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Abstract

How best to incentivise prompt disclosure? We study this question
in a general model in which a technological breakthrough occurs at an
uncertain time and is privately observed by an agent, and a principal
must incentivise disclosure via her control of a payoff-relevant physical
allocation. We uncover a deadline structure of optimal mechanisms:
they have a simple deadline form in an important special case, and a
graduated deadline structure in general. We apply our results to the
design of unemployment insurance schemes.

1 Introduction
Society advances by finding better ways of doing things. When such a tech-
nological breakthrough occurs, it frequently becomes known only to certain
individuals with particular expertise. Only if such individuals share their
knowledge promptly can the promise of progress be unlocked.

The resulting need to incentivise prompt disclosure engenders a screening
problem in which the agent’s private information is about when, rather than
about what. We call this screening for breakthroughs.
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The need to screen for breakthroughs is widespread. One example is
the much-discussed problem of talent-hoarding in organisations (see Hägele,
2024). The manager of a team is well-placed to know when one of her sub-
ordinates acquires a skill. When this happens, headquarters may wish to
re-assign the worker to a new role better-suited to her abilities. Managers,
however, have a documented tendency to want to hold on to their workers.
Careful design is thus needed to incentivise prompt disclosure.

Another example is unemployment insurance: since unemployed workers
are typically privately informed about when they receive a job offer, benefits
must be designed with a view to incentivising them to start work promptly. A
third example concerns technical innovations that reduce firms’ greenhouse-
gas emissions, at the price of raising production costs.1 Only with suitable
regulation will firms which discover such innovations choose to adopt them.

In this paper, we study the general problem of screening for breakthroughs.
We introduce a model in which an agent privately observes when a new pro-
ductive technology arrives. This breakthrough expands utility possibilities for
the agent and principal, but generates a conflict of interest between them.
The agent decides whether and when to disclose the breakthrough, and the
principal controls a payoff-relevant physical allocation over time. Our model
deliberately focusses on the screening-for-breakthroughs problem, excluding
well-understood frictions such as the need to incentivise the agent to exert
unobservable effort. It can be shown that adding such a moral-hazard friction
to the model does not affect our results.2

We ask how the principal can best incentivise prompt disclosure of the
breakthrough. Our answer uncovers a deadline structure of optimal mecha-
nisms: only simple deadline mechanisms are optimal in an important special
case, while a graduated deadline structure characterises optimal incentives
in general. We apply these insights to the design of unemployment insurance
schemes.

1.1 Overview of model and results
A breakthrough occurs at a random time, making available a new technology
that expands utility possibilities for an agent and a principal. There is a
conflict of interest: were the principal to operate the old and new technologies
in her own interest, the agent would be better off under the old one. The agent
privately observes when the breakthrough occurs, and (verifiably) discloses

1Such innovations are expected to account for the bulk of abatement in the cement
industry, currently the source of about 7% of all CO2 emissions (Czigler et al., 2020).

2We omit this extension, but it may be found in the working paper (Curello & Sinander,
2025).
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it at a time of her choosing. The principal controls a physical allocation
that determines the agent’s utility over time. (The description of a physical
allocation may include a specification of monetary payments to the agent;
in this case, the conflict-of-interest assumption requires that the agent be
protected by (at least a degree of) limited liability prior to disclosure.)

To focus on the robust qualitative features of optimal screening, we study
undominated mechanisms, meaning those such that no alternative mechanism
is weakly better for the principal under any arrival distribution of the break-
through and strictly better under some distribution. We further describe, for
any given breakthrough distribution, the principal’s optimal choice among
undominated mechanisms.

Toward our deadline characterisation, we first study how undominated
mechanisms incentivise the agent. We show that the agent should be indif-
ferent at all times between prompt and delayed disclosure (Proposition 0).
This is despite the fact that the standard argument fails: were the agent
strictly to prefer prompt to delayed disclosure, then lowering the agent’s
post-disclosure utility would not necessarily benefit the principal.

We then elucidate the deadline structure of undominated mechanisms
when the pre-breakthrough technology’s utility possibilities have an affine
shape. Theorem 1 asserts that in this case, all undominated mechanisms be-
long to a small class of simple deadline mechanisms. Absent disclosure, these
mechanisms give the agent a Pareto-efficient utility u0 before a deadline, and
an inefficiently low utility u⋆ afterwards.3 The proof of Theorem 1 argues
(loosely) that any mechanism may be improved by front-loading the agent’s
pre-disclosure utility, making it higher early and lower late while preserving
its total discounted value. We further characterise the principal’s optimal
choice of deadline as a function of the breakthrough distribution (Proposi-
tion 2).

Outside of the affine case, optimal mechanisms exhibit a graduated dead-
line structure (Theorem 2): absent disclosure, the agent’s utility still starts
at the efficient level u0 and declines monotonically toward the inefficiently
low level u⋆, but the transition may be gradual. For any given breakthrough
distribution, we describe the optimal transition (Proposition 3).

We then apply our results to the design of unemployment insurance
schemes. An unemployed worker (agent) receives a job offer at a random
time, and chooses whether to accept, and if so how soon to start. Offers
are private, but the state (principal) observes when the worker starts a job.
The state controls unemployment benefits and income taxes, and cares both
about the worker’s welfare and net tax revenue.

3u0 and u⋆ are functions of the technologies, so the deadline is the only free parameter.
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Many countries, such as Germany and France, pay a generous unem-
ployment benefit until a deadline, and provide only a low benefit to those
remaining unemployed beyond this deadline. Our results provide a potential
rationale for such deadline schemes: they are approximately optimal provided
that either (a) the worker’s consumption utility has limited curvature, or
(b) tax revenue is comparatively unimportant for social welfare. Conversely,
our analysis suggests that where neither (a) nor (b) is satisfied, substantial
welfare gains could be achieved by tapering benefits gradually, as in Italy.

1.2 Related literature
This paper belongs to the literature on incentive design for a proposing agent,
initiated by Armstrong and Vickers (2010).4 In their (static) model, the agent
privately observes which physical allocations are available, then proposes one
(or several). The key assumptions are that

(a) the agent can propose only available allocations, and that

(b) the principal can implement only proposed allocations.

Our dynamic problem shares these key features: the new technology (a) can
only be disclosed (proposed) once available, and (b) can be utilised by the
principal only once disclosed.

Bird and Frug (2019) study a different dynamic environment with fea-
tures (a) and (b). Payoffs are simple: there is an allocation α preferred by
the principal and a default allocation favoured by the agent,5 and the prin-
cipal can furthermore reward the agent at a linear cost. In each period, the
agent privately observes whether α is available; it can (a) be disclosed only
if available, and (b) be implemented only if disclosed. Were rewards unre-
stricted, α could be implemented whenever available by rewarding the agent
just enough to induce disclosure. (And this is optimal; thus there is no con-
flict of interest in our sense.) The authors instead subject promised rewards
to a dynamic budget constraint,6 and study how the budget should be spent
over time. By comparison, we allow for general payoffs (technologies) and
impose no dynamic constraints, focussing instead on a conflict of interest.

4See also Nocke and Whinston (2013) and Guo and Shmaya (2023). Our account of the
literature follows the latter authors’ insightful discussion. The literature has precedents in
applied work on corporate finance (Berkovitch & Israel, 2004) and antitrust (Lyons, 2003).

5There is an extension to multiple allocations α; little changes.
6They assume in particular that the agent can be rewarded only using exogenous reward

‘opportunities’, which arrive randomly over time; but nothing changes if rewards take other
forms, e.g. (flow) monetary payments subject to a per-period cap.
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Feature (a) means that the agent’s disclosures are verifiable, a possibility
first studied by Viscusi (1978), Grossman and Hart (1980), Milgrom (1981),
and Grossman (1981). A strand of the subsequent literature examines the
role of commitment in static models,7 while another studies the timing of
disclosure absent commitment;8 our environment features both commitment
and dynamics.9 These models lack property (b): the agent cannot constrain
the principal.

More distantly related is the large literature on dynamic adverse-selection
models with cheap-talk communication (contrast with (a)) and no scope for
the agent to constrain the principal’s choice of allocation (contrast with (b)).
The strand on dynamic ‘delegation’ allows for non-transferable utility, as we
do;10 otherwise the literature tends to focus on monetary transfers.11 A re-
cent strand examines models which, like ours, feature private information
about when, rather than about what. For example, Green and Taylor (2016)
show how moral hazard may be mitigated by conditioning pay and termina-
tion on cheap-talk ‘progress reports’.12 In their model, the agent privately ob-
serves the arrival of a signal which indicates that project completion is within
reach (given enough effort). Completion is observable. There is no conflict
of interest in our sense; instead, the challenge is to incentivise unobservable
(completion-hastening) effort. (Absent this moral hazard, the principal would
have no reason to elicit the signal.) Relatedly, Madsen (2022) studies how
cheap-talk progress reports may be elicited by conditioning pay and termina-
tion on a contractible signal. In his model, the agent privately observes when
a project ‘expires’, and the principal decides when to terminate the project.
The principal (agent) prefers termination close to expiry (as late as possible).

7Particularly Glazer and Rubinstein (2004, 2006), Sher (2011), Hart, Kremer, and Perry
(2017), and Ben-Porath, Dekel, and Lipman (2019).

8See Dye and Sridhar (1995), Acharya, DeMarzo, and Kremer (2011), Guttman, Kre-
mer, and Skrzypacz (2014), Campbell, Ederer, and Spinnewijn (2014), and Curello (2023a,
2023b). The last three papers feature ‘breakthroughs’, but these engender no conflict of
interest in our sense; the incentive problem is instead that of deterring shirking.

9So does recent work on revenue management, where a firm contracts with customers
who arrive unobservably over time and choose when verifiably to reveal themselves; see
Pai and Vohra (2013), Board and Skrzypacz (2016), Mierendorff (2016), Garrett (2016,
2017), Gershkov, Moldovanu, and Strack (2018), and Dilmé and Li (2019).

10See Jackson and Sonnenschein (2007), Matsushima, Miyazaki, and Yagi (2010),
Frankel (2016), Guo (2016), Li, Matouschek, and Powell (2017), Lipnowski and Ramos
(2020), Guo and Hörner (2020), and de Clippel, Eliaz, Fershtman, and Rozen (2021).

11E.g. Roberts (1982), Baron and Besanko (1984), Courty and Li (2000), Battaglini
(2005), Eső and Szentes (2007a, 2007b), Board (2007), and Pavan, Segal, and Toikka
(2014).

12See also Feng, Taylor, Westerfield, and Zhang (2024).
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Crucially, there is a noisy contractible signal of expiry.13 Both of these papers
use the term ‘deadline’, as we do, but mean quite different things by it.14

1.3 Roadmap
We introduce the model in the next section, then formulate the principal’s
problem in §3. In §4, we show that undominated mechanisms incentivise
the agent by keeping her always indifferent. We then describe the deadline
structure of optimal mechanisms (§5 and §6). In §7, we apply our results to
the design of unemployment insurance schemes.

2 Model
There is an agent and a principal, whose utilities are denoted by u ∈ [0,∞)
and v ∈ [−∞,∞), respectively. A frontier F 0 : [0,∞) → [−∞,∞) describes
utility possibilities: F 0(u) is the highest utility that the principal can attain
subject to giving the agent utility u. We assume that F 0 is concave and upper
semi-continuous, that it has a unique peak u0 > 0 (namely, F 0 (u0) > F 0(u)
for every u ̸= u0), and that it is finite on (0, u0]. Such a frontier is depicted
in Figure 1.

Time t ∈ R+ is continuous. The principal controls the agent’s flow utility
u (and thus her own utility F 0(u)) over time, and is able to commit.

We interpret this abstract description of utility possibilities in the stan-
dard fashion: there is an (unmodelled) set of feasible physical allocations
over which the agent and principal have preferences, and the principal de-
cides which allocation prevails in each period. She thus effectively controls
the agent’s flow utility. We illustrate and interpret further in §2.1 below.

At a random time τ , a breakthrough occurs: a new technology becomes
available which expands the utility possibility frontier to F 1 ≥ F 0. The new
frontier is likewise concave and upper semi-continuous, with a unique peak
denoted by u1 ≥ 0. (Note that we allow for the possibility that u1 = 0,
in which case F 1 is decreasing.) The breakthrough engenders a conflict of
interest: the new frontier peaks at a strictly lower agent utility (u1 < u0),

13If there were no contractible signal, then non-trivial screening would be impossible,
since the agent’s preferences are the same whatever her type (expiry date).

14Deterministic hard deadlines, as in our result, appear only in the benchmark case of
Green and Taylor in which there is no signal (a case unrelated to our model and Madsen’s).
In Green and Taylor, ‘(soft) deadline’ means a time after which termination may randomly
occur if the agent has not yet reported the signal’s arrival. Madsen uses ‘(soft) deadline’
to mean that termination depends on the realisation of the contractible signal.
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F 1
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Figure 1: Utility possibility frontiers. The new technology expands utility
possibilities (F 1 ≥ F 0), but creates a conflict of interest (u1 < u0). u⋆ denotes
the rightmost point to the left of u0 at which F 0, F 1 have equal slopes.

so that the breakthrough would hurt the agent were the principal to operate
both technologies in her own interest. This is illustrated in Figure 1.

