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This web appendix contains three sections. In Section 1, we we formally solve the version of
our model with money and real assets of two maturities. In Section 2, we describe the solution
to a version of our model with money and nominal assets of two maturities, which deliver
money instead of a real dividend when they mature. In Section 3, we analyze the case of N > 2

maturities.

1 Solution of the model with money and N = 2

In the main text of our paper, we already described the environment of our model (with money
and without, in Section 2), and briefly highlighted our main results with money (in Section 4.1).
Here, we provide more details. Sections 1.1-1.6 describe the optimal behavior of the agents, and
define and characterize equilibrium. Among them, Section 1.4 provides an in-depth intuitive
description of the money and asset demand curves in our model, which are at the heart of our
results. Finally, Section 1.7 defines a few equilibrium objects used in the preceding analysis.

1.1 Value Functions

We begin with the description of the value functions in the CM . For a typical buyer, the state
variables are the following. First, the units of money, m, that she brings into the CM. Second,
the units of assets of maturity N = 2, a2, that she bought in the previous period, and which
will mature in the forthcoming period. Third, the dividend, d, that she received earlier in the
period, i.e. before the LW market opened, and she did not spend in that market. The amount of
real balances d could have been delivered either from long term assets issued two periods ago,
or from short term assets issued in the last period. The Bellman’s equation is given by

W (m, d, a2) = max
X,H,m̂,â1,â2

{U(X)−H + βE {Ωi(m̂, â1, â2)}}

s.t. X + φm̂+ ψ1(â1 − a2) + ψ2â2 = H + φ(m+ µM) + d,

and subject to â1 − a2 ≥ 0. In the last expression, variables with hats denote next period’s
choices, and the term E denotes the expectations operator. The function Ωi represents the value
function in the OTC market for a buyer of type i = {C,N}, described in more detail below. It
is important to highlight that we have defined â1 as the amount of all assets that mature in the
next period (which is analogous to our definition of the supply of assets that mature in the next
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period). Hence, the amount of newly issued short term assets purchased by the agent is â1−a2,
and we require â1 − a2 ≥ 0. This constraint simply enforces the assumption that agents cannot
sell off-the-run short term asset in the CM (see the discussion in the main text). Later, we will
focus only on equilibria where this constraint does not bind.

Some observations are in order. First, it can be easily verified that, at the optimum, X = X∗.
Using this fact and replacing H from the budget constraint into W yields

W (m, d, a2) = U(X∗)−X∗ + φ(m+ µM) + d+ ψ1a2

+ max
m̂,â1,â2

{
−φm̂− ψ1â1 − ψ2â2 + βE

{
Ωi(m̂, â1, â2)

}}
. (1)

A standard feature of models that build on Lagos and Wright (2005) is that the optimal choice
of the agent does not depend on the current state (due to the quasi-linearity of U). This is also
true here, with the exception that the range of admissible choices for â1 is restricted by the state
variable a2. Moreover, as is standard in this types of models, the CM value function is linear. In
fact, W is linear in the variable z ≡ φm+ d, which captures the total real balances of the buyer.
This property will greatly simplify the analysis in what follows. We collect all the terms in (1)
that do not depend on the state variables, and we write

W (z, a2) = Λ + z + ψ1a2, (2)

where the definition of Λ is obvious.
Next, consider a seller’s value function in the CM. It is well-known that in monetary models

where the identity of agents (as buyers or sellers) is fixed over time, sellers will typically not
leave the CM with a positive amount of asset holdings.1 Therefore, when a seller enters the CM,
she will only hold real balances that she received as payment during trade in the preceding LW
market, and her CM value function will be given by

W S(z) = max
X,H

{
U(X)−H + βV S

}
s.t. X = H + z,

where V S denotes the seller’s value function in next period’s LW market, to be discussed be-
low.2 Sellers also choose X = X∗, and W S will also be linear:

W S(z) = ΛS + z. (3)

1 The intuition behind this result is simple. In monetary models, assets will, in general, be priced above the
“fundamental value”, reflecting liquidity premia. Agents who know with certainty that they will not have an
opportunity to consume in the forthcoming LW market (just like our sellers here) will not be willing to pay such
premia. Here we take this result as given (for a detailed discussion, see Rocheteau and Wright (2005)).

2 Since the seller leaves the CM with no assets, she will never visit the OTC market.
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Consider now the value functions in the LW market. Let q denote the quantity of special
good produced, and π the real value of money and fruit that change hands during trade in the
LW market. These terms will be determined by a buyer-takes-all mechanism. The LW value
function for a buyer who enters that market with portfolio (z, a2) is given by

V (z, a2) = u(q) +W (z − π, a2), (4)

and the LW value function for a seller (who enters with no assets) is given by

V S = −q +W S(π).

Finally, consider the value functions in the OTC market. After leaving the CM, and before
the OTC market opens, buyers learn whether they will have a chance to access this period’s
LW market (C-types) or not (N-types). This chance will occur with probability ℓ ∈ (0, 1). The
expected value for the typical buyer, before she enters the OTC market, is given by

E
{
Ωi(m, a1, a2)

}
= ℓ ΩC(m, a1, a2) + (1− ℓ) ΩN(m, a1, a2). (5)

In the OTC market, C-type buyers, who may want additional liquid assets, are matched
with N-type buyers, who may hold liquid assets that they will not use in the current period.
Hence, trade in the OTC involves C-types giving up long term assets for short term assets and
cash. Given the matching function f(ℓ, 1− ℓ), define the matching probabilities for C-types and
N-types as α

C
≡ f(ℓ, 1 − ℓ)/ℓ and α

N
≡ f(ℓ, 1 − ℓ)/(1 − ℓ), respectively. Let χ denote the units

of long term assets that the C-type transfers to the N-type, and ζ the real value of liquid assets
that the C-type receives in return. These terms will be determined by bargaining, and are fully
analyzed in the main text. Then,

ΩC(m, a1, a2) = α
C
V (z + ζ, a2 − χ) + (1− α

C
)V (z, a2), (6)

ΩN(m, a1, a2) = α
N
W (z − ζ, a2 + χ) + (1− α

N
)W (z, a2). (7)

Notice that N-type buyers proceed directly to the CM. Also, notice that our definition z ≡ φm+d

allows us to write V as a function of (z, a2) (recall that each unit of a1 will deliver one unit of
fruit between the OTC and LW subperiods).

1.2 Bargaining in the LW and OTC Markets

The bargaining problems and solutions in the LW and OTC markets are exactly identical to
those described in the main text, once we expand the definition of real balances to include
the real value of money in addition to the fruit dividend of the maturing assets. We therefore
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directly proceed to the analysis of a buyer’s optimal behavior.

1.3 Objective Function and Optimal Behavior

In this sub-section, we characterize the optimal portfolio choice of the representative buyer.
We will do so by deriving the buyer’s objective function, i.e. a function that summarizes the
buyer’s cost and benefit from choosing any particular portfolio (m̂, â1, â2). Substitute (6) and
(7) into (5), and lead the resulting expression by one period to obtain

E
{
Ωi(m̂, â1, â2)

}
= f V (ẑ + ζ, â2 − χ) + (ℓ− f)V (ẑ, â2)

+ fW (ẑ − ζ̃ , â2 + χ̃) + (1− ℓ− f)W (ẑ, â2), (8)

where f is a shortcut for f(ℓ, 1− ℓ). Since each unit of asset that matures in the next period pays
one unit of fruit before the LW market opens, it is understood that ẑ = φ̂m̂+ â1 = φ̂m̂+ d.

The four terms in (8) represent the benefit for a buyer who holds a portfolio (m̂, â1, â2) and
turns out to be a matched C-type (with probability f ), an unmatched C-type (with probability
ℓ − f ), a matched N-type (with probability f ), or an unmatched N-type (with probability 1 −
ℓ− f ), respectively. The expressions χ, ζ , and χ̃, ζ̃ are implicitly described by the solution to the
OTC bargaining problem. In particular,

χ = χ(ẑ, z̃, â2), ζ = ζ(ẑ, z̃, â2),

χ̃ = χ(z̃, ẑ, ã2), ζ̃ = ζ(z̃, ẑ, ã2).

