impossible. The problem is not that there are multiple equilibria, but that once we know the

equilibrium, the dynamics are effectively unpredictable, even without random shocks to the system.

Equilibria with complex dynamics, moreover, highlight a new source of inefficiency generated in

political equilibria that has no correspondent in standard planner’s problems: the instability of

policies even in the absence of external shock.

7 Appendix

7.1 Proof of Lemma 1

For any real number  satisfying  ≥ (3− 1) (1+1) (42), define, as in Section 3, 
∗
−(), 

∗
+()

to be, respectively, the lowest and the largest fixed points of  ( ). We have:

∗−() =
1 − 1−

p
(1 − 1)2 + 42
22

, ∗+() =
1 − 1 +

p
(1 − 1)2 + 42
22



We proceed in four steps.

Step 1. We first prove that for  ∈ C∗, then []2 (1 (22)  ) ≥  (), where []

( ) is the th

iteration of , []

( ) = (−1( ) ). A sufficient condition for []2 (1 (22)  ) ≥  ()

is:

1 −
p
21 + 42(−  ())

22
≤ 21
42

+  ≤ 1 +
p
21 + 42(−  ())

22
 (25)

Note that  ≥ (3− 1) (1 + 1)(42) implies 
2
1 (42) +  ≥ 1 (22). It follows that the first

inequality in (25) is always satisfied. So we need:

21
42

+ − 1 +
p
21 + 42(−  ())

22
≤ 0 (26)

We now show that this condition is satisfied for any  ∈ C∗. To this goal we proceed by induction:

Step 1.1. Given  ≥ (3− 1) (1 + 1) (42) = 0, we have:

 () =
1 − 1−

p
(1 − 1)2 + 42
22

≤
µ
1 − 3
22

¶
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So []
2
(1 (22)  ) ≥  (), if:

21
42

+  ≤
1 +

q
21 + 42(− 1−3

22
)

22
 (27)

After a change in variable, (27) can be written as 2 − 2 − 6 ≤ 0, where:

 =

q
21 + 42(− (1 − 3) 22)

It follows that we need:
p
21 + 42(− (1 − 3) 22) ≤ 1+

√
7, or  ≤

h
3 + 2

√
7− (1 − 1)2

i
 (42).

We therefore conclude that []
2
( 1
22

 ) ≥  () is satisfied for any:

 ∈
"
(3− 1) (1 + 1)

42

3 + 2

√
7− (1 − 1)2
42

#


which gives us a non-empty set.

Step 1.2. We now prove that if []
2
(1 (22)  ) ≥  () in for any  ∈ [(3− 1) (1 + 1) (42)  ]

for some   (4 − 1)(2 + 1) (42), then we can find a +1   such that the property

[]
2
(122 ) ≥  () is satisfied in  ∈ [(3− 1) (1 + 1) (42)  +1]. From the previous step,

we know that this property is true for 1 =
³
3 + 2

√
7− (1 − 1)2

´
42. Let us assume we have

proven it up to some  ∈
h³
3 + 2

√
7− (1 − 1)2

´
 (42)  (4− 1)(2 + 1) (42)

´
. Note that

if  ≥ , then we have:

 () ≤ 1 − 1−
p
(1 − 1)2 + 42
22

=
1 − 2− 

22


where  = 1−
p
(1 − 1)2 + 42 is the slope of ( ) at its largest fixed-point +.

Note that (26) is implied by:

21 + 42

µ
− 1 − 2 + 

22

¶
− 2 (2− )− 2

s
21 + 42(−

1 − 2 + 

22
) ≤ 0

After a change in variable, this condition can be written as 2 − 2 − 2 (2− ) ≤ 0, so:  ≤
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1 +
p
1 + 2 (2− ), where  =

p
21 + 42(− (1 − 2 + )  (22)). So we need:s

21 + 42(−
1 − 2 + 

22
) ≤ 1 +

p
1 + 2 (2− )

⇔  ≤
3 + 2

q
3 + 2

p
(1 − 1)2 + 42 − (1 − 1)2

42
= +1

We have the result if +1  . For this we need: 3+2

q
3 + 2

p
(1 − 1)2 + 42− (1 − 1)2 

42. It is easy to see that this inequality is satisfied for 42 + (1 − 1)2 ≤ 9, or:  

(4− 1)(2 + 1) (42), which is always satisfied since we are assuming it in the induction step.

