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Uniqueness in the uniform-quadratic setup

Recall that z1 (θ1) = (y1 (θ1) ;x1 (θ1)) denotes the chair’s optimal proposal under complete

information when she faces only legislator 1, and V (θ1) = u0 (z1 (θ1)).

Lemma A.1. Suppose v (y, ŷi) = − (y − ŷi)2, and θ1 is uniformly distributed on [t1, t̄1] ⊆ Θ1,

where t̄1 > t1. Let G1 be the cumulative distribution function of θ1 and let

W (θ1) = V (θ1)G1 (θ1) + u0 (s) (1−G1 (θ1)) .

(i) If ŷ1 < ỹ, then t̄1 is the unique solution to maxθ1∈[t1,t̄1]W (θ1).

(ii) If ŷ1 ≥ ỹ and c > 0, then the solution to maxθ1∈[t1,t̄1] W (θ1) is generically unique in

the following sense: Fix all the parameters except for c. Then, there exists at most one

value of c for which the solution to maxθ1∈[t1,t̄1]W (θ1) is not unique.

Proof. Without loss of generality, let ỹ = 0. Note that

W ′ (θ1) =
V ′ (θ1) θ1 − V ′ (θ1) t1 + V (θ1)− u0 (s)

t̄1 − t1
. (A.1)

First we show that V ′1(θ1) ≤ 0. When v (y, ŷi) = − (y − ŷi)2, straightforward calculation

shows that

y1 (θ1) = min{(θ0ŷ0 + θ1ŷ1)/(θ0 + θ1), e (ŷ1)},

x1
1 (θ1) = θ1

[
v(ỹ, ŷ1)− v(y1 (θ1) , ŷ1)

]
.

Hence, if (θ0ŷ0 + θ1ŷ1)/(θ0 + θ1) ≥ e(ŷ1), then V (θ1) = c − θ0(e(ŷ1) − ŷ0)2, and V ′ (θ1) = 0;

and if (θ0ŷ0 + θ1ŷ1)/(θ0 + θ1) < e (ŷ1), then

V (θ1) = c− x1
1(θ1) + θ0v0(y1(θ1), ŷ0)

= c− θ1

[
v(ỹ, ŷ1)− v(y1(θ1), ŷ1)

]
+ θ0v0(y1(θ1), ŷ0).
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In this case

V ′ (θ1) = −x
1
1(θ1)

θ1

= −
[
v(ỹ, ŷ1)− v(y1(θ1), ŷ1)

]
by the envelope theorem. Since v(y1(θ1), ŷ1) < v(e(ŷ1), ŷ1) and v(ỹ, ŷ1) = v(e(ŷ1), ŷ1), it

follows that V ′ (θ1) < 0.

Part (i): Suppose ŷ1 < ỹ. It suffices to show that W ′ (θ1) > 0 for all θ1 ∈ [t1, t̄1].

Since V ′ (θ1) ≤ 0, to show that W ′ (θ1) > 0, we only need to show that V ′ (θ1) θ1 +

V (θ1) − u0 (s) > 0. If (θ0ŷ0 + θ1ŷ1)/(θ0 + θ1) > e (ŷ1), then V ′ (θ1) θ1 + V (θ1) − u0 (s) > 0

since V ′ (θ1) = 0 and V (θ1) − u0 (s) > 0. If (θ0ŷ0 + θ1ŷ1)/(θ0 + θ1) ≤ e (ŷ1), then y1(θ1) =

(θ0ŷ0 + θ1ŷ1)/(θ0 + θ1) ≤ e (ŷ1) and

V ′ (θ1) θ1 + V (θ1)− u0 (s) = c− 2x1
1(θ1) + θ0v(y1(θ1), ŷ0)− θ0v(ỹ, ŷ0)

= c− 2θ1y
1(θ1)[y1(θ1)− 2ŷ1]− θ0y

1
1(θ1)[y1(θ1)− 2ŷ0]

= c+ θ0(y1(θ1))2 + 2θ1y
1(θ1)ŷ1

where the last equality uses y1(θ1) = (θ0ŷ0 + θ1ŷ1)/(θ0 + θ1).

