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B Alternative Micro-foundation of the k’th Norm and

Cutoff Rule

In the main section, we have postulated that the benefit of link ij is decreasing in the k’th
norm distance between i and j’s types, and this formulation led to cutoff rules under linear
cost functions. Here we provide an alternative micro-foundation of the cutoff rule model
by considering a model where connected agents are involved with strategic interactions
across m dimensions. The k’th norm and the value of k are endogenously derived in this
model, which also facilitates the interpretation of the comparative-statics results in k.

Suppose that, if i and j are connected, each receives the benefit from the link

m∑
h=1

v(|xih − xjh|),

where, for each h = 1, 2, ..,m,

v(|xih − xjh|) =

{
v̄ if |xih − xjh| ≤ d̂

0 if |xih − xjh| > d̂

for some d̂ > 0 and v̄ > 0. We interpret v(|xih − xjh|) to be the payoff obtained at
dimension h. As shown by the examples at the end of this section, this type of benefit
functions naturally arises in various situations.

The payoff of agent i at network g is thus given by

ui(g) =

 ∑
j∈Ni(g)

m∑
h=1

v(|xih − xjh|)

− c̄qi (1)

where c̄ > 0. It is straightforward to see that, for any realization of types (x1, ..., xn),
there is a unique pairwise stable network that is generated by a cutoff rule under the k’th
norm with k = d c̄

v̄
e, where d̂ is the corresponding cutoff value.1 Conversely, for any k and

d̂, we can find a payoff function of the form (1) such that, for any realization of types
(x1, ..., xn), a unique network formed by the cutoff rule under the k’th norm and cutoff d̂
is a unique pairwise stable network.

Example 1 (Repeated Prisoner’s Dilemma with Imperfect Monitoring). Consider the
situation in which, at each dimension h = 1, . . . ,m, each of connected agents i and j play
an infinitely repeated prisoner’s dilemma with imperfect public monitoring in discrete
time t = 1, 2, . . . with discount factor β < 1. Agents receive the following payoffs at each
period (but do not observe them over the course of play), where T, T ′ > 0 and V̄ > T−T ′.

1There is an alternative but equivalent formulation in which the benefit from a neighbor is constant
at v̄ > 0, while the agents incur a cost at each dimension, as in

ui(g) = v̄qi −

 ∑
j∈Ni(g)

m∑
h=1

ψ(|xih − xjh|)

 .

where ψ(|xih − xjh|) is equal to 0 if |xih − xjh| ≤ d̂, and is equal to c̄ > 0 if |xih − xjh| > d̂. This leads
to the cutoff rule using the k’th norm with k = d v̄c̄ e.
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C D

C V̄ , V̄ −T ′, V̄ + T
D V̄ + T,−T ′ 0, 0

There are two public signalsG (good) andB (bad). Action profile (C,C) always results
in G, but at (C,D), (D,C), or (D,D), B occurs with probability q(|xih − xjh|) that is
continuous and strictly decreasing in the type difference with q(1) = 0: monitoring is less
precise if agents are farther away from each other. We restrict attention to the strategies
such that the action at a dimension depends only on the past signals at that dimension,
and consider perfect public equilibria that maximize the sum of the two agents’ discounted
sums of payoffs. Under this assumption, it is without loss to focus on the following two
types of strategies: (i) the strategy where each agent chooses C if and only if only signal
G has been observed in the past, and (ii) the unconditional repetition of D. Let v̄ := V̄

1−β .

Then, for sufficiently high β < 1, there exists d̂ = q−1( T
βv̄

) ∈ (0, 1) such that, at each

dimension, each agent receives the equilibrium payoff v̄ if |xih − xjh| ≤ d̂, but the unique

equilibrium is the repetition of D and thus agents receive 0 if |xih − xjh| > d̂.2

Example 2 (Repeated Prisoner’s Dilemma with Perfect Monitoring). Consider the fol-
lowing game where each of connected agents chooses either to cooperate (“C”) or not
(“D”) at each dimension h = 1, 2, ...,m, where V̄ , T ′, ψ(·) > 0, and V̄ > ψ(1)− T ′.

C D

C V̄ , V̄ −T ′, V̄ + ψ(|xih − xjh|)
D V̄ + ψ(|xih − xjh|),−T ′ 0, 0

We assume that ψ(·) is continuous and strictly increasing: the temptation to defect is
higher if agents are farther away from each other. Agents play the infinitely repeated game
with perfect monitoring with discount factor β < 1. and where β < 1 denotes a discount
factor. Again, we restrict attention to the strategies such that actions at each dimension
h = 1, 2, ...m at each period does not depend on the past actions at other dimensions,
and we suppose that agents play a subgame-perfect equilibrium that maximizes the sum
of the two agents’ discounted sums of payoffs. Again, without loss, we focus only on the
grim-trigger strategy. Namely, agents start by playing C, and play D if and only if the
history contains at least one D by any agent. Let v̄ := V̄

1−β . If βV̄
1−β ∈ [ψ(0), ψ(1)], then

the following hold with the unique d̂ := ψ−1( βV̄
1−β ): If |xih−xjh| ≤ d̂, then the grim-trigger

strategy profile is sustained as a subgame perfect equilibrium, and agents receive the
equilibrium payoff v̄. If, however, |xih − xjh| > d̂ holds, then the unique subgame perfect
equilibrium is for agents to always choose D, and agents receive payoff 0.

Example 3 (Coordination Game). Consider the following static game where each of
connected agents chooses either A or B at each dimension h = 1, 2, ...,m, where φ(·) > 0
represents the cost of mis-coordination, which is strictly increasing: mis-coordination is
more costly if agents are farther away from each other. Pick v̄ > 0 and d̂ > 0 such that
φ(d̂) = v̄. This game has multiple strict Nash equilibria, (A,A) and (B,B). We assume

2Note that (C,D) or (D,C) cannot be enforced at any history in this game because a agent would
have a strict incentive to choose D at such a history.
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A B

A v̄, v̄ −φ(|xih − xjh|), 0
B 0,−φ(|xih − xjh|) 0, 0

that agents play a strict risk-dominant equilibrium, which generically exists.3 This implies
that (A,A) is played if |xih − xjh| < d̂, and (B,B) is played if |xih − xjh| > d̂.

C Omitted Proofs for the Main Sections

C.1 Proof of Lemma 1

Proof. Let c(q) = c1q be the linear cost function, where c1 > 0.

Part 1-1: Existence of a Pairwise Stable Network
Consider the maximum of d’s that satisfies b(d) − c1 ≥ 0, and denote it by d̂ (The

maximum exists because b is nonincreasing and continuous from the left). We have

∆c(q) = (c1(q + 1))− (c1q) = c1 for all q.

g is pairwise stable if and only if (i) there is no link ij ∈ g such that ui(g) < ui(g − ij)
and (ii) there is no link ij 6∈ g such that ui(g) ≤ ui(g + ij). Now, since ∆c(q) = c1 for all
q, (i) is equivalent to saying that there is no ij ∈ g such that 0 > b(d(i, j))− c1, and (ii)
is equivalent to saying that there is no ij 6∈ g such that 0 ≤ b(d(i, j)) − c1. Noting that
b(d(i, j)) − c1 ≥ 0 ⇐⇒ d(i, j) ≤ d̂, we have that g = {ij : d(i, j) ≤ d̂} is pairwise stable.
Thus, a pairwise stable network exists.

Part 1-2: Uniqueness of the Pairwise Stable Network
Suppose that there are two distinct pairwise stable networks, g and g′. Without loss

of generality, there exists a pair of agents i, j ∈ N such that ij ∈ g and ij 6∈ g′. But ij ∈ g
and (i) in Part 1 of this proof imply b(d(i, j))− c1 ≥ 0, while ij 6∈ g′ and (ii) in Part 1 of
this proof imply b(d(i, j))− c1 < 0. Contradiction.

Part 1-3: Efficiency of the Pairwise Stable Network
Suppose, to the contrary, that the pairwise stable network g is not efficient. That is,

suppose that there is another network g′ in which the sum of utilities of all the agents is
strictly larger in g′ than in g. Let L1 = g \ g′ and L2 = g′ \ g. That is, g′ is obtained from
g by deleting all the links in L1 and adding all the links in L2. Note that the order of
deletion and addition of links doesn’t matter for the efficiency from the resulting networks
by the definition of efficient networks. Now, for all ij ∈ L1, we have b(d(i, j)) − c1 ≥ 0
from Part 1 of this proof, so the sum of utilities strictly decreases by deletion of links in
L1 unless L1 consists only of links ij such that d(i, j) = c1. Next, for all ij ∈ L2, we have
b(d(i, j)) − c1 < 0 from Part 1 of this proof, so the sum of utilities strictly decreases by
addition of links in L2 if L2 is not empty, and stays constant if it is empty. Hence, the only
way that g′ be efficient is that L1’s only elements are the links ij such that d(i, j) = c1,

3There are various justifications behind this selection criterion, such as global games (Carlsson and
van Damme 1993), information robustness (Kajii and Morris 1997), and evolutionary dynamics (Kandori
et al. 1993, Young 1993), among others.
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and L2 is empty. But as deleting the links ij such that d(i, j) = c1 does not change the
utility of either i or j and hence it does not change the sum of utilities, g′ has the same
sum of utilities as g. But this contradicts our starting assumption that g′ is such that
the sum of utilities of all the agents is strictly larger in g′ than in g. This completes the
proof.

Part 1-4: Existence of a Homogeneous Cutoff Value Profile
In Parts 1 and 2 of this proof we have shown that the unique pairwise stable network

is g = {ij : d(i, j) ≤ d̂}. Let a cutoff value profile be such that d̂i = d̂ for all i ∈ N . This
cutoff value profile is homogeneous by definition, and clearly generates network g.

