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In this online appendix, we provide some details of proofs which are not included in

the main text of the paper.

A The dynamic game with endogenous protocol

Let Π be the set of all protocols as defined in Section 2. In Section 4, we analyzed a game

in which the chair first selects a protocol π ∈ Π, and Γ
(
π, x0

)
is then played. Call this

game: Γc
(
π, x0

)
: the superscript stands for commitment. In this section, we establish the

claim that Corollary 3 also applies in a different ‘dynamic’ game, Γd
(
Π, x0

)
, where the

chair selects the next proposer immediately after each vote which does not end the game.

Γd
(
Π, x0

)
starts with the chair selecting a proposer from M . This player either passes

or proposes a policy in X, after which the players vote. A round necessarily ends if

the default is amended. If the default has yet to be amended then the chair can either

select a proposer from M or end the round, implementing the default. However, the

chair can only end the game if the protocol in the final round is an element of Π: in

particular, all M proposers have had an opportunity to propose. We construct payoffs as

for Γc
(
Π, x0

)
: players, including the chair, only care about the implemented decision. We

again characterize play via the equilibria of Γd
(
Π, x0

)
. Markov stationarity now requires

that the chair’s selection of proposer only depends on history via the default and the
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number of proposals by each player thus far in the current round.

The dynamic structure of Γd
(
Π, x0

)
is reminiscent of Harsanyi’s (1974) model, where

the chair solicits proposals at each default. By contrast, Harsanyi assumes that the chair’s

payoff is increasing in the number of amendments; so the equilibrium protocol in Γd
(
Π, x0

)
typically differs from that in Harsanyi (1974).

Corollary 3 implies that equilibrium proposals and voting in the dynamic game only

depend on history via the default and the selected protocol in the current round. Conse-

quently, the chair’s selection in any equilibrium only depends on the default and on her

previous selections that round. In equilibrium, the chair can anticipate whether and how

any player, selected as proposer, would amend the default. Fix an equilibrium, and write

the sequence of selections which the chair makes at x0 when the default is not amended

as πd
(
x0,Π

)
. Let πc

(
x0,Π

)
be an equilibrium choice in Γc

(
π, x0

)
. A chair who could

commit to protocols could always do at least as well as the chair in Γd
(
π, x0

)
by choosing

πc
(
x0,Π

)
= πd

(
x0,Π

)
. Conversely, the chair in Γd

(
Π, x0

)
could always do at least as well

as the chair in Γc
(
Π, x0

)
by replicating πc

(
x0,Π

)
. We therefore conclude that the same

set of policies can be implemented in an equilibrium of Γc
(
Π, x0

)
as in an equilibrium of

Γd
(
Π, x0

)
. In each case, an equilibrium protocol at x0 is a best protocol in the class of

games analyzed in Section 3.

B History-dependent strategies

B.1 Proof of Proposition 7

Consider game Γ (π, x). Suppose that Z is a consistent choice set, and let g ∈ ZX be any

selection of F π(Z, ·) — where F π(Z, ·) is obtained from the tree construction described in

Section 3. This implies that g(x) = x for all x ∈ Z (recall that, when x ∈ Z, tree Tπ(Z, x)

has a single path whose nodes are all equal to x). Furthermore, as Z is a consistent choice

set, RZ(x) ̸= ∅ for all x /∈ Z. This implies that at least one proposer (weakly) prefers

to amend x to some policy in Z. This in turn implies that {x} ̸= M
(
≽πx(k), RZ(x)

)
⊆

sπk(Z, x) for al least one proposer k. Furthermore, it is readily checked that a consistent
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choice set must be closed; so that M
(
≽πx(k), RZ(x)

)
̸= ∅. Hence, tree Tπ(Z, x) has at

least one final node in Z, so that F π(Z, x) ̸= ∅ for all x /∈ Z. This proves that g(x) is well

defined.

Our next step is to describe the semi-Markovian strategy profile σx which, to lighten the

notation, will henceforth be referred to as σ. To describe σ, we first construct a partition

{Hz}z∈Z of H, where each element Hz of the partition will be interpreted as the set of

histories at which z should be implemented according to σ.

The partition is constructed recursively, starting with the null history h = x0 = x. The

null history h = x belongs to Hg(x). From the construction of F π(Z, x), this implies that

there exists a vector (z1(h), . . . , zmx+1(h)) such that:

• If x ∈ Z then g(x) = x = z1(h) = . . . = zmx+1(h);

• If x /∈ Z then g(x) = z1(h) ∈ Z, x = zmx+1(h), and zk(h) ∈ sπk (Z, zk+1(h)) for each

k = 1, . . . ,mx. The latter condition implies that zk(h) is one of the kth proposer’s

ideal policies in a set Ak (Z, zk+1(h)) ≡ PZ (zk+1(h)) ∪ {zk+1(h)} ∪ Yk(h), where

Yk(h) ⊆ RZ (zk+1(h).

Next, for every (z, x) ∈ Z ×X, let r(z, x) be an arbitrary element of F π (Z \ P (z), x)

(which is well defined since Z is a consistent choice set). Note that, by definition of

F π (Z \ P (z), ·), r(z, x) = x whenever x ∈ Z \ P (z). For all z ∈ Z, h ∈ Hz and x ∈ X,

history (h, x) belongs to Hx if x = zk(h) for some proposer k at h, and belongs to Hr(z,x)

otherwise. This implies that there is a vector (z1(h, x), . . . , zmx+1(h, x)) such that:

• If x = zk(h) for some proposer k at h then x = z1(h, x) = . . . = zmx+1(h, x);

• If x ̸= zk(h) for any proposer k at h then r(z, x) = z1(h, x), x = zmx+1(h, x), and

zk(h, x) ∈ sπk (Z \ P (z), zk+1(h, x)) for each k = 1, . . . ,mx. The latter condition im-

plies that zk(h, x) is one of the kth proposer’s ideal policies in a set Ak (Z \ P (z), zk+1(h, x)) ≡

PZ\P (z) (zk+1(h, x)) ∪ {zk+1(h, x)} ∪ Yk(h), where Yk(h, x) ⊆ RZ\P (z) (zk+1(h, x)).

We are now in a position to define strategies. Take any round-t history h ∈ Hz.

If xt−1 = z then the ongoing default should be implemented at h: σi prescribes player

3



i = πx(k) to pass. (For expositional convenience, we will sometimes say that i proposes

zk(h) = x.) If xt−1 ̸= z then σi prescribes player i = πx(k) to propose zk(h) if zk(h) ̸=

zk+1(h), and to pass if zk(h) = zk+1(h). Since {Hz}z∈Z is a partition of H, the description

of proposal strategies is complete.