The breakthrough is observed only by the agent. At any time t ≥ τ
after the breakthrough, she can verifiably disclose to the principal that it has
occurred. (That is, she can prove that the new technology is available.) The
new technology can be used only once its availability has been disclosed.

The agent and principal discount their flow payoffs at rate r > 0 and have
expected-utility preferences, so that their respective payoffs from random flow
utilities t 7→ xt and t 7→ yt are

E
(
r
∫ ∞

0
e−rtxtdt

)
and E

(
r
∫ ∞

0
e−rtytdt

)
.

The random time τ at which the breakthrough occurs is distributed according
to an arbitrary cumulative distribution function G.

We write u⋆ for the rightmost u ∈ [0, u0] at which the old and new
frontiers F 0, F 1 have equal slope (in the sense of sharing a supergradient—
see Rockafellar (1970, part V)), and let u⋆ := 0 in case no such u ∈ [0, u0]
exist. This utility level will feature prominently in our analysis. To avoid
trivialities, we impose the weak genericity assumption that u⋆ is a strict
local maximum of F 1 − F 0. Note that u⋆ ≤ u1 < u0.
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Figure 2: Finitely many allocations: the old ( ), the new ( ), and utility
possibilities (grey). Here u⋆ = u1.

2.1 Interpreting the frontiers
In the simplest applications, there are finitely many (old) allocations, and
the agent privately observes when a single new allocation becomes available.
For example, a manager may observe when a worker on her team acquires a
skill, or a firm may discover an emissions-reducing innovation. Each alloca-
tion provides some utilities (u, v) to the agent and principal, which may be
plotted as in Figure 2. The utility possibility set is the convex hull of these
profiles,15 and the frontier F 0 is its upper boundary. The agent privately ob-
serves when a new allocation (u1, v1) becomes available. The principal likes
the new allocation better than any other, whereas the agent prefers the prin-
cipal’s favourite old allocation (u0, v0). Thus utility possibilities expand, but
there is a conflict of interest.

Example 1. The simplest formalisation of the talent-hoarding story from
the introduction is as follows. A worker belongs to a team in an organisation.
Her productivity on the team is v0 > 0, while her productivity outside of
the team is strictly lower, normalised to zero. At some uncertain time, she
acquires a skill that can be exercised only outside of her current team, at
productivity v1 > v0. (This could be the skill to manage a team of her own,
for example.) Headquarters (the principal) cares about output, while the
worker’s manager (the agent) has a pure empire-building motive: her payoff
is u = 1 if the worker is on her team and u = 0 otherwise. In this case, the

15In-between profiles are achieved by rapidly switching back and forth (or randomising).
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frontiers are given by F 0(u) = uv0 and F 1(u) = (1 − u)v1 + uv0 for each
u ∈ [0, 1].16 These frontiers satisfy our model assumptions; in particular, the
conflict-of-interest assumption holds since u1 = 0 < 1 = u0.

Richer applications feature (infinitely) many allocations. In our applica-
tion to unemployment insurance (§7), for example, an allocation specifies the
worker’s consumption and (if she is employed) her labour supply.

Our abstract treatment of allocations allows for a broad range of applica-
tions. Allocations may be multi-dimensional, for example, with some dimen-
sions corresponding to observable actions taken by the agent. (The principal
controls these by issuing action recommendations, backed by the threat of
giving the agent zero utility forever unless she complies.) One dimension of
the allocation may describe monetary payments to the agent; we discuss this
possibility in §2.2 below.

Rich downstream interactions between the principal and agent can be
accommodated by re-interpreting the frontier F 1 in lifetime terms, so that
F 1(u) is the principal’s continuation utility from the post-disclosure interac-
tion when she is constrained to provide the agent with a continuation utility
of u.17 The post-disclosure interaction could be one of contracting under
(rich, possibly dynamic) moral hazard, for example: that yields a frontier F 1

which satisfies our shape assumptions (see e.g. Sannikov, 2008, Figure 1).

2.2 Discussion of the assumptions
Two of our assumptions are economically substantive. First, the agent pri-
vately observes a technological breakthrough, but cannot utilise the new tech-
nology without the principal’s knowledge. Many economic environments have
this feature: in unemployment insurance, for instance, the state observes the
worker’s employment status (from e.g. tax records).

Secondly, there is a conflict of interest, captured by u1 < u0. Such conflicts
arise naturally in applications: in unemployment insurance, for example, the
state (principal) would like an employed worker (agent) to work and pay
taxes, but the worker would rather not. Absent a conflict of interest, the
principal can attain first-best (see Remark 1 below).

Many of the remaining model assumptions are innocuous, as we next
briefly relate. For more details, see the working paper (Curello & Sinander,
2025).

16And F 0(u) = F 1(u) = −∞ for all u ∈ (1,∞), since u > 1 is impossible.
17The legitimacy of this re-interpretation is formally established in §3.1 below. Note

that the pre-breakthrough frontier F 0 cannot be re-interpreted in this ‘lifetime’ fashion.
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Utility possibilities. The assumption that F 1 ≥ F 0 is without loss of
generality (the old technology remains available after the breakthrough, so
the principal can still attain utility ≥ F 0(u) while giving the agent utility
u, for every u ∈ [0,∞)). The assumption that the frontiers are concave
is likewise without loss: if one of them were not, then the principal could
get arbitrarily close to any point on its concave upper envelope by rapidly
switching back and forth between agent utility levels. Upper semi-continuity
is similarly innocuous. The stipulation that u⋆ is a strict local maximum of
F 1 −F 0 essentially just rules out a saddle point, and is anyway dispensable.

Not every agent utility u ∈ [0,∞) need be feasible: if no physical alloca-
tion provides utility u, then we let F j(u) := −∞, ensuring that u is never
chosen by the principal. Our assumption that F 0 is finite on (0, u0] is without
loss.

We have required the agent’s flow utility u to be non-negative, meaning
that there is a bound (normalised to zero) on how much misery the principal
can inflict on the agent. This assumption may be replaced with a participation
constraint without affecting our results.

Distribution. The distribution G of the breakthrough time is unrestricted:
it can have atoms, for example, and need not have full support. It can be
shown that our results extend to the case in which G is endogenously gener-
ated by the agent’s unobservable exertion of costly effort.

Uncertain technology. Our analysis applies unchanged if the new frontier
F 1 is random, provided the agent does not have private information about
its realisation.

Cheap talk. Nothing changes if the agent’s disclosures are non-verifiable,
provided the principal observes her own payoffs in real time, since she can
then verify cheap-talk reports at negligible cost.18

(Non-)transferable utility. The frontiers F 0, F 1 can encode monetary
transfers between the principal and agent; our model assumptions restrict
such transfers only by requiring that before the breakthrough, the agent is
protected by (at least a degree of) limited liability. In detail, write F̃ 0, F̃ 1 for
the frontiers describing utility possibilities absent monetary transfers. If the
principal gives the agent gross utility ũ ∈ [0,∞) and pays her w ∈ R, then
net flow utilities are ũ + w for the agent and F̃ j

(
ũ
)

− w for the principal
18Following a report, the principal can provide utility u1 for a short time, earning F 1(u1)

if the breakthrough really did occur and F 0(u1) < F 1(u1) if not.
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when technology j ∈ {0, 1} is used. Any constraints on payments, such as
limited liability, are captured by constraint sets W 0 ⊆ R before disclosure
and W 1 ⊆ R after disclosure. For j ∈ {0, 1}, the utility possibility frontier
F j equals the concave upper semi-continuous upper envelope of

u 7→ sup
w∈W j

{
F̃ j (ũ) − w : ũ+ w = u

}
.

Assume that F̃ 0, F̃ 1 satisfy the model assumptions. Then F 0, F 1 also satisfy
all model assumptions, except possibly for the conflict-of-interest assumption
u1 < u0. What is needed for u1 < u0 to hold is that the agent be protected
by a degree of limited liability before the breakthrough, i.e. inf W0 ≥ −k
for some k ∈ R+; in particular, this condition with k = 0 is sufficient, and
it is necessary for this condition to hold with some k ≥ 0.19 The model
assumptions imply no restrictions on post-disclosure payments W 1.

2.3 Mechanisms and incentive-compatibility
A mechanism specifies, for each period t ∈ R+, the flow utility x0

t that the
agent enjoys at t if she has not yet disclosed, as well as the continuation utility
X1

t that she earns by disclosing at t. Formally, a mechanism is a pair (x0, X1),
where x0 : R+ → R+ and X1 : R+ → [0,∞] are Lebesgue-measurable. We
call x0 the pre-disclosure flow, and X1 the disclosure reward.

(Our notation uses lowercase for flows and uppercase for stocks: flow
utilities are xt ∈ [0,∞), while continuation payoffs are Xt ∈ [0,∞]. As usual,
‘x’ and ‘X’ denote the functions t 7→ xt and t 7→ Xt, respectively.)

Note that the description of a mechanism does not specify what utility
flow s 7→ x1,t

s the agent enjoys after disclosing at t, only its present value

X1
t = r

∫ ∞

t
e−r(s−t)x1,t

s ds

(which may be equal to ∞). Nor does the definition specify which technol-
ogy is used when both are available. These omissions do not matter for the
agent’s incentives, so we shall address them when we formulate the principal’s
problem (next section).

A mechanism is incentive-compatible (‘IC’) iff the agent prefers disclosing
promptly to (a) disclosing with a delay or (b) never disclosing. Formally:

Definition 1. A mechanism (x0, X1) is incentive-compatible (‘IC’) iff for
every period t ∈ R+,

19Write ũ0, ũ1 for the peaks of F̃ 0, F̃ 1, and note that u1 ≤ ũ1 < ũ0 ≥ u0. If inf W0 ≥ 0
then u0 = ũ0, so u1 ≤ ũ1 < ũ0 = u0. If inf W0 < −k for every k ∈ R+, then u0 = 0 ≤ u1.
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(a) X1
t ≥ r

∫ t+d
t e−r(s−t)x0

sds+ e−rdX1
t+d for every d > 0, and

(b) X1
t ≥ r

∫∞
t e−r(s−t)x0

sds.

By a revelation principle à la Bull and Watson (2007), we may restrict
attention to incentive-compatible mechanisms (for details, see the working
paper (Curello & Sinander, 2025)).

Remark 1. Although we have not yet stated the principal’s problem, it is
clear that her first-best is the mechanism (x0, X1) ≡ (u0, u1), which fails to
be incentive-compatible due to the conflict of interest (u1 < u0). If there were
no conflict of interest (u1 ≥ u0), then the first-best would be IC.

In the sequel, we equip the set R+ of times with the Lebesgue measure, so
that a ‘null set of times’ means a set of Lebesgue measure zero, and ‘almost
everywhere (a.e.)’ means ‘except possibly on a null set of times’.

Observe that two IC mechanisms (x0, X1) and
(
x0†, X1

)
which differ only

in that x0 ̸= x0† on a null set are payoff-equivalent.20 For this reason, we shall
not distinguish between such mechanisms in the sequel, instead treating them
as identical.21

3 The principal’s problem
In this section, we formulate the principal’s problem, and define undominated
and optimal mechanisms. We then derive an upper bound on the agent’s
utility in undominated mechanisms.

3.1 After disclosure
To determine the principal’s payoff, we must fill in the gaps in the definition
of a mechanism. So fix a mechanism (x0, X1), and suppose that the agent
discloses at time t. For each of the remaining periods s ∈ [t,∞), the principal
must determine

(1) which technology (F 0 or F 1) will be used, and

(2) what flow utility x1,t
s the agent will enjoy.

20x0 enters payoffs as EG

(∫ τ

0 e
−rtx0

t dt
)

and EG

(∫ τ

0 e
−rtF 0 (x0

t

)
dt
)
, respectively. Mod-

ifying x0 on a null set has no effect on the integrals, and thus leaves both players’ payoffs
unchanged, no matter what the breakthrough distribution G.

21We term such (x0, X1) and (x0†, X1) versions of each other. A mechanism is really an
equivalence class: a maximal set whose every element is a version of every other.
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Part (1) is straightforward: the principal is always (weakly) better off using
the new technology.

For (2), the principal must choose a (measurable) utility flow x1,t : [t,∞) →
[0,∞) subject to providing the agent with the continuation utility specified
by the mechanism:

r
∫ ∞

t
e−r(s−t)x1,t

s ds = X1
t .

She chooses so as to maximise her post-disclosure payoff

r
∫ ∞

t
e−r(s−t)F 1

(
x1,t

s

)
ds.

Since the frontier F 1 is concave, the constant flow x1,t ≡ X1
t is optimal.

Parts (1) and (2) together imply that the principal earns a flow payoff of
F 1 (X1

t ) forever following a time-t disclosure in a mechanism (x0, X1).

3.2 Undominated and optimal mechanisms
The principal’s payoff from an incentive-compatible mechanism (x0, X1) is

ΠG

(
x0, X1

)
:= EG

(
r
∫ τ

0
e−rtF 0

(
x0

t

)
dt+ e−rτF 1

(
X1

τ

))
,

where the expectation is over the random breakthrough time τ ∼ G.22 Her
problem is to maximise her payoff by choosing among IC mechanisms.

A basic adequacy criterion for a mechanism is that it not be dominated
by another mechanism, by which we mean that the alternative mechanism is
weakly better under every distribution and strictly better under at least one:

Definition 2. Let (x0, X1) and
(
x0†, X1†

)
be incentive-compatible mecha-

nisms. The former dominates the latter iff

ΠG

(
x0, X1

)
≥(>) ΠG

(
x0†, X1†

)
for every (some) distribution G.