Part 2: Existence of pair (b, c)
Fix a network g that is generated by cutoff rule with a homogeneous cutoff value

profile. It suffices to provide one example of (b, c) pair such that g is pairwise stable with
respect to the pair (b, c). Uniqueness and efficiency follows directly from Parts 1-2 and
1-3, respectively.

Let the homogeneous cutoff value be d̂. Consider a pair of functions b(d) = a · d̂
d

and
c(q) = a · q for some a > 0. These functions satisfy the assumptions made in Section 3.1.
Notice that the benefit from forming links when the distance is very short decreases fast
if a is small, and the marginal cost of forming an additional link is large if a is large.

Now, notice that ij ∈ g implies d(i, j) ≤ d̂, which implies b(d(i, j))−a = a· d̂
d(i,j)
−a ≥ 0,

which in turn implies that the marginal benefit for each of agents i and j from link
ij is no less than the marginal cost. Also, ij 6∈ g implies d(i, j) > d̂, which implies

b(d(i, j))− a = a · d̂
d(i,j)

− a < 0, which in turn implies that the marginal benefit for each
of agents i and j from link ij is strictly less than the marginal cost. Hence g is pairwise
stable. Thus the proof is complete.

C.2 Proof of Corollary 1

Proof. Part 1 is straightforward from the formula in Theorem 1.
We consider Part 2. From the formula in Theorem 1,

Cl∗(k+1,m) =

(
m

k + 1

)−1(
3

4

)k+1

=
(k + 1)!(m− k − 1)!

m!

(
3

4

)k+1

= Cl∗(k,m)
3(k + 1)

4(m− k)
.

Taking logs, we get

log (Cl∗(k + 1,m))− log (Cl∗(k,m)) = log

(
3(k + 1)

4(m− k)

)
.

Hence, Cl∗(k+ 1,m) ≥ Cl∗(k,m) is equivalent to 3(k+1)
4(m−k)

≥ 1, or k ≥ 4
7
m− 3

7
, completing

the proof.
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D Omitted Proofs for Other Sections

D.1 Proof of Proposition 4

Proof. Throughout this proof, we denote distance by d(i, j) instead of d(xi, xj) to lighten
the notation. Fix the types of agents, (x1, ..., xn). We ignore the possibility that there
exist h, i, j,∈ N such that d(i, j) = d(i, h), or that there exist i, j ∈ N and q ∈ N such that
b(d(i, j)) = ∆c(q− 1), because almost surely such events do not occur. This in particular
implies that Ni(g) 6= Ni(g

′) ⇒ ui(g) 6= ui(g
′). We consider the following algorithm that

generates a unique network. We will show in the sequel that the algorithm stops in
finite steps, the generated network is pairwise stable, and is generated by a cutoff rule.
Moreover, we will show that the generated network is strongly stable if the cost function
is concave or linear.

Algorithm
step 1
Each player i ∈ N(1) := N proposes a “request”:

ri(1) = arg max
r′i1⊆N(1)\{i}

ui({ij|j ∈ r′i1}).

Generate a network g′ := g(0) ∪ {ij|j ∈ ri(1) and i ∈ rj(1)} ∈ G(N) where we set
g(0) = ∅. Delete k′l′ = arg maxi∈N,kl∈g′{ui(g′ − kl) − ui(g

′)} if ui(g
′ − k′l′) − ui(g

′) is
positive. Let g′′ = g′\{k′l′}. Then, delete k′′l′′ = arg maxi∈N,kl{ui(g′′ − kl) − ui(g′′)} if
ui(g

′′ − k′′l′′) − ui(g′′) is positive. Continue this procedure until the generated network
ĝ satisfies the property that each link ij satisfies ui(ĝ − ij) < ui(ĝ). Let the resulting
network be g(1).

step t
Each player i ∈ N(t) := N(t− 1)\{j : rj(t− 1) = ∅} proposes a “request”:

ri(t) = arg max
r′it⊆N(t)\[{i}∪Ni(g(t−1))]

ui({ij|j ∈ r′it} ∪ g(t− 1)).

Generate a network g′ := g(t − 1) ∪ {ij|j ∈ ri(t) and i ∈ rj(t)}. Delete k′l′ =
arg maxi∈N,kl∈g′{ui(g′− kl)− ui(g′)} if ui(g

′− k′l′)− ui(g′) is positive. Let g′′ = g′\{k′l′}.
Then, delete k′′l′′ = arg maxi∈N,kl∈g′′{ui(g′′− kl)− ui(g′′)} if ui(g

′′− k′′l′′)− ui(g′′) is pos-
itive. Continue this procedure until the generated network ĝ satisfies the property that
each link ij ∈ ĝ satisfies ui(ĝ − ij) < ui(ĝ). Let g(t) be the resulting network.

Let t̄ be the first period, if any, such that N(t̄) = ∅. If such a period does not exist,
then denote t̄ =∞.

Let us give an intuitive explanation about the algorithm. For each step t, N(t) is
the set of “remaining agents.” Each remaining agent makes a request to form links to
some of the remaining agents, which would make him better off than the current network
if it was accepted by all agents included in it. However, at each step, all the requests
are not necessarily satisfied. Instead, we require that only links that are requested by
both agents involved are actually formed. Hence, it is possible that some portion of a
request is satisfied while the other portion is not satisfied. In such cases, it may be that,
after the formation of links based on the requests, some agents have incentives to delete
links that currently exist. Such links are deleted in the “deletion procedure” in each step
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of the algorithm. Step by step, links are gradually formed, and eventually some agents
have empty requests. Such agents are removed from the algorithm, and never be made a
request to, nor be able to make a request by himself. Eventually, at some step, no agent
“remains” in the algorithm, and the algorithm “stops” at such a step.

We prove the following Lemmas to complete the proof of Proposition 4.
Lemma A1. For every t ≤ t̄, if i ∈ N(t), k ∈ ri(t), and l ∈ N(t) \ ri(t), then d(i, k) <
d(i, l).

That is, i’s request ri(t) is a set of agents who are closer to i than anyone who is in
N(t) but is not included in the request.
Lemma A2. t̄ <∞, and g(t̄) is unique.

Hence, the algorithm “stops” in a finite steps, generating a unique network.
Lemma A3. g(t̄) is pairwise stable.
Lemma A4. There exists d̂ = (d̂1, · · · , d̂n) such that g(t̄) is generated by a cutoff rule
with d̂.

To establish Lemma A.4, we first prove the following claim.

Claim 1. Suppose c is convex. If j ∈ ri(t), then ∀t′ > t such that i, j ∈ N(t′), either
j ∈ ri(t′) or ij ∈ g(t′ − 1) holds.

Claim 1 implies the following.

Claim 2. Let g = g(t̄) and suppose ij 6∈ g, and d(i, j) < maxk∈Ni(g){d(i, k)}.
Then, uj(g + ij) < uj(g) holds.

Claim 2 implies Claim 3, which in turn implies Lemma A.4.

Claim 3. Let g = g(t̄) and suppose ij 6∈ g, and d(i, j) < maxk∈Ni(g){d(i, k)}.
Then, d(i, j) > maxl∈Nj(g){d(j, l)} holds.

Lemma A5. Suppose c is linear of convex. Then, g(t̄) is strongly stable.
Lemma A6. Suppose c is linear of convex. Then, a strongly stable network is unique.

Proof of Lemma A1
Note that ri(t) maximizes the sum of additional benefits that i obtains minus that of

additional costs that he incurs. Separability of u and the definition of ri imply

ri(t) = arg max
r′it⊆N(t)\[{i}∪Ni(g(t−1))]

∑
j∈r′it

b(d(i, j))−
]r′it−1∑
s=0

∆c(qi(g(t− 1)) + s)

 .
Notice that the second term of the right hand side of the above equality depends only on
i’s degree but not on the identities of agents in r′it.

Suppose, to the contrary, that there exist i, k, l ∈ N(t) such that d(i, k) > d(i, l),
k ∈ ri(t), and l ∈ N(t)\ri(t). Then, depriving ri(t) of k and adding l to ri(t) strictly
increases i’s additional benefit (the first term of the right hand side of the above equality)
with i’s additional cost (the second term) unchanged. This contradicts the assumption
that ri(t) is the maximizer of the right hand side of the above equality. This completes
the proof.

Proof of Lemma A2
Since there is no tie in distances, for each t and each i ∈ N , ri(t) is uniquely determined.

Therefore the algorithm generates a unique network, if it ends in finite steps.
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Now we prove that the algorithm ends in finite steps. The algorithm can be regarded
as a deterministic dynamic process over discrete time t = 1, 2, · · · , defined on state space
G(N) × 2N , where the state at t is (g(t − 1), N(t)). Note that the number of states is
finite.

We first show that this process is monotone. To see this, notice that the set N(t) is
nonincreasing. Hence it suffices to show that g(t− 1) is nondecreasing. To show this, we
will prove that no link in g(t− 1) is not deleted in the “deletion procedure” at t (i) with
a convex or linear cost function, and (ii) with a concave cost function.

First, consider case (i). We show that there is no agent deleting his links in the
algorithm, when c is convex or linear. By the definition of the request, for each t, i ∈ N(t),
and j ∈ ri(t), we have

b(d(i, j)) > ∆c(qi(g(t− 1)) + ]ri(t)− 1)

≥ ∆c(qi(g(t− 1)) + s),

where 0 ≤ s < ]ri(t). This ensures that however i’s requested links are actually formed,
he cannot become better off by deleting his newly formed links.