We now turn to voting strategies. Consider first the null history h = x0. Following a

proposal y ̸= x0 by the kth proposer, σi prescribes voter i to act as follows:

(A0) If h = x0 ∈ Z then i votes ‘yes’ iff z1(h, y) ≻i x
0;

(B0) if h = x0 /∈ Z and z1(h, y) ∈ Ak (Z, zk+1(h)) then i votes ‘yes’ iff z1(h, y) ≽i zk+1(h);

(C0) if h = x0 /∈ Z and z1(h, y) /∈ Ak (Z, zk+1(h)) then i votes ‘yes’ iff z1(h, y) ≻i zk+1(h).

Take any round-t history h of the form h =
(
h′, xt−1

)
where h′ ∈ Hz for some z ∈ Z.

Following a proposal y ̸= xt−1 by the kth proposer at h, σi prescribes voter i to act as

follows:

(A1) If h ∈ Hxt−1 then i votes ‘yes’ iff z1(h, y) ≻i x
t−1;

(B1) if h /∈ Hxt−1 and z1(h, y) ∈ Ak (Z \ P (z), zk+1(h)) then i votes ‘yes’ iff z1(h, y) ≽i

zk+1(h);

(C1) if h /∈ Hxt−1 and z1(h, y) /∈ Ak (Z \ P (z), zk+1(h)) then i votes ‘yes’ iff z1(h, y) ≻i

zk+1(h).

We establish the statement of the result via a series of claims. The first two claims

provide useful characterization results about equilibrium policy outcomes. Claim 3 shows

that ϕσ(x) = g(x) for all x ∈ X. Claim 4 shows that there is no voting stage in which a

voter, say i, has a profitable one-shot deviation from σi. Claim 5 demonstrates that there

is no proposal stage in which a proposer, say j, has a profitable one-shot deviation from

σj . Claims 4 and 5 jointly show that no voter has a profitable one-shot deviation from

σ. This proves that no player can profitably deviate from σ in a finite number of stages.

Finally, as infinite bargaining sequences constitute the worst outcomes for all players, this

proves that σ is a semi-Markovian equilibrium.
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Claim 1: Consider the round following a history h ∈ H, and suppose that the kth

proposer has just moved. If she has made no proposal or if her proposal is rejected, then

the final outcome is zk+1(h).

Proof: Let h be of the form h = (h′, x) where h′ ∈ Hz for some z ∈ Z. If x =

xt−1 = zk (h
′) for some proposer k at h′ then the claim is trivial: h ∈ Hx and zk+1(h) =

. . . = zm+1(h) = xt−1 = x (all the remaining proposers pass). Accordingly, suppose

that x = xt−1 ̸= zk (h
′) for any proposer k at h′. Since the kth proposer at h has not

amended xt−1, the (k + 1)th proposer is given the opportunity to make a proposal. By

definition of proposal strategies, she proposes zk+1(h) if zk+1(h) ̸= zk+2(h), and passes

otherwise. Suppose first that zk+1(h) ̸= zk+2(h). If zk+1(h) were accepted then the history

at the start of the next round would belong to Hzk+1(h), so that all proposers would pass

and zk+1(h) would be implemented at the end of that round. Hence, z1 (h, zk+1(h)) =

zk+1(h) ∈ Ak+1 (Z \ P (z), zk+2(h)) ⊆ R (zk+2(h)). Condition (B1) in the definition of

voting strategies then ensures that proposal zk+1(h) is accepted and then implemented in

the next round.

Suppose now that zk+1(h) = zk+2(h), so that the (k + 1)th proposer passes. This

implies that the (k + 2)th proposer is given the opportunity to make a proposal. We can

apply the same argument as above to show that either zk+1(h) = zk+2(h) (̸= zk+3(h)) is

implemented in the next round or zk+1(h) = zk+2(h) = zk+3(h). Going on until the mxth

proposer, we obtain the claim.

A similar argument applies to the null history h = x0.

Claim 2: Let ϕσ(h; k) be the unique final outcome eventually implemented (given σ)

when, after history h ∈ H, the kth proposer is about to move. For all h ∈ H, ϕσ(h; k) =

zk(h). In particular, if h ∈ Hxt−1 then ϕσ(h; k) = zk(h) = xt−1.

Proof: If zk(h) ̸= zk+1(h) then, as demonstrated in the proof of the previous claim (end

of the first paragraph), the kth proposer offers zk(h), which is accepted and implemented

at the end of the next round.

If zk(h) = zk+1(h) then, by definition of proposal strategies, the kth proposer passes.

Claim 1 then implies that zk(h) = zk+1(h) is the final outcome.
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Claim 3: ϕσ
(
x0

)
= z1

(
x0

)
= g

(
x0

)
for all x0 ∈ X.

Proof: Suppose first that the initial default (x0) is an element of Z: viz. zk
(
x0

)
= x0

for any proposer k. No proposer then offers to amend x0, which is implemented at the end

of round 1: ϕσ
(
x0

)
= x0 = z1

(
x0

)
= g

(
x0

)
.

Now suppose that x0 is not a member of Z. Since z1
(
x0

)
= g

(
x0

)
∈ F π

(
Z, x0

)
⊆ Z,

at least one proposer tries to amend x0. The first proposer who does so, say πx0(k),

offers zk
(
x0

)
Rzk+1

(
x0

)
which, by condition (B0) in the definition of voting strategies, is

accepted. This implies that h =
(
x0, zk

(
x0

))
∈ Hzk(x0), which in turn implies that zk

(
x0

)
is never amended and is therefore implemented at the end of round 2. By definition of

proposal strategies, zl
(
x0

)
= zk

(
x0

)
for all proposers l < k who do not try to amend x0.

Hence, ϕσ
(
x0

)
= zk

(
x0

)
= z1

(
x0

)
= g

(
x0

)
.

As this is true for any x0 ∈ X, this proves that ϕσ (X) ≡
{
ϕσ

(
x0

)
: x0 ∈ X

}
={

z1
(
x0

)
: x0 ∈ X

}
= Z.

Claim 4: Let h ∈ H be a round-t history. If the kth proposer has made proposal

y ̸= xt−1 then σi prescribes i to vote ‘yes’ only if ϕσ(h, y; 1) ≽i ϕ
σ (h; k + 1), and to vote

‘no’ only if ϕσ (h; k + 1) ≽i ϕ
σ(h, y; 1).