Since c ≥ 0, θ0 > 0, θ1 > 0, and y1(θ1) ≤ e(ŷ1) < ŷ1 < ỹ = 0, it follows that V ′ (θ1) θ1 +

V (θ1) − u0 (s) > 0 and therefore W ′(θ1) > 0 and t̄1 is the unique maximizer of W (θ1) on

[t1, t̄1].

Part (ii): Suppose ŷ1 > ỹ and c > 0. Note that if V ′(θ̂1) = 0, then V ′(θ1) = 0 for any

θ1 > θ̂1. Since c > 0, if V ′(θ1) = 0, then by equation (A.1), W ′(θ1) > 0. It follows that

if V ′(θ1) = 0 and θ1 6= t̄1, then θ1 /∈ arg maxW (θ1). We next show that any θ1 such that

V ′(θ1) < 0 is not a maximizer of W (θ1) on [t1, t̄1] except for at most one value of c. To do

this, we first show that for θ1 such that V ′(θ1) < 0, the second derivative of W (θ1) crosses 0

only once and from below. It is straightforward to verify that

W ′′ (θ1) =
V ′′ (θ1) (θ1 − t1) + 2V ′ (θ1)

t̄1 − t1

=
2θ1(ŷ1)2 (3θ0θ1 + 3(θ0)2 + (θ1)2) + C

(θ0 + θ1)3 (t̄1 − t1)

where C does not depend on θ1. Hence, if W ′′ (θ1) = 0, then W ′′ (θ′1) > 0 for any θ′1 > θ1,

i.e., W ′′ (θ1) crosses 0 at most once and from below. Consider the following two possibilities.
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(a) Suppose W ′′ (θ1) > 0 for all θ1 ∈ [t1, t̄1] such that V ′(θ1) < 0. Then W (θ1) does not

have an interior maximum. Since c > 0 and the proposal (ỹ; c, 0, 0) is accepted by every type,

it follows that W (t̄1) > u0(s) = W (t1), and therefore t̄1 is the unique maximizer of W (θ1)

on [t1, t̄1].

(b) Suppose W ′′ (θ1) = 0 for some θ1 ∈ [t1, t̄1] such that V ′(θ1) < 0. Then there is at most

one interior maximum of W (θ1) at θ̃1 where W ′(θ̃1) = 0 and W ′′(θ̃1) < 0. If W (θ̃1) = W (t̄1),

then both θ̃1 and t̄1 are solutions to maxW (θ1) on [t1, t̄1]. In what follows, we show that

generically W (θ1) has only one maximum.

With some abuse of notation, let V (θ1, c) = u0 (z1 (θ1)) = c − x1
1 (θ1) − θ0 (y1 (θ1)− ŷ0)

2

and W (θ1, c) = V (θ1, c)G1 (θ1) + u0 (s) (1−G1 (θ1)). Since ∂2W/∂c∂θ1 = dG1/dθ1 > 0, the

function W satisfies the strict increasing difference in (θ1, c). Then, results from monotone

comparative statics literature (see, e.g., Theorem 4′ in Milgrom and Shannon (1994)) imply

that for any θ′1 ∈ arg maxθ1∈[t1,t̄1] W (θ1, c
′) and θ′′1 ∈ arg maxθ1∈[t1,t̄1] W (θ1, c

′′), we have θ′′1 ≥

θ′1 if c′′ > c′. This implies that if for some c′, arg maxθ1∈[t1,t̄1]W (θ1, c
′) = {θ̃1, t̄1} where

θ̃1 < t̄1, then for any c′′ > c′, arg maxθ1∈[t1,t̄1] W (θ1, c
′′) = {t̄1}. Hence the solution to

maxθ1∈[t1,t̄1] W (θ1) is generically unique. �

Proof of Lemma 4

Suppose z is elicited in an equilibrium with x1 = x2 = 0.

Part (i): Since e(ŷ1) ≤ ŷ1 ≤ ŷ2 and v(y, ŷi) is strictly increasing in y when y < ŷi, it

follows that if y < e(ŷ1), then both legislators 1 and 2 reject z, and if e(ŷ1) ≤ y ≤ ỹ, then at

least legislator 1 accepts z. Since v(y, ŷ0) is strictly decreasing in y when y ≥ e(ŷ1) > ŷ0, it

is optimal to propose y = e(ŷ1).