Second, consider case (ii). At step 1, the statement trivially holds, since g(0) = ∅.
We have, by the construction of the algorithm, ∆c(qi(g(t)) − 1) < b(d(i, j)) for all ij ∈
g(t). Now consider step t + 1 and suppose that i becomes better off by deleting links
in g(t). Let ij be the first link that is deleted from g(t). It must be the case that
∆c(qi(g(t)) + r − 1) > b(d(i, j)) for some 0 ≤ r ≤ ]ri(t). But then we would have
∆c(qi(g(t)) + r − 1) > ∆c(qi(g(t)) − 1), which contradicts the assumption that ∆c is
decreasing.

Hence, the process is monotone. Therefore, it suffices to show that there does not
exist an event in which the process remains in the same state such that N(t) 6= ∅. This
event could happen only if all the remaining agents make nonempty requests, and any of
agents’ requests are not fulfilled in the step. That is,

∀i ∈ N(t), [ri(t) 6= ∅] and [∀k ∈ ri(t) i 6∈ rk(t)].

Suppose that this is true at step t.
The simplest case is as follows: N(t) = {1, 2, 3}, r1(t) = {2}, r2(t) = {3}, and

r3(t) = {1}. However, Lemma A1 implies that d(1, 2) < d(1, 3), d(2, 3) < d(2, 1), and
d(3, 1) < d(3, 2). Contradiction.

Generally, there must exist a sequence of agents (1, 2, · · ·n′) in N(t) (with an ap-
propriate renaming) such that 2 ∈ r1(t), 3 ∈ r2(t), · · · , n′ ∈ rn′−1(t), and 1 ∈ rn′(t),
while 1 6∈ r2(t), 2 6∈ r3(t) ,· · · , n′ − 1 6∈ rn′(t), and n′ 6∈ r1(t). By Lemma A1, we
have d(1, 2) < d(1, n′), d(2, 3) < d(2, 1), · · · , d(n′ − 1, n′) < d(n′ − 1, n′ − 2), and
d(n′, 1) < d(n′, n′ − 1). Contradiction. This completes the proof.

Proof of Lemma A3
We need to show that in g(t̄), (i) no agent has a strict incentive to delete a link, and

(ii) no pair has an incentive to add a link.
To show (i), note that we have constructed the network in the way that there is no

link to delete at the final step. Moreover, for agents who have left the algorithm in
earlier steps, deleting their links does not increase their payoffs. This is because the set
of neighbors of each agent who left earlier remains unchanged after the step at which her
request was empty, and (just as in the final step,) there is no link for her to delete at that
step.
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To see (ii), partition the set of agents, (P1, . . . , PT ), so that in each cell Pt of the
partition, agents contained in it have empty requests at step t. Consider an agent i in
a partition Pt. At step t, there exists no agent j in

⋃T
l=t Pl such that i would be better

off by connecting with j at step t. This is because otherwise j’s request would not be
empty at step t. After step t, his degree does not change until the algorithm stops, hence
i does not have an incentive to form a link with agents in

⋃T
l=t Pl. Suppose that there

exists agent j′ ∈ Pl′ with l′ < t such that i has an incentive to form a link with. However,
j′ does not have an incentive to form a link with agents in

⋃T
l=l′ Pl, in particular with

i ∈ Pt ⊆
⋃T
l=l′ Pl. Hence, no agent has an incentive to form a link in the resulting network.

Proof of Claim 1
It suffices to show the statement in the case of t′ = t+1. To see this, first suppose that

ij ∈ g(t+1), given that j ∈ ri(t) and i, j ∈ N(t+1). Then, this implies ij ∈ g(t′) for every
t′ > t, by the monotonicity of g(·), proved in the proof of Lemma A2. Second, suppose
that j ∈ ri(t+ 1), given that j ∈ ri(t) and i, j ∈ N(t+ 1). Then, when i, j ∈ N(t+ 2), we
can show that either j ∈ ri(t + 2) or ij ∈ g(t + 1) holds, by repeating exactly the same
argument as in the case of t′ = t + 1, but by replacing t with t + 1. We can repeat this
argument to show that for any t′ = t+ k with k > 0, the statement of the claim holds.

Now, suppose, to the contrary, that given that j ∈ ri(t) and i, j ∈ N(t + 1), both
j 6∈ ri(t+ 1) and ij 6∈ g(t) hold. By Lemma A1, k ∈ ri(t+ 1) implies k ∈ ri(t), because of
j ∈ ri(t) and j 6∈ ri(t+ 1). That is, we have ri(t+ 1) ( ri(t), where the inclusion is strict
because of j.

Since the payoff function is separable, j ∈ ri(t) implies ∆c(qi(g(t− 1)) + ]ri(t)− 1) <
b(d(i, j)). Also, j 6∈ ri(t+ 1), ij 6∈ g(t), and j ∈ N(t+ 1) imply ∆c(qi(g(t)) + ]ri(t+ 1)) >
b(d(i, j)). Therefore, we have qi(g(t − 1)) + ]ri(t) ≤ qi(g(t)) + ]ri(t + 1), because ∆c is
increasing.

On the other hand, we have Ni(g(t)) ⊆ Ni(g(t− 1))∪ ri(t), by construction. Together
with ri(t + 1) ( ri(t), we obtain Ni(g(t)) ∪ ri(t + 1) ( Ni(g(t − 1)) ∪ ri(t). This implies
that we have qi(g(t)) + ]ri(t+ 1) < qi(g(t− 1)) + ]ri(t), because Ni(g(t)) ∩ ri(t+ 1) = ∅.
But this contradicts our earlier conclusion that qi(g(t− 1)) + ]ri(t) ≤ qi(g(t)) + ]ri(t+ 1).
This completes the proof.

Proof of Claim 2
Denote k = arg maxk∈Ni(g){d(i, k)}, and l = arg maxl∈Nj(g){d(j, l)}.
Suppose, to the contrary, that uj(g + ij) > uj(g) holds. But from ij 6∈ g and the

pairwise stability of g, ui(g) > ui(g + ij) must hold. That is, we must have b(d(i, j)) <
∆c(qi(g)). On the other hand, by the pairwise stability of g, we have ui(g) > ui(g − ik).
That is, b(d(i, k)) > ∆c(qi(g) − 1) holds. When c is concave or linear, this contradicts
b(d(i, j)) < ∆c(qi(g)), since ∆c(q) is nonincreasing and b(d(i, j)) > b(d(i, k)).

Consider the case where c is convex. By Lemma A2, ri(t
′) = ∅ for some t′. Since

k ∈ ri(t
′′) for some t′′ < t′, by Lemma A1, j ∈ ri(t

′′) holds. From Claim 1, we have
j ∈ ri(t) for any t > t′′ such that j ∈ N(t). This implies j ∈ ri(t

′), contradicting
ri(t

′) = ∅.
Therefore, for c that is either concave, convex, or linear, the statement is proved.

Proof of Claim 3
Suppose, to the contrary, that d(i, j) < d(j, l) holds.
Consider the case in which c is linear or concave. From Claim 2, uj(g + ij) < uj(g),

it holds that b(d(i, j)) < ∆c(qj(g)). Since g is pairwise stable, uj(g − jl) < uj(g), so that
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b(d(j, l)) > ∆c(qj(g)− 1) holds, where l is defined in the proof of Claim 2 (we define k in
the same way as in the proof of Claim 2, too). But this implies ∆c(qj(g)−1) < ∆c(qj(g)),
because of b(d(i, j)) > b(d(j, l)). This contradicts that ∆c(q) is nonincreasing.

Consider the case of convex c. First, note that, as proved in the proof of Lemma A1,
there is no agent deleting his links in the algorithm, when c is convex. Then, from ik ∈ g,
at some t′, k ∈ ri(t′) holds. Similarly, by jl ∈ g, at some t′′, l ∈ rj(t′′) holds. We have
j ∈ ri(t′) and i ∈ rj(t′′) by Lemma A1 if j ∈ N(t′) and i ∈ N(t′′). Thus, it cannot be the
case that t′ = t′′, as it would imply ij ∈ g.

Consider the case of t′ < t′′. Claim 1 implies that j ∈ ri(t) for all t > t′ whenever
j ∈ N(t). But then j ∈ N(t′′) implies j ∈ ri(t′′), which would imply ij ∈ g as there is
no “deletion procedure” in the case of convex c as we have seen already. In a perfectly
symmetric manner, we cannot have t′ > t′′. Thus the proof is complete.

Proof of Lemma A4
We claim that (

max
i∈N1(g)

{d(1, i)}, max
i∈N2(g)

{d(2, i)}, ..., max
i∈Nn(g)

{d(n, i)}
)

is a cutoff value profile d̂ = (d̂1, d̂2, ..., d̂n) generating g, where g = g(t̄).
By the definition of the cutoff rule, it suffices to show that we do not have the case in

which there exists ij 6∈ g such that d(i, j) ≤ min{d̂i, d̂j}. Suppose this holds. Then, ij 6∈ g
and d(i, j) < maxk∈Ni(g){d(i, k)} while d(i, j) < maxl∈Nj(g){d(j, l)} hold. This contradicts
Claim 3, so that the existence of a cutoff value profile is proved.

Proof of Lemma A5
As shown in Lemma 1, with a linear cost function, pairwise stable network is unique,

and hence Lemma A3 implies that the generated network is the network constructed in
the proof of Lemma 1. Due to the separability of the payoff function, it is straightforward
to see that the network is also strongly stable. Hence, we constraint attention to the case
in which c is convex: We prove that g = g(t̄) is strongly stable when c is convex. Take g′

that is obtainable from g via deviations by a set of agents S ⊆ N . The statement of the
lemma is true if

[∃s ∈ S us(g′) > us(g)] =⇒ [∃s′ ∈ S, u′s(g′) < u′s(g)].

Hence, it suffices to show that it cannot be the case that us(g
′) > us(g) for every s ∈ S.