In these expressions, the first argument represents the C-type’s real balances, the second argu-
ment represents the N-type’s real balances, and the third argument stands for the C-type’s long
term asset holdings (recall from the main text that the N-type’s long term asset holdings do not
affect the bargaining solution). Terms with tildes stand for the representative buyer’s beliefs
about her potential counterparty’s real balances and long term asset holdings in the OTC.3

Next, we substitute W and V from (2) and (4), respectively, into (8). We insert the term
E {Ωi(m̂, â1, â2)} into (1), and we focus on the terms inside the maximum operator of (1). We
define the resulting expression as J(m̂, â1, â2), and we refer to it as the buyer’s objective func-
tion. The objective function is further separated into a cost component and an expected-benefit
component of carrying assets. We denote this expected benefit function byG(ẑ, â2), recognizing
that money and short term assets are perfect substitutes and combining them into a choice of

3 For instance, ζ̃ = ζ(z̃, ẑ, ã2) stands for the amount of real balances that the agent will give away if she is a
matched N-type. This term depends on her own real balances (ẑ), and the real balances (z̃) and long term asset
holdings (ã2) of her trading partner (a C-type). The terms χ, ζ, and χ̃ admit similar interpretations.
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real balances, ẑ ≡ φ̂m̂+ â1. After some manipulations, one can verify that

J(m̂, â1, â2) = −φm̂− ψ1â1 − ψ2â2 + β G(φ̂m̂+ â1, â2),

G(ẑ, â2) = f
[
u (ẑ + ζ) + ψ̂1 (â2 − χ)

]
+ (ℓ− f)

[
u (ẑ) + ψ̂1â2

]
+ f

[
ẑ − ζ̃ + ψ̂1 (â2 + χ̃)

]
+ (1− ℓ− f)

(
ẑ + ψ̂1â2

)
. (9)

The negative terms in the definition of J represent the cost of purchasing various amounts of
the three assets available in the economy.4 The four terms in the definition of G admit similar
interpretations as their counterparts in equation (8). For instance, the first term represents the
expected benefit of a C-type buyer who matches in the OTC market. This agent will increase
her LW consumption by an amount equal to ζ , but she will also go to next period’s CM with
her long term assets reduced by χ. In this event, the terms ζ, χ will depend on her own choices
ẑ, â2, and on her trading partner’s (who is an N-type) real balances, z̃.

We can now proceed with the examination of the buyer’s optimal choice of (ẑ, â2). We will
do so for any possible money and asset prices, and for any given beliefs about other agents’
money and asset holdings. We focus on prices that satisfy φ > βφ̂, since we know that this
will be always true in steady-state monetary equilibria with µ > β − 1 (unless φ = φ̂ = 0,
interpreted as a non-monetary equilibrium). Also, the asset prices have to satisfy ψ1 ≥ β and
ψ2 ≥ βψ̂1, since violation of these conditions would generate an infinite demand for the assets.
The optimal behavior of the buyer is described formally in Lemma 1 below. Here, we provide
an intuitive explanation of the buyer’s optimal portfolio choice.

The objective function of the buyer depends on the terms χ, ζ, χ̃, and ζ̃ , which, in turn,
depend on the bargaining protocol in the OTC market. Given the buyer’s beliefs (z̃, ã2), she can
end up in different branches of the bargaining solution, depending on her own choices of (ẑ, â2).
In general, the domain of the objective function can be divided into five regions in (ẑ, â2)-space,
arising from three questions: (i) When the C-type and the N-type pool their real balances in the
OTC market, can they achieve the first-best in the LW market? (ii) If I am a C-type, do I carry
enough assets to compensate the N-type? (iii) If I am an N-type, do I expect a C-type to carry
enough assets to compensate me? These regions are illustrated in Figure 2 of the main text, and
are also described in detail there. Here, we directly continue to state the most important facts
about the optimal choice of the representative buyer:

Lemma 1. Taking prices, (φ, φ̂, ψ1, ψ̂1, ψ2), and beliefs, (z̃, ã), as given, and assuming that µ > β − 1

and φ > 0, then the optimal choice of the representative agent, (m̂, â1, â2), satisfies:

4 In the objective function, the term −ψ1â1 appears as the cost of purchasing assets that mature in the next
period. However, we know that the term ψ1a2 is also present in the agent’s value function (see equation (1)), so
that, practically, the cost of leaving the CM with â1 units of assets that mature tomorrow is −ψ1(â1−a2). However,
the term ψ1a2 only has a level effect, and it does not change the optimal choice of â1, with the exception that any
choice of the agent should respect the restriction â1 − a2 ≥ 0.
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a) Money and short term assets are perfect substitutes. If ψ1 > φ/φ̂, then â1 = 0, and if ψ1 < φ/φ̂,
then m̂ = 0.

b) If the optimal choice (ẑ, â2) is strictly within any region, or on the boundary of Region 1 with
any other region, and if ψ1 = φ/φ̂, it satisfies the first-order condition ∇J = 0, or equivalently,
β∇G = (ψ1, ψ2).

c) If φ > βφ̂ and ψ2 = βψ̂1, the optimal ẑ is unique, and any â2 is optimal as long as (m̂, â) is in
Regions 1, 2, or 3 (or on their boundaries).

d) If φ > βφ̂ and ψ2 > βψ̂1, the optimal choice is unique, and it lies in Regions 4 or 5 or on their
boundaries with Regions 2 and 3.

Moreover, let Gi(ẑ, â2), i = 1, ..., 5, denote the expected benefit function in Region i, and Gi
k(ẑ, â2),

k = 1, 2, its derivative with respect to the k-th argument. Then, we have:

G1
1(ẑ, â2) = 1 + (ℓ− λf) [u′ (ẑ)− 1] , (10)

G2
1(ẑ, â2) = 1 + (ℓ− λf) [u′ (ẑ)− 1] + λf [u′ (ẑ + z̃)− 1] , (11)

G3
1(ẑ, â2) = 1 + (ℓ− λf) [u′ (ẑ)− 1] + f [u′ (ẑ + z̃)− 1] , (12)

G4
1(ẑ, â2) = 1 + ℓ [u′ (ẑ)− 1] + (1− λ)f [u′ (ẑ + z̃)− 1] + λf

u′ [ẑ + ζa(ẑ, â2)]− u′ (ẑ)

(1− λ)u′ [ẑ + ζa(ẑ, â2)] + λ
, (13)

G5
1(ẑ, â2) = 1 + ℓ [u′ (ẑ)− 1] + λf

u′ [ẑ + ζa(ẑ, â2)]− u′ (ẑ)

(1− λ)u′ [ẑ + ζa(ẑ, â2)] + λ
, (14)

G1
2(ẑ, â2) = G2

2(ẑ, â2) = G3
2(ẑ, â2) = ψ̂1, (15)

G4
2(ẑ, â2) = G5

2(ẑ, â2) = ψ̂1

{
1− f + f

u′ [ẑ + ζa(ẑ, â2)]

(1− λ)u′ [ẑ + ζa(ẑ, â2)] + λ

}
, (16)

where ζa( · , · ) is the real balance trading volume in the OTC market in the case where long term assets
are scarce, defined as part of the bargaining solution in the main text.

Proof. Consider first the derivatives of the expected benefit function with respect to ẑ and â2,
i.e. equations (10)-(16). To obtain these conditions we substitute the appropriate solution to the
bargaining problem (depending on the region in question) into (9), and we differentiate with
respect to ẑ or â2.

As an illustration, consider Region 2. Recall that in this region, ẑ < q∗ − z̃, â2 > ā(ẑ, z̃), but
ã2 < ā(z̃, ẑ). Based on this information, we have χ = ā(ẑ, z̃), ζ = z̃, χ̃ = ã2, and ζ̃ = ζa(z̃, ã2).
Substituting these terms into the expected surplus function implies that

G2(ẑ, â2) = f {u (ẑ + z̃)− βψ1 ā(ẑ, z̃)}

+ (ℓ− f) u(ẑ) + f {[ẑ − ζa(z̃, ã2)] + βψ1ã2}+ (1− ℓ− f) ẑ.
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It is now straightforward to show that G2
1 and G2

2 are given by (11) and (15), respectively. The
remaining derivations follow exactly the same steps.

Notice that we can solve J i
1 = 0, i = 1, ..., 5, with respect to either the term φ/(βφ̂), which,

in steady state equilibrium, is just one plus the nominal interest rate, or the term ψ̂1, whichever
is smaller (unless they are equal). This will yield the demand for real balances as a function
of their holding cost. For future reference, it is important to highlight that the demand for real
balances is in fact continuous on the boundaries 1-2, and 1-5.5 Similarly, we can solve J i

2 = 0,
i = 1, ..., 5, with respect to ψ2/(βψ̂1), in order to obtain the demand for long term assets. It can
be easily verified that this function is continuous on the boundaries 1-2, 2-5, 2-3, and 4-5.

Some preliminary facts:
Next, let us state some facts about the surplus function G : R2

+ → R and the objective func-
tion J : R3

+ → R:
Fact 1: G (and therefore J) is continuous everywhere.
Proof: The solution to the OTC bargaining problem is continuous. One of the three con-

straints ζ ≤ z̃, ζ ≤ q∗ − z, and χ ≤ a2 must bind, together with the bargaining surplus sharing
equation. Each of these is continuous in the choice variables. Therefore, G is continuous.

Fact 2: G (and therefore J) is differentiable within each of the five regions defined above.
Proof: As above, one of the constraints must bind together with the surplus sharing equation.