Proof: Suppose h is of the form h =
(
h′, xt−1

)
where h′ ∈ Hz for some z ∈ Z. Claim 2

immediately implies that ϕσ(h, y; 1) = z1 (h, y) for all y ̸= xt−1, and that ϕσ (h; k + 1) =

zk+1(h).

Suppose first that h ∈ Hxt−1 . If player i votes ‘yes’ then, by condition (A1), z1 (h, y) ≻i

xt−1. Claim 2 implies that xt−1 = zk+1(h) = ϕσ(h; k + 1) (proposal strategies prescribe

all proposers to pass at all h ∈ Hxt−1). Hence, z1 (h, y) ≻i x
t−1 implies ϕσ(h, y; 1) ≻i

ϕσ (h; k + 1) and, therefore, that ϕσ(h, y; 1) ≽i ϕ
σ (h; k + 1). If player i votes ‘no’ then, by

condition (A), xt−1 ≻i z1 (h, y). This in turn implies that ϕσ (h; k + 1) ≽i ϕ
σ(h, y; 1).

Now suppose that h /∈ Hxt−1 and that z1(h, y) ∈ Ak (Z \ P (z), zk+1(h)). If player i

votes ‘yes’ then, by condition (B1), ϕσ(h, y; 1) = z1(h, y) ≽i zk+1(h) = ϕσ (h; k + 1). If

player i votes ‘no’ then, by condition (B1), zk+1(h) ≻i z1(h, y). This in turn implies that

ϕσ (h; k + 1) ≻i ϕ
σ(h, y; 1) and, therefore, ϕσ (h; k + 1) ≽i ϕ

σ(h, y; 1).

Finally, suppose that h ∈ Hxt−1 and that y /∈ Ak (Z \ P (z), zk+1(h)). If player i
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votes ‘yes’ then, by condition (C1), z1(h, y) ≻i zk+1(h). This implies that ϕσ(h, y; 1) ≻i

ϕσ (h; k + 1) and, therefore, that ϕσ(h, y; 1) ≽i ϕ
σ (h; k + 1). Similarly, if i votes ‘no’ then

(C1) implies that zk+1(h) ≽i z1(h, y) and then ϕσ (h; k + 1) ≽i ϕ
σ(h, y; 1).

A similar argument applies to the null history h = x0.

Claim 5: Let h ∈ H be a history ending with default xt−1 = x. At this history, the

kth proposer cannot gain by deviating from σπx(k) at that stage and conforming to σπx(k)

thereafter.

Let i = πx(k), and let h be of the form h = (h′, x) where h′ ∈ Hz for some z ∈ Z.

Suppose first that h ∈ Hx: viz. σ dictates all proposers to pass at h. Consequently, if i

conforms to σi then the final policy outcome will be xt−1 = x. Hence, i can only profitably

deviate by amending x with some policy y ̸= x. By construction, however, history (h, y)

belongs to Hr(x,y) where r(x, y) = z1(h, y) ∈ Z \ P (x); so that z1(h, y) /∈ P (x). From

Condition (A1), this implies that i cannot amend x and, therefore, cannot profitably

deviate.

Now suppose that h ∈ Hw for some w ̸= xt−1. Any proposal y such that z1(h, y) /∈

Ak (Z \ P (z), zk+1(h)) must be unsuccessful. Indeed, condition (C1) in the definition of

voting histories implies that voters only vote ‘yes’ if they strictly prefer z1(h, y) to zk+1(h).

As PZ\P (z) (zk+1(h)) ⊆ Ak (Z \ P (z), zk+1(h)) ̸∋ z1(h, y), z1(h, y) /∈ PZ\P (z) (zk+1(h))

and y must be voted down. Thus, as zk(h) is ≽i-maximal in Ak (Z \ P (z), zk+1(h)) ⊇

{zk+1(h)}, player i cannot improve on proposing zk(h) when zk(h) ̸= zk+1(h), and passing

otherwise.

A similar argument applies to the null history h = x0. This completes the proof of the

Proposition.

B.2 Proof of Proposition 8

Let σ be a semi-Markovian equilibrium. Suppose that, contrary to the statement of the

result, ϕσ(H) is not a consistent choice set. This implies that there exist x ∈ ϕσ(H), y ∈ X

such that, for all z ∈ ϕσ(H), one of the following conditions is true:

(a) z /∈ R(y);
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(b) z ∈ R(y) ∩ P (x).

Now consider a history h ∈ H at which, instead of following σ and implementing x at

the end of the round, some players have deviated as follows: a proposer πx(k) has proposed

to amend x with y and all members of some S ∈ W have voted ‘yes’. This deviation yields

a new outcome z ∈ ϕσ(H), which satisfies one of the conditions (a)-(b) above. Under

assumptions (i) or/and (ii) in the statement of the result,1 some winning coalition in W

must find it (weakly) profitable to induce z from y in equilibrium and, therefore, z must

satisfy (b). Hence, there exists S ∈ W such that z ≻i x for all i ∈ S.

Denote the last player in πx ({1, . . . ,mx})∩S by mS , and suppose that this player has

proposed amending x to y. Members of S anticipate that voting ‘yes’ will induce some

z ∈ ϕσ(H). As σ is semi-Markovian, it must still specify outcome x after an unsuccessful

attempt to amend it. All players in S, including mS , must then be strictly better off voting

for y if z satisfies condition (b). Consequently, all voters in S would vote for y, and player

mS could profitably deviate from σ by proposing y, contrary to the supposition that σ is

a semi-Markovian equilibrium.

B.3 Quasi-Markovian equilibria and quasi-consistent sets

We observed at the end of Subsection 5.2 that, by allowing strategies to depend not only

on the sequence of previous defaults but also on the coalitions which amended previous

defaults, we can obtain analogs of Propositions 7-8 in which “consistent choice set” is

replaced by “quasi-consistent set.” To prove that statement, we first need some definitions.

In this subsection, we will indulge in a slight abuse of terminology and will call a ‘round-t

history’ any list
(
x0, S1, x1, . . . , St−1, xt−1

)
where Ss ∈ W stands for the winning coalition

which amended xs−1 to xs. Let Ht be the set of round-t histories — H
1 ≡

{
x0

}
being

the null history — and let H ≡
∪∞

t=1H
t be the set of histories. We define a ‘quasi-

Markovian’ strategy as an analog of a stationary Markov strategy where histories play the
1Those conditions ensure that it is always the last amender (if any) who changes the current default

x to another policy y. This in turn implies that, following the last amender’s proposal, voters compare

x with the final policy outcome induced by the move from x to y, say z. For that move to happen in

equilibrium, therefore, it must be that z R-dominates y.
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role of the ongoing default. More specifically: in proposal stages, strategies only depend

on the history and the identity of the remaining proposers in the current round; in voting

stages, strategies only depend on the history, the proposal just made, the votes already

cast thereon, and the remaining proposers in the current round.