Define D(s) = {j ∈ N |sj ∈ g, sj 6∈ g′} and A(s) = {j ∈ N |sj 6∈ g, sj ∈ g′}, that is,
D(s) (resp. A(s)) is a set of agents whose link to s ∈ S is deleted (resp. added) in the
deviations.

We are going to show that, for the profitable deviations by S to be possible, there
must exist an infinite sequence of agents, denoted by s1, s2, s3, · · · ∈ S, such that sl+1 ∈
A(sl)\{s1, s2, · · · , sl−1} for each sl. (Since S is finite, this is impossible.) To derive this
sequence, we also show that qsl(g) ≤ qsl+1

(g) holds, and either d(sl, n̄l) > d(sl+1, n̄l+1) or
qsl(g) < qsl+1

(g) holds, where n̄i denotes an agent whose distance to si is the longest among
si’s neighbors, i.e. d(si, n̄i) = maxn∈Nsi (g)

{d(si, n)}. We prove them by the mathematical
induction.

First, take an agent denoted by s1 ∈ S. Since the rule of the final step of the algorithm
and the convexity of c ensures that there is no incentive to delete links, agents in S cannot
be better off by only deleting their links in the deviations, implying A(s) 6= ∅ for every
s ∈ S. There are two cases concerning A(s1).
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• Case 1: ∀si ∈ A(s1), us1(g) > us1(g + s1si).

In this case, if we have d(s1, si) > d(s1, n̄1) for every si ∈ A(s1), then it would
be impossible to satisfy us1(g) < us1(g

′). To see this, we calculate s1’s net gain
from the deviations as follows. When s1’s degree increases in the deviations, i.e.
]A(s1) > ]D(s1), his net benefit is

∑
k∈A(s1)

b(d(s1, k))−
∑

l∈D(s1)

b(d(s1, l))−
]A(s1)−]D(s1)∑

j=1

∆c(qs1(g) + j − 1).

Notice that ∆c(qs1(g)) > b(d(s1, si)) holds for all si ∈ A(s1) in this case, and that ∆c
is increasing. Taking any subset Ā(s1) ⊂ A(s1) such that ]Ā(s1) = ]A(s1)− ]D(s1),
the net benefit can be rearranged to ∑

k∈A1\Ā(s1)

b(d(s1, k))−
∑

l∈D(s1)

b(d(s1, l))



+

 ∑
k∈Ā(s1)

b(d(s1, k))−
]A(s1)−]D(s1)∑

j=1

∆c(qs1(g) + j − 1)

 ,

which is negative because ∀si ∈ A(s1), us1(g) > us1(g + s1si). The same argument
carries over to the situation where his degree does not increase in the deviations.

Hence, we can focus on the case where there exists si ∈ A(s1) such that d(s1, si) <
d(s1, n̄1) holds. Take such an agent si, and denote him by s2. The inequality
d(s1, s2) < d(s1, n̄1) and s1s2 6∈ g imply, by Claims 2 and 3 above, us2(g) > usi(g +
s1s2) and d(s2, n̄2) < d(s1, s2).

Notice that we obtained the desired inequality d(s2, n̄2) < d(s1, n̄1).

Now, we show that qs1(g) ≤ qs2(g): The pairwise stability of g implies b(d(s1, n̄1)) >
∆c(qs1(g) − 1), and us2(g) > us2(g + s1s2) implies b(d(s1, s2)) < ∆c(qs2(g)). By
b(d(s1, s2)) ≥ b(d(s1, n̄1)), we have that ∆c(qs1(g)−1) < ∆c(qs2(g)). Hence, we also
get inequality qs1(g) ≤ qs2(g), since ∆c is increasing.

• Case 2: ∃si ∈ A(s1), us1(g) < us1(g + s1si).

Take si ∈ A(s1) such that us1(g) < us1(g + s1si), and denote this agent by s2.
By the pairwise stability of g, we have us2(g) > us2(g + s0s1). From ∆c(qs1(g)) <
b(d(s1, s2)) < ∆c(qs2(g)), we get a desired inequality qs1(g) < qs2(g).

Hence, we have shown the desired statements for the first step l = 1: There exists
s2 ∈ A(s1) such that qs1(g) ≤ qs2(g) holds, and either d(s1, n̄1) > d(s2, n̄2) (Case 1) or
qs1(g) < qs2(g) (Case 2) holds.

Next, let us suppose that we have shown the statements up to l = r: There exists
a sequence (s1, s2, · · · , sr) in S such that sl+1 ∈ A(sl)\{s1, s2, · · · , sl−1}, and qsl(g) ≤
qsl+1

(g) holds, and either d(sl, n̄l) > d(sl+1, n̄l+1) or qsl(g) < qsl+1
(g) holds for each l =

1, 2, · · · , r.
Suppose, to the contrary, that A(sr+1) ⊆ {s1, s2, · · · , sr}. We show this is impossible,

for both cases below.
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• Case 1’: ∀si ∈ A(sr+1), usr+1(g) > usr+1(g + sr+1si).

Due to the same discussion as in the Case 1 above, we can focus on the case where
there exists si ∈ A(sr+1) such that d(sr+1, si) < d(sr+1, n̄r+1). Take such an agent
si. As we have derived d(s2, n̄2) < d(s1, n̄1) and qs1(g) ≤ qs2(g) in the Case 1
above, we can get d(si, n̄i) < d(sr+1, n̄r+1) and qsr+1(g) ≤ qsi(g). But, because
si ∈ {s1, s2, · · · , sr}, at least one of them contradicts the assumed inequalities:
qsl(g) ≤ qsl+1

(g), and either d(sl, n̄l) > d(sl+1, n̄l+1) or qsl(g) < qsl+1
(g) for each

l = 1, 2, · · · , r.

• Case 2’: ∃si ∈ A(sr+1), usr+1(g) < usr+1(g + sr+1si).

Take si ∈ A(sr+1) such that usr+1(g) < usr+1(g + sr+1si). By the same logic with
which we have obtained qs1(g) < qs2(g) in the Case 2 above, we can get inequality
qsr+1(g) < qsi(g). But, because si ∈ {s1, s2, · · · , sr}, this contradicts the assumed
inequalities: qsl(g) ≤ qsl+1

(g) for each l = 1, 2, · · · , r.

Hence, for both cases, it must be the case thatA(sr+1) includes some si ∈ S\{s1, s2, · · · , sr},
such that qsr+1(g) ≤ qsi(g) holds, and either d(sr+1, n̄r+1) > d(si, n̄i) or qsr+1(g) < qsi(g)
holds. Denote this si by sr+2.

Therefore, the mathematical induction is complete.
Since it is impossible for all the elements in the infinite sequence s1, s2, · · · are included

in finite S ⊆ N , we conclude that there is no profitable deviations by any set of agents
S ⊆ N . Hence, g = g(t̄) is strongly stable.

Proof of Lemma A6
Lemma 1 establishes the uniqueness for the case of linear cost functions, so we con-

centrate on the case of convex cost functions.
Suppose, to the contrary, that a network g′ 6= g = g(t̄) is also strongly stable. This

implies that no pair of agents can profitably deviate from g′. We will show that this
contradicts the finiteness of N .

Notice first that there exists some i ∈ N such that ui(g) > ui(g
′), as otherwise g would

not be strongly stable. Take such an agent arbitrarily and call him agent 1. Consider two
possible (exhaustive) cases.

• (i) q1(g) > q1(g′): In this case, pairwise stability of g and the convexity of the cost
function imply that there exists some i ∈ N1(g)\N1(g′) such that u1(g′+1i) > u1(g′).

• (ii) q1(g) ≤ q1(g′): In this case, we can find some i ∈ N1(g)\N1(g′) such that there
exists j ∈ N1(g′) such that d(1, i) < d(1, j). Denote this j by 0. To see this, suppose,
to the contrary, that for all i ∈ N1(g)\N1(g′), for all j ∈ N1(g′), d(1, i) > d(1, j)
holds. Take an arbitrary network g′′ ⊂ g′ such that N1(g) ∩ N1(g′) ⊂ N1(g′′) and
q1(g) = q1(g′′). Such g′′ exists because q1(g) ≤ q1(g′). Then we have u1(g) ≤
u1(g′′) ≤ u1(g′), where the first inequality holds because we have, when g 6= g′′,
∀i ∈ N1(g)\N1(g′′), ∀j ∈ N1(g′′), d(1, i) > d(1, j), and the second inequality is due
to the pairwise stability of g′ and the convexity of c. But this contradicts our earlier
conclusion that u1(g) > u1(g′).

In either case (i) or (ii), we take such i and call him agent 2.
To complete the proof, we construct a sequence of distinct agents, {1, 2, · · · }, such

that 2k ∈ N2k−1(g)\N2k−1(g′), 2k + 1 ∈ N2k(g
′)\N2k(g), 2k + 2 ∈ N2k+1(g)\N2k+1(g′) ,

and d(2k− 1, 2k) > d(2k, 2k + 1) > d(2k + 1, 2k + 2) hold for each k = 1, 2, · · · . We have
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considered a portion of the case with k = 1 in the previous paragraph The rest of the first
step can be shown to be true by following exactly the same logic as we will have below
(by substituting k = 0), so we omit its proof.

Now, we start mathematical induction argument to obtain the remaining parts of the
infinite sequence and inequalities.

First, suppose we have shown the claims up to step k, and consider step k+ 1. Then,
we must have u2k+2(g′ + (2k + 1)(2k + 2)) < u2k+2(g′), as otherwise the pair 2k + 1 and
2k + 2 could profitably deviate from g′, by adding (2k + 1)(2k + 2) while simultaneously
deleting 2k(2k + 1). Hence, by the pairwise stability of g 3 (2k + 1)(2k + 2) and the
cost convexity, we have q2k+2(g) ≤ q2k+2(g′). Notice that this implies there is an agent in
N2k+2(g′) who is not in N2k+2(g), because (2k + 1)(2k + 2) ∈ g \ g′. Similarly, we must
have d(2k + 2, i) < d(2k + 1, 2k + 2) satisfied for all i ∈ N2k+2(g′), to ensure that 2k + 1
and 2k + 2 do not profitably deviate from g′.

