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B. Online Technical Appendix

B.1. Model Extensions

In this appendix we sketch three possible extensions of our model. First, in Appendix
B.1.1 we allow for productivity shocks that can also lead to a decline in the productivity
of a firm [cf. Klette and Kortum, 2004]. Next, in Appendix B.1.2 we provide a basic
mechanism for firm entry and exit. Finally, Appendix B.1.3 introduces an absorptive
capacity limit with an upper cutoff which bounds the relative productivity a firm can
imitate from above.

B.1.1. Evolution of the Productivity Distribution with Decay

In this section we extend the model in the sense that firms not only exhibit productivity
increases due to their innovation and imitation strategies but they are also exposed to
possible productivity shocks, if e.g. a skilled worker leaves the company or one of
their patents expires, leading to a decline in productivity. Specifically, we assume that
in each period t a firm exhibits a productivity shock with probability r ∈ [0, 1] and
this leads to a productivity decay of δ [cf. Klette and Kortum, 2004]. Otherwise, the
firm tries to increase its productivity through innovation or imitation as discussed in
the previous sections. If firm i with log-productivity ai(t) experiences a productivity
decay in a small interval δt = 1/N then her log-productivity at time t + ∆t is given by
ai(t+∆t) = ai(t)− δ, where δ ≥ 0 is a non-negative discrete random variable. Denoting
by P(δ = 1) = δ1, P(δ = 2) = δ2,. . . , we can introduce the matrix

Tdec =











0 0 . . .
δ1 −δ1 0 . . .
δ2 δ1 −δ1 − δ2 0 . . .
...

...
. . . . . . . . .











.

The evolution of the log-productivity distribution in the limit of large N is then given
by

∂P(t)

∂t
= P(t)

(

(1 − r)
(

(I − D)Tin + DTim(P(t))
)

+ rTdec − I
)

. (1)
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B.1.2. Firm Entry and Exit

We assume that at a given rate γ ≥ 0, new firms enter the economy with an initial pro-
ductivity A0(t) = A0eθt, A0, θ > 0. The productivity A0(t) corresponds to the knowl-
edge that is in the public domain and is freely accessible.1 A higher value of θ corre-
sponds to a weaker intellectual property right protection. A0(t) can also represent the
technological level achieved through public R&D. New firms can start with this level of
productivity when entering. Moreover, we assume that incumbent firms cannot have a
productivity level below A0(t). Finally, we assume that incumbent firms exit the market
at the same rate γ as new firms enter, keeping a balanced in- and outflow of firms. This
means that a monopolist in sector i at time t is replaced with a new firm in that sector
that starts with productivity A0(t).

2

We assume that in each period, first, a randomly selected firm either decides to con-
duct in-house R&D or imitate other firms’ technologies and, second, entry and exit takes
place. Both events happen within a small time interval [t, t + ∆t). We then have to mod-
ify Equation (8) accordingly. In the case of A0 = 1 we can write in the limit of large
N

∂P(t)

∂t
= (1 − γ − θt)P(t)

(

(I − D)Tin + DTim(P(t)) − I
)

+ (γ − θt − 1)Q,

where Q = (1 0 0 . . . ).

B.1.3. Absorptive Capacity Limits with Cutoff

We assume that imitation is imperfect and a firm i is only able to imitate a fraction
D ∈ (0, 1) of the productivity of firm j.

Ai(t + ∆t) =

{

Aj(t) if Aj/Ai ∈ ]1, 1 + D],

Ai(t) otherwise.
(2)

Thus, the productivity of j is copied only if it is better than the current productivity Ai

of firm i, but not better than (1 + D)Ai. We call the variable D the relative absorptive
capacity limit. Taking logs of Equation (2) governing the imitation process reads as

ai(t + ∆t) =

{

aj(t) if aj − ai ∈]0, d],

ai(t) otherwise.
(3)

We have introduced the variables d = log(1 + D). For small D it holds that d ≈ D. The
variable d is called the absorptive capacity limit.

We now consider the potential increase in productivity due to imitation and the as-
sociated transition matrix Tim. Following equation (2) we assume that a firm with a
log-productivity of a(t) can only imitate those other firms with log-productivities in the

1In contrast, any technology corresponding to a productivity level above A0(t) embodied in a firm is
protected through a patent and is not accessible by any other firm. Firms can imitate other technologies,
but only if they are within their absorptive capacity limits.