An IC mechanism is undominated iff no IC mechanism dominates it.

Domination is a distribution-free concept: the principal weakly prefers
a dominating mechanism whatever her belief G about the likely time of
the breakthrough. When the principal’s belief G makes her exactly indif-
ferent between two mechanisms, one of which dominates the other, choosing
the dominating mechanism means maximising the principal’s ex-post payoff
(which cannot hurt, and seems more prudent if the principal entertains even
a little doubt about G).

22For IC mechanisms (x0, X1) such that X1
τ = ∞ with positive probability, we interpret

‘F 1(∞)’ as limu↑∞ F 1(u) = −∞, so that ΠG(x0, X1) := −∞.
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Definition 3. An incentive-compatible mechanism is optimal for a distribu-
tion G iff it maximises ΠG and is undominated.

Undominated and optimal mechanisms exist, by standard arguments which
we omit (see the working paper (Curello & Sinander, 2025)).

3.3 An upper bound on the agent’s utility
Absent incentive concerns, the principal never wishes to give the agent utility
strictly exceeding u0, since both frontiers are downward-sloping to the right
of u0. The principal could use utility promises in excess of u0 as an incentive
tool, however. This is never worthwhile:

Lemma 0. Any undominated incentive-compatible mechanism (x0, X1) sat-
isfies x0 ≤ u0 almost everywhere.

Proof. Let (x0, X1) be an IC mechanism in which x0 > u0 on a non-null set
of times. Consider the alternative mechanism (min {x0, u0} , X1) in which the
agent’s pre-disclosure flow is capped at u0. This mechanism dominates the
original one: its pre-disclosure flow is lower, strictly on a non-null set, and the
frontier F 0 is strictly decreasing on [u0,∞). And it is incentive-compatible:
prompt disclosure is as attractive as in the original (IC) mechanism, and
disclosing with delay (or never disclosing) is weakly less attractive since the
agent earns a lower flow payoff min {x0, u0} ≤ x0 while delaying.

4 Keeping the agent indifferent
In this section, we describe how undominated mechanisms incentivise the
agent. This result is a stepping stone to the deadline characterisation of
undominated mechanisms that we develop in next two sections.

To formulate the agent’s problem in a mechanism (x0, X1), let X0
t denote

the period-t present value of the remainder of the pre-disclosure flow x0:

X0
t := r

∫ ∞

t
e−r(s−t)x0

sds.

In a period t in which the agent has observed but not yet disclosed the
breakthrough, she chooses between

• disclosing promptly (payoff X1
t ),

• disclosing with any delay d > 0 (payoff X0
t + e−rd

(
X1

t+d −X0
t+d

)
), and

14



• never disclosing (payoff X0
t ).

Incentive-compatibility demands precisely that the agent weakly prefer the
first option. Our first result asserts that in an undominated mechanism, she
must in fact be indifferent between all three alternatives:

Proposition 0. Any undominated incentive-compatible mechanism (x0, X1)
satisfies X0 = X1.

That is, the reward X1
t for disclosure must equal the present value X0

t =
r
∫∞

t e−r(s−t)x0
sds of the remainder of the pre-disclosure flow x0.

A naïve intuition for Proposition 0 is that, were the agent strictly to
prefer prompt disclosure in some period t, the principal could reduce her
disclosure reward X1

t without violating IC. The trouble with this idea is that
if X1

t ≤ u1, then lowering X1
t would hurt the principal (refer to Figure 1 on

p. 7). This is no mere quibble, for (as we shall see) undominated mechanisms
will spend time in [0, u1]. More broadly, in a general dynamic environment,
it is not clear that IC ought to bind everywhere.

The proof is in appendix A. Below, we outline the main idea in discrete
time, then highlight the additional details that arise in continuous time.

Sketch proof. Let time t ∈ {0, 1, 2, . . . } be discrete, and write β := e−r for
the discount factor. A mechanism (x0, X1) is incentive-compatible iff in each
period s, the agent prefers prompt disclosure to delaying by one period and
to never disclosing:

X1
s ≥ (1 − β)x0

s + βX1
s+1 (delay IC)

X1
s ≥ X0

s . (non-disclosure IC)

(Delay IC also deters delay by two or more periods.) We shall show that
undominatedness requires that the delay IC inequalities be equalities; we
omit the argument that non-disclosure IC must also hold with equality.

So let (x0, X1) be an IC mechanism with delay IC slack in some period t:

X1
t > (1 − β)x0

t + βX1
t+1.

Observe that if the terms x0
t and X1

t+1 on the right-hand side are ≥ u1, then
the left-hand side X1

t must strictly exceed u1. Equivalently, it must be that
either

(i) X1
t > u1, (ii) x0

t < u1, or (iii) X1
t+1 < u1.

15



In each of these cases, we shall find a mechanism that dominates (x0, X1).
We will use the fact that non-disclosure IC is slack in each period s ≤ t.23

In case (i), the naïve intuition is vindicated: lowering X1
t toward u1 really

does improve the principal’s payoff (strictly in case of a breakthrough in
period t). And this preserves IC: the (slack) period-t delay IC and non-
disclosure IC hold for a small enough decrease, while delay IC slackens in
period t − 1 and is unaffected in all other periods, and non-disclosure IC is
unaffected in all periods other than t.

In case (ii), increase x0
t toward u1, by an amount small enough to preserve

the (slack) period-t delay IC and period-s non-disclosure IC for each s ≤ t.
Other periods’ delay IC is undisturbed, and so is non-disclosure IC in periods
s > t. Since F 0 increases strictly to the left of u1 < u0, the principal’s payoff
improves (strictly in case of a breakthrough after t).

Finally, in case (iii), increase X1
t+1 toward u1. (The opposite of the naïve

intuition.) The principal is better off (strictly in case of a period-(t + 1)
breakthrough). Period-t delay IC abides provided the modification is small,
while delay IC is loosened in period t + 1 and unaffected in other periods.
Non-disclosure IC is clearly preserved.

The proof in appendix A is based on the logic of the sketch above, but
must handle two issues that arise in continuous time. First, in case (ii), x0

must be increased on a non-null set of times if the principal’s payoff is to
increase strictly under some distribution. Secondly, in cases (i) and (iii), it is
typically not possible to modify X1 in a single period while preserving IC.

In light of Proposition 0, an undominated incentive-compatible mecha-
nism (x0, X1) is pinned down by the pre-disclosure flow x0, since the dis-
closure reward X1 must always equal the present value of the remainder of
x0:

X1
t = X0

t = r
∫ ∞

t
e−r(s−t)x0

sds for each t ∈ R+.

We therefore drop superscripts in the sequel, writing an IC mechanism simply
as (x,X), where Xt := r

∫∞
t e−r(s−t)xsds for each t ∈ R+. Since mechanisms

of this form are automatically IC, we refer to them simply as ‘mechanisms’.
By Lemma 0, we need only consider mechanisms (x,X) that satisfy x ≤ u0

a.e.
23To prove this, use induction on s ∈ {t, t − 1, . . . , 2, 1, 0}. In the base case s = t,

X1
t > (1 − β)x0

t + βX1
t+1 ≥ (1 − β)x0

t + βX0
t+1 ≡ X0

t by period-t delay IC (which is slack)
and period-(t+1) non-disclosure IC. For the induction step, suppose that period-(s+1) non-
disclosure IC is slack, where s < t; then X1

s ≥ (1−β)x0
s+βX1

s+1 > (1−β)x0
s+βX0

s+1 ≡ X0
s ,

where the weak inequality holds by period-s delay IC.
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Figure 3: Utility possibility frontiers in the affine case. u⋆ is where the fron-
tiers are furthest apart.

5 Deadline mechanisms
In this section, we uncover a deadline structure of undominated mecha-
nisms when the old utility possibility frontier F 0 is affine on [0, u0], as in
Figure 3. We further characterise the optimal choice of deadline, given the
breakthrough distribution.

We start with the affine case partly for reasons of conceptual clarity: this
case lays bare a ‘front-loading’ force that will provide the key to understand-
ing undominated mechanisms in general. The affine case is also important
in its own right, since affineness frequently arises in applications, for two ba-
sic reasons. The first reason is convexification (recall Figure 2 on p. 8). In
the simplest case, with just two allocations, the utility possibility frontier is
the straight line connecting the two feasible utility profiles.24 More generally,
the utility possibility set is the convex hull of all feasible utility profiles, so
its upper boundary F 0 is affine if there are two profiles such that the line
segment connecting them lies above all other profiles.

The second reason is that in (utilitarian) policy applications, such as
unemployment insurance (§7 below), the agent’s utility directly enters the
principal’s payoff in a linear fashion. Explicitly, the agent’s utility is u = ϕ(a),
where a ∈ A is a policy variable and ϕ : A → [0,∞) is surjective, and the
principal’s utility is v = u− ψ(a) for some function ψ : A → R, so

F 0(u) = sup
a∈A

{u− ψ(a) : u = ϕ(a)} = u− inf
a∈A

{ψ(a) : u = ϕ(a)} for each u ∈ [0,∞).

24In-between profiles are attained by rapidly switching back and forth (or randomising).
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The first term is linear, so if the second term has almost no curvature, then
F 0 is approximately affine.25

The utility level u⋆ (defined in §2) admits a simple description when F 0 is
affine: it is the unique u ∈ [0, u0] at which the frontiers are furthest apart,26

as indicated in Figure 3. A deadline mechanism is one in which the agent’s
utility absent disclosure is at the efficient level u0 before a deterministic
deadline, and at the inefficiently low level u⋆ afterwards:

Definition 4. A mechanism (x,X) is a deadline mechanism iff

xt =

u0 for t ≤ T

u⋆ for t > T
for some T ∈ [0,∞].

Deadline mechanisms are simple: only two utility levels are used, with
a single switch between them. And they form a small class of mechanisms,
parametrised by a single number: the deadline T . (The utility levels u0 and
u⋆ are not free parameters, being pinned down by the technologies F 0, F 1.)

The agent’s reward X upon disclosure in a deadline mechanism (equal to
the present value of the remainder of the pre-disclosure flow x) is decreasing
until the deadline, then constant at u⋆:

Xt =


(
1 − e−r(T −t)

)
u0 + e−r(T −t)u⋆ for t ≤ T

u⋆ for t > T .
(♢)

5.1 Only deadline mechanisms are undominated
The affine case admits a sharp prediction: no matter what the shapes of the
new frontier F 1 and breakthrough distribution G, the principal will choose
a mechanism from the small and simple deadline class.

Theorem 1. If the old frontier F 0 is affine on [0, u0], then any undominated
mechanism is a deadline mechanism.

The welfare implications are stark: ex-post Pareto efficiency in case of an
early breakthrough, and surplus destruction otherwise. In particular, absent
a breakthrough, the old technology is operated Pareto-efficiently (i.e. on the
downward-sloping part of F 0, specifically at u0) before the deadline, and in-
efficiently (at u⋆) afterwards. Once the new technology arrives, it is deployed

25For example, if A is a convex subset of R and ϕ, ψ are twice continuously differentiable
with ϕ′ > 0 < ψ′, then F 0(u) = u − ψ(ϕ−1(u)) for each u ∈ [0,∞), so the curvature
|F 0′′/F 0′| is small if the curvature difference |ψ′′/ψ′ − ϕ′′/ϕ′| is small.

26u⋆ is a strict local maximum of the gap F 1 − F 0, which is concave when F 0 is affine.
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(b) X† ≤ X, with equality at 0.

Figure 4: Sketch proof of Theorem 1: front-loading by a deadline mechanism.

efficiently (on the downward-sloping part of F 1) if its arrival was early (while
X ≥ u1).27 If its arrival was late, then F 1 is operated inefficiently if u⋆ < u1,
and efficiently if u⋆ = u1. These welfare implications, as well as the special
role played by u⋆, are general properties that hold even outside of the affine
case, so we postpone discussing them fully until §6.2 below.

We prove Theorem 1 in appendix B. Below, we give an intuitive sketch.

Sketch proof. Fix a non-deadline mechanism (x,X) with x ≤ u0, and assume
for simplicity that x ≥ u⋆. We will show that (x,X) is dominated by the
deadline mechanism

(
x†, X†

)
whose deadline T satisfies(

1 − e−rT
)
u0 + e−rTu⋆︸ ︷︷ ︸

= X†
0 by (♢)

= X0.

This mechanism is a front-loading of (x,X): the pre-disclosure flow has
the same present value X0 = r

∫∞
0 e−rtxtdt, but is higher early and lower

late, as depicted in Figure 4a. As time passes, the present value X†
t =

r
∫∞

t e−r(s−t)x†
sds of the remainder of the front-loaded flow x† rapidly di-

minishes, so that X† is weakly below X in every period (see Figure 4b).
The principal’s period-t continuation payoff if the agent never discloses is

Yt := r
∫ ∞

t
e−r(s−t)F 0(xs)ds = F 0

(
r
∫ ∞

t
e−r(s−t)xsds

)
= F 0(Xt),

27A detail: Xt ≥ u1 holds in early periods t only if the deadline is sufficiently late. We
show in the next section that this must be the case in undominated mechanisms.
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where the middle equality holds by the affineness of F 0. Her payoff is thus

ΠG(x,X) = EG

(
Y0 − e−rτYτ + e−rτF 1 (Xτ )

)
= F 0(X0) + EG

(
e−rτ

[
F 1 − F 0

]
(Xτ )

)
.