As in the case of stationary Markov strategies, we can now associate outcome functions

with quasi-Markovian strategies. Any quasi-Markovian strategy σ generates an outcome

function ϕ̄σ, which assigns to every partial history h ∈ H and every k ∈ {1, . . . ,mxt−1}

the unique final outcome ϕ̄σ(h, k) eventually implemented (given σ) when h is the current

history and the kth proposer is about to move. We are particularly interested in ϕ̄σ
(
x0, 1

)
,

which describes the policy implemented in Γ
(
π, x0

)
if players act according to σ. We will

sometimes abuse notation by writing ϕ̄σ
(
x0

)
instead of ϕ̄σ

(
x0, 1

)
.

The proofs of following results parallel those of Propositions 7 and 8.

Result 1 Suppose that Z is the closure of a quasi-consistent set, and let g ∈ ZX be any

selection of F π(Z, ·): g(x) ∈ F π(Z, x) for all x ∈ X. There exists a collection {σx}x∈X such

that, for all x ∈ X, σx is a quasi-Markovian equilibrium of Γ (π, x) and ϕ̄σ
x
(x) = g (x).

Hence,
∪

x∈X ϕ̄σ
x
(x) = Z.

Proof: Consider game Γ (π, x). Suppose that Z is the closure of a quasi-consistent

set, and let g ∈ ZX be any selection of F π(Z, ·) — where F π(Z, ·) is obtained from the

tree construction described in Section 3. It is readily checked that that the closure of a

quasi-consistent is itself a quasi-consistent set; so that Z is quasi-consistent. Note that

that g(x) = x for all x ∈ Z (recall that, when x ∈ Z, tree Tπ(Z, x) has a single path whose

nodes are all equal to x). Furthermore, as Z is quasi-consistent, RZ(x) ̸= ∅ for all x /∈ Z.

This implies that at least one proposer (weakly) prefers to amend x to some policy in Z.

This in turn implies that {x} ̸= M
(
≽πx(k), RZ(x)

)
⊆ sπk(Z, x) for al least one proposer k.

Hence, tree Tπ(Z, x) has at least one final node in Z, so that F π(Z, x) ̸= ∅ for all x /∈ Z.

This proves that g(x) is well defined.

Our next step is to describe the quasi-Markovian strategy profile σx which, to lighten

the notation, will henceforth be referred to as σ. To describe σ, we first construct a
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partition
{
Hz

}
z∈Z of H, where each element Hz of the partition will be interpreted as

the set of histories at which z should be implemented according to σ. In what follows, we

will denote by
(
ht, S, y

)
the concatenation of the round-t history ht followed by a round in

which coalition S ∈ W amends xt−1 to y.

The partition is constructed recursively, starting with the null history h = x0 = x. The

null history h = x belongs to Hg(x). From the construction of F π(Z, x), this implies that

there exists a vector (z1(h), . . . , zmx+1(h)) such that:

• If x ∈ Z then g(x) = x = z1(h) = . . . = zmx+1(h);

• If x /∈ Z then g(x) = z1(h) ∈ Z, x = zmx+1(h), and zk(h) ∈ sπk (Z, zk+1(h)) for each

k = 1, . . . ,mx. The latter condition implies that zk(h) is one of the kth proposer’s

ideal policies in a set Ak (Z, zk+1(h)) ≡ PZ (zk+1(h)) ∪ {zk+1(h)} ∪ Yk(h), where

Yk(h) ⊆ RZ (zk+1(h).

Next, for every (z, S, x) ∈ Z ×W ×X, let

T (S, z) ≡
{
z′ ∈ Z : z ≽i z for some i ∈ S

}
,

and let r(z, S, x) be an arbitrary element of F π (T (S, z), x) (which is well defined since

Z is quasi-consistent). Note that, by definition of F π (T (S, z), ·), r(z, S, x) = x whenever

x ∈ T (S, z). For all z ∈ Z, h ∈ Hz and x ∈ X, history (h, x) belongs to Hx if x = zk(h)

for some proposer k at h, and belongs to Hr(z,S,x) otherwise. This implies that there is a

vector (z1(h, S, x), . . . , zmx+1(h, S, x)) such that:

• If x = zk(h) for some proposer k at h then x = z1(h, S, x) = . . . = zmx+1(h, S, x);

• If x ̸= zk(h) for all proposers k at h then r(z, x) = z1(h, S, x), x = zmx+1(h, S, x), and

zk(h, S, x) ∈ sπk (T (S, z), zk+1(h, S, x)) for each k = 1, . . . ,mx. The latter condition

implies that zk(h, S, x) is one of the kth proposer’s ideal policies in a set

Ak (T (S, z), zk+1(h, S, x)) ≡ PT (S,z) (zk+1(h, S, x)) ∪ {zk+1(h, S, x)} ∪ Yk(h, S, x) ,

where Yk(h, S, x) ⊆ RT (S,z) (zk+1(h, S, x)).
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We are now in a position to define strategies. Take any round-t history h ∈ Hz.

If xt−1 = z then the ongoing default should be implemented at h: σi prescribes player

i = πx(k) to pass. (For expositional convenience, we will sometimes say that i proposes

zk(h) = x.) If xt−1 ̸= z then σi prescribes player i = πx(k) to propose zk(h) if zk(h) ̸=

zk+1(h), and to pass if zk(h) = zk+1(h). Since
{
Hz

}
z∈Z is a partition of H, the description

of proposal strategies is complete.

We now turn to voting strategies. Consider first the null history h = x0. Suppose the

kth proposer has made proposal y ̸= x0. Let S−
i be the set of players who have already

voted ‘yes’ when it is i’s turn to vote, and let S+
i be the set of voters j who will vote after

i and are prescribed to vote ‘yes’ by σj . If S ≡ S−
i ∪ {i} ∪ S+

i is a winning coalition then

σi prescribes voter i to act as follows:

(A0) If h = x0 ∈ Z then i votes ‘yes’ iff z1(h, S, y) ≻i x
t−1 for any winning coalition

S ∋ i;

(B0) if h = x0 /∈ Z and y ∈ Ak (Z, zk+1(h)) then i votes ‘yes’ iff y ≽i zk+1(h);

(C0) if h = x0 /∈ Z and y /∈ Ak (Z, zk+1(h)) then i votes ‘yes’ iff z1(h, S, y) ≻i zk+1(h) for

any winning coalition S ∋ i.