The two conclusions in the previous paragraph imply that we can find some i ∈
N2k+2(g′)\N2k+2(g) such that d(2k + 2, i) < d(2k + 1, 2k + 2). If i = 2l − 1 (resp. 2l) for
some l = 1, 2, · · · , k, then we would have d(2l−1, 2k+2) < d(2k+1, 2k+2) < d(2l−1, 2l)
(resp. d(2l, 2k+2) < d(2k+1, 2k+2) < d(2l−1, 2l)) by the inductive supposition. But, this
contradicts Claim 3, because we have (2l−1)2l, (2k+1)(2k+2) ∈ g and (2l−1)(2k+2) 6∈ g
(resp. 2l(2k + 2) 6∈ g ). Hence i 6∈ {1, 2, · · · , 2k + 1}. Denote this i by 2k + 3.

Since we have (2k + 1)(2k + 2) ∈ g, (2k + 2)(2k + 3) 6∈ g and d(2k + 1, 2k + 2) >
d(2k+2, 2k+3), we can apply Claim 2 to get u2k+3(g+(2k+2)(2k+3)) < u2k+3(g). Then,
this implies q2k+3(g) ≥ q2k+3(g′), due to the cost convexity and the pairwise stability of
g′ 3 (2k+2)(2k+3). Again, this implies that we can find some i ∈ N2k+3(g)\N2k+3(g′), as
(2k+2)(2k+3) ∈ g′\g. By applying Claim 3, we must have d(2k+3, i) < d(2k+2, 2k+3).
If i ∈ {2, 3, · · · , 2k+1}, then we would have d(i, 2k+3) < d(2k+2, 2k+3) < d(i, i+1) <
d(i − 1, i) by the inductive supposition. But if i is odd (resp. even), then i and 2k + 3
could profitably deviate from g′ by adding i(2k+ 3) while deleting (i− 1)i (resp. i(i+ 1))
and (2k + 2)(2k + 3), respectively. Also, if i = 1, then the profitable deviation by 1 and
2k + 3 from g′ is possible. This is because 1 would be better off by adding (2k + 3)1
(as (2k + 3, 1) < d(2k + 2, 2k + 3) < d(1, 2)) in case (i) and by adding (2k + 3)1 and
deleting 01 in case (ii), and (2k+ 3) would be better off by adding (2k+ 3)1 and deleting
(2k+ 2)(2k+ 3). Hence, it must be the case that i 6∈ {1, 2, 3, · · · , 2k+ 1}. Denoting such
agent i by 2k + 4, we have shown the desired properties for step k + 1.

We have completed the induction. But since N is finite, it is impossible to have such
infinite sequence of distinct agents. This completes the proof.

D.2 Proof of Proposition 5

Proof. Consider a point x in the type space X, and a hypothetical agent i who is situated
at x, i.e. x = xi.

Let q(xi, δ) denote the number of agents in δ-neighborhood of xi. Then, for any δ > 0
and q′, q(xi, δ) > q′ holds almost surely as n→∞. Also, limq→∞∆c(q) = c1 > 0 implies
that for all ε > 0, there exists q′ such that for all qi > q′, |∆c(qi)− c1| < ε.

Now, take a small enough ε′ and δ′ > 0 such that b(δ′) ≥ c1 + ε′. Such ε′ and δ′ exist
since limd→0 b(d) > c1.

If i is not connected with an agent in his δ′-neighborhood, the resulting network would
not be pairwise stable, hence it is not strongly stable. Thus, i is connected with all the
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agents in his δ′-neighborhood. Thus, for any ε > 0, we have |∆c(qi) − c1| < ε almost
surely as n→∞.

Now, consider links with agents outside of the δ′-neighborhood. Since strongly stability
implies pairwise stability, c1−ε < ∆c(qi) (implied by |∆c(qi)−c1| < ε) implies that ij 6∈ g
if b(d(i, j)) ≤ c1 − ε, or d̂ + ε′ ≤ d(i, j) for b−1(c1) = d̂ and some ε′ > 0. Also, for
the same reason, ∆c(qi) < c1 + ε (implied by |∆c(qi) − c1| < ε) implies that ij ∈ g if
c1 + ε ≤ b(d(i, j)), or d(i, j) ≤ d̂− ε′′ for the same d̂ and for some ε′′ > 0.

Now, for any ε′ and ε′′, there exist agents j and k such that d̂ + ε′ < d(i, j) < d̂ + 2ε′

and d̂−2ε′′ < d(i, k) < d̂− ε′′ almost surely as n→∞. Also, these j and k have to satisfy
ij 6∈ g and ik ∈ g because of the argument in the previous paragraph. Hence, agent
i’s cutoff value, denoted by d̂i, which we know exists from Proposition 4, has to satisfy
d̂− 2ε′′ ≤ d̂i < d̂+ 2ε′ almost surely as n→∞. Because ε′ and ε′′ go to zero as ε goes to
zero by the continuity and strict decreasingness of b, and because x can be arbitrary, the
proof is completed.

D.3 Proof of Proposition 6

Proof.
The procedure is almost the same as the Proof for Theorem 1.
We only need to modify the expression in the proof of Theorem 1:

1

(d̂)k

∫ d̂

0

∫ d̂

0

· · ·
∫ d̂

0

(2d̂− y1)(2d̂− y2) · · · (2d̂− yk)
(2d̂)k

dy1dy2 · · · dyk

to take into account the heterogeneity of the cutoff values.
The expression has lower bound when the node in consideration has the cutoff of d̂+ε,

where all the other nodes have the cutoffs d̂− ε, which is larger than:

1

(d̂+ ε)k

∫ d̂+ε

2ε

∫ d̂+ε

2ε

· · ·
∫ d̂+ε

2ε

(2d̂− y1)(2d̂− y2) · · · (2d̂− yk)
(2d̂+ 2ε)k

dy1dy2 · · · dyk

=

(
3
2
d̂2 − 2d̂ε− ε+ 3

2
ε2

2(d̂+ ε)2

)k

.

Also, it has an upper bound when the node in consideration has the cutoff of d̂− ε, where
all the other nodes have the cutoffs d̂+ ε, which is smaller than:

1

(d̂− ε)k

∫ d̂−ε

0

∫ d̂−ε

0

· · ·
∫ d̂−ε

0

(2d̂− y1)(2d̂− y2) · · · (2d̂− yk)
(2d̂− 2ε)k

dy1dy2 · · · dyk

=

(
3
2
d̂+ 1

2
ε

2(d̂− ε)

)k

.

For any d̂ > 0, both bounds converges to the same desired limit,
(

3
4

)k
as ε goes to

zero. This completes the proof.
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E Additional Results

E.1 Examples for Section 5

With a nonlinear cost function, pairwise stability may not determine a unique network
structure. Moreover, a pairwise stable network is not necessarily generated by a cutoff
rule, as is illustrated by the following examples in Figure 1.

Figure 1: Multiple pairwise stable networks

First, consider the composition of nodes in (a-1)-(a-3). There are four nodes, 1, 2,
3, and 4 located in the type space X = [0, 1]2, with x1 = (0.9, 0.1), x2 = (0.8, 0.95),
x3 = (0.1, 0.25), and x4 = (0.15, 0.8). We consider the case with k = m = 2. Calculating
the distances, we get d(x1, x2) = 0.85, d(x1, x3) = 0.8, d(x1, x4) = 0.75, d(x2, x3) = 0.7,
d(x2, x4) = 0.65, and d(x3, x4) = 0.55. Suppose that b(d) = 1

d
, c(0) = 0, c(1) = 2,

c(2) = 2.2, and c(3) = 2.3. Notice that the cost function c is concave. In this case, there
are three types of pairwise stable network structures, depicted in (a-1), (a-2), and (a-3),
respectively. The network in (a-1) is pairwise stable because the cost to form the first link,
i.e. ∆c(0), is so high that no one wants to form a link. The network in (a-2) is pairwise
stable because, again, the cost for the node 4 to form the first link is very high that he
does not want to form a link even though each of the other three nodes have incentive to
form a link with him. There are three other networks of this type, in each of which one
agent has degree 0 and other three agents have degree 2. The network in (a-3) is also
pairwise stable because the fact that the marginal cost of forming a third link, ∆c(2) is
very low implies that the marginal benefit of deleting a third link is negative.
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Next, in (b-1)-(b-2), we have four nodes, 1, 2, 3, and 4 located in the type space
X = [0, 1]2, with x1 = (0.8, 0.2), x2 = (0.75, 0.95), x3 = (0.4, 0.1), and x4 = (0.25, 0.8).
Again, we consider the case with k = m = 2. Suppose that b(d) = 1

d
, c(0) = 0, c(1) =

1, c(2) = 10, and c(3) = 30. Notice that c is convex. Distances between nodes are
d(x1, x2) = 0.75, d(x1, x3) = 0.4, d(x1, x4) = 0.6, d(x2, x3) = 0.85, d(x2, x4) = 0.5, and
d(x3, x4) = 0.7. In this case, there are at least two pairwise stable networks, depicted
in (b-1) and (b-2), respectively.4 Both networks in (b-1) and in (b-2) are pairwise stable
because the marginal cost for these nodes to have a second link is very high. But the
network in (b-2) is not generated by a cutoff rule. For, if it did, the cutoff value of node
1 has to be no less than 0.75 because it is connected to node 2 and d(x1, x2) = 0.75. The
cutoff value of node 3 has to be also no less than 0.7 because it is connected to node 4
and d(x3, x4) = 0.7. But then, d(x1, x3) = 0.4 < 0.7 implies that it has to be the case
that the link 13 is formed; a contradiction.