Part (ii): Since y = e(ŷ1) and x1 = 0, it follows that u1(z, θ1) = u1(s, θ1) for all θ1 ∈ Θ1

by the definition of e(ŷ1).

Part (iii): Since x2 = 0, if e(ŷ1) = e(ŷ2), then u2(z, θ2) = u2(s, θ2) for all θ2 ∈ Θ2.

Part (iv): Since x2 = 0, e(ŷ2) ≤ ŷ2, and v(y, ŷ2) is strictly increasing in y for y < ŷ2, if

e(ŷ1) < e(ŷ2), then u2(z, θ2) < u(s, θ2) for all θ2 ∈ Θ2. It immediately follows that legislator

2 rejects z and legislator 1 is pivotal with respect to z.
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Extension to more than three players

Suppose the set of legislators other than the chair is N = {1, . . . , n} where n ≥ 3 and the

voting rule requires (κ+ 1) ≥ 2 votes for a proposal to pass. Since we can assume without

loss of generality that the chair votes for any proposal she makes, a proposal needs κ out of

the n legislators to vote for it to pass. Call this the κ voting rule. Assume that 1 ≤ κ < n.

If κ = min{x ∈ N : x ≥ n/2}, then the voting rule is the majority rule, but our results apply

to more general voting rules. Suppose only legislators 1 and 2 have private information on

their types, that is, for legislator i ∈ {3, . . . , n}, the distribution of θi, still denoted by Fi, is

degenerate. We maintain the same assumptions on the players’ preferences as in the main

text. Denote this game by ΓN . The definition of equilibrium is analogous to that in the main

text and is omitted.

Assume that ŷ0 < ỹ. If at least κ legislators prefer ŷ0 to ỹ, the chair’s optimal proposal is

(ŷ0; c, 0, . . . , 0). If k < κ legislators prefer ŷ0 to ỹ, then the analysis of ΓN with the κ voting

rule is similar to that of the game in which the chair faces the (n− k) legislators who strictly

prefer ỹ to ŷ0 and the voting rule is the (κ− k) voting rule. Henceforth, we assume that every

legislator i ∈ N strictly prefers ỹ to ŷ0, and as before, let e(ŷi) = min{y : v(y, ŷi) = v(ỹ, ŷi)}.

For an integer 1 ≤ q ≤ n, say that a proposal (y;x) is a q-transfer proposal if xi > 0 for

exactly q ≥ 1 legislators in N . Say that a proposal (y;x) is a no-transfer proposal if xi = 0

for all i ∈ N . As in the main text, we focus on connected equilibria (defined analogously).

Suppose the prior Fi (i = 1, 2) has a differentiable density function fi. In the following

lemma, we show that if F1 and F2 satisfy IHRP, then no proposal elicited in a connected

equilibrium is a q-transfer proposal where q > κ. Denote the legislators other than i by −i.

Lemma A.2. Suppose F1 and F2 satisfy IHRP. Fix a connected equilibrium of ΓN and let

z∗ = (y∗;x∗) be a proposal elicited in this equilibrium. (i) The proposal z∗ is either a no-

transfer proposal or a q-transfer proposal where q ≤ κ. (ii) If any legislator i ∈ {1, 2} is

included in z∗, then at most κ legislators vote for z∗ in this equilibrium.

Proof. Part (i): Suppose z∗ is a q-transfer proposal. Note that for i ∈ {3, . . . , n}, if x∗i > 0,

then ui (z
∗) ≥ ui (s) and legislator i votes for z∗. This is because if ui (z

∗) < ui (s), then
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there exists a proposal z′ = (y′;x′) where y′ = y∗, x′0 = x∗0 + x∗i , x
′
−i = x∗−i and x′i = 0

such that the same set of legislators vote for z∗ and z′ with the same positive probability.