If S is not a winning coalition then the voting behavior prescribed by σi at h is arbitrary.

Now take any round-t history h of the form h =
(
h′, St−1, xt−1

)
where h′ ∈ Hz for

some z ∈ Z. Suppose the kth proposer has made proposal y ̸= xt−1. Again, let S−
i be the

set of players who have already voted ‘yes’ when it is i’s turn to vote, and let S+
i be the set

of voters j who will vote after i and are prescribed to vote ‘yes’ by σj . If S ≡ S−
i ∪{i}∪S+

i

is a winning coalition then σi prescribes voter i to act as follows:

(A1) If h ∈ Hxt−1 then i votes ‘yes’ iff z1(h, S, y) ≻i x
t−1;

(B1) if h /∈ Hxt−1 and z1(h, S, y) ∈ Ak

(
T
(
St−1, z

)
, zk+1(h)

)
then i votes ‘yes’ iff z1(h, S, y) ≽i

zk+1(h);

(C1) if h /∈ Hxt−1 and z1(h, S, y) /∈ Ak

(
T
(
St−1, z

)
, zk+1(h)

)
then i votes ‘yes’ iff z1(h, S, y) ≻i

zk+1(h) for any winning coalition S ∋ i.
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If S is not a winning coalition then the voting behavior prescribed by σi at h is arbitrary.

We establish the statement of the result via a series of claims. The first two claims

provide useful characterization results about equilibrium policy outcomes. Claim 3 shows

that ϕ̄σ(x) = g(x) for all x ∈ X. Claim 4 shows that there is no voting stage in which a

voter, say i, has a profitable one-shot deviation from σi. Claim 5 demonstrates that there

is no proposal stage in which a proposer, say j, has a profitable one-shot deviation from

σj . Claims 4 and 5 jointly show that no voter has a profitable one-shot deviation from

σ. This proves that no player can profitably deviate from σ in a finite number of stages.

Finally, as infinite bargaining sequences constitute the worst outcomes for all players, this

proves that σ is a quasi-Markovian equilibrium.

Claim 1: Consider the round following a history h ∈ H, and suppose that the kth

proposer has just moved. If she has made no proposal or if her proposal is rejected, then

the final outcome is zk+1(h).

Proof: Let h be of the form h = (h′, S, x) where h′ ∈ Hz for some z ∈ Z. If x =

xt−1 = zk (h
′) for some proposer k at h′ then the claim is trivial: h ∈ Hx and zk+1(h) =

. . . = zm+1(h) = xt−1 = x (all the remaining proposers pass). Accordingly, suppose that

x = xt−1 ̸= zk (h
′) for all proposers k at h′. Since the kth proposer at h has not amended

xt−1, the (k + 1)th proposer is given the opportunity to make a proposal. By definition

of proposal strategies, she proposes zk+1(h) if zk+1(h) ̸= zk+2(h), and passes otherwise.

Suppose first that zk+1(h) ̸= zk+2(h). If zk+1(h) were accepted by some winning coalition

S′ then the history at the start of the next round would belong to Hzk+1(h), so that all

proposers would pass and zk+1(h) would be implemented at the end of that round. Hence,

z1 (h, S
′, zk+1(h)) = zk+1(h) ∈ Ak+1 (T (S, z), zk+2(h)) ⊆ R (zk+2(h)). Condition (B1) in

the definition of voting strategies then ensures that proposal zk+1(h) is accepted and then

implemented in the next round.

Suppose now that zk+1(h) = zk+2(h), so that the kth proposer passes. This implies

that the (k+2)th proposer is given the opportunity to make a proposal. We can apply the

same argument as above to show that either zk+1(h) = zk+2(h) (̸= zk+3(h)) is implemented

in the next round or zk+1(h) = zk+2(h) = zk+3(h). Going on until the mxth proposer, we
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obtain the claim.

The same argument applies if h is the null history.

Claim 2: Let ϕ̄σ(h; k) be the unique final outcome eventually implemented (given σ)

when, after history h ∈ H, the kth proposer is about to move. For all h ∈ H, ϕ̄σ(h; k) =

zk(h). In particular, if h ∈ Hxt−1 then ϕ̄σ(h; k) = zk(h) = xt−1.

Proof: If zk(h) ̸= zk+1(h) then, as demonstrated in the proof of the previous claim (end

of the first paragraph), the kth proposer offers zk(h), which is accepted and implemented

at the end of the next round.

If zk(h) = zk+1(h) then, by definition of proposal strategies, the kth proposer passes.

Claim 1 then implies that zk(h) = zk+1(h) is the final outcome.

Claim 3: ϕ̄σ
(
x0

)
= z1

(
x0

)
= g

(
x0

)
for all x0 ∈ X.

Proof: Suppose first that the initial default (x0) is an element of Z: viz. zk
(
x0

)
= x0

for any proposer k. No proposer then offers to amend x0, which is implemented at the end

of round 1: ϕ̄σ
(
x0

)
= x0 = z1

(
x0

)
= g

(
x0

)
.

Now suppose that x0 is not a member of Z. Since z1
(
x0

)
= g

(
x0

)
∈ F π

(
Z, x0

)
⊆ Z,

at least one proposer tries to amend x0. The first proposer who does so, say πx0(k),

offers zk
(
x0

)
Rzk+1

(
x0

)
which, by condition (B0) in the definition of voting strategies, is

accepted by some winning coalition S0. This implies that h =
(
x0, S0, zk

(
x0

))
∈ Hzk(x0),

which in turn implies that zk
(
x0

)
is never amended and is therefore implemented at the

end of round 2. By definition of proposal strategies, zl
(
x0

)
= zk

(
x0

)
for all proposers

l < k who do not try to amend x0. Hence, ϕσ
(
x0

)
= zk

(
x0

)
= z1

(
x0

)
= g

(
x0

)
.

As this is true for any x0 ∈ X, this proves that ϕ̄σ (X) ≡
{
ϕ̄σ

(
x0

)
: x0 ∈ X

}
={

z1
(
x0

)
: x0 ∈ X

}
= Z.