2Similarly, Melitz [2003] assumes that firms can be hit with a bad productivity shock at random and
then are forced to leave the market.
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interval [a(t), a(t) + d]. In this case Tim depends only on the current distribution of
log-productivity P(t) and simplifies to

Tim =











S1(P) P2 . . . P1+d 0 . . .
0 S2(P) P3 . . . P2+d 0 . . .

0 S3(P) P4 . . . P3+d . . .
. . . . . . . . . . . .

. . .











,

with Pb = P(b, t) and Sb(P) = −Pb+1 − . . . − Pb+d. For the initial distribution of log-
productivity P(0), the evolution of the distribution is governed by

∂P(t)

∂t
= P(t)

(

(I − D)Tin + DTim(P(t)) − I
)

,

where similar to the previous sections we have assumed that ∆t = 1/N and taken the
limit N → ∞.

B.2. Empirical Productivity Distributions

In this section, we present some empirical results about the productivity distribution
across firms. We emphasize three features that are consistent with our theory. First,
the distribution of high-productivity firms is well described by a power-law. Second,
the distribution of low-productivity firms is also well approximated by a power-law,
although this approximation is less accurate, arguably due to noisy data at low pro-
ductivity levels. Third, the distribution is characterized by a constant growth rate over
time, where both the right and the left power-law tails are fairly stable. This implies that
the evolution over time of the productivity distribution can be described as a “traveling
wave” (cf. Definition 1). While the first property is well known [see e.g. Corcos et al.,
2007], the second and the third have not been emphasized in the literature.

We computed the empirical productivity levels of firms using the Amadeus database
provided by Bureau van Dijk. We extracted a data set which contains a total of 5, 216, 989
entries from European firms in the years from 1992 to 2005. These were the firms for
which data was available for all the variables from the following list: value added,
operating revenue, fixed assets, number of employees, cost of materials and cost of
employees. These were data points from 1, 413, 487 firms. As the model does not include
entry and exit of firms we used a balanced subsample of all firms for which data exists
in the years 1995 to 2003. We chose the time span 1995 to 2003, because these were
the years with a substantial number of firms for which data exists in all years. In this
balanced panel were 52, 837 firms but the coverage of firms across countries is quite
heterogeneous, therefore we refrained our analysis to France where the coverage was is
sufficiently adequate (with a total of 17, 404 French firms).

The productivity Ait for each firm i was estimated following the method introduced
by Levinsohn and Petrin [2003]. We use the STATA implementation levpet explained in
Petrin et al. [2004] to predict productivity values. The variables for this estimate from
the Amadeus database were value added, fixed assets, number of employees and costs
of materials. The variables operating revenue and cost of employees were used for ro-
bustness checks only. We follow Petrin et al. [2004] (the “value-added case”; see Section
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year λ >mean(A) R2(λ) ρ <geomean(A) R2(ρ)

1995 3.80 35.2% 0.99 2.13 51.7% 0.97

1996 3.85 35.0% 0.99 2.50 51.8% 0.99

1997 3.77 34.6% 1.00 2.52 52.4% 0.98

1998 3.79 35.0% 0.99 2.54 52.3% 0.98

1999 3.77 34.7% 0.99 2.55 52.4% 0.99

2000 3.72 34.0% 0.99 2.31 52.9% 0.97

2001 3.71 34.2% 1.00 2.43 52.4% 0.98

2002 3.67 33.5% 0.99 2.26 52.3% 0.97

2003 3.53 33.0% 0.99 1.99 52.1% 0.96

average 3.73 2.36

Table 1: The estimated power-law exponents for the right and left tail of the probability density function λ
and ρ. The percentage of firms on which the regression is computed is shown as well as the corresponding
coefficient of determination R2.