Front-loading lowers X toward u⋆, leaving X0 unchanged. Since F 1 − F 0 is
(strictly) decreasing on [u⋆, u0] by definition of u⋆, this improves the princi-
pal’s payoff whatever the distribution G. The improvement is in fact strict
for any full-support distribution. Thus

(
x†, X†

)
dominates (x,X).

The key simplification in the above sketch is the assumption that x ≥ u⋆.
The proof in appendix B dispenses with this assumption by choosing the
deadline T to satisfy

(
1 − e−rT

)
u0 + e−rTu⋆ = max{X0, u

⋆}, and showing (in
a few extra steps) that this yields a dominating mechanism even if x ≱ u⋆.

Theorem 1 provides a rationale for deadline mechanisms even when F 0

is not exactly affine: provided F 0 has only moderate curvature, the principal
loses little by restricting attention to deadline mechanisms.

5.2 Undominated deadlines
Theorem 1 asserts that only deadline mechanisms are undominated when
F 0 is affine, but does not adjudicate between deadlines. In fact, not every
deadline mechanism is undominated. Consider a deadline T so early that
X0 < u1. Since the disclosure reward X decreases over time in a deadline
mechanism, we have Xτ < u1 whatever the time τ of the breakthrough.

The principal can do better by using the later deadline T that satisfies
X0 = u1, or explicitly (using equation (♢) on p. 18)(

1 − e−rT
)
u0 + e−rTu⋆ = u1.

This raises the agent’s disclosure reward X toward u1, improving the prin-
cipal’s post-disclosure payoff F 1 (Xτ ) whatever the breakthrough time τ
(strictly if τ < T ). The principal also enjoys the high pre-disclosure flow
F 0 (u0) > F 0 (u⋆) for longer, which is beneficial in case of a late break-
through.

Undominatedness thus requires a deadline no earlier than T . This condi-
tion is not only necessary, but also sufficient:

Proposition 1. If the old frontier F 0 is affine on [0, u0], then a mechanism
is undominated iff it is a deadline mechanism with deadline T ∈ [T ,∞].

The proof is in appendix C.
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5.3 Optimal deadlines
Proposition 1 narrows the search for an optimal mechanism to deadline mech-
anisms with a sufficiently late deadline. The optimal choice among these
depends on the breakthrough distribution G.

A late deadline is beneficial if the breakthrough occurs late, as the efficient
high utility u0 is then provided for a long time. The cost is that in case of
an early breakthrough, the agent must be given a utility of X > u1 forever.
A first-order condition balances this trade-off:

Proposition 2. Assume that the old frontier F 0 is affine on [0, u0], that the
new frontier F 1 is differentiable on (0, u0) with bounded derivative, and that
u⋆ > 0. A mechanism is optimal for G iff it is a deadline mechanism and
satisfies EG (F 1′ (Xτ )) = 0.

In other words, the new technology should be operated optimally on av-
erage. This is a restriction on the deadline T because X is a function of it, as
described by equation (♢) on p. 18. Indeed, it implies comparative statics:
optimal deadlines become later when the breakthrough distribution G be-
comes later in the sense of first-order stochastic dominance.28 This improves
the agent’s ex-ante payoff X0, as can be seen from equation (♢).

Proposition 2 is proved in appendix G.

6 Optimal mechanisms in general
In this section, we show that optimal mechanisms in the general (non-affine)
case exhibit a graduated deadline structure: absent disclosure, the agent’s
utility still declines from u0 toward u⋆, but not necessarily abruptly. Given
the breakthrough distribution, we describe the optimal path.

To shorten proofs, we shall impose a well-behavedness assumption. The
results remain true if this assumption is dropped: see the working paper
(Curello & Sinander, 2025).

Definition 5. We say that the model primitives F 0, F 1, G are well-behaved
iff F 0 and F 1 are differentiable on (0, u0) with bounded derivatives, and either
(i) F 0 is strictly concave on [0, u0] or (ii) F 1 is strictly concave on [0, u0] and
G has full support.

28To see why, recall that F 1 is concave, and observe (from (♢)) that a deadline mech-
anism’s disclosure reward X is decreasing over time and increases pointwise when the
deadline becomes later. This comparative-statics result remains true if F 1 is not differen-
tiable; see the working paper (Curello & Sinander, 2025).
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6.1 Qualitative features of optimal mechanisms
Recall from §2 that u⋆ denotes the greatest u ∈ [0, u0] at which the old and
new frontiers F 0, F 1 have equal slopes, as depicted in Figure 1 (p. 7).

Theorem 2. Let G be a distribution with G(0) = 0 and unbounded support.
Assume that F 0, F 1, G are well-behaved. Then any mechanism (x,X) that
is optimal for G has x decreasing

from lim
t→0

xt = u0 toward lim
t→∞

xt = u⋆.29

That is, optimal mechanisms are just like deadline mechanisms, except
that the transition from u0 to u⋆ may be gradual. This graduality follows
directly from relaxing affineness: when F 0 has a strictly concave shape, by
definition, the principal prefers providing intermediate utility to providing
only the extreme utilities u⋆, u0. Theorem 2 is the combination of this me-
chanical effect with the front-loading insight expressed by Theorem 1.

The proof is in appendix E. As mentioned above, Theorem 2 remains true
if the well-behavedness assumption is dropped, at the cost of a longer proof;
see the working paper (Curello & Sinander, 2025).

The role of monotonicity is not to provide incentives: on the contrary,
mechanisms of the form (x,X) satisfy IC (with equality) by definition, what-
ever the pre-disclosure flow x : R+ → [0, u0]. Rather, what Theorem 2 asserts
is that if x is not decreasing, then there is a better mechanism. This claim is
non-trivial to prove.

Absent a breakthrough, efficiency deteriorates as we travel leftward along
the upward-sloping part of the old frontier F 0. Once the new technology
becomes available, it is operated efficiently (on the downward-sloping part
of F 1) if its arrival was sufficiently early.30 If its arrival was late, then F 1 is
operated inefficiently if u⋆ < u1, and efficiently if u⋆ = u1.

The distributional hypotheses are mild: G(0) = 0 means that the new
technology is unavailable initially, while unbounded support rules out an
effectively finite horizon. The former’s role is as a sufficient condition for
limt→0 xt = u0, while the latter is required by our proof strategy.

29Recall that a mechanism has multiple versions (footnote 21, p. 12). Theorem 2 as-
serts that any optimal mechanism has a version with the stated properties. We focus on
limt→0 xt rather than x0 because ‘x0 = u0’ is vacuous: any mechanism has a version
satisfying it.

30We show in appendix F that Xt > u1 holds in all sufficiently early periods t.

22



6.2 Discussion
Two salient features of Theorems 1 and 2 are the special role played by
u⋆ and the possibility (in case of a late breakthrough) of perpetual surplus
destruction. We now discuss these two properties.

For simplicity, assume that F 0 and F 1 are differentiable, and consider a
mechanism that is eventually constant: x = ū on (T,∞), where ū ∈ (0, u0)
and G(T ) < 1. Unless ū = u⋆, the mechanism (x,X) may be improved by a
simple perturbation:

xε =


x on [0, T ]
ū+ ε on (T, T + ln(2)/r]
ū− ε on [T + ln(2)/r,∞)

where ε ̸= 0.

If ε > 0, then this is a ‘front-loading’, making the pre-disclosure flow x
higher early on (before T + ln(2)/r) and lower later, while keeping Xε = X

on [0, T ].31 Since d
dε
xε
∣∣∣
ε=0

= d
dε
Xε
∣∣∣
ε=0

= 0 on [0, T ], perturbing ε away from
zero changes the principal’s payoff ΠG (xε, Xε) at rate

d
dεEG

(
r
∫ τ

0
e−rtF 0 (xε

t) dt
)∣∣∣∣∣

ε=0
+ d

dεEG

(
e−rτF 1 (Xε

τ )
)∣∣∣∣∣

ε=0

= EG

(
r
∫ τ

0
e−rt d

dε
xε

t

∣∣∣
ε=0

dt
)

× F 0′ (ū) +KG × F 1′ (ū)

= KG ×
[
F 1′ (ū) − F 0′ (ū)

]
where KG := EG

(
e−rτ d

dε
Xε

τ

∣∣∣
ε=0

)
,

where the second equality holds since the big expectation equals EG(ϕ′
τ (0))

where ϕτ (ε) := r
∫ τ

0 e
−rtxε

tdt = Xε
0 −e−rτXε

τ . Thus whatever the breakthrough
distribution G, the principal’s payoff can be improved by perturbing ε except
if F 0′ (ū) = F 1′ (ū), or equivalently ū = u⋆.

This accounts for the special role of u⋆. It also implies the optimality of
perpetual surplus destruction in case of a late breakthrough (after T ), since
setting ū = u⋆ < u1 yields X = x < u1 on (T,∞).

Economically, the above argument boils down to a demonstration that
u⋆ balances the cost and benefit of ‘front-loading’, so that neither front-
loading (ε > 0) nor ‘back-loading’ (ε < 0) yields an improvement. The benefit
of front-loading is that the pre-disclosure flow x is experienced only before
the breakthrough, so making it higher early and lower late is mechanically
better.32 The cost of front-loading is that it lowers the disclosure reward X,
thereby increasing the severity of perpetual surplus destruction in case of a
late breakthrough.

31Because Xε
T = XT + εerT

(∫ T +ln(2)/r

T
re−rsds−

∫∞
T +ln(2)/r

re−rsds
)

= XT for each ε.
32The principal prefers a higher pre-disclosure flow since F 0 is increasing on [0, u0].
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6.3 Optimal transition
Theorem 2 describes the distribution-free qualitative features of optimal
mechanisms, but does not specify the precise manner in which the agent’s
utility ought to decline from u0 toward u⋆. The optimal path, for a given
breakthrough distribution, is characterised by an Euler equation:

Proposition 3. Let G be a distribution with G(0) = 0 and unbounded
support. Assume that u⋆ > 0, and that F 0, F 1, G are well-behaved. Then
any mechanism (x,X) that is optimal for G satisfies the initial condition
EG (F 1′ (Xτ )) = 0 and the Euler equation

F 0′(xt) ≥ EG

(
F 1′ (Xτ )

∣∣∣τ > t
)

for each t ∈ R+, with equality if xt < u0.33

The initial condition EG (F 1′ (Xτ )) = 0 demands that the new technology
be used optimally on average, just like the first-order condition for an optimal
deadline in the affine case (Proposition 2, p. 21). The special role of u⋆ can be
deduced from the Euler equation: as t → ∞,Xt = r

∫∞
t e−r(s−t)xsds converges

to u := limt→∞ xt, so F 0′ (u) = F 1′ (u), which is to say that u = u⋆.
The proof is in appendix F. Proposition 3 remains true if well-behavedness

is weakened to differentiability of F 0, F 1 on (0, u0); see the working paper
(Curello & Sinander, 2025).

Sketch proof. A mechanism (x,X) with 0 < x < u0 may be perturbed near
an arbitrary period t ∈ R+ by adding ε to x on [t, t + δ), where ε ̸= 0
and δ > 0 are small. This changes Xs = r

∫∞
s e−r(s′−s)xs′ds′ for s ≤ t by

re−r(t−s)δε+ o(δε), so changes the principal’s payoff ΠG(x,X) by

re−rtF 0′(xt)δε[1 −G(t)] +
∫

[0,t]
e−rsF 1′(Xs)

(
re−r(t−s)δε

)
G(ds) + o(δε).

If (x,X) is optimal, then it cannot be improved by such perturbations:

F 0′(xt)[1 −G(t)] +
∫

[0,t]
F 1′(Xs)G(ds) = 0. (Et)

Letting t → ∞ yields EG (F 1′(Xτ )) = 0. Substituting this equality into (Et)
and dividing by 1 −G(t) > 0 yields F 0′(xt) = EG (F 1′(Xτ )|τ > t).

33Here F j′(0) (F j′(u0)) for j ∈ {0, 1} denotes the right-hand (left-hand) derivative.
Recall that a mechanism has multiple versions (footnote 21, p. 12). In full, the proposition
asserts that some (any) version satisfies the Euler equation for (almost) every t ∈ R+.
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To understand the Euler equation, differentiate it and rearrange to obtain

ẋt = −
(

G′(t)
1 −G(t)

)
︸ ︷︷ ︸

hazard rate

F 0′(xt) − F 1′(Xt)
−F 0′′(xt)︸ ︷︷ ︸

curvature

.34

Thus the agent’s pre-disclosure utility declines in proportion to the hazard
rate, and in inverse proportion to the local curvature of the old frontier F 0.
As the latter would suggest, outside of the well-behaved case, x jumps over
any affine segments (F 0′′ = 0 and ‘ẋ = ∞’), and pauses at kinks (‘F 0′′ = −∞’
and ẋ = 0).

As for comparative statics, it can be shown (see the working paper (Curello
& Sinander, 2025)) that as the breakthrough distribution G becomes later
in the sense of monotone likelihood ratio, the disclosure reward X increases
in every period. (The pre-disclosure flow x need not increase pointwise.) It
follows in particular that the agent’s ex-ante payoff X0 improves.