Although we have multiplicity of pairwise stable networks in both concave and convex
cost functions, the reasons for the multiplicity are quite different. Precisely, in the case of
convex cost functions, it is impossible that two networks g, g′ ∈ G(N) are both pairwise
stable and g ( g′, while it is possible in the case of concave cost functions, as shown in
the example in Figure 1(a).

A pairwise stable network is not necessarily generated by a cutoff rule if it is not
strongly stable. In the example in Figure 1, for instance, the network in (b-2) is pairwise
stable, but is not (uniquely) strongly stable. So the fact that it is not generated by a
cutoff rule is still consistent with the result in Proposition 4. But it is always the case that
there exists a pairwise stable network that is generated by a cutoff rule. Moreover, using
the notion of strong stability, we can select a smaller set (or even a singleton set under
certain circumstances) of networks in which players form links as if they are using some
cutoff values. Note that, as opposed to the case of linear cost functions, the cutoff value
profile, if any, in a pairwise stable network under nonlinear cost function is not necessarily
homogeneous. An example is the network in Figure 1(a-2), where agents 1-3 and agent 4
cannot have a homogeneous cutoff value profile. Note that this network is not strongly
stable, as the network in Figure 1(a-3) is obtainable from the network in Figure 1(a-2)
via deviations by S = {1, 2, 3, 4} and that all the agents would be better off after such
deviations.

A homogeneous cutoff value profile may not exist even in a strongly stable networks.
Consider the composition of nodes in Figure 2. There are four nodes, 1, 2, 3, and 4 located
in the type space X = [0, 1]2, with x1 = (0.7, 0.1), x2 = (0.8, 0.95), x3 = (0.2, 0.05), and
x4 = (0.15, 0.4). We consider the case with k = m = 2. Suppose that b(d) = 1

d
, c(0) = 0,

c(1) = 1, c(2) = 5, and c(3) = 10. Distances between nodes are d(x1, x2) = 0.85,
d(x1, x3) = 0.5, d(x1, x4) = 0.55, d(x2, x3) = 0.9, d(x2, x4) = 0.65, and d(x3, x4) = 0.35.
It is straightforward to see that there is a unique pairwise stable network, namely g =
{12, 34}, as in the figure. This is also strongly stable.

4A network {14, 23} is also pairwise stable.
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Figure 2: Heterogeneous cutoff values.

Now, because node 1 is connected with node 2, his cutoff value, if any, has to be no
less than 0.85. But because node 3 is not connected with node 1, his cutoff value, if
any, has to be strictly less than 0.5. This implies that we can not find any homogeneous
cutoff value profile. Hence, this example shows that even in a strongly stable network,
a homogeneous cutoff value profile may not exist. On the other hand, as Proposition
4 shows, a heterogeneous cutoff value profile must exist. For example, (d̂1, d̂2, d̂3, d̂4) =
(0.85, 0.85, 0.35, 0.35) serves as a heterogeneous cutoff value profile.

E.2 Robustness of the Main Results against Non-uniform Type
Distribution

We examine the extent to which the comparative statics provided in Corollaries 1 and
2 go through even under non-uniform type distributions. As is clear from the intuition
explained above, the clustering coefficient is higher if there is more asymmetry in the size
of various types of neighbors of a given agent. This means that the comparative-statics
results are likely to be robust if the type distribution is not too asymmetric. To make this
intuition precise, we formalize a measure of asymmetry of type distributions and derive a
bound such that if the level of asymmetry is below that bound, our comparative-statics
results go through.5

Given a distribution f on the m-dimensional space X, define the following measure of
asymmetry of f 6 :

af = lim
d→0

max
w∈[0,1]m

max
S,T⊆{1,...,m},|S|=|T |=k

tf (w, d, T )

tf (w, d, S)

5In the main model, agents are connected if there are at least k dimensions on which their types are
within cutoff d̂. More generally we could allow the cutoff to be different across dimensions. One can
interpret the results in this section as providing conditions under which the comparative statics of the
main model is applicable to such a more general model.

6The existence of the limit is guaranteed because of t’s continuity in d (implied by f ’s continuity) and
Berge’s theorem of maximum. The limit in the definition of sf below exists for the same reason.
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where

tf (w, d, S) =
Proby∼f (|yj − wj| ≤ d for all j ∈ S)

Proby∼f (|yj − wj| for all j ∈ T such that T ⊆ {1, . . . ,m} and |T | ≥ k)

with the subscript “y ∼ f” expressing that the probability is computed assuming that
the point y is drawn according to the distribution f . Note that af ≥ 1 always holds, and
af = 1 if f is the uniform distribution. The number tf (w, d, S) is the probability that y
is within the distance of d from w with respect to all the dimensions in S conditional on
the event that these two points are neighbors to each other. Thus af is the maximum
with respect to w of the ratio of the maximum of such tf (w, d, S) with respect to S to
the minimum.

The measure af itself is difficult to handle, but it has an upper bound that is easier
to deal with:

af ≤ 1− ( mCk)s
f

sf
:= Af ,

where
sf = lim

d̂→0
min

w∈[0,1]m
min

S⊆{1,...,m},|S|=k
tf (w, d, S).

Here, sf is the minimum share of neighbors that some collection of dimensions of size k
has. The formula follows because sf is the minimum, so given this value the most extreme
case is that all but one collection of k dimensions have exactly this minimum share, and
the only one dimension has the biggest share.7

Now we consider comparative statics with respect to m and k. Denote the limit
clustering coefficient as d̂ → 0 given m, k, and a distribution f by Cl∗(m, k, f). In the

proposition below we denote

(
m
k

)
by mCk.

Proposition A1.

1. Suppose that k < m′ < m. Let g ∈ ∆([0, 1]m
′
) and f ∈ ∆([0, 1]m). Then,

Cl∗(m′, k, g) ≥ Cl∗(m, k, f) if

Af ≤ 1 +
mCk

√
mCk− m′Ck

m′Ck( mCk−1)

1−
√

mCk− m′Ck

m′Ck( mCk−1)

.

2. Suppose that under uniform distribution, Cl∗(m, k) ≥ Cl∗(m, k′). Let g ∈ ∆([0, 1]m
′
)

and f ∈ ∆([0, 1]m). Then, Cl∗(m, k, g) ≥ Cl∗(m, k′, f) if k′ = m or

Af ≤ 1 +
mCk′

√
mCk′ (

3
4

)k−k′− mCk

( mCk′−1) mCk

1−
√

mCk′ (
3
4

)k−k′− mCk

( mCk′−1) mCk

.

That is, as long as the asymmetry measure Af is less than the threshold that depends
on k, m, and m′, the comparative statics results in Corollary 1 are valid. The proof is
based on a straightforward modification of the one for the main result and hence omitted.
In Tables 1 and 2, we provide values of Af for various (m,m′) pairs and fixed k’s. As can

7If f is uniform, sf = 1
mCk

and so r(m,m′, k, sf ) reduces to 1/

m′Ck·[1/ mCk] = mCk/ m′Ck, as expected.
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be seen from the table, the comparative statics go through as long as the distribution is
not too asymmetric.

k = 1
m

2 3 4

m′ = 1 4 6.464 8.899
m′ = 2 − 3 4.450
m′ = 3 − − 2.667

k = 2
m

3 4

m′ = 2 5.346 10.658
m′ = 3 − 4.250

k = 3
m

4

m′ = 3 7.899

Table 1: Robustness of comparative statics with respect to m: Each entry is the Af

value for the given parameter values k, m′, and m that appear in Part 1 of Proposition A1.
Note that Cl∗(m, k) is decreasing in m.

m = 2
k

2

k′ = 1 5.828

m = 3
k

1 3

k′ = 2 3.070 12.325
k′ = 1 − 5.252

m = 4
k

3 1 4

k′ = 2 2.127 5.854 14.305
k′ = 3 − 5.150 26.856
k′ = 1 − − 4.055

Table 2: Robustness of comparative statics with respect to k: Each entry is the Af

value for the given parameter values m, k′, and k that appear in Part 2 of Proposition A1.
Note that Cl∗(2, 1) < Cl∗(2, 2), Cl∗(3, 2) < Cl∗(3, 1) < Cl∗(3, 3) and Cl∗(4, 2) < Cl∗(4, 3) <
Cl∗(4, 1) < Cl∗(4, 4).

Now we apply this result to compare the limit clustering coefficients under the Min and
Max norms. First, the comparative statics from the case with the uniform distribution
always carry over if k′ = m.8 Thus, we concentrate on the case with m < 9, in which
k = m and k′ = 1 hold. Hence, the inequality in part 2 of Proposition A1 becomes:

Af ≤
1 +

√
m(3

4
)m−1 − 1

1−
√

m( 3
4

)m−1−1

m−1

.

Table 3 summarizes the value of Af for various m’s. It suggests that a broad range of
distributions is consistent with the comparison of the Min and Max norms under the
uniform distribution, especially when m < 9 is small.

8More generally, given some (k,m) pair, if it is true under the uniform distribution that the clustering
is above the one given by the Max norm, then it is true for any other distribution. The reason is that
under the Max norm, for any small ε > 0 the set of the neighbors of any point x ∈ X is a subset of the
ε-neighborhood of x with respect to the Euclidan distance if d̂ > 0 is small enough. Since any distribution
that has a density function is locally uniform, changes in the distribution cannot affect the comparative
statics result.
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k = m

2 3 4 5 6 7 8

k′ = 1 3.414 3.560 3.033 2.487 2.037 1.663 1.294

Table 3: Robustness of comparative statics of the comparison of Min and Max
norms: Each entry is the Af value for the given parameter values m, k′ = 1 and k = m that
appear in Part 2 of Proposition A1. Note that when m < 9, Cl∗(m, 1) < Cl∗(m,m).

