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Abstract

Appendix O.1 contains coloured panels of Figures 3 and 4 in Section 3.4.
In Appendix O.2 we show how the results and the proofs in the main paper
need to be adapted when players are restricted to pure strategies.

O.1 Coloured panels of Figures 3 and 4 in Section 3.4
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Figure O.1: The left panel shows a cover of ∂W (bold black line) into four overlapping sets (solid
coloured lines), such that payoffs in a band of width ε around the sets (dashed coloured lines) can
be decomposed with respect to the same pure action profile for discount rate r = 0.1. The cover
of W is completed by playing the static Nash equilibrium in the interior of W. Also depicted is
∂Ep(0.1) (thin black line) constructed with the techniques in Sannikov [2]. The right panel shows
the simulation of the continuation value of a PPE in a zoom-in of the left panel. Lines in olive,
cyan and red mean that action profiles (1, 1), (0, 1) and (0, 0), respectively, are played. When the
continuation value leaves the band around the cover of ∂W, the static Nash equilibrium is played
until the boundary of W is reached.
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O.2 Pure strategies

Observe first, that none of the preliminary results of Lemma 4.10 require mixing. All
these results, including the time-change and monotonicity of the equilibrium payoff
set therefore translate to games in pure strategies. We will use the following notations.

Definition.

1. vpi := min
a−i∈A−i

max
ai∈Ai

g(ai, a−i) is the pure-action minmax payoff of player i.

2. V∗p := {w ∈ V | wi ≥ vpi ∀ i} are the pure-action individually rational payoffs.

3. We denote the set of payoffs achievable in pure-strategy PPE by Ep(r).

A first difference to strategies in mixed actions is that the stage game need not have a
Nash equilibrium. We used this stage-game Nash equilibrium in two places, namely to
construct an equilibrium profile achieving payoffs in the interior of W in the proof of
Lemma 4.10 and in the Nash-threat version of the folk theorem. While it is clear that
we will need to assume existence of a stage-game Nash equilibrium in pure actions for
the corresponding version of the folk theorem, we can modify the proof of Lemma 4.10
such that the decomposition in the interior of W does not rely on it. The argument
is similar to Proposition 9.2.2 of Mailath and Samuelson [1], namely, the interior can
be decomposed in the same way as the boundary. Indeed, choose an ε > 0 such that
B2ε(w) ⊆ intW and let the role of Sw be taken by any hyperplane H through w. Let
N be orthogonal to H and let a be any enforceable action profile such that g(a) 6∈ H
and (a,N) satisfy a condition of Lemma 4.7. Proceeding in the same way as on the
boundary, we obtain continuations W that remain in B2ε(w) ⊆ W . Note that this
does not affect the nature of the strategies, i.e., the resulting equilibrium profiles are
constant on the sets Jkτ̃ , (k + 1)τ̃)).

A more significant difference to strategies in mixed actions is that we lose the
approximation Lemmas C.2 and C.3 for the decomposition of a set W . While we do
not need Lemma C.3 because individual full rank of all pure action profiles implies
enforceability of the minmax profile on the relevant coordinate hyperplane directly by
Lemma 4.6, the loss of Lemma C.2 is more grievous. For the decomposition of regular
payoffs, existence of a pairwise identifiable action profile (or a Nash equilibrium) with
inward pointing drift is necessary. Without the approximation in Lemma C.2, we can
only hope to decompose payoff sets W in the interior of

Vpw
p := conv g

(
{a ∈ A | a is enforceable and pairwise identifiable} ∪ AN

)
.

Suppose first that there exists a stage-game Nash equilibrium ae in pure actions
and let V0

p denote the convex hull of g(ae) and the Pareto-efficient pure action payoffs
Pareto-dominating g(ae). Lemma C.4 in conjunction with the assumption on pairwise
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Figure O.2: Restricting players to pure strategies may cause problems for the decomposition of
payoffs in the lower corner of W.

identifiability of Pareto-efficient action profiles leads to V0
p ⊆ Vpw

p , hence the pure-
strategy Nash-threat folk theorem looks very similar to the corresponding result with
strategies in mixed actions.

Theorem O.1 (Nash-threat folk theorem in pure strategies). Suppose that g is affine
in m, that there exists a Nash equilibrium ae in pure actions and that Pareto-efficient
action profiles are pairwise identifiable. Then for any smooth set W in the interior
of V0

p , there exists a discount rate r̃ > 0 such that W ⊆ Ep(r) for all r ∈ (0, r̃).

To establish a minmax version of the folk theorem, we need to decompose payoffs
in the lower corner of a set W , which can cause trouble as seen in Figure O.2 if we
do not have access to a density argument as in Lemma C.2. It is difficult to find a
sufficient condition for V∗p ⊆ Vpw

p that applies in full generality, other than the strong
condition that all action profiles achieving extremal payoffs have pairwise full rank.
We state the following weaker version of the minmax folk theorem, together with a
corollary for the result to apply as usual.