Although our focus is on general properties, there are special cases in
which the Euler equation may be solved in closed form:

Example 2. Let the breakthrough arrive at constant rate λ > 0, so that
G(t) = 1 − e−λt for every t ∈ R+. Fix u1 < u0 in (0,∞), and assume that

F j(u) := aj
(
uj − 1

2u
)
u+ bj for each j ∈ {0, 1} and every u ∈

[
0, u0

]
,

where 0 < a0 < a1 > a0u0/u1, and b1 − b0 is large enough that F 1 ≥ F 0.
Solving the Euler equation yields the optimal mechanism x given by

xt :=
(
u0 − u⋆

)
e−λkt + u⋆ for each t ∈ R+,

where

u⋆ = a1u1 − a0u0

a1 − a0 and k := 1 + r/λ

2

√ r/λ

( 1+r/λ
2 )2

(
a1

a0 − 1
)

+ 1 − 1
 .

In the special case r = λ, this simplifies to k =
√
a1/a0 − 1.

7 Application to unemployment insurance
If unemployment benefits are generous but time-limited, then a worker who
receives a job offer before her benefits run out may have an incentive to delay

34This expression is valid under the additional assumptions that G admits a continuous
density and that F 0 possesses a continuous and strictly negative second derivative.
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starting her new job, for example by arranging a deferred start date (or by
simply waiting before accepting the offer). Empirically, such strategic delay
appears to be widespread.35

In this section, we study the design of unemployment insurance (‘UI’)
schemes when workers can exercise such strategic delay. We focus in par-
ticular on the merits of deadline benefit schemes, in which the short-term
unemployed receive a generous benefit, while those remaining unemployed
past a deadline see their benefit reduced to a much lower level. Such schemes
are used in many countries, including Germany, France and Sweden. We also
study the optimal choice of deadline.

Related literature. The literature on optimal unemployment insurance
has two main strands. The first concerns the moral-hazard problem of in-
centivising job-search effort (Shavell & Weiss, 1979; Hopenhayn & Nicol-
ini, 1997). We contribute to the second strand, which studies the adverse-
selection problem arising from privately observed job offers (Atkeson & Lu-
cas, 1995).36 (It can be shown that our conclusions in this section would
not change if we added moral hazard to the model: see the working paper
(Curello & Sinander, 2025).) Within this second strand, our contribution
is to characterise optimal UI under the assumption that workers can delay
starting a new job, rather than having to start right away.

7.1 Model
A worker (agent) is unemployed. At a random time τ ∼ G, she receives a job
offer. If she accepts, then she chooses when to start. The worker’s ability to
delay her start date is the distinguishing feature of our otherwise-standard
model. The state observes in real time whether the worker is employed, but
cannot observe whether she has received a job offer. All jobs are permanent
and pay the same wage, denoted w > 0.

The worker’s utility is u = ϕ(C) −κ(L), where C ≥ 0 is her consumption
and L ≥ 0 her labour supply. We assume that ϕ, κ : [0,∞) → [0,∞) are
respectively strictly concave and strictly convex, that they are differentiable
on (0,∞) with strictly positive derivatives that satisfy

lim
C→∞

ϕ′(C) = 0, lim
C→0

ϕ′(C) = ∞ and lim
L→0

κ′(L) = 0,

35See Boone and van Ours (2012), DellaVigna, Lindner, Reizer, and Schmieder (2017),
and Kyyrä, Pesola, and Verho (2019).

36See also Thomas and Worrall (1990), Atkeson and Lucas (1992), Hansen and İmro-
horoğlu (1992), and Shimer and Werning (2008).
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and that they are continuous with ϕ(0) = κ(0) = 0 and limC→∞ ϕ(C) = ∞.
We interpret C = 0 as the lowest socially acceptable standard of living. If
the worker is unemployed, then L = 0.

The state controls unemployment benefits and income taxes. Following
the literature, we impose no constraints on policy:37 income taxation after re-
employment can be non-linear, for example, and can depend on the length of
the preceding unemployment spell. These policy instruments can implement
any allocation (C,L) which the worker prefers to autarky.38 We may therefore
model the state as directly choosing (C,L), subject to u = ϕ(C) − κ(L) ≥ 0.

The state’s objective is social welfare v = u+λ×(wL−C), where u is the
worker’s welfare, wL−C is net tax revenue, and λ > 0 is the shadow value of
public funds. The utility possibility frontiers for unemployed and employed
workers are thus

F 0(u) := max
C≥0

{u+ λ(−C) : ϕ(C) = u}

and F 1(u) := max
C,L≥0

{u+ λ(wL− C) : ϕ(C) − κ(L) = u} ,

respectively. These frontiers satisfy our model assumptions (§2):

Lemma 1. In the application to unemployment insurance, the frontiers
F 0, F 1 are strictly concave and continuous, with unique peaks u0, u1 that
satisfy u1 < u0. The gap F 1 − F 0 is strictly decreasing, so that u⋆ = 0.

The conflict of interest u1 < u0 arises because the social first-best re-
quires employed workers to supply labour (L > 0), which they dislike, with-
out compensating them with extra consumption (first-best consumption is
C0 := (ϕ′)−1(λ) regardless of employment status). This is an instance of the
fact, well-known in public finance since Mirrlees (1971, 1974),39 that welfare-
maximisation (absent incentive constraints) does not ‘reward merit’: on the
contrary, it dictates efficient production, meaning that more productive work-
ers work harder. The proof of Lemma 1 is elementary but tedious, so we omit
it.

We shall use the term ‘unemployment insurance (UI) scheme’ for a mech-
anism. By Proposition 0 (p. 15), undominated schemes keep the worker only
just willing promptly to start a job, so have the form (x,X). Implicit in a

37This has been the standard approach since Hopenhayn and Nicolini (1997).
38An unemployed worker’s consumption is simply her benefit. To get an employed worker

to choose a bundle (C,L) satisfying u := ϕ(C) − κ(L) ≥ 0, use the income tax schedule
θ(Y ) = min {Y,mY + b}, with m, b ∈ R chosen so that the worker’s income L′ 7→ wL′ −
θ(wL′) is tangent at L to her indifference curve L′ 7→ ϕ−1 (κ(L′) + u).

39See the third section of Mirrlees (1974), as well as p. 201 of Mirrlees (1971).
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UI scheme (x,X) are the benefit Bt paid to the time-t unemployed (given by
xt = ϕ (Bt)) and the labour supply Lt and tax bill θt = wLt −Ct of a worker
who started working at t (which satisfy Xt = ϕ (wLt − θt) − κ(Lt)).

7.2 Optimal unemployment insurance
Optimal UI schemes are described by Theorem 2 (p. 22): unemployment
benefits Bt = ϕ−1(xt) decrease over time, from C0 = ϕ−1 (u0) toward 0 =
ϕ−1 (u⋆). Thus workers enjoy socially optimal consumption at the beginning
of an unemployment spell, but see their benefits reduced over time, with
the long-term unemployed provided only with society’s lowest acceptable
standard of living (‘zero consumption’).

Employed workers are rewarded with a higher continuation utility Xt the
earlier they start a job. This involves a mix of lower labour supply and more
generous tax treatment of earnings (yielding higher consumption).

A deadline UI scheme is one in which a generous benefit of C0 is paid
to the short-term unemployed, while those remaining unemployed beyond a
deadline receive a low benefit just sufficient to finance the minimum standard
of living (‘zero consumption’). Such schemes are widespread in practice, used
in e.g. Germany, France and Sweden.

Our results speak to the desirability of such deadline schemes. Theorem 1
(p. 18) implies that a deadline scheme is approximately optimal if F 0 is close
to affine, a condition which is satisfied if the worker’s consumption utility
ϕ has limited curvature or if the social value λ of tax revenue is moderate.
Conversely, if neither assumption is close to being satisfied, then our results
predict substantial welfare gains from more gradual tapering, as in Italy.

Given the prevalence of deadline schemes (whatever their merits), the
choice of deadline is an important policy problem. Our analysis highlights
labour-market prospects as a key consideration: a worker with worse chances
(a later job-finding distribution G, in the sense of first-order stochastic dom-
inance) should be set a later deadline.40 Two implications are that older
workers ought to face later deadlines and that extensions should be granted
during recessions. These recommendations are broadly followed in Germany
and France, where workers older than about 50 face more lenient deadlines,
and all workers’ deadlines were prolonged during the 2020 recession.

40In particular, the optimal deadline described by Proposition 2 (p. 21) is later when G
is, as noted at the end of §5.3.
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Appendices

A Proof of Proposition 0 (p. 15)
We shall follow the sketch proof, but with significant elaborations aimed at
overcoming the two technical hurdles discussed at the end of §4.

For any mechanism (x0, X1), let h : R+ → [−∞,∞] be given by h(t) :=
e−rt(X1

t − X0
t ) for each t ∈ R+.41 Proposition 0 asserts precisely that un-

dominated IC mechanisms have h identically equal to zero.

Observation 1. A mechanism (x0, X1) is incentive-compatible exactly if h
is (a) decreasing and (b) non-negative.

Proof. Part (a) (part (b)) of the definition of incentive-compatibility on p. 11
requires precisely that h be decreasing (non-negative).

Continuity lemma. Any undominated IC mechanism has h continuous.

Proof. We prove the contrapositive. Fix an IC mechanism (x0, X1).
Suppose that h is discontinuous at some t ∈ (0,∞). Since h is decreasing

and X0 is continuous, lims↑t X
1
s and lims↓t X

1
s exist and satisfy lims↑t X

1
s ≥

X1
t ≥ lims↓t X

1
s , with one of the inequalities strict. We shall assume that

lim
s↑t

X1
s = X1

t > lim
s↓t

X1
s ,

omitting the similar arguments for the other two cases. If lims↓t X
1
s < u1, then

we may increase X1 toward u1 on a small interval (t, t + ε) while keeping h
decreasing.42 If instead lims↓t X

1
s ≥ u1, then lims↑t X

1
s = X1

t > u1, so that
we may decrease X1 toward u1 on a small interval (t − ε, t] while keeping h
decreasing.43 In either case, IC is preserved, and the principal’s payoff ΠG is
(strictly) increased under any (full-support) distribution G.

Suppose instead that h is discontinuous at t = 0; then X1
0 > lims↓0 X

1
s

by IC and the continuity of X0. The case lims↓0 X
1
s < u1 may be dealt with

as above. If lims↓0 X
1
s ≥ u1, then lowering X1

0 toward lims↓0 X
1
s preserves IC

and (strictly) increases ΠG for any distribution G (with G(0) > 0).
41In case X1

t = X0
t = ∞, we let h(t) := 0 by convention.

42Choose an ε > 0 small enough that X1 + ε < min{u1, X1
t } on (t, t + ε). Let X1†

s :=
X1

s − (s− t) + ε for s ∈ (t, t+ ε) and X1† := X1 off (t, t+ ε). Then X1 ≤ X1† ≤ u1, with
the first inequality strict on (t, t+ ε). We have h† ≥ h ≥ 0, and h† is clearly decreasing on
[0, t] and on (t,∞). At t, we have h†(t) − lims↓t h

†(s) = e−rt(X1
t − lims↓t X

1
s − ε) ≥ 0.

43Choose an ε ∈ (0, 1/r) small enough that X1 − ε > lims↓t X
1
s and h > ε on (t− ε, t].

Let X1†
s := X1

s +t−s−ε for s ∈ (t−ε, t] and X1† := X1 off (t−ε, t]. Then u1 ≤ X1† ≤ X1,
with the second inequality strict on (t− ε, t]. Clearly h† is non-negative, and is decreasing
on [0, t−ε] and on (t,∞). It is decreasing on [t−ε, t] since h†(s)−h(s) = e−rs(t−s−ε) is
(by our choice of ε < 1/r). And at t, h†(t) − lims↓t h

†(s) = e−rt(X1
t − ε− lims↓t X

1
s ) ≥ 0.
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Proof of Proposition 0. Let (x0, X1) be an IC mechanism, so that h is non-
negative and decreasing, and suppose that h is not identically zero. By the
continuity lemma, we may assume that h (and thus X1) is continuous.

We consider three cases. (The first two concern slack ‘delay IC’: Case 1
[Case 2] corresponds to the sketch proof’s case (ii) [cases (i) and (iii)]. Case
3 is where ‘delay IC’ binds, but ‘non-disclosure IC’ is slack.) In each case, we
shall construct an incentive-compatible mechanism

(
x0†, X1†

)
such that

ΠG

(
x0†, X1†

)
≥(>) ΠG

(
x0, X1

)
for every (full-support) G. (D)

Define A := {t ∈ R+ : h is differentiable at t and h′(t) < 0}.
Case 1: {t ∈ A : x0

t < u0} is non-null. Since h > 0 on A,44 there is an
ε > 0 for which the set

Aε :=
{
t ∈ A : x0

t + ε < u0, h(t) ≥ ε and h′(t) + rε ≤ 0
}

is non-null.45 Define x0† := x0 +ε1Aε , and consider the mechanism
(
x0†, X1

)
.