E.3 Clustering Lower Bound and Triangle Inequality

Define social distance by d(xi, xj) = ‖xi − xj‖ where ‖ · ‖ satisfies the standard norm
axioms in Rm. That is, for all α ∈ R and y, y′ ∈ Rm, it satisfies (i) absolute homogeneity:
|α|‖y‖ = ‖αy‖ (ii) triangle inequality: ‖y + y′‖ ≤ ‖y‖ + ‖y′‖, and (iii) separates points:
if ‖y‖ = 0 then y is the zero vector. Below we show that under such social distance d,

Cm :=
∫ 1

0
mqm−1(1− q)mdq > 0 is a lower bound of the limit clustering coefficient.

To see this, fix type xi of an agent i such that its d̂-neighborhood measured by social
distance d(·, ·) is contained in the interior of X. Let xj and xk denote two randomly chosen
points in the neighborhood of xi by the uniform distribution. By the triangle inequality,
agents j and k with type xj and xk, respectively, are connected if

d(xi, xj) + d(xi, xk) ≤ d̂. (2)

We claim that the standard-norm axioms imply a strictly positive lower bound Cm of
the probability that this inequality (2) is satisfied. To see this, first we note that, for
any r ∈ [0, 1], the Lebesgue measure of the (rd̂)-neighborhood of xi is rm of the d̂-
neighborhood.9 This implies that, for each r ∈ [0, 1], d(xi, xj) ≤ rd̂ holds with probability

rm for small enough d̂ > 0. Hence the probability density of the variable q :=
d(xi,xj)

d̂
,

conditional on xj being in the d̂-neighborhood of xi, is mqm−1. Therefore, (2) is satisfied

with probability
∫ 1

0
mqm−1(1 − q)mdq = Cm. Hence, the limit clustering coefficient is

bounded by Cm > 0 from below.10 On the other hand, such a lower bound cannot be
established if we relax the standard-norm axioms, and the clustering coefficient can be
arbitrarily close to 0 in general. The example below illustrates this point by using a
generalized version of the Min norm.

Example 4. Letm ≥ 2. Fix a finite collection ofm×m regular matrices {A(1), A(2), .., A(T )}.
For each t = 1, ..., T , the set of vectors {elA(t)}l=1,...,m spans Rm, where each el =
(0, ..., 0, 1, 0, .., 0) denotes the l’th unit vector in Rm. Therefore, for any vector y ∈ Rm

and t = 1, ..., T , there is a unique collection of coefficients {αyl (t)}l=1,...,m that satisfies
y =

∑
l=1,..,m α

y
l (t)elA(t).

9To see this, observe that d(x, (1 − r)x + rx′) = rd(x, x′) for any points x, x′ ∈ X by the absolute

homogeneity axiom. This ensures that a boundary point of (rd̂)-neighborhood of x can be written as

(1 − r)x + rx′ for some boundary point x′ of d̂-neighborhood. Geometrically, the (rd̂)-neighborhood is

equal to the d̂-neighborhood proportionally scaled by the factor of r. This implies that if x belongs to the
interior of X, then its d̂-neighborhood is contained in the interior of X, for all sufficiently small d̂ > 0.
This is because otherwise there exists a point x′ 6= x that belongs to the d̂-neighborhood of x for any
d̂ > 0, which implies ‖x− x′‖ = 0, a contradiction to separates points.

10A better bound is given by (1−(1/2)m)Cm+(1/2)m. This is because with probability ( 1
2 )m, sgn(xil−

xjl) = sgn(xil − xkl) holds for every dimension l = 1, ...,m. In such a case j and k are connected
independent of the distances d(xi, xj) and d(xi, xk).
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Define social distance by

d(x, x′) = min
t=1,..,T

min
l=1,...,m

|αx−x′l (t)|.

For any number w > 0, the assumption that m ≥ 2 implies that we can choose T large
and appropriate matrices {A(t)}t=1,...,T such that, for any t, t′ = 1, ..., T and l, l′ = 1, ...,m,
elA(t) and el′A(t′) are not proportional to each other, and the limit clustering coefficient
is below w. Intuitively, i’s neighborhood consists of m×T “stripes” and the types of two
neighbors j and k of agent i typically belong to different stripes in a d̂-neighborhood of
i’s type when m× T is large, and therefore j and k are unlikely to be connected. Figure
3 illustrates an example of d̂-neighborhood when m = 2 and T = 2, which consists of 4
“stripes”. This norm satisfies absolute homogeneity but violates triangle inequality and
separates points. Note that the Min norm is a special case of T = 1 where A(t) is the
identity matrix.

Figure 3: The d̂-neighborhood of x when m = 2 and T = 2 in Example 1.

�

E.4 Discrete Type Space Model

In the main part of this paper we assumed that agents are distributed over the type
space [0, 1]m, and that the distribution of agents on this space is given by some strictly
positive density function. In practice, some dimensions, for example gender, may be
better described by discrete type space. In this subsection we consider a variant of the
main model, in which the type space is discrete, to examine whether our main results are
robust to such modification of the model. We first discuss the subtleness in constructing
a model with discrete type space, and then show that our main qualitative results go
through in an appropriately defined model with discrete type space.

As we have mentioned in Section 6, the limit analysis as d̂→ 0 enables us to implement
meaningful comparative statics under the main model, as we can take that limit with
keeping the expected degrees identical across two different networks with different k’s
and m’s. This argument does not go through when we have discrete type space because
in a discrete model, when the “cutoff” is near zero, an agent’s only neighbors are those with
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distance zero, and thus without any additional assumptions we cannot set the expected
degrees identical across two different networks with different k’s and m’s.

To highlight the effect of discreteness, we consider the simplest form of discrete type
space, X = {0, 1}m, and a unit mass of agents distributed uniformly over X, so that
at each point in this space, measure 1

2m
of agents exists. Given m and k, agent i at

point x ∈ X is a potential neighbor of agent j at y ∈ X if x and y have at least k
common attributes. For example, if m = 5, x = (0, 0, 1, 0, 1) and y = (1, 0, 1, 1, 0), they
are potential neighbors with each other if k ≤ 2, but otherwise not. Let the size of
potential neighbors for each agent (which we assume is identical for all agents) be M . To
overcome the difficulty described in the previous paragraph, we assume that an agent can
be linked with only a subset of potential neighbors where the size of this subset may differ
for different (k,m) values. Specifically, we parameterize the model by size of neighbors,
denoted by p > 0. That is, an agent is linked to a potential neighbor independently with
probability p

M
and is not linked to anyone outside the set of potential neighbors, so that

the size of neighbors is p. For simplicity, we assume that p is sufficiently small so that the
probability p

M
is well defined (i.e. no more than 1).

Let g be the network generated by the rule described above, and Cl(m, k, p) and
APL(m, k, p) be the clustering coefficient and the average path length of g, respectively,

given m, k, and p. Let denote the binomial coefficient

(
a
b

)
by C(a, b). The next proposi-

tion states the formulas for Cl(m, k, p) and APL(m, k, p).

Proposition A2.

1.

Cl(m, k, p) =

( ∑
0≤s,t≤m−k

PstC(m, s)C(m, t)

(
∑

0≤i≤m−k C(m, i))2

)
· 2m∑

k≤l≤mC(m, l)
p,

where

Pst = Pts =

1 if s+ t ≤ m− k.∑
0≤h≤m−k−s+t

2
C(s,t−h)C(m−s,h)

C(m,t)
if s+ t > m− k and s ≥ t.

2.

APL(m, k, p) = −p+
m∑
l=1

C(m, l)

2m
max [2, D(l,m, k)] ,

where D(l,m, k) = min{a ∈ N|a ≥ l
m−k}.

The clustering coefficient is the product of two terms: The first is the term in the
parentheses, which is the probability that an agent’s two neighbors are potential neighbors
with each other. The second is the probability that they are actually connected ( p

M
).

Notice that for fixed m, as k becomes larger the size of potential neighbors (M) decreases,
so p

M
is increasing in k.

Proof.
Part 1:
Take arbitrarily agents i, j, and k situated at points x, y, and z in the type space

X, respectively. First we compute the conditional probability of “j and k being potential
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neighbors of each other, given ij ∈ g and ik ∈ g.” This probability depends on the type
difference between i and j, as well as i and k. Let s (resp. t) denote the number of different
entries between x and y (resp. x and z). Note that 0 ≤ s, t ≤ m− k, because ij ∈ g and
ik ∈ g. Due to the uniform distribution assumption, given ij ∈ g, conditional distribution
of s follows probability mass function h(s) := C(m,s)∑m−k

i=0 C(m,i)
. Conditional distribution of t

follows the same probability mass function.
Let Pst denote the conditional probability of “j and k being potential neighbors of

each other, given s and t.” Since we have Pst = Pts, it is sufficient to focus on the case
s ≥ t. If s+ t ≤ m− k, then it is clear to see that the type difference between j and k is
always within m− k entries, so that Pst = 1.

Consider the case where s + t > m − k. It is without loss of generality to suppose
x = (0, . . . , 0) and y = (1, . . . , 1, 0, . . . , 0), where the first s entries are all 1 and the others
are zero. For each x′, x′′ ∈ X, define ||x′ − x′′|| :=

∑m
i=1 |x′i − x′′i |. Since the conditional

distribution of z is uniform in {x′ ∈ X : ||x′|| = t}, we have

Pst =

∑m−k
r=0 ]{z ∈ X : ||z|| = t, ||z − y|| = r}

C(m, t)
.