Each of these is differentiable in the choice variables, and within a region of G, the binding con-
straint does not switch. Furthermore, G is differentiable on those boundaries where both FOCs
are continuous (see above).

Fact 3: G is strictly concave in the first argument (real balances) whenever z < q∗.
Proof: As G is continuous everywhere and differentiable within each region, G1 is defined

everywhere except at a finite number of boundary crossings. We need to show that G1 is de-
creasing as a function of ẑ within each region, and that G1− ≥ G1+ on each boundary, where
“–” denotes the left derivative and “+” denotes the right derivative.
That G1 is strictly decreasing in ẑ within Regions 1-3 follows immediately from equations (10)-
(12), and the fact that u′ is strictly decreasing. In Regions 4 and 5, showing that G1 is decreasing
in ẑ is less obvious. In Region 5 (where ẑ + ζ < q∗), we have

G5
1 = ℓ [u′(ẑ)− 1] + λf

u′(ẑ + ζ)− u′(z)

(1− λ)u′(ẑ + ζ) + λ
.

Since ζ is defined by the equation (1− λ) [u (z + ζ)− u(z)] + λζ = ψ1a2, applying total differen-
tiation in this equation yields

dζ

dẑ
= (1− λ)

u′(ẑ)− u′(ẑ + ζ)

(1− λ)u′(ẑ + ζ) + λ
.

5 The demand for real balances is also continuous on the boundaries of the Regions 1-3 and 4-5 if ã2 ≥ ā(z̃, q∗ −
z̃), in which case Region 2 does not exist.
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Consequently,

∂G5
1

∂z
=

1

[(1− λ)u′(ẑ + ζ) + λ]3

{
fλ [(1− λ)u′(ẑ) + λ]

2
u′′(ẑ + ζ)

+ [(ℓ− f)λ+ ℓ(1− λ)u′(ẑ + ζ)] [(1− λ)u′(ẑ + ζ) + λ]
2
u′′(ẑ)

}
.

Since u′′( · ) < 0, the entire term ∂G5
1/∂ẑ < 0. In Region 4, the only addition is a term involving

u′( · ), which is clearly decreasing too. Hence, G4
1 is decreasing in ẑ as well.

As we discussed above, G1 is continuous across all the boundaries of the various regions,
except the boundaries 2-3, 3-4, 4-5, 2-5, and the crossing 2-4. With some algebra, one can check
that G2

1 < G3
1, G3

1 < G4
1, G4

1 < G5
1, and G2

1 < G5
1, across the respective boundaries. Also, G3

1 > G5
1

at the crossing 2-3-4-5, establishing the chain G2
1 < G5

1 < G3
1 < G4

1 at this crossing. Conse-
quently, G is concave in ẑ throughout.

Fact 4: G is concave in the second argument (long term assets), strictly in Regions 4 and 5.
Proof: As G is continuous everywhere and differentiable within each region, G2 is defined

everywhere except at a finite number of boundary crossings. We need to show that G2 is de-
creasing as a function of â2 within each region (strictly, in Regions 4 and 5), and that G2− ≥ G2+

on each boundary, where “–” denotes the left derivative and “+” denotes the right derivative.
In Regions 1-3, Gi

2 is constant, hence weakly concave. We now show that Gi
2 is strictly de-

creasing in â2 within Regions 4 and 5. Again applying total differentiation in equation (1 −
λ) [u (z + ζ)− u(z)] + λζ = ψ1a2, yields

∂ζ

∂a2
=

βψ̂1

(1− λ)u′ (ẑ + ζ) + λ
.

Since this expression is clearly positive, and u′ is strictly decreasing, it follows that ∂Gi
2/∂â2 < 0,

for i = 4, 5.
Next, using the definitions of the regions, one can see that G2 is continuous across the

boundary 1-5, but not the boundaries 2-5 or 3-4. The term u′(ẑ + ζ)[(1 − λ)u′(ẑ + ζ) + λ]−1

is greater than 1 in Regions 4 and 5, because ẑ + ζ < min{ẑ + z̃, q∗} (by definition of Regions 4
and 5), and therefore u′( · ) > 1.

Fact 5: G is weakly concave everywhere.
Proof: We need to show that G2 is non-increasing as a function of ẑ within each region, and

across boundaries. First, G2 depends on ẑ only in Regions 4 and 5. There, ζ is strictly increasing
in ẑ, therefore u′(ẑ + ζ) is strictly decreasing, and so is u′(ẑ + ζ)[(1− λ)u′(ẑ + ζ) + λ]−1.

Now, the only boundaries where G2 is not a continuous function of ẑ are the boundaries of
Regions 3 and 4, and 2 and 5, which are downward sloping in (ẑ, â2)-space. On these bound-
aries, G2− > G2+ (see Fact 4). This is sufficient because an infinitesimal increase in ẑ has the
same effect as an infinitesimal increase in â2 (the definition ofG2+), and vice versa, as the bound-
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aries are downward sloping in (ẑ, â2)-space.
We conclude that G2 is weakly decreasing as a function of ẑ, therefore G is submodular (real

balances and long term assets are strategic substitutes). As G is also weakly concave in each
argument, it is weakly concave overall.

Proof of the statement of the Lemma:
a) If ψ1 > φ/φ̂, then ∂J/∂m̂ > ∂J/∂â1 for any i = 1, . . . , 5, and vice versa.
b) Since ψ1 = φ/φ̂, ∂J/∂m̂ = ∂J/∂â1 for any i = 1, . . . , 5; therefore, ∇J = 0 is equivalent to

β∇G = (ψ1, ψ2). The fact that ∇J = 0, follows from the fact that G is weakly concave overall
and differentiable within each region. So if the optimal choice (ẑ, â2) is within a region, the
first-order conditions must hold.

c) The fact that ψ2 = βψ̂1 rules out Regions 4 and 5. To see this point, notice from (16) that for
any (ẑ, â2) in the interior of these regions, ψ2 = βψ̂1 implies βGi

2 > ψ2, for i = 4, 5. In Regions
1-3, demand for real balances is strictly decreasing, so the ẑ satisfying φ > βφ̂ is unique. But
any â2 in Regions 1-3 satisfies βGi

2 = ψ2, i = 1, 2, 3.
d) The fact that ψ2 > βψ̂1 rules out the interior of Regions 1-3 or the boundary 1-5. To see

why, notice from (15), that for any (ẑ, â2) in the regions in question, ψ2 > βψ̂1 implies βGi
2 < ψ2,

for i = 1, 2, 3.

Lemma 1 formally describes the optimal behavior of the representative buyer. Given the
results stated in the lemma, one can describe in detail the demand functions for the various
assets, which we do in the following section. Although interesting, this analysis is not essential
for understanding the main results of the paper, hence, the reader may skip ahead to Section 1.5
for our discussion of the steady-state equilibrium.

1.4 Analysis of Money and Asset Demand

In this section, we explore the implications of Lemma 1 for the buyers’ demand for the various
assets. Consider first the optimal choice of long term assets (i.e. â2). If the price of long term
assets satisfies ψ2 = βψ̂1, the cost of carrying long term assets is zero and, therefore, it would
be suboptimal for the buyer to be in a region where her long term assets would not allow her
to afford the optimal quantity of liquid assets, when a C-type. As a result, when ψ2 = βψ̂1,
the buyer never chooses a portfolio in the interior of Regions 4 and 5. If ψ2 > βψ̂1, carrying
long term assets is costly. The optimal choice of the buyer is characterized by the first-order
conditions and, graphically, it lies within Regions 4 or 5. For any set of prices which satisfy
ψ1 = φ/φ̂ > β, the optimal choice of real balances is uniquely characterized by the first-order
condition with respect to either m̂ or â1.

Next, we demonstrate the determination of the demand for real balances. This demand, Dz,
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Figure 1: Demand for real balances given long term asset holdings a′2.

is plotted in Figure 1 against the ratio φ/(βφ̂), which captures the holding cost of real balances.6

The level of long term asset holdings is kept fixed at â2 = a′2 indicated in the lower panel of
the figure. Notice that the lower panel of Figure 1 is identical to Figure 2 in the main text.
Aligning the two plots vertically allows the reader to easily indicate which region the buyer
will find herself in, for any choice of ẑ, and for a given value of â2. For â2 = a′2, any ẑ > z̄1,5

implies that the buyer is in Region 1, and in this region one additional unit of real balances has

6 More precisely, φ/(βφ̂) captures the holding cost of money. However, in any equilibrium where m̂, â1 > 0, the
holding cost of the two liquid assets will necessarily be the same.
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the following benefits: a) it serves as a store of value, if the buyer is an N-type; b) it allows the
buyer to purchase more goods in the LW market, if she is an unmatched C-type; and c) it allows
the buyer to reduce her demand for the N-type’s real balances, if she is a matched C-type.