Step 1.3. The sequence  is bounded above by (4 − 1)(2 + 1) (42), thus it converges

to ∞ = (4 − 1)(2 + 1) (42). Since []
2
(1 (22)  ) is continuous in , we have that

[]
2
(1 (22)  ) ≥  () for any  ∈ [(3− 1) (1 + 1) (42)  (4− 1)(2 + 1) (42)], thus

proving the result.

Step 2. We now prove that ( ) ∈ ∗ () for any  in ∗ () and  satisfying  ∈ C∗. To see

this, first note that for any  ∈ ∗ (), we have ( ) ≤ max ( ) = (1 (22)  ) =  (),

where the equality follows from the fact that ( ) achieves a maximum at 1 (22), and the

second equality from the definition of  (). Then note that for any  ∈ ∗ ():

( ) ≥ min
∈{()()}

( ) ≥ min {( ()  )  ()} ≥  ()  (28)

where the first inequality follows from the concavity of (· ) in ∗ (), and the second from

( ()  ) =  (), and the last inequality from ( ()  ) = []
2
(1 (22)  ) ≥  () when 

satisfies  ∈ C∗. We conclude that ( ) ∈ ∗ () for any  in ∗(). It can also be verified

that for any initial condition 0, the state eventually enters in ∗() in at most a finite number

of steps.

Step 3. We finally show that for any  ∈ C∗, (· ) does not admit a stable steady state. Note

that ( ) =  at the points ∗−() and ∗+(). We have that for  ∈ C∗: []0 (∗+() ) =
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1−
q
(1−1)2 + 42  −1 and []0 (∗−() ) = 1+

q
(1−1)2 + 42  1: so neither ∗−() nor

∗+() are attracting steady states. ¥

7.2 Proof of Lemma 2

Assume  ≥ ∗(), where ∗() is defined in (13). We show here that then ∗( ) is feasible

for all . Define − (), 
+
 () the points at which ( ) intersects (1− )− , that is:

− () =
1 − (1− )−

p
(1 − (1− ))2 + 42 (+ )

22


+ () =
1 − (1− ) +

p
(1 − (1− ))2 + 42 (+ )

22


It is immediate to verify that ( ) ≥ (1− )−  for  ∈ £− ()  + ()¤. To prove feasibility,
we can therefore focus on states   − () and   + (). Consider the case of states   − ()

first. We can write:

− ()−  () =
1

22

h
 +

p
(1 − 1)2 + 42−

p
(1 − (1− ))2 + 42 (+ )

i
 (29)

For feasibility, we need to have − ()−  () ≤ 0. Note that:

(1 − 1)2 + 42 ≤ (1 − (1− ))2 + 42 (+ )⇔ 2 + 2(1 − 1) + 42 ≥ 0 (30)

Assume first that (30) is satisfied. In this case, the square parenthesis in (29) is increasing in 

and − ()−  () can be bounded above inserting the upper bound of C∗:

− ()−  () ≤ 1

22

∙
 +

q
(1 − 1)2 + 9− (1 − 1)2 −

q
(1 − (1− ))2 + 42 + 9− (1 − 1)2

¸
=

1

22

h
 + 3−

p
9 + 2 + 2(1 − 1) + 42

i


So we have − ()− () ≤ 0 if 1 ≥ 4−22. Consider now the case: 2+2(1−1)+42  0.

Now − ()−  () can be bounded above inserting the lower bound of C∗:

− ()−  () ≤ 1

22

∙
 +

q
(1 − 1)2 + 4− (1 − 1)2 −

q
(1 − (1− ))2 + 42 + 4− (1 − 1)2

¸
=

1

22

h
 + 2−

p
4 + 2 + 2(1 − 1) + 42

i
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So we have − () −  () ≤ 0 if 1 ≥ 3 − 22. It follows that a sufficient condition is that

1 ≥ 4− 22 = ∗11.