2.1 in Petrin et al. [2004]) and Corcos et al. [2007] in our selection of these quantities for
the estimation procedure. The production function underlying the method of Levin-
sohn and Petrin [2003] is more general than the one in our simple model introduced in
Section 2. We decided to use this simple model to keep our theoretical analysis tractable,
and to focus on the main driving forces underlying the innovation and imitation pro-
cess. In this empirical section we consider a more general production function in order
to make full use of the available data and to obtain unbiased estimates for productivity
from this data. From our balanced sample of 17, 404 French firms we obtained an av-
erage productivity of 53.82 in the year 1995 to an average productivity of 65.30 in the
year 2003 (see also Figure 1, right panel). Further, we find that the standard deviation of
log-productivity is quite stable, ranging from 1.61 to 1.67. Moreover, as Figure 1 illus-
trates, we observe that the left and right tails of the distributions are well approximated
by power-laws, P(A) ∝ eρA for small A and P(A) ∝ e−λA for large A. Table 1 shows
the estimated values for ρ and λ. We observe that the exponents remain relatively sta-
ble over the years of observation. The estimated right tail exponent is around λ = 3.73
while the left tail exponent is around ρ = 2.36.

Moreover, the rightward shift in empirical distributions over the years of observa-
tion show a yearly increase in the average productivity (cf. Figure 1). We find that aver-
age productivity grows exponentially with time at a rate ν. We then compute the growth
rate of average productivity ν from the data by estimating the parameters of an expo-
nential growth function of the mean of productivity. Exponential growth of productivity
corresponds to linear growth of log-productivity, that is, mean(log(A))(t) = νt+ const..
From our sample we estimate ν = 0.0271, by linear regression on the logarithms of the
values of the right panel in Figure 1.
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B.3. Calibration of the Model’s Parameters

The goal of this section is to calibrate the model’s parameters given by the innovation
success probability p and the imitation success probability q, such that the empirically
observed right tail exponent λ and the growth rate of the traveling wave ν can be repro-
duced.

Our theoretical results on the computation of λ, ν and ρ cover only parts of the (p, q)-
parameter space. Further on, the interdependence we know is quite complex and non-
linear. Thus, a simple regression estimation procedure is ruled out.

We developed a hands on method to estimate λ, ρ and ν for computed trajectories
of Equation (17) with parameters p and q, based on some heuristics which we derived
from thorough observations. The method works as follows: Start with initial distri-
bution P0 = (1, 0, . . . ) on a long enough vector (we used length 30). All distributions
mentioned here are handled as pdf’s. Decide on an appropriate Tmax and compute the
distributions numerically (with Matlab’s ODE solver ode45) along the trajectory at time
steps t = 0, 1, 2, . . . , Tmax. Heuristics for the choice of Tmax where experimentally quan-
tified such that the peak of the distribution at Tmax lies well in the center of the support
of P0.

We then compute the arithmetic mean of productivity and the geometric mean of
productivity for the distribution in each time step t. The arithmetic means build the
lower bounds for the support of the distribution where λ is fitted by linear regression
on the logarithm of productivity and the logarithm of the distribution function. The
geometric means build the upper bounds for the support of the distribution where ρ
is fitted by linear regression on the logarithm of productivity and the logarithm of the
distribution function. Support for fitting was further restricted to the region where the
distribution function was larger than a certain accuracy to avoid distortion from border
effects which appear when floating point precision achieves its limits. Based on this we
are able to fit λ and ρ for each time step t. We compute an estimate for ν for each time
step t by looking at the differences in average log-productivity for time step t and t − 1.

We observed that for large enough Tmax the fitted values stabilize, but some regular
fluctuations remained due to the discreteness of the support of the distribution. To
minimize the effect we averaged several values of λ and ρ along an interval of values
of t of a certain length until Tmax. We found reasonable heuristics for assigning such a
“wavelength” that the slight fluctuations could be averaged out well.

Based on this calibration method we computed values of λ, ρ and ν for the theoretical
distributions of the ODE as a function of p and q on the grid p = 0.001, +0.0002. . . , 0.014 and
q = 0.04, +0.002. . . , 0.16. After computation of the field we improved accuracy of the grid
(using Matlab’s function interp2). We improved the accuracy of p to steps of length
0.000025 and the accuracy of q to steps of length 0.00025. Within this grid we computed
the values of p and q which minimized the quadratic difference of empirical and theo-
retical λ plus the quadratic difference of the empirical and theoretical ν. This procedure
yields the calibrated values for (p, q) of (0.0049, 0.106).