As ẑ decreases below z̄1,5, the buyer finds herself in Region 5. The function Dz is continuous
and exhibits a kink at z̄1,5, and the slope of Dz is steeper to the left of z̄1,5. To illustrate this
property, consider how the marginal benefit of carrying one additional unit of real balances
changes as the buyer moves from Region 1 to Region 5. Recall that, in Region 1, an additional
unit of real balances has three effects. The effects indicated by (a) (store of value when N-type)
and (b) (higher marginal utility when unmatched C-type) are still valid as we enter Region 5.
What differs is the marginal benefit of real balances when the buyer is a matched C-type: in
this event, an additional unit of ẑ does not only allow her to reduce her demand for the N-
type’s real balances (effect (c) above), but it allows her to acquire extra purchasing power in the
forthcoming LW market.7 Hence, the slope of the demand function is higher (in absolute value)
for ẑ in the range [z̄4,5, z̄1,5) compared to [z̄1,5, q

∗). Also, from (10) and (14), we have

G5
1 −G1

1 = λf

{
u′(ẑ)− 1 +

u′ [ẑ + ζa(ẑ, â2)]− u′ (ẑ)

(1− λ)u′ [ẑ + ζa(ẑ, â2)] + λ

}
,

which is what differentiates Dz on the two sides of z̄1,5. When ẑ = z̄1,5, we have ẑ+ ζa = q∗, and
it is easy to verify that G5

1 −G1
1 = 0. As a result, Dz exhibits a kink but is continuous at z̄1,5.

Finally, Dz exhibits a jump, at z̄4,5, the value of ẑ that, given â2 = a′2, brings the agent on the
boundary of Regions 4 and 5 (and in the interior of Region 5 if and only if ẑ > z̄4,5). Consider the
behavior of Dz in a neighborhood of this point. In Region 5, an additional unit of real balances
serves as a store of value, if the buyer is an N-type, and it allows the buyer to purchase more
goods in the LW, if she is a C-type (matched or unmatched). These effects remain valid as we
enter into Region 4. However, in Region 4 a new effect arises, which is relevant when the buyer
is a matched N-type. In this region, the C-type counterparty can afford to buy all of the buyer’s
real balances, hence the buyer’s choice of ẑ affects the OTC terms of trade even when she is
an N-type (assuming that λ < 1). Specifically, the less real balances the buyer brings, the more
desperate the C-type will be for those real balances, and the more long term assets she will be
willing to give up in order acquire them. Formally, (14) and (13) imply that

G4
1 −G5

1 = (1− λ)f [u′ (ẑ + z̃)− 1] .

7 Put simply, in the event that the buyer is a matched C-type, if she is in Region 1, she will be able to buy q∗

anyway. Bringing more ẑ will not change the quantity of LW consumption (it will still be equal to q∗), but it will
allow her to rely less heavily on the N-type’s liquid assets (which could be quite important, especially if the terms
of trade are against her in the OTC market, i.e. if λ is low). On the other hand, in Region 5, the matched C-type
cannot buy q∗ even after purchasing all the real balances of the N-type that she can afford. In this case, bringing
more ẑ strictly increases her LW consumption.
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Since z̄4,5 + z̃ < q∗, this term is strictly positive when ẑ = z̄4,5, provided that λ < 1. This gap
between the values of G4

1 and G5
1 reflects the discontinuity of Dz at z̄4,5.

1.5 Definition of Equilibrium and Preliminary Results

We restrict attention to symmetric steady-state equilibria, where all agents choose the same
portfolios, and the real variables of the model remain constant over time. Since, in steady state,
the real money balances do not change over time, we have φ/φ̂ = 1 + µ in any monetary equi-
librium where φ̂ > 0. In such an equilibrium, we must also have ψ1 = ψ̂1 = 1 + µ, since money
and short term assets are perfect substitutes.8 Before stating the definition of a steady-state
equilibrium, it is important to notice that symmetry rules out Regions 2 and 4 of the buyer’s
choice problem, since a C-type and an N-type buyer are ex ante identical.

In order to characterize equilibrium, we use three restrictions. First, aggregate real balances
Z are the combination of real money (φM ) and maturing short term bonds (A1), so Z ≥ A1. Sec-
ond, recall the constraint that agents cannot sell off-the-run short term assets in the CM; at most,
they can refrain from buying newly issued short term bonds. So the post-CM holdings of short
term bonds (equal to A1 in symmetric equilibrium) must exceed the pre-CM holdings for every
agent, including those of asset buyers in the preceding OTC market (equal to A2 + χ(Z,Z,A2)

in symmetric equilibrium), thus A1 ≥ A2 + χ(Z,Z,A2). Together, these restrictions rule out
combinations of low Z and high A2. With the following restriction on structural parameters,
Region 3 is ruled out altogether:

1 + (1− λ)
[
u(q∗)−u(q∗/2)

q∗/2
− 1

]
1 + (ℓ− λf) [u′(q∗/2)− 1]

>
β

2
. (17)

This restriction guarantees that, in Figure 2, the lineZ = 2A2 lies below the boundary of Regions
1,3, and 5 (or equivalently that the term Ā1, indicated in the figure and defined in (23), satisfies
Ā1 ≥ q∗/2). While it is possible to construct a counterexample, the restriction is satisfied for a
wide range of utility functions if f is close to ℓ (C-types have a high probability of matching).
Henceforth, we assume that the model’s parameters satisfy the inequality stated in (17).

With the above constraints satisfied, only two regions remain on aggregate:

1. Agents carry enough real balances and long term assets so that, when matched in the OTC
market, the C-type can acquire sufficient liquidity in order to achieve the first-best in the
LW market.

8 To see how this simple relationship emerges, one just needs to equate the rate of return on money, φ̂/φ− 1 =

(1 + µ)−1 − 1, with the rate of return on the short term assets, ψ̂−1 − 1.
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Figure 2: Aggregate regions of equilibrium, in terms of real balances.

5. Agents carry so few long term assets that, when matched in the OTC, the C-type will sell
all of her long term assets but not obtain enough of the N-type’s real balances in order to
achieve the first-best in the LW market.

These regions are described in Figure 2, and we will refer to them as the “aggregate regions”,
as opposed to the “individual regions” of the buyer’s optimal portfolio problem. In general,
Region 1 represents the region of abundance of the long maturity asset, and Region 5 represents
the region of scarcity.

Definition 1. A symmetric steady-state equilibrium is a list {φ, ψ1, ψ2, χ, ζ, Z, q1, q2}, where Z =

φM + A1 represents the real balances, which are equal to the amount of good exchanged in
the LW market when the buyer was not matched in the preceding OTC market, i.e. q1. The
term q2 is the amount of good exchanged in the LW market when the buyer was matched. The
equilibrium objects satisfy:

i. The representative buyer behaves optimally under the equilibrium prices ψ1, ψ2, φ, and,
moreover, ψ1 = ψ̂1 = φ/φ̂ = 1 + µ if φ̂ > 0.

ii. The equilibrium quantity q2 is defined as the following function of Z:

q2(Z) =

q∗, in Region 1,

q̃(Z), in Region 5,

where q̃ solves (1− λ) [u(q̃)− u(Z)] + λ (q̃ − Z) = ψ1A2.
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iii. The terms of OTC trade (χ, ζ) satisfy the bargaining solution evaluated at the aggregate
quantities Z and A2.

iv. Markets clear at symmetric choices, and expectations are rational: m̂ = (1 + µ)M , ẑ = z̃ =

Z, â1 = A1, and â2 = ã2 = A2.

Lemma 2. Define the function Z(µ,A1) ≡ max {A1, {Z : (1 + µ)/β = 1 + (ℓ− λf)(u′(Z)− 1)}}.
If µ > β − 1 and A1 ≥ A2 + χ[Z(µ,A1), Z(µ,A1), A2] are satisfied, then a symmetric steady-state
equilibrium exists and is unique.

Proof. The equilibrium objects q1, q2, χ, and ζ are all deterministic functions of Z, so it suffices
to focus on Z, ψ1, and ψ2. Since µ > β− 1, we have φ > βφ̂ if φ̂ > 0. Consequently, parts (c) and
(d) of Lemma 1 apply, and an optimal (ẑ, â2) exists and ẑ is unique. The objects ψ1 and φ̂ (and
a proportional φ = (1 + µ)φ̂) must be chosen such that ẑ = Z and â1 = A1 satisfy the demand
for real balances, βG1 = ψ1. If this equation is satisfiable for ψ1 = 1 + µ and some Z > A1, then
φ = βφ̂ > 0 and ψ1 = φ/(βφ̂) = 1 + µ. Otherwise, Z = A1 and φ = φ̂ = 0, and ψ1 ≤ 1 + µ.

Finally, set â2 = A2. The assumption A1 ≥ A2 + χ[Z(µ,A1), Z(µ,A1), A2] guarantees that
agents never need to sell assets in the CM; N-types held two-period assets A2 at the end of the
preceding period, which become one-period assets in the given period, and obtain χ more in
the OTC market if they are matched. C-types and unmatched N-types will enter the CM with
less than A2 + χ one-period assets, so every agent can obtain the symmetric quantity of short
term assets, A1, by buying newly issued ones and not by selling previously-issued ones.