Claim 4: Let h ∈ H be a round-t history. Suppose the kth proposer has made proposal

y ̸= xt−1. Let S−
i be the set of players who have already voted ‘yes’ when it is i’s turn to

vote, and let S+
i be the set of voters j who will vote after i and are prescribed to vote ‘yes’

by σj. If S ≡ S−
i ∪ {i} ∪ S+

i is a winning coalition then σi prescribes i to vote ‘yes’ only if

ϕ̄σ(h, S, y; 1) ≽i ϕ̄
σ (h; k + 1), and to vote ‘no’ only if ϕσ (h; k + 1) ≽i ϕ̄

σ(h, S, y; 1).
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Proof: Suppose h is of the form h =
(
h′, xt−1

)
where h′ ∈ Hz for some z ∈ Z. Claim

2 immediately implies that ϕ̄σ(h, S, y; 1) = z1 (h, S, y) for all y ̸= xt−1, and ϕ̄σ (h; k + 1) =

zk+1(h).

Suppose first that h ∈ Hxt−1 . If player i votes ‘yes’ then, by condition (A1), z1 (h, S, y) ≻i

xt−1. Claim 2 implies that xt−1 = zk+1(h) = ϕ̄σ(h; k + 1) (proposal strategies prescribe

all proposers to pass at all h ∈ Hxt−1). Hence, z1 (h, S, y) ≻i x
t−1 implies ϕ̄σ(h, S, y; 1) ≻i

ϕ̄σ (h; k + 1) and, therefore, that ϕ̄σ(h, S, y; 1) ≽i ϕ̄
σ (h; k + 1). If player i votes ‘no’

then, by condition (A1), xt−1 ≻i z1 (h, S, y). This in turn implies that ϕ̄σ (h; k + 1) ≽i

ϕ̄σ(h, S, y; 1).

Now suppose that h /∈ Hxt−1 and that z1(h, S, y) ∈ Ak (T (S, z), zk+1(h)). If player i

votes ‘yes’ then, by condition (B1) and Claim 2, ϕ̄σ(h, S, y; 1) = z1(h, S, y) ≽i zk+1(h) =

ϕ̄σ (h; k + 1). If player i votes ‘no’ then, by condition (B1), zk+1(h) ≻i z1(h, S, y). This in

turn implies that ϕ̄σ (h; k + 1) ≻i ϕ̄
σ(h, S, y; 1) and, therefore, ϕ̄σ (h; k + 1) ≽i ϕ̄

σ(h, y; 1).

Finally, suppose that h ∈ Hxt−1 and that z1(h, S, y) /∈ Ak (T (S, z), zk+1(h)). If

player i votes ‘yes’ then, by condition (C1), z1(h, S, y) ≻i zk+1(h). This implies that

ϕ̄σ(h, S, y; 1) ≻i ϕ̄
σ (h; k + 1) and, therefore, that ϕ̄σ(h, S, y; 1) ≽i ϕ̄

σ (h; k + 1). Similarly,

if i votes ‘no’ then (C1) implies that zk+1(h) ≽i z1(h, S, y) and then ϕ̄σ (h; k + 1) ≽i

ϕ̄σ(h, S, y; 1).

A similar argument applies if h is the null history.

Claim 5: Let h ∈ H be a history ending with default xt−1 = x. At this history, the

kth proposer cannot gain by deviating from σπx(k) at that stage and conforming to σπx(k)

thereafter.

Let i = πx(k), and let h be of the form h = (h′, x) where h′ ∈ Hz for some z ∈ Z.

Suppose first that h ∈ Hx: viz. σ dictates all proposers to pass at h. Consequently, if i

conforms to σi then the final policy outcome will be xt−1 = x. Hence, i can only profitably

deviate by amending x with some policy y ̸= x. By construction, however, history (h, S, y)

belongs to Hr(x,S,y) for all S ∈ W, where r(x, S, y) = z1(h, S, y) ∈ T (S, x); so at least

one member of S weakly prefers x to z1(h, S, y). From Condition (A1), this implies that i

cannot amend x and, therefore, cannot profitably deviate.
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Now suppose that h ∈ Hw for some w ̸= xt−1. Any proposal y such that z1(h, S, y) /∈

Ak (T (S, z), zk+1(h)) for all S ∈ W must be unsuccessful. Indeed, condition (C1) in the

definition of voting histories implies that voters in S ∈ W only vote ‘yes’ if they strictly

prefer z1(h, S, y) to zk+1(h). As PT (S,z) (zk+1(h)) ⊆ Ak (T (S, z), zk+1(h)) ̸∋ z1(h, y),

z1(h, S, y) /∈ PT (S,z) (zk+1(h)) and y must be voted down (i.e. at least one member of

S votes no). Thus, as zk(h) is ≽i-maximal in Ak (T (S, z), zk+1(h)), player i cannot im-

prove on proposing zk(h) when zk(h) ̸= zk+1(h), and passing otherwise.

A similar argument applies if h is the null history. This ends the proof of Result 1.

�

Result 2 Suppose that (at least) one of the following assumptions holds: (i) X is well

ordered; (ii) mx = 1 for all x ∈ X. If σ is a quasi-Markovian equilibrium then ϕ̄σ
(
H
)
≡∪

h∈H ϕ̄σ(h, 1) is a quasi-consistent set.

Proof: Let σ be a quasi-Markovian equilibrium. Suppose that, contrary to the state-

ment of Result 2, ϕ̄σ(H) is not a consistent set. This implies that there exist o ∈ ϕ̄σ(H),

x ∈ X, and S ∈ W such that, for all o′ ∈ ϕ̄σ(H), one of the following conditions is true:

(a) o′ = x and o′ ≻i o for all i ∈ S;

(b) o′Rx and o′ ≻i o for all i ∈ S;

(c) ¬ (o′Rx).

Now consider a history h ∈ H at which, instead of following σ and implementing o at

the end of the round, some players have deviated as follows: a proposer πo(k) in S has

proposed to amend o with x and all members of S have voted ‘yes’. This deviation yields

a new outcome o′ ∈ ϕσ(H), which satisfies one of the conditions (a)-(c) above. Under

assumptions (i) or/and (ii) in the statement of Result 2,2 some winning coalition in W

must find it (weakly) profitable to induce o′ from x in equilibrium and, therefore, o′ cannot

satisfy (c). As a consequence, o′ must satisfy either (a) or (b).
2Those conditions ensure that it is always the last amender (if any) who changes the current default

x to another policy y. This in turn implies that, following the last amender’s proposal, voters compare

x with the final policy outcome induced by the move from x to y, say o′. For that move to happen in

equilibrium, therefore, it must be that o′ R-dominates x.
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Denote the last player in πo ({1, . . . ,mo})∩S by mS , and suppose that this player has

proposed amending o to x. Members of S anticipate that voting ‘yes’ will induce some

o′ ∈ ϕσ(H). As σ is quasi-Markovian, it must still specify outcome o after an unsuccessful

attempt to amend it. All players in S, including mS , must then be strictly better off voting

for x if o′ satisfies either (a) or (b). Consequently, all voters in S would vote for x, and

player mS could profitably deviate from σ by proposing x, contrary to the supposition that

σ is a quasi-Markovian equilibrium.