Since x′0 > x∗0, we have u0 (z′) > u0 (z∗) and it is strictly better to propose z′ than z∗, a

contradiction. It follows immediately that z∗ includes at most κ legislators in {3, . . . , n}.

Consider the following possibilities.

(a) Suppose z∗ includes κ legislators in {3, . . . , n}. Since every such legislator votes for

z∗, the proposal z∗ does not include legislators 1 and 2. It follows that q = κ.

(b) Suppose z∗ includes k ≤ κ − 1 legislators in {3, . . . , n}. Let l be the number of

legislators in {3, . . . , n} who vote for z∗. As established earlier, any legislators in {3, . . . , n}

who is included in z∗ votes for z∗ and therefore k ≤ l.

If l ≥ κ, then x∗1 = x∗2 = 0 and q = k < κ.

If l ≤ (κ− 2), then k ≤ κ− 2 and q ≤ k + 2 ≤ κ.

Suppose l = κ − 1. Then k ≤ (κ− 1). Suppose, towards a contradiction, that q > κ,

which implies that k = (κ− 1) and x∗1 > 0 and x∗2 > 0. Suppose z∗ is induced by m, and for

i = 1, 2, let Gi denote the chair’s posterior on legislator i’s type when receiving mi and let

gi denote the associated density. Recall that for i = 1, 2 and any proposal z, ti(z) denotes

the highest type of legislator i who is willing to accept z. Let β (z) = 1 − (1−G1 (t1(z)))

(1−G2 (t2 (z))), the probability that at least one of legislators 1 and 2 votes for z. Since z∗

is optimal, and l = κ− 1 legislators in {3, . . . , n} accept z∗, it follows that x∗ is a solution to

the problem

max
x∈X

(c−
n∑
i=1

x∗i + θ0v(y∗, ŷ0))β(y∗;x) + θ0v(ỹ, ŷ0) (1− β(y∗;x))

subject to x1 +x2 = x∗1 +x∗2 and xi = x∗i for i = 3, ..., n. But as the proof of Lemma 3 shows,

this is impossible in a connected equilibrium if Fi satisfies IHRP for i = 1, 2. Hence q ≤ κ.

Part (ii): Suppose x∗1 > 0 and x∗2 > 0. Then, as shown in the proof of part (i), at most

(κ− 2) legislators in {3, . . . , n} vote for z∗ and therefore at most κ legislators vote for z∗.

Suppose x∗1 > 0 and x∗2 = 0 (the argument is similar if x∗1 = 0 and x∗2 > 0). Then, as

shown in the proof of part (i), this happens only if l ≤ (κ− 1). Suppose (κ− 1) legislators

in {3, . . . , n} and legislator 2 vote for z∗. Then there exists z′ = (y′;x′) with y′ = y∗,
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x′0 = x∗0 +x∗1, x′1 = 0 and x′−1 = x∗−1 such that κ legislators vote for z′. Since u0 (z′) > u0 (z∗),

this contradicts the optimality of z∗. Hence, at most (κ− 1) legislators other than legislator

1 vote for z∗ and therefore at most κ legislators vote for z∗. �

Lemma A.2 implies that in a connected equilibrium, if legislator i ∈ {1, 2} is included in

z∗, then his payoff is at least as high as his status quo payoff when the chair proposes z∗.

This is because by part (ii) of Lemma A.2, if legislator i votes against z∗, it will fail to pass,

that is, legislator i has veto power with respect to z∗. This is analogous to the result in Γ{1,2}

that legislator i is pivotal with respect to a proposal z∗ if z∗ includes legislator i.

Define simple connected equilibrium of ΓN analogously as in Γ{1,2}. The following Propo-

sition says that in ΓN , each legislator still can convey at most whether he will “fight” or

“compromise,” just like in Γ{1,2}.

Proposition A.1. Suppose F1 and F2 satisfy IHRP. Fix a simple connected equilibrium

(µ, γ, π) in ΓN . Suppose legislator i ∈ {1, 2} is informative in this equilibrium. Then there

exist mc
i , m

f
i ∈Mi such that qi (m

c
i) > 0, qi(m

f
i ) = 0. Moreover, µi is equivalent to a size-two

message rule µIIi with the property that there exists θ∗i ∈
(
θi, θ̄i

)
such that µIIi (θi) = mc

i for

θi < θ∗i and µIIi (θi) = mf
i for θi > θ∗i .