Clearly x0 ≤ x0† ≤ u0, and x0† ̸= x0 on the non-null set Aε, so that (D)
holds by the strict monotonicity of F 0 on [0, u0]. h† is decreasing since for
any t < t′ in R+,

h†(t′) − h†(t) = h(t′) − h(t) + rε
∫ t′

t
e−rs1Aε(s)ds

≤
∫ t′

t
h′1Aε + rε

∫ t′

t
e−rs1Aε(s)ds ≤ 0,

where the first inequality holds since h is decreasing,46 and the second holds
by definition of Aε. As for non-negativity, we have h† = h ≥ 0 on (supAε,∞),
while h† ≥ 0 on [0, supAε) since h† is decreasing and h† ≥ h − ε ≥ 0 on Aε

by definition of the latter. Thus
(
x0†, X1

)
is incentive-compatible.

Case 2: There are t′ < t′′ in R+ such that h(t′) > h(t′′) and X1 ̸= u1 on
[t′, t′′]. Since X1 is continuous, we have either X1 > u1 on [t′, t′′] or X1 < u1

on [t′, t′′]. We shall assume the former, omitting the similar argument for the
latter case. Because s 7→ ersh(t′′) + X0

s is continuous and takes the value
X1

t′′ > u1 at s = t′′,

t⋆ := inf
{
t ∈ [t′, t′′] : ersh(t′′) +X0

s ≥ u1 for all s ∈ [t, t′′]
}

44Since h ≥ 0, h(t) = 0 implies lim inft′↓t[h(t′) − h(t)]/(t′ − t) ≥ 0 and thus t /∈ A.
45A0 =

⋃
n∈N A1/n is non-null, so continuity of measures (with λ denoting the Lebesgue

measure) yields 0 < λ(A0) = limn→∞ λ(A1/n), whence λ(A1/n) > 0 for some n ∈ N.
46Recall the Lebesgue decomposition h = ha +hs where ha is decreasing and absolutely

continuous and hs is decreasing with h′
s = 0 a.e. (e.g. Stein & Shakarchi, 2005, p. 150).
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is well-defined and strictly smaller than t′′. Define

X1†
t :=

erth(t′′) +X0
t for t ∈ [t⋆, t′′)

X1
t for t /∈ [t⋆, t′′),

and consider the mechanism
(
x0, X1†

)
. This mechanism is IC since h† =

h+ [h(t′′) − h]1[t⋆,t′′) is clearly decreasing and non-negative.
It remains to show that

(
x0, X1†

)
satisfies (D). Since X1 and X1† differ

only on [t⋆, t′′) and F 1 is strictly decreasing on [u1,∞), it suffices to prove
that

u1 ≤ X1†
t ≤(<) X1

t for every (some) t ∈ [t⋆, t′′).47

The first inequality holds by definition of t⋆. For the second, observe that

X1†
t −X1

t = ert
[
h†(t) − h(t)

]
= ert [h(t′′) − h(t)] ≤ 0 for t ∈ [t⋆, t′′)

since h is decreasing. We claim that the inequality is strict at t = t⋆. If t⋆ = t′,
then this is true because h(t′) > h(t′′). And if not, then t⋆ ∈ (t′, t′′), in which
case X1†

t⋆ = u1 < X1
t⋆ by continuity of X0 and X1 > u1.

Case 3: neither Case 1 nor Case 2. Since X1 is continuous, every t ∈ R+
belongs either to a maximal open interval on which X1 ̸= u1 or else to a
maximal closed interval on which X1 = u1. h is increasing on any interval
of the former kind since we are not in Case 2. We shall show that h is also
increasing on each interval of the latter kind; then since h is continuous, it is
increasing and thus constant.

So fix an interval I of the latter kind. Since h is decreasing, its derivative
h′(t) = re−rt (x0

t − u1) exists a.e. on I. As we are not in Case 1, we have for
a.e. t ∈ I that either h′(t) = 0 or x0

t = u0, and in the latter case h′(t) =
re−rt(u0 − u1) > 0. Assuming wlog that x0 ≤ u0,48 the expression for h′

implies that h is ru0-Lipschitz on I. Thus h is increasing on I, as desired.
Since (by hypothesis) h is not identically zero, it is constant at some k > 0,

so that X1
t = X0

t + ertk for every t ∈ R+. Thus X1† := min {X1, X0 + u1}
is strictly smaller than X1 after some time T > 0, so that

(
x0, X1†

)
satisfies

(D). And it is incentive-compatible.49

47It is enough for the inequality to be strict at a single time t ∈ [t⋆, t′′), since it then
holds strictly on a proper interval by the continuity of X1 and X1† on [t⋆, t′′).

48Otherwise the IC mechanism (min{x0, u0}, X1) would satisfy (D).
49We have h†(t) = e−rtu1 ∈ (0, h†(T )) for t > T , and this expression is decreasing.
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B Proof of Theorem 1 (p. 18)
Fix a non-deadline mechanism (x,X) with x ≤ u0 a.e.;50 we will show that it
is dominated by the deadline mechanism

(
x†, X†

)
whose deadline T satisfies

(
1 − e−rT

)
u0 + e−rTu⋆ ≡ X†

0 = X0 ∨ u⋆,

where ‘∨’ denotes the pointwise maximum.

Claim. X† ≤ X ∨ u⋆.

Proof. For t ≥ T , we have X† = u⋆ ≤ X ∨ u⋆. For t < T , suppose first that
X†

0 = X0; then since x† = u0 ≥ x on [0, t] ⊆ [0, T ], we have

e−rtX†
t = X†

0 −r
∫ t

0
e−rsx†

sds ≤ X0−r
∫ t

0
e−rsxsds = e−rtXt ≤ e−rt (Xt ∨ u⋆) .

If instead X†
0 = u⋆, then the fact that x† ≥ u⋆ yields

e−rtX†
t = X†

0 − r
∫ t

0
e−rsx†

sds ≤ u⋆ − r
∫ t

0
e−rsu⋆ds = e−rtu⋆ ≤ e−rt (Xt ∨ u⋆) .

The concave function F 1 − F 0 is uniquely maximised at u⋆, so is strictly
increasing on [0, u⋆] and strictly decreasing on [u⋆, u0]. Since u⋆ ≤ X† ≤ X∨u⋆

by the claim, it follows that[
F 1 − F 0

] (
X†
)

≥
[
F 1 − F 0

]
(X ∨ u⋆) . (1)

Since X ∨ u⋆ ≥ X, and the two differ only when both are in [0, u⋆], we have[
F 1 − F 0

]
(X ∨ u⋆) ≥

[
F 1 − F 0

]
(X) , (2)

which chained together with the preceding inequality yields[
F 1 − F 0

] (
X†
)

≥
[
F 1 − F 0

]
(X) . (3)

The facts that X†
0 = X0 ∨ u⋆ ≥ X0 and that F 0 is increasing on [0, u0]

together imply
F 0

(
X†

0

)
≥ F 0 (X0) . (4)

50IC mechanisms not of this form are dominated, by Lemma 0 and Proposition 0.
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Thus for any distribution G, using the expression for the principal’s payoff
derived in the sketch proof (p. 20), we have

ΠG

(
x†, X†

)
= F 0

(
X†

0

)
+ EG

(
e−rτ

[
F 1 − F 0

] (
X†

τ

))
≥ F 0

(
X†

0

)
+ EG

(
e−rτ

[
F 1 − F 0

]
(Xτ )

)
by (3)

≥ F 0 (X0) + EG

(
e−rτ

[
F 1 − F 0

]
(Xτ )

)
by (4)

= ΠG(x,X).

It remains show that
(
x†, X†

)
delivers a strict improvement for some

distribution G. We shall accomplish this by showing that the inequality (3)
holds strictly on a non-null set of times, so that the first inequality in the
above display is strict for any distribution G with full support. Since X† ≤
X ∨ u⋆ by the claim and X,X† are continuous, there are two cases: either
(a) X† < X ∨ u⋆ on a non-null set of times, or (b) X† = X ∨ u⋆.

Case (a): X† < X ∨ u⋆ on a non-null set T . In this case, the inequality
(1) holds strictly on T , and thus so does (3).

Case (b): X† = X ∨ u⋆. Since the original mechanism (x,X) is not a
deadline mechanism, there must be a non-null set of times on which x ̸= x†,
and thus X ̸= X† = X ∨ u⋆ on some non-null set T , so that X < X ∨ u⋆ on
T . Then (2) is strict on T , and thus so is (3).

C Proof of Proposition 1 (p. 20)

Write
(
xT , XT

)
for the deadline mechanism with deadline T , and πG(T ) for

its payoff under a distribution G. By Theorem 1, any undominated mecha-
nism is a deadline mechanism. We showed in the text (§5.2, p. 20) that those
with deadline T < T are dominated, so it remains only to show that those
with deadline T ≥ T are not. We shall rely on the following claim.

Claim. If the deadline mechanism
(
xT , XT

)
is dominated for some T ≥ T ,

then it is dominated by another deadline mechanism.

Proof of the claim. Fix a T ≥ T such that
(
xT , XT

)
is dominated by some IC

mechanism (x0, X1); we must show that
(
xT , XT

)
is dominated by a deadline

mechanism. We may assume without loss that x0 ≤ u0, since if x0 > u0 on a
non-null set of times, then we may replace (x0, X1) with the IC mechanism(
x0†, X1†

)
obtained from the proof of Lemma 0, which satisfies x0† ≤ u0 and

dominates (x0, X1), hence dominates
(
xT , XT

)
.
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The proof of Theorem 1 (appendix B) shows that any IC mechanism
(x0, X1) that satisfies x0 ≤ u0 a.e. and X0 = X1 is either a deadline mecha-
nism or is dominated by a deadline mechanism. It therefore suffices to show
that X0 = X1.

For each t ∈ R+, let Gt denote the point mass at t. Note that

F 1
(
XT

0

)
= πG0(T ) ≤ ΠG0

(
x0, X1

)
= F 1

(
X1

0

)
,

where the inequality holds since
(
xT , XT

)
is dominated by (x0, X1). Then

X1
0 ≤ XT

0 since XT
0 ≥ u1 (as T ≥ T ) and F 1 is concave with unique peak u1.

Moreover,

F 0
(
XT

0

)
=
∫ ∞

0
re−rtF 0

(
xT

t

)
dt = lim

t→∞
πGt(T )

≤ lim sup
t→∞

ΠGt

(
x0, X1

)
≤
∫ ∞

0
re−rtF 0

(
x0

t

)
dt = F 0

(
X0

0

)
,

where the first and last equalities hold since F 0 is affine, the second equal-
ity since F 1 is bounded on [0, u0] and XT ≤ u0, the first inequality since(
xT , XT

)
is dominated by (x0, X1), and the second inequality since F 1 is

bounded above. Then XT
0 ≤ X0

0 since XT
0 ≤ u0 and F 0 is strictly increasing

on [0, u0]. Altogether, we have shown that X1
0 ≤ XT

0 ≤ X0
0 . Since (x0, X1) is

IC, it follows by Observation 1 in appendix A (p. 29) that X0 = X1.

By the claim, it suffices to prove that (xT , XT ) for T ∈ [T ,∞] is not
dominated by another deadline mechanism.

Part 1: finite deadlines. Fix a deadline T ∈ [T ,∞); we shall identify a
distribution G under which the deadline T yields a strictly higher payoff
than any other deadline. In particular, consider the point mass at T − T .
The mechanism

(
xT , XT

)
has x = u0 on [0, T − T ] ⊆ [0, T ] and XT

T −T =(
1 − e−rT

)
u0 + e−rTu⋆ = u1 by (♢) on p. 18 and the definition of T . Thus(

xT , XT
)

provides flow payoff F 0 (u0) before the breakthrough and F 1 (u1)
afterwards, which is the first-best. Any other deadline T ′ has XT ′

T −T ̸= u1, so
provides a strictly lower post-disclosure payoff and a no higher pre-disclosure
payoff.

Part 2: the infinite deadline. Fix an arbitrary finite deadline T ∈ [0,∞);
we must show that

(
xT , XT

)
does not dominate (x∞, X∞). To that end, we

shall identify a distribution G under which the former mechanism is strictly
worse. In particular, let Gt denote the point mass at some t ≥ T . Under this
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distribution, the payoff difference between the two mechanisms is

πGt(T ) − πGt(∞) = e−rt
{[
F 1 (u⋆) − F 1

(
u0
)]

−
[
F 0 (u⋆) − F 0

(
u0
)]}

+ e−rT
[
F 0 (u⋆) − F 0

(
u0
)]
.

The second term is strictly negative since F 0 is uniquely maximised at u0

and u⋆ ≤ u1 < u0. By choosing t ≥ T large enough, we can make the first
term as small as we wish, so that the payoff difference is strictly negative.

D An Euler equation
In this appendix, we argue that optimal mechanisms are described by an
Euler equation, and that this equation admits a decreasing solution. These
results will be used in the next two appendices to prove Theorem 2 and
Proposition 3 (pp. 22 and 24).

We assume throughout this appendix that F 0 and F 1 are differentiable
on (0, u0) with bounded derivatives F 0′ and F 1′. Extend both continuously
to [0, u0].

D.1 The Euler equation and optimality

Let X be the set of all measurable maps R+ → [0, u0].

Definition 6. Given a distribution G, a mechanism (x,X) with x ∈ X
satisfies the Euler equation (for G) iff for a.e. t ∈ R+,

[1 −G(t)]F 0′(xt) +
∫

[0,t]
F 1′(Xs)G(ds) ≤(≥) 0 if xt < u0 (if xt > 0). (E)

For a given breakthrough distribution G, define πG : X → R by

πG(x) := ΠG (x,X) = EG

(
r
∫ τ

0
e−rsF 0(xs)ds+ e−rτF 1 (Xτ )

)
.