�

Combining Results 1 and 2, we obtain the following analog to Corollary 4:

Result 3 Suppose that (at least) one of the following assumptions holds: (i) X is well

ordered; (ii) mx = 1 for all x ∈ X. The set of all quasi-Markovian equilibrium policy

outcomes that can be obtained from any initial default in X coincides with the union of

quasi-consistent sets.

B.4 Semi-Markovian equilibrium policies and consistent choice sets: a

counterexample

Suppose C = N = {1, 2, 3, 4}, M = {2, 3}, and W = {S ⊆ N : |S| ≥ 3} (majority voting).

The set of policies is X = {x, z1, z2, z3}, and players’ preferences over X are given by:

z1 ≻1 z2 ∼1 z3 ≻1 x , z2 ∼2 z3 ≻2 z1 ≻2 x ,

z3 ≻3 x ≻3 z1 ≻3 z2 , x ≻4 z2 ∼4 z3 ≻4 z1 .

Let π be the constant protocol in which, in every round, player 2 makes the first

proposal and player 3 makes the second (and last) proposal — so that W = W. We want

to show that the bargaining game Γ (π, z1) has a semi-Markovian equilibrium σ in which

{z1, z2, z3} — though neither a consistent choice set nor a quasi-consistent set — is the set

of immovable policies. To define σ, we first partition the set of (non-null) partial histories

into the class {H(a, b)}(a,b)∈X2 where, for each ordered pair (a, b) ∈ X2 and every partial
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history h ∈ H, h ∈ H(a, b) if and only if a and b are the penultimate and last defaults in

h, respectively.

The voting behavior prescribed by σ is described in the table below. It tells us, for

all (a, b) ∈ X2, which players vote ‘yes’ when proposer i proposes yi at partial history

h ∈ H(a, b) (‘z1’ stands for the null history).

y3 = x y3 = z1 y3 = z2 y3 = z3 y2 = x y2 = z1 y2 = z2 y2 = z3 ψ

z1 2,4 no vote 2,4 2,4 2,4 no vote 2,4 2,4 z1

(z1, z1) 2,4 no vote 2,4 2,4 2,4 no vote 2,4 2,4 z1

(x, z1) 2,4 no vote 2,4 2 ,4 2,4 no vote 2,4 2,4 z1

(z2, z1) 2, 4 no vote 2,4 2,4 2, 4 no vote 2,4 2,4 z1

(z3, z1) 2, 4 no vote 2,4 2,4 2, 4 no vote 2,4 2,4 z1

(z1, x) no vote 1,2 1,2 1,2,3 no vote 1 1,2,4 z2

(z1, z2) 3 1,3 no vote 3 3 1,3 no vote z2

(z2, z2) 3 1,3 no vote 3 3 1,3 no vote z2

(z1, z3) no vote 1,2,4 no vote z2

(z3, z2) 3 1,3 no vote 3 3 1,3 no vote z2

(x, z2) 3 1,3 no vote 3 3 1,3 no vote z2

(x, x) no vote 1 , 2 1,2 1,2,3 no vote 1 z3

(z3, z3) 4 1 1,2 no vote 4 1 1,2 no vote z3

(z2, x) no vote 1 , 2 1,2 1,2,3 no vote 1 z3

(z3, x) no vote 1 , 2 1,2 1,2,3 no vote 1 z3

(z2, z3) 4 1 1,2 no vote 4 1 1,2 no vote z3

(x, z3) 4 1 1,2 no vote 4 1 1,2 no vote z3

Moreover, at any h ∈ H, player 2 always proposes z2 and player 3 always proposes z3.

It is readily checked that, under σ, xt−2 ̸= xt−1 implies that xt = ψ
(
xt−2, xt−1

)
, where
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ψ : X2 ∪ {z1} → X is defined as: ψ (z1) = z1 and

ψ(a, b) ≡


z1 if (a, b) = {(z1, z1) , (x, z1) , (z2, z1) , (z3, z1)} ,

z2 if (a, b) ∈ {(z1, x) , (z1, z2) , (z2, z2) , (z1, z3) , (x, z2) , (z3, z2)} ,

z3 if (a, b) ∈ {(x, x), (z3, z3) , (z2, x) , (z3, x) , (z2, z3) , (x, z3)} .

Thus, for all (a, b) ∈ X2 such that a ̸= b, and all h ∈ H(a, b), we have

ϕσ(h) = lim (b, ψ(a, b), ψ (b, ψ(a, b)) , ψ (ψ(a, b), ψ (b, ψ(a, b))) , . . .) ; (1)

that is, ϕσ(h) is the limit of sequence of defaults generated by ψ from (a, b) — it is easy

to verify that this limit always exists.

Inspection of the table above reveals that proposer i is confronted with a social accep-

tance set which is either empty — in which case, proposing zi is trivially optimal — or

equal to {zi} — in which case, it is optimal for player i to propose her ideal policy zi. This

shows that there is no profitable one-shot deviation in a proposal stage.

One can easily check that, following player 3’s proposal y3 at the voting stage of any

history h ∈ H(a, b), each player i ∈ N votes ‘yes’ only if she weakly prefers the final policy

induced from accepting y3 over b — which, by equation (1), is equivalent to

lim (b, ψ(a, b), ψ (b, ψ(a, b)) , ψ (ψ(a, b), ψ (b, ψ(a, b))) , . . .) ≽i b

— and votes ‘no’ only if she weakly prefers b over the final policy induced from accepting

y3. Take for instance a partial history h ∈ H (z1, x):

• If player 3 passes (i.e. y3 = x) then there is no vote.

• If player 3 proposes y3 = z1 then player i anticipates that amending x to z1 would

lead to the implementation of z1 since

ϕσ(h) = lim (z1, ψ (x, z1) = z1, ψ (z1, z1) = z1, ψ (z1, z1) = z1, . . .) = z1 .