Consider now states   + (). We can write:

+ ()−  () =
1

42

h
21 − 2(1− ) + 2

p
(1 − (1− ))2 + 42 (+ )− ¡21 + 42¢i 

For feasibility, we need + () (1) −  () ≥ 0. The right hand side is concave in , so it is

minimized at one of the extremes. If the minimum is at the lower bound, we have:

+ ()−  () =
1

42

h
21 − 2(1− ) + 2

p
(1 − (1− ))2 + 42 (+ )− ¡21 + 42¢i

≥ 1

42

h
−5 + 2 + 2

p
2 + 2(1 − 1) + 4 + 42

i


It follows that + () −  () ≥ 0 if 1 ≥ 3
8
[3− 4] − 22. If the minimum is at the upper

bound, we have:

+ ()−  () ≥ 1

42

h
−10 + 2 + 2

p
2 + 2(1 − 1) + 9 + 42

i


Which can be written as 1≥ [8− 4]  − 22. Therefore, a sufficient condition for + () −

 () ≥ 0 is that 1 ≥ [8− 4]  − 22 = ∗12. Note that 
∗
12 − ∗11 = 8 (1 − 1)  0. We

conclude that ∗( ) is feasible if 1 ≥ ∗12. The condition can be written as:

1

1− 

∙
2


− (1 + ) (1− ) +

2


b¸ ≥ 1


[8− 4]− 2 


· 

(1− )
(31)

Since b ≥ 0 and   0, we have that b+  ≥ 0 and we can rewrite (31) as:

 =



≥ 4 (1− ) (2− ) + (1 + ) (1− )  − 2

2 (b + )
= ∗ ()  (32)

It follows that ( ) ≥ (1 − ) −  for  ∈ [ ()   ()] if  ≥ ∗ (). Moreover ∗( )

obviously satisfies the constraint  ≥ (1−)−  for    (). Finally we have that (1−)−  ≤

(1− ) ()−  ≤ ( ()  ) = ∗( ) in    ().

To prove that for any initial condition 0, the state  enters 
∗ () in fine time, note that

∗( ) = max { (() )  (1− )− } for  ≥ () where  (() )  (), so for any  ≥ ()
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there a  ∈ [1∞) such that [∗] ( ) ≤ (). Since ∗( ) = () for  ≤ (), it follows that

for any  ∈ R there a  ∈ [1∞) such that [∗] ( ) ∈ ∗(). To see that ∗( ) admits no

attracting steady state, note that the only possible candidates are ∗−() and ∗+(). By Lemma

1, the the derivative at ∗+() is strictly lower than −1 and right derivative at ∗−() is strictly

larger than 1. ¥

7.3 Proof of Lemma 3

We proceed in three steps.

Step 1. We first observe that  (·) = (· ), as defined in (10), is conjugate to  = 2 +  for

 = (12)(1 − 12) − 2 by the homeomorphism  :  → 12 − 2. To see this note that

 ◦ () = 12 + 22
2 − 12− 2, moreover:

 ◦ () = [12− 2]
2
+ (12)(1− 12)− 2

= 12 + 22
2 − 2 (1+ ) =  ◦ ()

So we have ◦ = ◦. Similarly, we can show that  is conjugate to  with  = 2(1−2)

by the homeomorphism  = −+ 2.

Step 2. Let us now define  (;1 2) such that 2(1−2) = (12)(1−12)−2 · (;1 2),

that is:

 (;1 2) =
1

2
[(12)(1− 12)− 2(1− 2)] 

We can then write:

 = −1 ◦2(1−2) ◦  = −1 ◦
£
 ◦ (;12) ◦ −1

¤ ◦ 
=

£
−1 ◦ 

¤ ◦ (;12) ◦ £−1 ◦ ¤ = £−1 ◦ ¤−1 ◦ (;12) ◦ £−1 ◦ ¤
= −1 ◦ (;12) ◦  ⇔  ◦  = (;12) ◦ 

where  = −1 ◦ . This implies that  is topologically conjugate to (  (;1 2)) through

the homeomorphism .
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Step 3. From Proposition 1, ∗(  (;1 2)) is a self-map in ∗( (;1 2)) and an equilib-

rium if  (;1 2) ∈ ∗ as defined in (12). We have:

1

2
[(12)(1− 12)− 2(1− 2)] ≥ 4− (1 − 1)

2

42
⇔ 2(1− 2) ≤ −3

4


Moreover, we need:

1

2
[(12)(1− 12)− 2(1− 2)] ≤ 9− (1 − 1)

2

42
⇔ 2(1− 2) ≥ −2

We can therefore construct an equilibrium that is conjugate to  if: −2 ≤ 2(1− 2) ≤ −34.