Additionally, if the parameters of the model satisfy inequality (17), then the equilibrium
must be in Regions 1 or 5, as described in the text. Now examine the demand function for long
term assets (equations (15) and (16)). It is constant in Regions 1 and strictly decreasing in â2 in
Region 5 (also see the proof of Lemma 1, Fact 4), and is continuous on the boundary of Regions
1 and 5. If (Z,A2) lies in the interior of Region 5, then ψ2 > βψ1 is unique. If (Z,A2) lies in the
interior of Region 1 or on the boundary of Regions 1 and 5, then ψ2 = βψ1, which is unique.

Having formally described the definition of a steady-state equilibrium and guaranteed its
existence and uniqueness, the next task is to characterize such equilibria. Ultimately, we wish
to describe the equilibrium variables as functions of the exogenous supply parameters A1, A2

and the policy parameter µ. Thus, before we state the main results, it is useful to describe the
aggregate regions in terms of the parameter µ rather than Z. This task becomes easier with the
help of Figure 3. An explicit description of the various curves that appear in this figure, as well
as real balances Z in terms of inflation µ, is provided in Section 1.7 below. Here, we proceed
with an intuitive interpretation. The following three observations are crucial.

a) The real balances Z = φM +A1 are decreasing in µ, but also bounded below by A1. Con-
sequently, if inflation exceeds a certain level µ̄(A1, A2) (indicated as a green piece-wise curve
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Figure 3: Aggregate regions of equilibrium, in terms of inflation, drawn under the assumption
that A1 ∈ (Ā1, q

∗), where Ā1 is defined in (23). If A1 ≤ Ā1, then Region NA is empty and the
horizontal segments of the blue and red lines coincide.

in Figure 3), then φ = 0, i.e. no monetary equilibrium exists. This critical level is a decreasing
function of A1. When A2 is relatively plentiful, it does not affect the demand for real balances
and the line µ = µ̄(A1, A2) is vertical (the segment between points 2 and 3). However, when A2

is relatively scarce, it does affect the terms of trade in the OTC market and hence the demand
for real balances. As A2 decreases, C-types must increasingly rely on their own real balances, so
that, despite an increasing cost of holding money (as µ increases), a monetary equilibrium still
exits. Thus, the line µ = µ̄(A1, A2) is downward sloping for lowA2 (the segment between points
1 and 2). For any given (A1, A2), increasing inflation beyond µ̄ has no effect on real balances.

b) The line between the origin and point 2 is the inverted image of the boundary of Regions
1 and 5 in Figure 2, i.e. it separates the parameter space in a way that for any A2 north of the
line, long term assets are abundant in the OTC market. This line slopes upwards because higher
inflation both reduces the amount of real balances and increases the need to trade in the OTC
market, hence making A2 more likely to be scarce. As we move east of point 2, we enter the
non-monetary region, and real balances are independent of µ. Hence, the line that separates
the space into the region of abundance or scarcity of the long term assets (in the OTC market)
becomes a horizontal line (it depends only on the relative values of A1, A2, but not on µ).

c) Furthermore, we need to consider the constraint that agents are unable to sell off-the-run
short term assets in the CM. In other words, we need to guarantee that every agent enters the
CM with an amount of off-the-run assets smaller than the amount of short term assets they
leave the CM with. At the Friedman rule, i.e. for µ = β − 1, no OTC trade will take place, and
the relevant constraint is simply A2 ≤ A1. Away from the Friedman rule, N-type agents will
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leave the OTC with an additional amount of assets, χ, which increases with inflation, so the
constraint A2 ≤ A1 − χ becomes more binding (between points 3 and 4). For µ ≥ µ̄ (east of
point 3), real balances and χ are unaffected by µ and the constraint becomes a horizontal line.

In summary, combinations of parameters (A2, µ) that lie in the shaded region in Figure 3
are ruled out. In the remaining parameter space, every point that lies on the west (east) of
the green piece-wise curve is associated with monetary (non-monetary) equilibrium. Similarly,
every point that lies on the north (south) of the blue piece-wise curve is associated with equi-
libria where the long term assets are abundant in the OTC market. Thus, every equilibrium
necessarily lies in one of four distinct regions clearly marked in Figure 3: i) MA stands for mon-
etary equilibrium where long term assets are abundant in the OTC market, ii) MS stands for
monetary equilibrium where long term assets are scarce in the OTC market, iii) NA stands for
non-monetary equilibrium where long term assets are abundant in the OTC market, and iv) NS
stands for non-monetary equilibrium where long term assets are scarce in the OTC market.

1.6 Characterization of Equilibrium

We are now ready to characterize equilibrium. We begin this subsection with an intuitive de-
scription of the results presented in Propositions 1, 2, and 3. The critical parameter in the
analysis is the supply of maturing assets A1. If this supply is plentiful, in a way to be made
precise in Proposition 1, short term assets alone are enough to satisfy the liquidity needs of the
economy (for trade in the LW market). In this case, there is no room for money and no role for
OTC trade. On the other hand, if A1 is insufficient to satisfy the liquidity needs of the economy
(which we consider the interesting case), a role for money arises (the lower the value of A1, the
bigger that role). By no-arbitrage, the short term asset price will be fully determined by the
policy parameter µ, in particular ψ1 = 1+µ. Away from the Friedman rule, the equilibrium real
balances will always be suboptimal (Z < q∗), and this has two important implications for asset
prices. First, ψ1 will carry a liquidity premium (i.e. ψ1 > β), because the marginal unit of short
term assets is not only a good store of value, but it can also increase consumption in the LW
market. Second, with Z < q∗, trade in the OTC market becomes crucial. In this case, the long
term assets can potentially also carry a liquidity premium, not because they can facilitate trade
in the LW market, but because they can be used in the OTC market in order to purchase liquid
assets. Naturally, ψ2 will include a liquidity premium if the supply A2 is relatively scarce, in the
precise sense that the equilibrium falls in Regions MS or NS in Figure 3.

We now describe these results in a formal way, in propositions analogous to those in the
main text.

Proposition 1. If A1 ≥ q∗, the equilibrium is always non-monetary regardless of µ, no trade occurs in
the OTC market, and asset prices always equal their fundamentals: ψi = βi for i = 1, 2.
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Proof. We know that Z ≥ A1, therefore ẑ ≥ A1 in every equilibrium, and G1 = 1. As µ > β − 1,
the cost of holding money is positive and βG1 = 1 + µ is unsatisfiable. Therefore, φ = 0

(money has no value) and Z = A1. OTC bargaining yields ζ = χ = 0. Optimal behavior yields
ψ1 = βG1 = β and ψ2 = βψ1 = β2.

When A1 ≥ q∗, the supply of maturing short term assets suffices to cover the liquidity needs
of the economy (i.e. the need for trade in the anonymous LW market). This has the following
consequences. First, it is clear that in this economy there is no role for money: every LW meet-
ing will always involve the exchange of the optimal amount of good, q∗. Second, since agents
already bring with them sufficient liquidity in order to purchase q∗, there is no role for trade
in the OTC market. Third, since assets are issued in a competitive market, ψ1 will reflect the
benefit of holding one additional unit of short term assets. But since here A1 ≥ q∗, the marginal
unit of short term assets is only good as a store of value, and not as a facilitator of trade in the
LW market. Thus, the unique equilibrium price must be ψ1 = β. Finally, with no trade in the
OTC market, long term assets cannot possibly be valued for any (direct or indirect) liquidity
properties, which simply means that ψ2 = β2.

Henceforth, we maintain the assumption A1 < q∗. Proposition 2 describes equilibrium
prices and how they are affected by monetary policy. Proposition 3 does the same for the equi-
librium value of production in the LW market. For this discussion, it is important to recall the
definitions in equations (19)-(26) in Appendix 1.7.

Proposition 2. The equilibrium price of short term assets is given by ψ1 = min{1+ µ, 1+ µ̄(A1, A2)}.
The equilibrium price of long term assets depends on the value of A2. We have two cases:

Case 1: If A2 ≥ Ā2(A1), then ψ2 = βψ1.

Case 2: If A2 < Ā2(A1), then there exists a cutoff µ̃(A2) such that:
a) For all µ ∈ (β − 1, µ̃(A2)], we have ψ2 = βψ1;
b) For all µ ∈ (µ̃(A2), µ̄(A1, A2)), we have ψ2 = βρ(µ,A2)ψ1, where ρ(µ,A2) ∈ (1, (1 + µ)/β) is
a strictly increasing function of µ and a strictly decreasing function of A2;
c) For all µ ≥ µ̄(A1, A2), we have ψ2 = βρ(µ̄, A2)ψ1.