It is therefore optimal for players 1 and 2 [resp. 3 and 4] to vote ‘yes’ [resp. ‘no’] —

as they both strictly prefer z1 to x [resp. x to z1].
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• If player 3 proposes y3 = z2 then player i anticipates that amending x to z2 would

lead to the implementation of z1 since

ϕσ(h) = lim (z2, ψ (x, z2) = z2, ψ (z2, z2) = z2, ψ (z2, z2) = z2, . . .) = z2 .

It is therefore optimal for players 1 and 2 [resp. 3 and 4] to vote ‘yes’ [resp. ‘no’] —

as they both strictly prefer z2 to x [resp. x to z2].

• If player 3 proposes y3 = z3 then player i anticipates that amending x to z3 would

lead to the implementation of z1 since

ϕσ(h) = lim (z3, ψ (x, z3) = z3, ψ (z3, z3) = z3, ψ (z3, z3) = z3, . . .) = z3 .

It is therefore optimal for players 1, 2 and 2 [resp. player 4] to vote ‘yes’ [resp. ‘no’]

— as they both strictly prefer z3 to x [resp. she strictly prefers x to z3]. As player 3

(optimally) proposes policy z3 at h, z3 would be the final policy outcome if player 3

is given the opportunity to propose at h: ϕσ(h, 2) = z3.

The same argument applies to all other partial histories.

Furthermore, one can easily check that, following player 2’s proposal y2 at the voting

stage of any history h ∈ H(a, b), each player i ∈ N votes ‘yes’ only if she weakly prefers

the final policy induced from accepting y2 over the final outcome induced from rejecting

y2. Take again the example of a partial history h ∈ H (z1, x):

• If player 2 passes (i.e. y2 = x) then there is no vote.

• If player 2 proposes y2 = z1 then player i anticipates that, while rejecting z1 would

lead to the implementation of z3 (see above), amending x to z1 would lead to the

implementation of z1 (same argument as above). It is therefore optimal for player 1

to vote ‘yes’ — as z1 ≻1 z3 — and for player i ∈ {2, 3, 4} to vote ‘no’ — as z3 ≻i z1.

• If player 2 proposes y2 = z2 then player i anticipates that, while rejecting z2 would

lead to the implementation of z3 (see above), amending x to z1 would lead to the

implementation of z1 (same argument as above). It is therefore optimal for players
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1,2 and 4 — who are indifferent between z2 and z3 to vote ‘yes’, and for player 3 —

who strictly prefers z3 to z2 — to vote ‘no’.

• If player 2 proposes y2 = z3 then player i anticipates that, whether y3 is accepted

or rejected, the final policy outcome will be z3. All voters are therefore indifferent

between voting ‘yes’ or ‘no’ and optimally vote ‘no’ in equilibrium.

This proves that σ prescribe optimal voting behavior at any h ∈ H(a, b) (i.e. the

seventh row in the table above). A similar argument shows that it also prescribes optimal

voting behavior at all the other partial histories.

C Abstention

Footnote 4 in the paper states that the set of equilibrium outcomes would remain un-

changed if we allowed for abstention. The argument is as follows:

For every protocol π and every initial default x, let Γa(π, x) the bargaining game in

which voters are allowed to abstain and relative majority rule is used to move policies.

To describe this game, we need to define the collection of winning coalitions, W−S , when

a coalition S ⊆ N of voters abstain. We require W−S to satisfy the following natural

conditions for all S ⊆ N :

i) T ∈ W−S implies S ∩ T = ∅;

ii) W−S is monotonic and proper;

ii) S ∩ T = ∅ and T ∈ W implies T ∈ W−S .

We indulge in a slight abuse of notation and use fσ to denote the outcome function of

both games.

Claim 1: The set of equilibrium policy outcomes of Γ(π, x) is a subset of the set of

equilibrium policy outcomes of Γa(π, x).

Proof: Let σ be an equilibrium of Γ(π, x), and let σ⃗ be the strategy profile in Γa(π, x)

which prescribes exactly the same behavior as σ at all histories. This implies that fσ = f σ⃗.

To prove that σ⃗ is an equilibrium of Γa(π, x), it suffices to show that no player can profitably

deviate in any voting stage. Suppose that a voter i can profitably deviate from σ⃗ in some
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voting stage of Γa(π, x). This implies that, given σ⃗−i, voter i is decisive and can change the

outcome of the vote. But, given that σ and σ⃗ prescribe the same behavior at all histories,

this implies that i could also profitably deviate from σ in Γ(π, x) (if she can change the

outcome by abstaining in Γa(π, x), then she can also change the outcome in Γ(π, x) by

voting against the alternative which wins the vote under σ). As equilibrium σ was chosen

arbitrarily, this establishes the claim.

Claim 2: The set of equilibrium policy outcomes of Γa
(
π, x0

)
is a subset of the set of

equilibrium policy outcomes of Γ
(
π, x0

)
.

Proof: Let σ⃗ be an equilibrium of Γa
(
π, x0

)
, and let σ be a (Markov) strategy profile

in Γ
(
π, x0

)
defined as follows:

(i) proposal strategies are the same as in σ⃗;

(ii) voting strategies are constructed as follows: If the kth proposer has proposed policy

y at default x then σi prescribes voter i to vote for y if f σ⃗(y, 1) ≻i f
σ⃗(x, k + 1), to vote

for x if f σ⃗(x, k+ 1) ≻i f
σ⃗(y, 1), and to vote for the policy which would have won the vote

under σ⃗ if f σ⃗(x, k + 1) ∼i f
σ⃗(y, 1).

This implies that fσ(x, k) = f σ⃗(x, k) for all x ∈ X and all k = 1, . . . ,mx. To see

this, suppose (without loss of generality) that f σ⃗(x, k) = f σ⃗(y, 1) (i.e. proposal y by the

kth proposer is accepted under σ⃗) and that fσ(x, k) ̸= f σ⃗(y, 1). By construction of σ,

this implies that
{
i ∈ N : f σ⃗(x, k + 1) ≻i f

σ⃗(y, 1)
}

is a winning coalition. By subgame

perfection, this in turn implies that f σ⃗(x, k) = f σ⃗(x, k + 1); a contradiction.

Therefore, to prove that σ is an equilibrium of Γ(π, x), it suffices to show that no

player can profitably deviate in any voting stage of this game. Inspection of part (ii) in the

definition of voting strategies, combined with the observation that fσ = f σ⃗, shows that all

voters always play as if they were decisive under σ. This proves that there is no profitable

deviation from σ, thus proving the claim.

21