B.4. Growth, Inequality and Policy Implications

Our model is parsimoniously parameterized by the in-house innovation probability p ∈
[0, 1] and the parameter q ∈ [0, 1] measuring the absorptive capacity of the firms in the
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Figure B.1: Plots of λ, ρ and ν for p (resp. q) when q (resp. p) is fixed to the value from the calibrated
parameters for France illustrated in Figure B.2 (color online).

economy. In this section we study the effects of each of the three parameters (p, q) on (i)
the speed of growth and (ii) the inequality implied by the productivity distribution. This
will allow us to analyze the effects of R&D policies that impact the innovation success
probability p and the imitation success probability q. Examples for the first are R&D
subsidy programs that foster the development of in-house innovations while policies
that weaken the intellectual property protection regime (and hence make it easier to
imitate others’ technologies) are examples for the latter.

We first turn to the analysis of industry performance and efficiency. An industry has
a higher performance, measured in aggregate intermediate goods and final good pro-
duction, if it has a higher average log-productivity.3 Equivalently, this corresponds to a
higher average log-productivity per unit of time, as measured by the growth rate ν. We
do this for two possible cases: (a) we keep the value of the absorptive capacity parame-
ter q at its calibrated value of 0.106 and analyze the impact of changes in the innovation
success probability p, or (b) we set p to its calibrated value of 0.0049 and study the ef-
fects of a change in q (see also Appendix B.3 for the calibration of these parameters). The
results are shown in Figure B.1 (color online). In case (a) in Figure B.1 (left panels) we
find that an increase in the innovation success probability p increases ν and hence ac-
celerates growth. Thus, an R&D subsidy program which increases firms’ in-house R&D
success probability p leads to a higher growth rate of the economy. A similar analysis,
but with varying values of the absorptive capacity (i.e. the imitation success probability
q) in case (b) is shown in Figure B.1 (right panels). The figure reveals that an increase in
the absorptive capacity q always increases the growth rate ν. Thus, an implication of our
model is that policies which positively affect the absorptive capacity q, for example by
weakening the intellectual patent protection of incumbent technologies in an industry,
can have a positive effect on the growth rate ν of the economy.

A complete numerical analysis of the growth rate ν for general values of q is shown

3We will consider the average productivity measured by the geometric mean µ = n
√

A1 A2 · · · An =

(∏n
i=1 Ai)

1/n, which is related to the arithmetic average of the log-productivity values via 1
n ∑

n
i=1 ai =

1
n ∑

n
i=1 log Ai = log µ. However, our results also hold for the arithmetic average of the productivity

values.
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Figure B.2: Exploration of impact of innovation probability p, imitation probability q, on the dependent
power-law parameters λ, and ρ, and on the productivity growth rate ν. The contour plots are based on
numerical computation of solutions of the system of ODEs in Eq. (16). The black dots mark the calibrated
(p, q)-points.

in Figure B.2 (middle panel). We observe that an increase in p or q leads to a higher
growth rate ν.

Further, we can investigate the degree of inequality in the economy. As our mea-
sure of inequality we take the exponent λ of the right power-law tail of the distribution.
A smaller value of λ corresponds to a more dispersed distribution with a higher de-
gree of inequality. For both cases (a) and (b) we provide a numerical analysis in Figure
B.1 (left panel). In case (a) we see that the exponent λ is always higher in the limit of
strong productivity shocks and the difference increases with increasing innovation suc-
cess probability p. However, in case (b) the reverse relationship holds: an increase in
the absorptive capacity q yields a higher value of λ and thus reduces inequality.

We can draw the following conclusions from our counter factual analysis of the ef-
fects of each of the three parameters (p, q). First, we find that both types of policies,
those that enhance the in-house innovation success probability p as well as those that
facilitate the imitation and diffusion of existing technologies (increasing the value of q)
increase the growth rate ν of the economy (cf. Figure B.1). However, while the first leads
to an increase in inequality (smaller values of λ), the latter has the opposite effect of de-
creasing inequality (higher values of λ). It must be noted, however, that an economy in
which technologies can easily be imitated (high q) but there is no in-house R&D (p → 0)
does not generate growth. Thus, a balanced approach is required, fostering both, the
capacities of firms to generate innovations in-house and an environment in which these
innovations can diffuse throughout the economy.
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