The proof is similar to that of Proposition 3. Specifically, we extend Lemma 6 and

Lemma 7 to ΓN and we use Lemma A.2 in place of Lemma 3 and Lemma 5 in the proofs of

the extensions of Lemma 6 and Lemma 7. (We also replace the phrase “legislator i is pivotal

with respect to z” with the phrase “legislator i has veto power with respect to z” in the

relevant places.)

Define ŷκ ∈ {ŷ1, . . . , ŷn} implicitly by #{i ∈ N : ŷi ≤ ŷκ} ≥ κ − 1 and #{i ∈ N : ŷi ≥

ŷκ} ≥ n− (κ− 1). If the κ voting rule is the majority rule, then ŷκ is the median position.

Proposition A.2. Suppose F1 and F2 satisfy IHRP. Fix a simple connected equilibrium

(µ, γ, π) in ΓN . If e(ŷi) > e(ŷκ), then legislator i is uninformative in this equilibrium.

The proof is similar to that of Proposition 4 (ii). Applied to the majority rule, Proposition

A.2 says that if the median legislator wants to move the policy in the same direction as
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the chair does, then any legislator whose position is to the right of the median position is

uninformative in any SCE.

Unlike part (i) of Proposition 4, which says that at most one legislator is informative in

an SCE of Γ{1,2}, it is possible in ΓN that both legislators 1 and 2 are informative in an SCE.

Below, we provide an example (part (iii) of Example A.1) that illustrates what an SCE looks

like when both legislators 1 and 2 are informative. In this example, one of them is the median

and the other is to the left of the median. (Note that this does not arise in Γ{1,2} since it

is necessarily the case that one legislator is the median and the other is to the right of the

median in Γ{1,2}.) Part (i) of Example A.1 illustrates an SCE in which only the median is

informative. Part (ii) of Example A.1 illustrates an SCE in which only the legislator to the

left of the median is informative. This happens under certain conditions (roughly, when the

position of the legislator to the left of the median is sufficiently close to that of the median).

Example A.1. Suppose n = 3, κ = 2 (majority rule), ỹ = 0, ŷ0 = −1, ŷ1 < 0, ŷ3 = −0.3,

and c = 1. Assume that ui(z, θi, ŷi) = xi − θi (y − ŷi)2 for i = 0, 1, 2, 3, θ0 = 1, θ3 = 1, and

θ1, θ2 are both uniformly distributed on [1/4, 4].

(i) Suppose ŷ3 < ŷ1 < ŷ2. Then legislator 1 is the median. By Proposition A.2, legislator

2, whose position is to the right of the median, is uninformative in any SCE in Γ{1,2,3}. There

are SCE in which legislator 1 is informative. For instance, let ŷ1 = −0.2 (so e (ŷ1) = −0.4)

and suppose µ1 (θ1) = mc
1 if θ1 ∈ [1/4, 1], µ1 (θ1) = mf

1 if θ1 ∈ (1, 4], and µ2 (θ2) = m∗2 for

all θ2. Given the message rules, when the chair receives mf
1 , she infers that θ1 ∈ (1, 4] and

proposes (e (ŷ1) ; c, 0, 0, 0) = (−0.4; 1, 0, 0, 0). Legislators 1 and 3 accept the proposal and

legislator 2 rejects the proposal. When the chair receives mc
1, she infers that θ1 ∈ [1/4, 1]

and proposes (y; c− x1, x1, 0, 0) where y = −0.6 < e (ŷ1) and x1 = 0.12 > 0. Again, only

legislators 1 and 3 accept the proposal.

(ii) Suppose ŷ1 < ŷ3 < ŷ2. Then legislator 3 is the median. Again, legislator 2, whose

position is to the right of the median, is uninformative in any SCE of Γ{1,2,3}. Whether it is

possible for legislator 1, whose position is to the left of the median, to be informative in some

SCE depends on how close ŷ1 is to the chair’s position relative to the median’s position.
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For example, suppose ŷ1 = −0.31 (so that e (ŷ1) = −0.62). Consider an SCE in which

µ1 (θ1) = mc
1 if θ1 ∈ [1/4, 1], µ1 (θ1) = mf

1 if θ1 ∈ (1, 4], and µ2 (θ2) = m∗2 for all θ2.