The term ρ is given by

ρ(µ,A2) = 1 + λf
u′(Z + ζM)− 1

(1− λ)u′(Z + ζM) + λ
, (18)

where ζM is defined in (21).

Proof. Proven jointly with Proposition 3 below.

The results reported in Proposition 2 are highlighted in Figure 4. As pointed out earlier, in
any monetary equilibrium (for µ < µ̄(A1, A2)), by no-arbitrage, the rate of return on money and
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the short term asset has to be equal, implying that ψ1 = 1+µ. An increase in µmakes the cost of
holding money higher, and induces agents to replace money with the relatively cheaper short
term asset, which is a perfect substitute. In equilibrium, this leads to an increase in the demand
for short maturities and their price ψ1. However, if the monetary authority increases µ beyond
the threshold µ̄(A1, A2), the equilibrium becomes non-monetary, and any further increase in µ

has no effect on asset prices (or any other equilibrium variables). For any µ > β − 1, the price
of short term assets carries a liquidity premium (i.e. ψ1 > β), which reflects the assets’ property
to mature in time to take advantage of consumption opportunities in the LW market.

Ψ1 Ψ2

Β-1 Μ
�

Μ
Μ

Β

Β2

1

Figure 4: Equilibrium prices as functions of inflation.

The results that concern the equilibrium price of long term assets are even richer. Long
term assets can be priced at a (liquidity) premium for two reasons:9 first, because long term
assets will become short term assets in the next period; second, because long term assets can
be used in the OTC market in order to purchase liquid assets. In other words, the assets that
do not mature today have indirect liquidity properties because they help agents bypass the
cost of holding liquid assets (which is positive when A1 < q∗ and µ > β − 1). If equilibrium
lies in Regions MA or NA (i.e. the regions of abundance of long term assets in OTC trade),
ψ2 = βψ1 > β2, and long term assets sell at a premium, but only because they will become short
term assets in the next period. In contrast, if A2 < Ā2(A1) and µ > µ̃(A2), then equilibrium lies
in the regions of relative scarcity ofA2 (RegionsMS orNS), and an additional unit of long term
assets can help agents purchase essential liquidity in the OTC (i.e. liquidity that allows them to
boost LW consumption). This property is valued by agents, who are now willing to buy long
maturities at a price greater than βψ1. Thus, the term ρ > 1 represents a premium that reflects

9 To be clear, the long term asset price will include a liquidity premium, whenever ψ2 exceeds the price that it
would obtain if we were to close down the LW market (and, therefore, shut off any liquidity channel in the model).
Clearly, this price would be the so-called fundamental value ψ2 = β2.

18



the aforementioned indirect liquidity properties of long term assets. It is increasing in µ (within
the regions of monetary equilibrium), precisely because the inflation tax that agents can avoid
by holding long term assets is itself increasing in µ. Similarly, ρ is decreasing in A2, because the
service that long term assets provide (helping agents avoid the cost of holding liquid assets)
becomes more valuable when A2 is more scarce.

Consider now the equilibrium values of the quantity of good in the LW market.

Proposition 3. The equilibrium value of q1 is always equal to Z. When µ < µ̄(A1, A2), then ∂q1/∂µ <
0, and when µ > µ̄(A1, A2), then ∂q1/∂µ = 0. Regarding the equilibrium value of q2:

Case 1: If A2 ≥ Ā2(A1), then q2 = q∗ for any µ > β − 1.

Case 2: If A2 < Ā2(A1), then for the same cutoff µ̃(A2) as in Proposition 2:
a) For all µ ∈ (β − 1, µ̃(A2)], q2 = q∗;
b) For all µ ∈ (µ̃(A2), µ̄(A1, A2)), q2 = Z + ζM < q∗ and q2 is a strictly decreasing function of µ;
c) For all µ ≥ µ̄(A1, A2), q2 = A1 + ζN < q∗ which does not depend on µ.

Proof. Proof of Propositions 2 and 3.
Recall that A1 < q∗ is a maintained assumption throughout, and note that Region NA is

empty if and only if A1 ≤ Ā1. We begin with the statements that do not depend on Cases 1 or 2.
If the equilibrium is monetary, ψ1 = φ/φ̂ = 1 + µ. If the equilibrium is non-monetary, plug

the definition of µ̄(A1, A2) into the first-order condition ψ1 = βGi
1 for the appropriate region (1

if long term assets are abundant, 5 if they are scarce).
By the OTC bargaining solution, q1 = Z. Among monetary equilibria, demand for real

balances is downward-sloping in inflation; to see this, evaluate the first-order conditions at
aggregate quantities. Among non-monetary equilibria, money is not valued, so µ is a mere
number that does not affect equilibrium.

Case 1: Let A2 ≥ Ā2(A1). Then the equilibrium can only be in the aggregate Regions MA or
NA, or Region 1 in (A2, Z)-space. By equation (15), the only solution to βG2 = ψ2 in Region 1 is
ψ = βψ1. Furthermore, Region 1 is defined by the branch of the OTC bargaining solution where
ζ = q∗ − z, so on aggregate, q2 = Z + ζ(Z,Z,A2) = q∗.

Case 2: Let A2 < Ā2(A1). Then the equilibrium is in Region MA (corresponding to Region 1)
if µ ∈ (β − 1, µ̃(A2)), in Region MS (corresponding to Region 5) if µ ∈ (µ̃(A2), µ̄(A1, A2)), or in
Region NS (corresponding to Region 5, but Z = A1 is now independent of µ) if µ > µ̄(A1, A2).

a) In Region MA, the results of Case 1 apply.
b) In Region MS, the first-order conditions βG5

1 = 1 + µ (money demand) and βG5
2 = ψ2

(demand for long term assets) apply, evaluated at aggregate quantities. Differentiating money
demand and the equation (21) jointly, one can see that Z is strictly decreasing in A2, Z + ζM

is strictly increasing in A2, and both Z and ζM are strictly decreasing in µ. Therefore, q2 is
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decreasing in µ, and q2 < q∗ is the very definition of Region 5. Finally, ρ(µ,A2) is exactly G5
2/ψ1

evaluated at aggregate quantities, so ψ2 = βρ(µ,A2)ψ1, and ρ is strictly increasing in µ and
decreasing in A2 because Z + ζM is the opposite, and u′( · ) is a strictly decreasing function.

c) In Region NS, the first-order conditions βG5
1 = ψ1 (demand for short term assets) and

βG5
2 = ψ2 (demand for long term assets) apply, evaluated at aggregate quantities. Substituting

the definitions of µ̄(A1, A2) and ζN (equation 22) yields ρ(µ̄(A1, A2), A2) = G5
2/ψ1 again.
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Figure 5: Equilibrium LW quantities as functions of inflation.

The results demonstrated in Proposition 3, and illustrated in Figure 5, are also very intu-
itive. Agents who did not match in the OTC have to rely exclusively on their own real balances.
Hence, q1 will always coincide with Z, and it will be a decreasing function of µ, for µ < µ̄. The
equilibrium quantity q2 represents the amount of good that the buyer can afford to purchase in
the LW market, when she has previously traded in the OTC market. Hence, whenever equi-
librium lies in the Regions MA or NA, we have q2 = q∗. In contrast, if equilibrium lies in the
regions of scarcity of A2 in OTC trade (Regions MS or NS), the buyer will not be able to afford
the first-best, and q2 < q∗. In this case, q2 is a decreasing function of (not affected by) µ if and
only if equilibrium is monetary (non-monetary).

1.7 Some Equilibrium Objects

First, we explicitly describe equilibrium real balances Z and the OTC trading volume in terms
of real balances ζ (as opposed to in terms of long term assets χ). In any nonmonetary region,
real balances are equal to the supply of short term assets, A1. In Region MA, real balances
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satisfy the money demand equation:

1 + µ

β
= 1 + (ℓ− λf) [u′(Z)− 1] . (19)

In Region MS, real balances and trading volume ζM jointly satisfy:

1 + µ

β
= 1 + λf

u′(Z + ζM)− 1

(1− λ)u′(Z + ζM) + λ
+

[
ℓ− λf

1

(1− λ)u′(Z + ζM) + λ

]
[u′(Z)− 1] , (20)

and:
(1− λ)

[
u(Z + ζM)− u(Z)

]
+ λζM = (1 + µ)A2. (21)

Furthermore, ζN denotes the short term asset trading volume in the OTC market in the case
of a non-monetary equilibrium, and it solves

(1− λ)
[
u(A1 + ζN)− u(A1)

]
+ λζN =

βA2

{
1 + fλ u′(A1+ζN )−1

(1−λ)u′(A1+ζN )+λ
+
[
ℓ− fλ 1

(1−λ)u′(A1+ζN )+λ

]
[u′(A1)− 1]

}
. (22)

Next, we define cutoff levels of short term and long term asset supply that will separate
classes of equilibria. First, the cutoff level for short term asset supply is:

Ā1 ≡
{
A1 :