This is the principal’s payoff under G from the mechanism (x,X).

Euler lemma. For a mechanism (x,X) with x ∈ X and a distribution G, x
belongs to arg maxX πG iff (x,X) satisfies the Euler equation for G.

Proof. Note first that for all x, x′ ∈ X , the Gateaux derivative of πG at x in
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the direction x′ − x is

DπG (x, x′ − x) = lim
α↓0

πG (x+ α [x′ − x]) − πG(x)
α

= EG

(
r
∫ τ

0
e−rtF 0′(xt) [x′

t − xt] dt+ e−rτF 1′(Xτ ) [X ′
τ −Xτ ]

)
= EG

(
r
∫ ∞

0
e−rt

[
1(t,∞)(τ)F 0′ (xt) + 1[0,t](τ)F 1′(Xτ )

]
[x′

t − xt] dt
)

= r
∫ ∞

0
e−rt

[
[1 −G(t)]F 0′(xt) +

∫
[0,t]

F 1′(Xs)G(ds)
]

[x′
t − xt] dt,

where the third equality follows by the bounded convergence theorem since
F 0′ and F 1′ are bounded.

For the ‘if’ part, suppose that (x,X) satisfies the Euler equation. Then
DπG (x, x′ − x) ≤ 0 for any x′ ∈ X . Since F 0, F 1 are concave and the map
x 7→ X is linear, πG is concave. Thus for any α ∈ (0, 1) and x′ ∈ X , we have

πG (x′) − πG(x) ≤ πG (x+ α [x′ − x]) − πG(x)
α

,

so that letting α ↓ 0 yields πG (x′) − πG(x) ≤ DπG (x, x′ − x) ≤ 0. So x ∈
arg maxX πG.

For the ‘only if’ part, we prove the contra-positive: suppose that x ∈ X
does not satisfy the Euler equation; we will show that x /∈ arg maxX πG. It
suffices to exhibit an x′ ∈ X such that DπG (x, x′ − x) > 0. If there exists
a non-null A ⊆ R+ on which (E) fails and x < u0 holds, then choose x′ :=
x + (u0 − x) 1A. If not, then there exists a non-null A ⊆ R+ on which (E)
fails and x > 0 holds; in this case, choose x′ := x1R+\A.

For x > 0, the backward-looking integral equation (E) is equivalent to a
forward-looking integral equation plus an initial condition:

Lemma 2. For any x ∈ X with x > 0, (x,X) satisfies the Euler equation iff
EG (F 1′(Xτ )) = 0 and, for a.e. t ∈ R+ with G(t) < 1,

F 0′(xt) ≥ EG

(
F 1′(Xτ )

∣∣∣τ > t
)

with equality if xt < u0. (5)

Proof. Let ψ(t) := [1 − G(t)]F 0′(xt) +
∫

[0,t] F
1′(Xs)G(ds) for each t ∈ R+.

For any t ∈ R+,
∫

(t,∞) F
1′(Xs)G(ds) is finite since F 1′ is bounded, so we may

add and subtract it to obtain

ψ(t) =

[1 −G(t)] [F 0′(xt) − EG (F 1′(Xτ )|τ > t)] + EG (F 1′(Xτ )) if G(t) < 1
EG (F 1′(Xτ )) if G(t) = 1.
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Thus if EG (F 1′(Xτ )) = 0 holds and (5) holds for a.e t ∈ R+ with G(t) < 1,
then (x,X) satisfies the Euler equation. For the converse, suppose that (x,X)
satisfies the Euler equation; we will show that limt→∞ ess infs≥t ψ(s) = 0. This
is sufficient since it implies that there is a sequence (tn)n∈N in R+ along which
tn → ∞ and ψ (tn) → 0 as n → ∞, so that EG (F 1′(Xτ )) = 0 by bounded
convergence, as F 0′ and F 1′ are bounded, which implies that (5) holds for
a.e. t ∈ R+ with G(t) < 1.

Since (x,X) satisfies the Euler equation and x > 0, we have ψ ≥ 0 a.e. and
ψ(t) = 0 for a.e. t ∈ R+ such that xt < u0. It follows immediately that if there
is no T ′ ∈ R+ such that x = u0 a.e. on [T ′,∞), then limt→∞ ess infs≥t ψ(s) =
0. Assume for the remainder that there exists a T ′ ∈ R+ such that x = u0

a.e. on [T ′,∞), and let T be the smallest such T ′. It suffices to show that
ψ(t) ≤ 0 holds for every t > T such that xt = u0.

Note that T > 0, because otherwise X = u0, which since F 1′ (u0) < 0
would imply that (E) fails for sufficiently large t ∈ R+. Choose an increasing
sequence (tn)n∈N in R+ converging to T along which (E) and x < u0 both
hold. Then for all t > T with xt = u0,

ψ(t) ≤ [1 −G(T )]F 0′
(
u0
)

+
∫

[0,T ]
F 1′(Xs)G(ds) ≤ lim sup

n→∞
ψ (tn) ≤ 0,

where the first inequality holds since F 1′(Xs) = F 1′ (u0) ≤ 0 ≤ F 0′ (u0) for
all s ≥ T , and the second inequality holds since F 0′ (xtn) ≥ F 0′ (u0) for each
n ∈ N (as xtn

< u0, and F 0′ is decreasing) and F 1′(XT ) = F 1′ (u0) ≤ 0.

D.2 Constructing a solution of the Euler equation

Let X ′ be the set all of decreasing maps R+ → [u⋆, u0], endowed with the
topology of pointwise convergence.

Existence corollary. For any distributionG with unbounded support, there
is a mechanism (x,X) with x ∈ X ′ which satisfies the Euler equation for G.

We prove the existence corollary in two steps. We first show that it holds
for a particular class of technologies F 0, F 1 and distributions G (Lemma 3
below), then extend the claim via a series of limit arguments.

Say that F 0, F 1 are simple iff they possess bounded derivatives on (0, u0),
F 0′ is strictly decreasing with Lipschitz continuous inverse, F 1′ is Lipschitz
continuous, and u⋆ > 0.

Lemma 3. Suppose that F 0 and F 1 are simple. Then for any distribution G
such that the support suppG is bounded and G has an atom at max suppG,
there is a mechanism (x,X) with x ∈ X ′ which satisfies the Euler equation
for G.
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We first prove the existence corollary using Lemma 3, and then prove
Lemma 3. Both proofs use the following simple fact.

Observation 2. If a sequence (xn)n∈N in X converges pointwise to x ∈ X
as n → ∞, then F 0′ (xn) → F 0′(x) and F 1′ (Xn) → F 1′(X) pointwise as
n → ∞.

Proof of Observation 2. Since F 0, F 1 are concave, their derivatives F 0′, F 1′

are continuous. By the bounded convergence theorem, Xn → X pointwise as
n → ∞.

Proof of the existence corollary. Consider two cases.
Case 1: F 0, F 1 are simple. For any n ∈ N, and let Gn := 1[0,n)G+ 1[n,∞),

and observe that since G has unbounded support by hypothesis, Lemma 3
delivers an xn ∈ X ′ such that (xn, Xn) satisfies the Euler equation for Gn.
By the Helly selection theorem (e.g. Rudin, 1976, p. 167), we may assume
(passing to a subsequence if necessary) that (xn)n∈N converges to some x ∈
X ′. Then, for any t ∈ R+ such that t < n,

[1 −Gn(t)]F 0′ (xn
t ) +

∫
[0,t]

F 1′ (Xn
s )Gn(ds)

= [1 −G(t)]F 0′ (xn
t ) +

∫
[0,t]

F 1′ (Xn
s )G(ds)

→ [1 −G(t)]F 0′ (xt) +
∫

[0,t]
F 1′ (Xs)G(ds) as n → ∞,

where convergence follows from Observation 2 and the bounded convergence
theorem. Since (xn, Xn) satisfies the Euler equation for Gn for each n ∈ N
and xn → x pointwise as n → ∞, it follows that (x,X) satisfies the Euler
equation for G.

Case 2: F 0, F 1 are arbitrary. Choose a sequence (F 0
n , F

1
n)n∈N of technolo-

gies satisfying the following:

(a) for each n ∈ N, F 0
n , F

1
n are simple, u⋆

n ≥ u⋆, and u0
n = u0,

(b) F 0′
n ≥ F 0′ and F 1′

n ≥ F 1′ for all n ∈ N,

(c) (F 1′
n )n∈N is uniformly bounded, and

(d) for all u ∈ (0, u0), F 0′
n → F 0′ and F 1′

n → F 1′ uniformly on [u, u0].

By (a) and Case 1 above, there exists for each n ∈ N an xn ∈ X ′ such that
(xn, Xn) satisfies the Euler equation for (F 0

n , F
1
n , G). By the Helly selection

theorem (e.g. Rudin, 1976, p. 167), we may assume (passing to a subsequence
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if necessary) that (xn)n∈N converges pointwise to some x ∈ X ′. For each
t ∈ R+, define

ψn(t) := [1 −G(t)]F 0′
n (xn

t ) +
∫

[0,t]
F 1′

n (Xn
s )G(ds) for each n ∈ N, and

ψ(t) := [1 −G(t)]F 0′ (xt) +
∫

[0,t]
F 1′ (Xs)G(ds).

Since (xn, Xn) satisfies the Euler equation for (F 0
n , F

1
n , G) for every n ∈ N,

it suffices to show that lim infn→∞ ψn(t) ≥ ψ(t) for all t ∈ R+ and that
limn→∞ ψn(t) = ψ(t) for all t ∈ R+ such that xt > 0, since then (x,X)
satisfies the Euler equation for (F 0, F 1, G).

For the former, fix a t ∈ R+. Since F 0′
n (xn

t ) ≥ F 0′(xn
t ) for all n ∈ N by (b),

lim infn→∞ F 0′
n (xn

t ) ≥ F 0′(xt) as F 0′ is continuous. Similarly, lim infn→∞ F 1′
n (Xn

s ) ≥
F 1′(Xs) for every s ∈ [0, t]. Hence lim infn→∞ ψn(t) ≥ ψ(t) by Fatou’s lemma,
which is applicable by (c).

For the latter, fix a t ∈ R+ such that xt > 0. Choose a u ∈ (0, xt), further
choose an N ∈ N large enough that xn

t ≥ u for all n ≥ N , and note that∣∣∣F 0′
n (xn

t ) − F 0′ (xt)
∣∣∣ ≤ sup

u′∈[u,u0]

∣∣∣F 0′
n (u′) − F 0′(u′)

∣∣∣+∣∣∣F 0′ (xn
t ) − F 0′ (xt)

∣∣∣ for all n ≥ N .

Letting n → ∞ yields F 0′
n (xn

t ) → F 0′ (xt), by (d) and Observation 2. Sim-
ilarly, since X > 0 on [0, t] (because x is decreasing), F 1′

n (Xn
s ) → F 1′(Xs)

as n → ∞ for each s ∈ [0, t]. Then limn→∞ ψn(t) = ψ(t) by the bounded
convergence theorem, which is applicable by (c).

Proof of Lemma 3. Let T := max suppG ∈ R+. We shall prove that for each
α ∈ [u⋆, u0], there exists a unique xα ∈ X ′ satisfying (5) (p. 36) for each t < T
and xα

t = α for each t ≥ T . Taking this claim for granted for the time being,
define ψ : [u⋆, u0] → R by

ψ(α) := EG

(
F 1′ (Xα

τ )
)

for each α ∈
[
u⋆, u0

]
.

It suffices to show that there is an α ∈ [u⋆, u0] such that ψ(α) = 0, since then
(xα, Xα) satisfies the Euler equation for G by Lemma 2 and the fact that
xα ≥ u⋆ > 0.

Note that the constant map t 7→ u0 satisfies (5) for all t < T , since
F 0′ (u0) ≥ 0 ≥ F 1′ (u0). Thus xu0 is constant at u0. Similarly, the constant
map t 7→ u⋆ satisfies (5) for all t < T , since F 0′(u⋆) = F 1′(u⋆) as u⋆ > 0.
Hence xu⋆ is constant at u⋆. Therefore

ψ (u⋆) = F 1′ (u⋆) = F 0′ (u⋆) ≥ 0 ≥ F 1′
(
u0
)

= ψ
(
u0
)
.
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Note also that for any convergent sequence (αn)n∈N in [u⋆, u0] along which
(xαn)n∈N converges in X ′ to some x ∈ X ′, we have x = xlimn→∞ αn since x
satisfies (5) for all t < T , by Observation 2 and the bounded convergence the-
orem. Since X ′ is sequentially compact, it follows that the map [u⋆, u0] → X ′

given by α 7→ xα is continuous,51 so ψ is likewise continuous, by Observa-
tion 2 and the bounded convergence theorem. Hence by the intermediate
value theorem, there is an α ∈ [u⋆, u0] such that ψ(xα) = 0, as desired.