When the chair receives mf
1 , she infers that θ1 ∈ (1, 4] and proposes (e (ŷ1) ; c− x3, 0, 0, x3)

where x3 = 0.0061. When the chair receives mc
1, she infers that θ1 ∈ [1/4, 1] and proposes

(y; c− x1 − x3, x1, 0, x3) where y = −0.65 < e (ŷ1), x1 = 0.0195 and x3 = 0.0325. In both

cases, legislators 1 and 3 accept the proposal and legislator 2 rejects the proposal.

Suppose instead ŷ1 = −0.4 (so that e (ŷ1) = −0.8). Because ŷ1 is sufficiently close to the

chair’s position relative to the median’s position, there exists no SCE in which legislator 1

is informative. To see this, suppose there is an SCE in which legislator 1 follows a size two

message rule: µ1 (θ1) = mc
1 if θ1 < θ∗1 and µ1 (θ1) = mf

1 if θ1 > θ∗1 for some θ∗1 such that

legislator 1 is included when sending mc
1 and excluded when sending mf

1 . (By Proposition

A.1, if legislator 1 is informative in an SCE, then µ1 is equivalent to such a message rule.)

Straightforward calculation shows that conditional on excluding legislator 1, the chair’s op-

timal proposal is (y; c− x3, 0, 0, x3) where y = −0.65, x3 = 0.0325, and legislators 1 and 3

accept this proposal. Since y = −0.65 > e (ŷ1), legislator 1 gets a payoff strictly higher than

his status quo payoff when sending mf
1 . Recall that legislator 1 is included when sending mc

1.

Arguments similar to Lemma 6 show that the threshold type θ∗1 gets a payoff equal to his

status quo payoff by sending mc
1 (followed by his optimal acceptance rule). Hence type θ∗1

strictly prefers sending mf
1 to mc

1, a contradiction. So there exists no SCE in which legislator

1 is informative.

(iii) Suppose ŷ1 < ŷ2 < ŷ3. Then legislator 2 is the median legislator. There may exist

an SCE in which both legislators 1 and 2 are informative. For example, let ŷ1 = −0.35,

ŷ2 = −0.325 (so that e (ŷ1) = −0.7 and e (ŷ2) = −0.65) and suppose µi (θi) = mc
i if θi ∈

[1/4, 1/2] and µi (θi) = mf
i if θi ∈ (1/2, 4] for i = 1, 2. When the chair receives m with

m2 = mf
2 , she infers that θ2 ∈ (1/2, 4]. In this case, independent of m1, she proposes

(e (ŷ2) ; c, 0, 0, 0) = (−0.65; 1, 0, 0, 0). When the chair receives (mf
1 ,m

c
2), she infers that θ1 ∈

(1/2, 4] and θ2 ∈ [1/4, 1/2] and proposes (e (ŷ1) ; c− x2, 0, x2, 0) where x2 = 0.0175. When

the chair receives (mc
1,m

c
2), she infers that θ1 ∈ [1/4, 1/2] and θ2 ∈ [1/4, 1/2] and proposes

(y; c− x1 − x2, x1, x2, 0) where y = −0.775 < e (ŷ1) , x1 = 0.029 and x2 = 0.048. In all four
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cases, legislators 1 and 2 vote for the proposal and legislator 3 vote against the proposal.

Intuitively, when the median legislator sends the “fight” message, the chair makes no

transfers and moves the policy so that the median legislator is just willing to accept. When

the median legislator sends the “compromise” message, the chair’s proposal depends on the

message of the closer legislator. If the closer legislator says “fight”, then the chair moves

the policy so that the closer legislator is just willing to accept without getting any transfer,

and compensates the median legislator accordingly. When the closer legislator also says

“compromise”, the chair moves the policy even closer to her ideal, and compensates both

legislators.
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