1

2
A1 =

(1− λ) [u(q∗)− u(A1)] + λ(q∗ − A1)

β + β(ℓ− λf) [u′(A1)− 1]

}
. (23)

Using condition (17), one can show that Ā1 ∈ (q∗/2, q∗). Second, and in terms of the first, we
define the cutoff level of long term asset supply for the non-monetary region (represented by
the horizontal segment of the blue line in Figure 3; in the figure, A1 > Ā1 so the second term in
the minimum applies):

Ā2(A1) ≡ min

{
1

2
A1,

(1− λ) [u(q∗)− u(A1)] + λ(q∗ − A1)

β + β(ℓ− λf) [u′(A1)− 1]

}
. (24)

Finally, we define the upper bound of inflation consistent with monetary equilibrium (rep-
resented by the green piece-wise curve in Figure 3). If A1 > Ā1 and A2 ≥ Ā2(A1), we have

µ̄(A1, A2) = β − 1 + β (ℓ− λf) [u′(A1)− 1] . (25)

On the other hand, if A2 < Ā2(A1) (for any A1 < q∗), we have

µ̄(A1, A2) = β − 1 + β

[
ℓ− λf

(1− λ)u′(A1 + ζN) + λ

]
[u′(A1)− 1] +

βλf [u′(A1 + ζN)− 1]

(1− λ)u′(A1 + ζN) + λ
. (26)
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2 A version of the model with nominal instead of real assets

The structure of the economy is unchanged with only one modification. The real assets are
replaced by nominal ones, which we refer to as “bonds” in this section. Notably, the timing
structure is unchanged: a one-period bond issued in the CM subperiod pays one unit of cur-
rency in the OTC subperiod of the following period, and a two-period bond will pay one unit
of currency in the OTC subperiod two periods thence, so Figure 1 is still valid. As a mechani-
cal matter, bond redemption is financed by newly created money, which the government may
choose to sterilize with lump-sum taxes in the CM of the same period (or accept the resulting
inflation).10 In order to distinguish this variation from the benchmark model in the paper, we
denote the nominal bonds by the letter B/b instead of A/a (capital letters denote aggregate
quantities), and the bond prices by the letter p instead of ψ.

We begin with the OTC bargaining problem. Similar to the real model, the C-type’s real bal-
ances are z ≡ φ(m+b1); φ denotes the expected real price of money and p1 denotes the expected
nominal price of one-period bonds in the following CM (by definition of the timing, this is in
the same period), and m and b1 denote holdings of money and one-period bonds by the C-type.
Holdings of two-period bonds are denoted by b2. For the N-type, the equivalents are z̃ and b̃2.

Bargaining is over two outcomes of interest: the amount of real balances ζ that the N-type
transfers to the C-type, and the amount of nominal long-term bonds χ that the C-type transfers
in return. The bargaining problem can be written as follows:

max
ζ,χ

{u(z + ζ)− u(z)− φp1χ} (27)

subject to: u(z + ζ)− u(z)− φp1χ =
λ

1− λ
(−ζ + φp1χ) (28)

χ ≤ b2 (29)

ζ ≤ z̃ (30)

We can solve the bargaining problem by splitting it up into four different cases.

No trade. If z ≥ q∗, there are no gains from trade and therefore χ = ζ = 0.

Scarce long-term bonds. b2 is so small that constraint (29) binds. The solution is χ = b2 and

10 Strictly speaking, the fact that money is introduced early in the period but taxes or transfers are assessed late in
the period introduces a cyclical fluctuation into the money supply. As it is perfectly predictable to everyone in the
economy, this fluctuation does not distort any prices or demand schedules. A quick examination of the equilibrium
equations confirms this. If undesired, one could eliminate this feature by sterilizing the bond repayments early in
the period with lump-sum taxes assessed simultaneously, but this would only add complexity to the model (as we
need to make sure that all agents could in principle afford the taxes) without any additional insight.
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ζ = ζb which solves:
(1− λ)

(
u(z + ζb)− u(z)

)
+ λζb = φp1b2 (31)

This case will correspond to Region 5 in symmetric equilibria.

Scarce real balances. z̃ is so small that constraint (30) binds. The solution is ζ = z̃ and:

χ =
1

φp1
[(1− λ) (u(z + z̃)− u(z)) + λz̃]

This case will correspond to Region 3 in symmetric equilibria.

Abundance. If neither of the above conditions hold, then ζ = q∗ − z and:

χ =
1

φp1
[(1− λ) (u(q∗)− u(z)) + λ (q∗ − z)]

This case will correspond to Region 1 in symmetric equilibria.

In a symmetric general equilibrium, the aggregation conditions must hold:

b2 = B2

z = z̃ = φ(M +B1)

where M denotes the supply of money and B1 and B2 denotes the supply of nominal bonds of
maturity 1 and 2, respectively. As in the main text, the maturity index refers to the maturity
remaining and not the maturity at issue, so that B1 comprises both newly issued one-period
bonds and last period’s issue of two-period bonds.

And as in the main text, for our convenience we want to focus on the cases where real
balances are abundant in OTC trade, i.e. the N-type always has enough real balances to satisfy
the C-type’s demand (whether this demand is limited by reaching the first-best z + ζ = q∗,
or by the C-type’s ability to buy the liquidity with long-term bonds). Unlike in the model
with real bonds, in the model with nominal bonds the boundary of aggregate regions 3 and 5
in (M + B1, B2)-space (corresponding to Figure 2 in Section 1 of this appendix) is downward
sloping.11 We can then verify that

B2 ≤M +B1 (32)
11 Proof: This boundary is given by

φp1B2 = (1− λ) (u(2z)− u(z)) + λz

⇒ p1
B2

M +B1
= (1− λ)

u(2z)− u(z)

z
+ λ

and the right-hand side is decreasing in z by the concavity of u.

23



is a sufficient condition to rule out the scarce-money case (Region 3) in general equilibrium.
This restriction replaces the more complicated restriction in the main text (Equation 25). If the
reader finds a restriction on bond supply unpalatable, we could instead require that inflation is
not too large, as we did in the main text. (The minimal restriction would involve a combination
of inflation and the asset supplies. But here, we only need a sufficient one.)

We next turn to the buyer’s optimal portfolio problem in the CM. Buyers take as given (cur-
rent and expectations of future) prices φ, φ̂, p1, p̂1, p2 and rationally forecast any bargaining in
the OTC market. As in the main text, we abuse notation slightly and denote by ζ, χ the expec-
tations of a bargaining outcome in which the buyer enters as a C-type, and denote by ζ̃ , χ̃ the
expectations of a bargaining outcome in which the buyer enters as an N-type. By restriction (32)
(which we maintain from now on), ζ̃ , χ̃ will not be affected by any decisions the buyer makes in
the preceding CM. She knows that her money or bond holdings will never be marginal in subse-
quent OTC trades where she enters as an N-type. The representative buyer’s objective function,
which we derive from the CM value function analogously to the main text, will therefore look
as follows:

J
(
m̂, b̂1, b̂2

)
= −φ

(
m̂+ b̂1 + p2b̂2

)
+ β G

(
φ̂
(
m̂+ b̂1

)
, b̂2

)
,

G
(
ẑ, b̂2

)
= f

[
u (ẑ + ζ) + φ̂ψ̂1

(
b̂2 − χ

)]
+ (ℓ− f)

(
u (ẑ) + φ̂ψ̂1b̂2

)
+ f

[
ẑ − ζ̃ + φ̂ψ̂1

(
b̂2 + χ̃

)]
+ (1− ℓ− f)

(
ẑ + φ̂ψ̂1b̂2

)
.

As in the model with real bonds, the negative terms in the definition of J represent the cost of
purchasing various amounts of the three assets available in the economy. The four terms in the
definition of G admit similar interpretations as their counterparts in equation (16) of the main
text.

Taking first-order conditions, and imposing a symmetric steady-state equilibrium with m̂ =

M , b̂1 = B1, b̂2 = B2, and φ/φ̂ = 1 + µ, we can derive the following demand equations for the
three assets:12

1 + µ

β
= 1 + ℓ [u′(q1)− 1]− λ f

u′(q1)− u′(q2)

(1− λ)u′(q2) + λ
(money)

p1 = 1 (short-term bonds)

p2 =
β

1 + µ

[
1 + λ f

u′(q2)− 1

(1− λ)u′(q2) + λ

]
(long-term bonds)

12 This way of writing the asset demand equations encompasses the cases of abundant and scarce long-term
bonds; the former admits some simplification through q2 = q∗ and therefore u′(q2) = 1. We have ruled out the
case of scarce real balances through restriction (32).
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where q1 ≡ φ(M + B1) denotes the amount of special goods purchased in the LW market by a
C-type who did not trade in the OTC market, and q2 ≡ min {q∗, q1 + ζ (q1, q1, B2)} denotes the
amount of special goods purchased in the LW market by a C-type who did trade in the OTC
market, up to the first-best level q∗.13

It is apparent that the nature of the solution has not changed from the benchmark model
with real bonds. The money demand equation (which determines q1 and, through the bargain-
ing solution, q2) is identical. The prices of nominal bonds only differ from the real ones by the
factor of expected inflation, 1 + µ (the Fisher relationship holds). As before, if we want to make
statements out of steady state, we can decompose the price of long-term nominal bonds into
three components (hats denote expected future values):

p2 =
β

1 + µ︸ ︷︷ ︸
monetary

discounting

× p̂1︸︷︷︸
expected

price of short-

term bonds

×
[
1 + λ f

u′(q̂2)− 1

(1− λ)u′(q̂2) + λ

]
︸ ︷︷ ︸

expected liquidity value

The money demand equation ensures that just like in the real bond case, the liquidity pre-
mium term is always less than (1 + µ)/β, so that the price of nominal bonds is always less than
p̂1 and the nominal forward holding return must be positive. Consequently, in any steady state
we must have p2 < p21.