We conclude that for 3 ≤  ≤ 4, ∗(  (;1 2)) in ∗( (;1 2)) is topologically conjugate

to (·) in [0 (12)]. ¥

7.4 Proof of Proposition 2

The result follows from the argument in the text. For the existence of values  in [3 4] such that

 has a stable cycle of period  or displays topological chaos see Devaney [1989]. ¥

7.5 Proof of Proposition 3

The fact that we have a set of positive measures of values in C∗ such that an equilibrium with

ergodic distribution exists follows from Lemma 3 and the discussion in Section 3. We proceed to

the characterization of the ergodic distribution for  =  (4;1 2). Let  be the measure that

is invariant under 4, so that  = 4∗. It is well known that  is the Arcsine Law  () =

1
³

p
(1− )

´
(See, for example, Jakobson [1981]). Let us define the so called “push forward”

measure 4∗ by: 4∗() := 
¡
−14 ()

¢
for any set  ⊂ R, where 4 is the homeomorphism

such that ∗ ◦ 4 = 4 ◦ 4, defined in the proof of Lemma 3. We have:

4∗ = 4∗ [4∗] = (4 ◦ 4)∗  = (∗ ◦ 4)∗  = (∗)∗ (4∗)

where in the second and fourth equalities we use the definition of the push forward measure, and

in the third the fact that ∗ ◦ 4 = 4 ◦ 4. So we have: (∗)∗ (4∗) = 4∗. To find 4∗ note
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that 4 = (1 − 4) (22) + (42), so  = 244 − (1 − 4)8. Using the Perron-Frobenius

operator, it follows that:

∗( ) =
1


p
(1− ) |04()|

=
()

4 ·
q¡

2
4
− 1−4

8

¢ ¡
1− 2

4
+ 1−4

8

¢
=

2

 (1− ) ·
r
16−

³
2

(1−)− 1
1−

£
2

− (1 + ) (1− ) + 2b¤´2 

Which gives us (18) in the statement of Proposition 3. ¥

7.6 Proof of Proposition 4

Given Assumption 1, the function Ψ(; ) defined in (9) is strictly concave and thrice continuously

differentiable with negative Schwarzian derivative in [[Ψ]
2
(∗ )Ψ(∗ )] for any , where ∗

is the critical point of Ψ(; ). Define e the point such that Ψ(∗;e) = ∗. If we select 0 

e sufficiently close to e, then ∗+(), the fixed point on the right of 
∗, is an attractive steady

state and [Ψ]
3
(∗ 0) − [Ψ]2 (∗ 0)  0. By assumption, moreover, there is a 00 such that

[Ψ]
3
(∗ 00) − [Ψ]2 (∗ 00)  0. It follows that, by continuity, there must be a ∗ ∈ [0 00] such

that [Ψ]
2
(∗ ∗) = [Ψ]3 (∗ ∗), and necessarily it must be that Ψ(∗ ∗)  ∗. This implies that

Ψ( ∗) satisfies assumptions S1-S3, S4” and S5 of Corollary 6 in Grandmont [1992]; and it is

such that, starting from ∗, the state enters a repelling steady state at the second iteration. We

conclude from Corollary 6 in Grandmont [1992] that Ψ(; ∗) has a unique absolutely continuous

invariant ergodic measure in [[Ψ]
2
(∗ ∗)Ψ(∗ ∗)]. Moreover, Ψ(· ∗) has the same kneading

sequence (the itinerary starting from Ψ(∗; ∗)) as 4(), so Ψ(· ∗) on
h
[Ψ]

2
(∗; ∗)Ψ(∗; ∗)

i
is

topologically conjugate to 4(·) on [0 1] by Theorem II.6.1.A in Collet and Eckman [1980]. ¥
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