It remains to prove the existence and uniqueness of xα for each α ∈
[u⋆, u0]. To this end, fix an α ∈ [u⋆, u0], and let X ′

α be the set of all x ∈ X ′

such that x = α on [T,∞). Extend the inverse

invF 0′ :
[
F 0′

(
u0
)
, F 0′ (0)

]
→
[
0, u0

]
of F 0′ to R by letting invF 0′ be constant on (−∞, F 0′ (u0)] and on [F 0′ (0) ,∞).
Given any x ∈ X ′

α, let Hx : R+ → [0,∞) be given by

(Hx)t :=

invF 0′
(
EG

(
F 1′(Xτ )

∣∣∣τ > t
))

if t < T

α if t ≥ T ,

and note that Hx ∈ X ′
α since Hx is decreasing as invF 0′ and F 1′ are, bounded

above by u0 since invF 0′ is, and bounded below by u⋆ since invF 0′ is de-
creasing and

EG

(
F 1′(Xτ )

∣∣∣τ > t
)

≤ F 1′ (u⋆) = F 0′ (u⋆) , (6)

where the inequality holds since F 1′ is decreasing, and the equality holds
since u⋆ > 0.

Observe that for any x ∈ X ′
α and t < T , (5) implies xt = (Hx)t.52

Conversely, for any x ∈ X ′
α and t < T , xt = (Hx)t implies (5) since

EG

(
F 1′(Xτ )

∣∣∣τ > t
)

≤ F 0′ (u⋆) ≤ F 0′ (0)

by (6) and the fact that F 0′ is decreasing.53 It thus suffices to show that the
map H : X ′

α → X ′
α has exactly one fixed point.

51If α 7→ xα were not continuous, then we could choose a sequence (αn)n∈N in
[
u⋆, u0]

converging to some α ∈
[
u⋆, u0] along which (xαn)n∈N does not converge to xα. Then

for some t ∈ R+, xαn
t converges along a subsequence to some u ∈

[
u⋆, u0] \ {xα

t }. By the
sequential compactness of X ′, there are sub-subsequences along which (xαn)n∈N converges
pointwise, but none has limit xα.

52If xt = u0, then F 0′(u0) ≥ EG

(
F 1′(Xτ )

∣∣τ > t
)

by (5), so (Hx)t = invF 0′(F 0′(u0)) =
u0 = xt, where the first equality holds since invF 0′ is constant on

(
−∞, F 0′ (u0)].

53This is immediate if F 0′(u0) ≤ EG

(
F 1′(Xτ )

∣∣τ > t
)

≤ F 0′(0). If EG

(
F 1′(Xτ )

∣∣τ > t
)
<

F 0′(u0), then xt = (Hx)t implies xt = u0 as invF 0′ is constant on (−∞, F 0′(u0)], so (5)
holds.
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Since F 0, F 1 are simple, we may choose an ℓ > 0 such that invF 0′ and
F 1′ are ℓ-Lipschitz. Let

G(T−) :=

limt↑T G(t) if T > 0
0 if T = 0

and k := ℓ2/[1 −G(T−)]. Define ρ : X ′
α × X ′

α → R+ by

ρ(x, x⋆) = sup
t∈[0,T ]

ekG(t)|xt − x⋆
t | for all x, x⋆ ∈ X ′

α.

It is easy to see that ρ is a metric on X ′
α.

Claim. H is a contraction on the metric space (X ′
α, ρ).

Since ρ is equivalent to the supremum metric, the metric space (X ′
α, ρ)

is complete. Thus by the claim and the Banach fixed-point theorem, H has
exactly one fixed point.

Proof of the claim. The result is immediate if T = 0, so assume that T > 0.
Define invG(z) := min{t ∈ R+ : G(t) ≥ z} for each z ∈ [0, 1], and note that
for all x, x⋆ ∈ X ′

α and z ∈ [0, 1],

ekz
∣∣∣Xinv G(z) −X⋆

inv G(z)

∣∣∣ ≤ ekz sup
t∈[inv G(z),T ]

|xt − x⋆
t |

≤ ekG(inv G(z)) sup
t∈[inv G(z),T ]

|xt − x⋆
t | ≤ ρ(x, x⋆),

where the last inequality holds since G is increasing. Thus for all x, x⋆ ∈ X ′
α,

ρ (Hx,Hx⋆) ≤ sup
t∈[0,T )

kekG(t)
∫

(t,∞)
|X −X⋆|dG

= sup
t∈[0,T )

kekG(t)
∫ 1

G(t)
e−kzekz

∣∣∣Xinv G(z) −X⋆
inv G(z)

∣∣∣dz
≤
(

sup
t∈[0,T )

kekG(t)
∫ 1

G(t)
e−kzdz

)
ρ(x, x⋆) =

(
1 − e−k[1−G(0)]

)
ρ(x, x⋆),

where the first inequality holds since invF 0′ and F 1′ are ℓ-Lipschitz and
(Hx)T = (Hx⋆)T . Since 0 < e−k[1−G(0)] < 1, this shows that H is a contrac-
tion.

With the claim established, the proof is complete.
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E Proof of Theorem 2 (p. 22)
We shall argue as follows. Fix an optimal mechanism (x,X). We first show
that if x is decreasing, then limt→0 xt = u0 and limt→∞ xt = u⋆ (Lemma 4
below). We then show that x is indeed decreasing, using the Euler equa-
tion (appendix D, p. 35), which (x,X) must satisfy by the Euler lemma
(appendix D, p. 35).

Recall from from appendix D that F 0′ and F 1′ denote the derivatives
of F 0 and F 1 on (0, u0), extended continuously to [0, u0]. Also recall from
appendix D.2 the definition of X ′.

Lemma 4. Suppose that F 0 and F 1 are differentiable on (0, u0) with bounded
derivatives. Let (x,X) with x ∈ X ′ satisfy the Euler equation for some G with
unbounded support and G(0) = 0. Then limt→0 xt = u0 and limt→∞ xt = u⋆.

Proof. Since x is decreasing with u⋆ ≤ x ≤ u0, the limits

ū := lim
t→0

xt and u := lim
t→∞

xt

exist and satisfy u⋆ ≤ u ≤ ū ≤ u0.
To show that ū ≥ u0, assume toward a contradiction that ū < u0. Then

x < u0 since x is decreasing. Since G(0) = 0, letting t → 0 in (E) (p. 35)
then yields F 0′(ū) ≤ 0, which is impossible since F 0 is concave and strictly
increasing on [0, u0].

To show that u ≤ u⋆, note first that this is immediate if u = 0. Assume
for the remainder that u > 0, so that x > 0 since x is decreasing. Then
Lemma 2 (p. 36) yields EG (F 1′(Xτ )) = 0 and

F 0′(xt) = EG

(
F 1′(Xτ )

∣∣∣τ > t
)

≤ F 1′(u) (7)

for a.e. t ∈ R+ such that xt < u0, where the equality holds since G has
unbounded support and the inequality holds since F 1 is concave and X ≥ u.
Note that xt < u0 for all sufficiently large t, since otherwise X = u0 as x is
decreasing, which would contradict EG (F 1′(Xτ )) = 0. Hence letting t → ∞
in (7) yields F 0′ (u) ≤ F 1′ (u), which implies that u ≤ u⋆ by definition of the
latter.

Recall from appendix D the definitions of X and πG, the Euler lemma,
and the existence corollary.

Proof of Theorem 2. Let G be a distribution with unbounded support and
G(0) = 0, and assume that F 0, F 1, G are well-behaved; we must show that
(x,X) has the properties listed in Theorem 2.
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By the existence corollary, there is a mechanism
(
x†, X†

)
with x† ∈ X ′

which satisfies the Euler equation forG. Then limt→0 x
†
t = u0 and limt→∞ x†

t =
u⋆ by Lemma 4. It therefore suffices to show that x is a version of x†. We
begin with a claim.

Claim. 1
2x+ 1

2x
† belongs to X , and πG

(
1
2x+ 1

2x
†
)

≤ 1
2πG(x) + 1

2πG

(
x†
)
.

Proof. x belongs to X by Lemma 0 (p. 14), since (x,X) is optimal (and
optimality entails undominatedness by definition). Furthermore, x† belongs
to X ′ ⊆ X by hypothesis. Since X is convex, it follows that 1

2x+ 1
2x

† belongs
to X . For the remainder, x belongs to arg maxX πG since (x,X) is optimal,
and x† belongs to arg maxX πG by the Euler lemma. Hence

1
2πG(x) + 1

2πG

(
x†
)

= max
X

πG ≥ πG

(
1
2x+ 1

2x
†
)
,

where the inequality holds since 1
2x+ 1

2x
† belongs to X .

Suppose toward a contradiction that x is not a version of x†. Since
F 0, F 1, G are well-behaved, there are two cases to consider.
Case 1. F 0 is strictly concave on [0, u0]. Choose a bounded non-null A ⊆ R+
on which x ̸= x†, and note that G(supA) < 1 since G has unbounded
support. Since F 0 is strictly concave on [0, u0] and F 1 is concave, it follows
that πG

(
1
2x+ 1

2x
†
)
> 1

2πG(x) + 1
2πG

(
x†
)
, which contradicts the claim.

Case 2. F 1 is strictly concave on [0, u0] and G has full support. Since x
is not a version of x†, there exists a bounded proper interval I ⊆ R+ on
which X ̸= X†. Since G has full support, I is G-non-null. Since F 0 (F 1) is
concave (strictly concave) on [0, u0], it follows that πG

(
1
2x+ 1

2x
†
)
> 1

2πG(x)+
1
2πG

(
x†
)
, a contradiction with the claim.

F Proof of Proposition 3 (p. 24)
Recall the Euler equation defined in appendix D (p. 35).

Proposition 3′. Assume that F 0 and F 1 are differentiable on (0, u0) with
bounded derivatives. Any mechanism that is optimal for G satisfies the Euler
equation for G. Moreover, any undominated mechanism that satisfies the
Euler equation for G is optimal for G.

This result refines Proposition 3 in two ways: it provides that the Eu-
ler equation is necessary under fewer assumptions, and furthermore asserts
sufficiency.
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Proof of Proposition 3′. Fix a distribution G. By Lemma 0 and Proposition 0
(pp. 14 and 15), any undominated mechanism has the form (x,X) with x ∈
X . If (x,X) is undominated and satisfies the Euler equation for G, then it
maximises the principal’s payoff under G by the Euler lemma (appendix D,
p. 35), so is optimal for G. Conversely, if (x,X) is optimal for G, then by the
Euler lemma, (x,X) satisfies the Euler equation.

Proof of Proposition 3. Let (x,X) be optimal for a distributionG withG(0) =
0 and unbounded support. Then x is decreasing with x ≥ u⋆ > 0 by The-
orem 2 (p. 22), and (x,X) satisfies the Euler equation by Proposition 3′.
Since G has unbounded support, Lemma 2 (appendix D, p. 36) yields that
EG (F 1′(Xτ )) = 0 and that equation (5) holds for a.e. t ∈ R+. Since F 0′ is
continuous and x decreasing, the right-continuous version of x satisfies (5)
for all t ∈ R+.

Proposition 3′ implies the assertion made in footnote 30 on p. 22:

Corollary 1. Let G be a distribution with unbounded support and G(0) = 0.
Assume that F 0, F 1, G are well-behaved. Then any mechanism (x,X) that
is optimal for G has X0 > u1.

Proof. If u⋆ = u1, then X0 > u⋆ = u1 by Theorem 2 (p. 22). Assume for the
remainder that u⋆ < u1, and suppose toward a contradiction that X0 ≤ u1.
Then Xt < u1 for all t > 0 since X is decreasing with limt→∞ Xt = u⋆ < u1

by Theorem 2 (p. 22), and thus X < u1 G-a.e. since G(0) = 0. Since F 1 is
strictly increasing on [0, u1], it follows that F 1′(Xs) > 0 for G-a.e. s ∈ R+.
Then since (x,X) satisfies the Euler equation by Proposition 3′, it holds for
a.e. t ∈ R+ with G(t) > 0 and xt < u0 that

0 <
∫

[0,t]
F 1′(Xs)G(ds) = −[1 −G(t)]F 0′(xt) ≤ 0,

which is absurd.

G Proof of Proposition 2 (p. 21)
As per appendix D, F 0 and F 1 are differentiable on (0, u0) with bounded
derivatives, and we extend these continuously to [0, u0]. (This means, in par-
ticular, that ‘F 0′ (u0)’ denotes the left-hand derivative of F 0 at u0.) Fix a
distribution G. By inspection, for any deadline mechanism (x,X), x belongs
to X and satisfies (5) (appendix D, p. 36) for all t ∈ R+ with G(t) < 1, and
furthermore x ≥ u⋆ > 0. Hence by Lemma 2 (appendix D, p. 36), a deadline
mechanism (x,X) satisfies the Euler equation for G iff EG (F 1′ (Xτ )) = 0.
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To prove the ‘only if’ part of Proposition 2, fix a mechanism (x,X) that
is optimal for G. It is a deadline mechanism by Theorem 1 (p. 18), and
satisfies the Euler equation for G by Proposition 3′ (appendix F, p. 43).
Hence EG (F 1′ (Xτ )) = 0 by the above.

To prove the ‘if’ part of Proposition 2, fix a deadline mechanism (x,X)
such that EG (F 1′ (Xτ )) = 0. Since X is decreasing, it follows that X0 ≥ u1,
so (x,X) is undominated by Proposition 1 (p. 20). By the above, (x,X)
satisfies the Euler equation for G. Hence by Proposition 3′, (x,X) is optimal
for G.
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