In conclusion, the term premium p−0.5
2 −p−1

1 is positive, increasing in expected inflation, and
decreasing in the liquidity f of the OTC market, whether we look at real or nominal bonds.
Result 2 also continues to hold: for an asset with f = 0, such as the CDs discussed in the main
text, the long-term price p2 is minimal and the term premium is maximal, holding all other
parameters constant. Finally, since we derived Result 3 by comparing assets within the same
period and with the same maturity date, our explanation for the on-the-run premium is not
affected either by whether the assets in question are real or nominal.

3 Solution of the model with N > 2 maturities

In the main text of the paper, we provided a brief, verbal description of the model with a general
number of maturities N > 2 (in Section 4.2). Here we analyze the model in more detail. We
work with the monetary version of the model, but non-monetary results can be derived by

13 Specifically, unless that solution would exceed q∗, q2 solves:

(1− λ) [u(q2)− u(q1)] + λ[q2 − q1] =
B2

M +B1
q1.
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replacing Z with A1 and using the result for ψ1 from Proposition 2 of the main text instead of
ψ1 = 1 + µ (which comes from the analogous proposition for the model with money, namely,
Proposition 2 of this web appendix).

With N > 2, there are many combinations of long term asset portfolios that a C-type can
sell in order to obtain additional liquidity in the OTC market. We choose to not place any
restrictions on which assets can be traded for liquidity. That is, we assume that in any OTC
meeting the C-type can exchange any portfolio of long term assets (assets that do not mature in
the current period) for a portfolio of liquid assets (money and they yield of assets that mature in
the current period). In that sense, even though N > 2, the interesting distinction is still between
assets that mature now (and are therefore liquid) and assets that do not mature now (but can
be traded for liquid assets in the OTC).

We now generalize Proposition 2 for the case of N maturities and money. As before, we
only focus on equilibria in which agents are always able to obtain the representative portfolio
in the CM without selling off-the-run assets. A simple sufficient condition, which we maintain
for Proposition 4, is that A1 ≥ 2A2 ≥ . . . ≥ 2N−1AN .14 Recall that the threshold level relevant
for the abundance or scarcity of long term assets can be expressed using the definition of the
OTC bargaining solution χ, evaluated at aggregate quantities. We also use the definition of µ̄ as
described in Section 1 for the inflation threshold after which equilibrium becomes nonmonetary,
and we always assume µ > β − 1.

Proposition 4. Define the supply of long term assets relevant for abundance in OTC trade as

AL ≡ βN−2AN + . . .+ A2.

If µ < µ̄(A1, AL), the equilibrium price of one-period assets is given by ψ1 = 1 + µ, and the equilibrium
price of long term assets (i.e. ψi, i ≥ 2) depends on the value of AL. We have two cases:

Case 1: If AL ≥ χ(A1, A1, AL), then ψi = βi−1ψ1, for all i ≥ 2.

Case 2: If AL < χ(A1, A1, AL), then there exists a cutoff µ̃(AL) such that:
a) For all µ < µ̃(AL), we have ψi = βi−1ψ1;
b) For all µ > µ̃(AL), we have ψi =

(
β(1 + ρL)

)i−1
ψ1, for all i ≥ 2, where ρL ∈ (0, (1+µ−β)/β)

is a strictly increasing function of µ and a strictly decreasing function of any Ai, i ≥ 2.

The term ρL is defined jointly with ζL (the real balance trading volume in the OTC market) as a function

14 This condition generalizes the A2 ≤ 1/2A1 segment in the right panel of Figure 3 in the main text of the paper.
It is tighter than necessary, but simpler than the condition we used to make the domain of the baseline equilibrium
as general as possible.
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of equilibrium real balances Z and the price of one-period assets ψ1:

ρL = λf
u′(Z + ζL)− 1

(1− λ)u′(Z + ζL) + λ

βψ1

N∑
i=2

(
β(1 + ρL)

)i−2
Ai = (1− λ)

[
u(Z + ζL)− u(Z)

]
+ λζL

Proof. The assumption A1 < q∗ guarantees that µ̄ > β − 1, and 2N−1AN ≤ . . . ≤ 2A2 ≤ A1

guarantees that no agent can enter the CM with more units of any bond than the aggregate
supply of that bond, so the constraint that agents cannot sell off-the-run assets in the CM is
satisfiable in symmetric equilibrium.

Trade in the LW market is unchanged from the model with two maturities. In the OTC
market, C-type agents want to obtain real balances (short term assets about to mature, plus
money) and are willing to offer any longer term asset in return. In general, the bargaining
solution may be indeterminate, but if any one longer term asset is scarce (the C-type gives up
all of it but would still like more real balances), all of them are. Consequently, all assets that do
not mature in the very next period are perfect substitutes as agents choose their portfolios in
the CM.

The rest of the proof is very similar to that of Proposition 2. Short term assets are perfect
substitutes for money and must have the same rate of return if both are valued; therefore,
ψ1 = 1 + µ. Regarding longer term assets, cases 1 and 2 are identical to the model with N =

2, with two exceptions. First, any occurence of A2 must be replaced with AL. Second, the
value of longer-term assets in the CM depends on their scarcity in the subsequent OTC market,
measured by ρL. But the total value of the supply of longer-term assets, which determines their
scarcity, is itself determined by their value in the future CM and affected by ρL. This was not an
issue in the model with two maturities because only the price of two-period assets was affected
by ρ, but not that of one-period assets. With three or maturities, the definition of ρ becomes
more complicated (hence the index ρL).

Using total differentiation again in the scarce case 2b), one can show that both Z and ζ

decrease as functions of µ, while Z + ζ increases as a function of AL. Hence, ρL is an increasing
function of µ and a decreasing function of AL, and therefore, it is a decreasing function of Ai for
all i ≥ 2.

Proposition 4 reveals that the results in the case of a general N > 2 are qualitatively very
similar to the ones in the N = 2 case. In particular, one-period assets are “in a class of their
own”, since they are the only assets that are (direct) substitutes to money. Hence, in monetary
equilibrium, we obtain ψ1 = 1 + µ. The price of longer term assets, ψi, i ≥ 2, always carries
a liquidity premium because these assets will eventually also become short term assets in fu-
ture periods. Moreover, if the supply of longer term assets is relatively scarce (Case 2-b of the
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proposition), the price ψi, i ≥ 2, will also contain an indirect liquidity premium, ρ, which reflects
the assets’ property to be traded for liquid assets in the OTC market. Naturally, the premium
ρ is increasing in inflation (in monetary equilibria) and decreasing in the supply of long term
assets (in the regions of scarcity), because high inflation or asset scarcity make the service that
long term assets provide more valuable.

It is straightforward to check that a positively sloped yield curve will also arise here regard-
less of the region of equilibrium. Consider for instance a monetary equilibrium with relatively
abundant supply AL (the argument for the case of scarce supply is similar). In this case, we
have ψ1 = 1 + µ and ψ2 = β(1 + µ), and we have already shown that r2 > r1. Thus, focus on
i ∈ {2, ..., N − 1}, and consider the term ri+1 − ri. It can be easily verified that

ri+1 > ri ⇔
[

1

βi(1 + µ)

] 1
i+1

>

[
1

βi−1(1 + µ)

] 1
i

⇔
(
1

β

) 1
i(i+1)

>

(
1

1 + µ

) 1
i(i+1)

,

which is always satisfied, since by assumption µ > β − 1.
We conclude that the model with N > 2 maturities delivers an upward sloping yield curve

throughout the domain i = 1, ..., N . This result emerges even though any two assets with
lifetime i, j ≥ 2 are qualitatively similar, in that neither of them can serve as a direct substitute
to money, a property that only one-period assets have. Nevertheless, assets with maturity i ≥ 2

are, in a sense, still more liquid than assets with maturity i+ 1 because the former will become
one-period assets (and perfect substitutes to money) earlier than the latter.
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