Theorem O.2. Suppose that for every player i,

1. the minmax profile ai is enforceable and it is either pairwise identifiable or
satisfies the unique best response property for player i,

2. there exists an enforceable action profile ai,∗ ∈ A(i) that is either pairwise iden-
tifiable or satisfies the unique best response property for player i.

Then for any smooth set W ⊆ intV∗p ∩ Vpw
p , there exists a discount rate r̃ > 0 such

that W ⊆ Ep(r) for all r ∈ (0, r̃).

Corollary O.3 (Minmax folk theorem in pure strategies). Suppose that all pure
action profiles achieving extremal payoffs have pairwise full rank and that conditions 1
and 2 of Theorem O.2 are met. Then for any smooth set W ⊆ intV∗p , there exists a
discount rate r̃ > 0 such that W ⊆ Ep(r) for all r ∈ (0, r̃).

We conclude with an example where the conditions of Corollary O.3 are not met
but Theorem O.2 still applies. In Sannikov [2], games where m equals the identity
function are called a game with a special signal structure. A game with a special
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1 2 3 4

1 (−8,−6) (−4, 12) (0, 2) (4, 4)

2 (9, 0) (8, 4) (7, 5) (6, 6)

3 (20, 6) (12,−4) (4, 8) (−4, 8)

4 (0, 12) (4,−12) (8, 11) (12, 10)

Table O.1: Payoff table of a minimal example to Theorem O.2.

signal structure is a special case of a game with a product structure where di = 1
for all i and hence d = n. As a result all action profiles are pairwise identifiable but
no action profile has individual full rank for player i unless |Ai| = 2. Nevertheless, a
folk theorem in pure strategies may apply via Theorem O.2.

One main advantage of the special signal structure is the fact that the enforce-
ability condition (6) for player i depends on a−i only through gi( · , a−i). This leads
to the following characterization of enforceable pure action profiles via the graphs
gi( · , a−i) for the individual players. It has been observed in Sannikov [2] already and
is reproduced here for the sake of exposition.

Lemma O.4. In a game with a special signal structure, for a pure action profile
a ∈ A the following are equivalent:

(a) a is enforceable,

(b) gi(a) is contained in the concave envelope of gi( · , a−i) for all i.

Proof. Fix a player i. Being in the concave envelope of gi( · , a−i) means that there
exists a λi ∈ R such that gi(ãi, a−i) ≤ gi(A) + λi(ãi− ai) for all ãi ∈ Ai. But then βi

with βi
i = −λi fulfills (6). The argument also works the other way around.

Consider the game with a special signal structure, where the stage-game payoffs
are given by the matrix in Table O.1. In this game, any payoff in the interior of V∗p
can be achieved by a pure-strategy PPE for a discount rate r small enough, even
though no action profile has full rank, there is no stage-game Nash equilibrium in
pure actions and not all of the extremal payoffs correspond to enforceable action
profiles. Hence it justifies why we stated Theorem O.2 in this weak version.

The payoffs can be generated by ci ≡ 0 and

b1 =

(
−12 5 28

3
−1

4 −1 −8 4

)
, b2 =

(
6 −8 3 2

−12 10 −1
3

1
2

)
,

for m(a) = a, where the jth column of bi corresponds to bi(j). This shows that the
payoff table is consistent with a special signal structure. As a result, all action profiles
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Figure O.3: The right panel shows together with Lemma O.4 that the action profiles (3, 2) and
(4, 2) achieving the extremal payoffs (12,−4) and (4,−12) are not enforceable. Nevertheless, the
folk theorem holds via Theorem O.2 because the minmax profiles a1 = (4, 3) and a2 = (2, 4) are
enforceable and V∗

p ⊆ Vpw
p , as indicated in the left panel.

are pairwise identifiable and hence condition 2 of Theorem O.2 is satisfied. Next, we
check with Lemma O.4 which action profiles are enforceable to determine Vpw

p . This
is done exemplarily in the right panel of Figure O.3 for the action profiles (3, 2) and
(4, 2) achieving the extremal payoffs (12,−4) and (4,−12) respectively that fail to
be enforceable. The only other action profiles that fail to be enforceable are (1, 3),
(3, 3) and (3, 4), thus we obtain Vpw

p as indicated in the left panel of Figure O.3. In
particular, the minmax profiles a1 = (4, 3) and a2 = (2, 4) are enforceable, hence
condition 1 of Theorem O.2 is satisfied and V∗p ⊆ Vpw

p . Therefore, Theorem O.2
applies, hence any payoff in the interior of V∗p can be achieved in equilibrium for r
small enough.
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