We have that

]{z ∈ X : ||z|| = t, ||z − y|| = r}

=

{
0 if r < s− t or r = s− t+ 2l + 1 for some l = 0, 1, 2, · · · .
C(s, t− h)C(m− s, h) if r = s− t+ 2l for some l = 0, 1, 2, · · · .

To see this, first consider the case z = z′ := (1, . . . , 1, 0, . . . , 0) where the first t entries are
all 1 and the others are zero. Clearly this point belongs to arg min||z||=t{||z − y||}. Since
||z′ − y|| = s − t holds, ||z − y|| < s − t is not possible, given ||z|| = t. Next, starting
from k’s type being z′, modify his type arbitrarily, keeping at t the difference between 0
and this type. Notice that ||z − y|| − (s− t) cannot be an odd number, given ||z|| = t. If
there exists a nonnegative integer l such that we can write ||z − y|| = s− t + 2l, we can
find C(s, t− l)C(m− s, l) patterns of k’s type z such that ||z|| = t.

Then, by aggregating Pst over every (s, t) pair with the probability mass function h(·),
we obtain the conditional probability of “j and k being potential neighbors of each other,
given ij ∈ g and ik ∈ g.”

Next, we compute the probability of “a link being formed between two agents who are
potential neighbors of each other.” This probability p(k,m) has to be adjusted to keep
the size of neighbors p to be independent of k and m. Given k and m, the size of potential

neighbors is
∑

k≤l≤m C(m,l)

2m
. Thus, we obtain p(k,m) = 2m∑

k≤l≤m C(m,l)
p.

Finally, the clustering coefficient is obtained by multiplying the conditional probability
of “j and k being potential neighbor of each other, given ij ∈ g and ik ∈ g” by p(k,m),
which yields the desired formula.

Part 2:
First note that if two agents are linked by path length 2 or more in the model with

p = 1 (i.e. they are not potential neighbors with each other) then they are linked by the
same path length in any model with p > 0. To see this, note that there are positive mass
of population of each type, thus for any given sequence of types (x1, x2, . . . , xn), there are
some sequence of agents (i1, i2, . . . , in) such that each agent il is of type xl and il and il+1
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are linked with each other for all l = 1, . . . , n− 1. Thus the average path length is

APL(m, k, p) = M ·
[ p
M
· 1 + (1− p

M
) · 2

]
+

m∑
l=m−k+1

C(m, l)

2m
D(l,m, k),

where D(l,m, k) = min{a ∈ N|a ≥ l
m−k}. Here the first term is the size of potential

neighbors of an agent times the average path length from the agent in consideration to
these agents.

This is equal to

−p+ 2M +
m∑

l=m−k+1

C(m, l)

2m
D(l,m, k),

or

−p+
m∑
l=0

C(m, l)

2m
max [2, D(l,m, k)] .

This completes the proof.

In Tables 1 and 2 we provide examples of values Cl(m, k, p) and APL(m, k, p) where
m ∈ {1, 2, 3, 4, 5}.

m \ k 1 2 3 4 5
1 p – – – –
2 1.037p 4p – – –
3 0.863p 1.625p 8p – –
4 0.811p 0.805p 2.688p 16p –
5 0.796p 0.539p 1.297p 2.370p 32p

Table 4: Cl(m, k, p)

m \ k 1 2 3 4 5
1 ∞ – – – –
2 2− p ∞ – – –
3 2− p 2.125− p ∞ – –
4 2− p 2− p 2.375− p ∞ –
5 2− p 2− p 2.031− p 2.656− p ∞

Table 5: APL(m, k, p)

The results in the tables feature the key properties we obtained in Corollaries 1 and 2.
That is, (i) the clustering coefficient under the Max norm is higher than under the Min
norm, (ii) the clustering coefficient is not monotonic in k while it is decreasing in m, and
(iii) the average path length is increasing in k while decreasing in m.

E.5 Approximation Results

In this section we consider the cutoff rule model where the number of agents n is finite
and the cutoff d̂ is positive. The following result gives bounds of the deviations of the
expected values of clustering coefficient and average path length from the limit values
obtained in the main section.

Proposition A3.
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1. For n ≥ 3, |Cl∗ − E[Cl]| = O(d̂) as d̂→ 0.

2. For k < m, −O(d̂) ≤ E[APL]− APL∗ ≤ O(e−nd̂
m
n) as (n, d̂)→ (∞, 0).

This result helps us to interpret the limit values Cl∗ and APL∗ in the main section.
That is, it bounds the orders of n and d that we need in order to approximate the limit
values at a given precision. We note that the bound of clustering does not depend on n.
This is because the clustering coefficient is an expectation of independent probabilities.

Proof.
Part 1:
Fix n ≥ 3 and we look at the sequence of models with varying d̂→ 0. First we have

E[Cl] =E[Cli]

=(1− (1− 2d̂)m)E[Cli : xi 6∈ X(d̂)] + (1− 2d̂)mE[Cli : xi ∈ X(d̂)]

=O(d̂) +O(1− d̂)E[Cli : xi ∈ X(d̂)]

where X(d̂) is the set of types that are bounded away (for each dimension) from the
boundary by d̂. Let S(i, j) = {l : |xil − xjl| ≤ d̂} ⊆ {1, 2, ...,m} be the set of dimensions

on which i and j are close within the distance of d̂. We have

E[Cli : xi ∈ X(d̂)]

= Pr[jh ∈ g : xi ∈ X(d̂), {ij, ih} ⊆ g]

=: P̂ r[jh ∈ g]

=
m∑
l=k

P̂ r[|S(i, j)| = l]P̂ r[jh ∈ g : |S(i, j)| = l]

=
1

µ(Bd̂(xi) ∩X(d̂))

m∑
l=k

m!

(m− l)!l!
(2d̂)l(1− 4d̂)m−lP̂ r[jh ∈ g : |S(i, j)| = l)]

= O(1− d̂)P̂ r[jh ∈ g : |S(i, j)| = k] +O(d̂)

where P̂ r[·] denotes the probability measure conditional on xi ∈ X(d̂) and {ij, ih} ⊆ g.
Then

P̂ r[jh ∈ g : |S(i, j)| = k]

=
m∑
l=k

P̂ r[|S(i, h)| = l : |S(i, j)| = k]P̂ r[jh ∈ g : |S(i, j)| = k, |S(i, h)| = l]

=
1

µ(Bd̂(xi) ∩X(d̂))

m∑
l=k

m!

(m− l)!l!
(2d̂)l(1− 4d̂)m−lP̂ r[jh ∈ g : |S(i, j)| = k, |S(i, h)| = l)]

= O(1− d̂)P̂ r[jh ∈ g : |S(i, j)| = |S(i, h)| = k] +O(d̂)

Next

P̂ r[jh ∈ g : |S(i, j)| = |S(i, h)| = k]

=P̂ r[S(i, j) = S(i, h) : |S(i, j)| = |S(i, h)| = k]P̂ r[jh ∈ g : S(i, j) = S(i, h), |S(i, j)| = |S(i, h)| = k]

+P̂ r[S(i, j) 6= S(i, h) : |S(i, j)| = |S(i, h)| = k]P̂ r[jh ∈ g : S(i, j) 6= S(i, h), |S(i, j)| = |S(i, h)| = k]

=
(m− k)!k!

m!
P̂ r[jh ∈ g : S(i, j) = S(i, h), |S(i, j)| = |S(i, h)| = k]

+(1− (m− k)!k!

m!
)P̂ r[jh ∈ g : S(i, j) 6= S(i, h), |S(i, j)| = |S(i, h)| = k].
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Regarding the last line, we can get bounds:

(
3

4
)k ≤P̂ r[jh ∈ g : S(i, j) = S(i, h), |S(i, j)| = |S(i, h)| = k]

≤(
3

4
)k + (1− (

3

4
)k)(1− (

1− 4d̂

1− 2d̂
)m−k)

=(
3

4
)k +O(d̂),

where (3
4
)k represents the conditional probability that j and h are close to each other in

dimensions S(i, j). The second term on the second line gives a probability bound of the
other possibilities that j and h are linked. Also we have

P̂ r[jh ∈ g : S(i, j) 6= S(i, h), |S(i, j)| = |S(i, h)| = k] ≤ (1− (
1− 4d̂

1− 2d̂
)m−k)

= O(d̂).

Therefore what we have shown is the inequality of the form

αCl∗ ≤ E[Cl] ≤ α(Cl∗ +O(d̂))

where coefficient α is such that 1− α = O(d̂). This shows that |Cl∗ − E[Cli]| = O(d̂).

Part 2:
With fixed k < m, we look at a sequence of models with varying (n, d̂)→ (∞, 0).
First we have

E[APL]

=E[PLij : PLij <∞]

=Pr[∀l|xil − xjl| > d̂ : PLij <∞]E[PLij : ∀l|xil − xjl| > d̂, PLij <∞]

+Pr[∃l|xil − xjl| ≤ d̂ : PLij <∞]E[PLij : ∃l|xil − xjl| ≤ d̂, PLij <∞],

and

Pr[∀l|xil − xjl| > d̂ : PLij <∞] > (1− 2d̂)m = 1−O(d̂),

E[PLij : ∃l|xil − xjl| ≤ d̂, PLij <∞] ≤ E[PLij : ∀l|xil − xjl| > d̂, PLij <∞].

Below we use Ẽ and P̃ r to denote the expectation and probability conditional on
|xil−xjl| > d̂ for every l and PLij <∞. First note that P̃ r[PLij < APL∗] = 0 because it
is impossible to find an indirect path that connects these two agents with steps less than
APL∗ when |xil− xjl| > d̂ for every l. Therefore Ẽ[PLij] =

∑n
l=APL∗ P̃ r[PLij = l]l. Here

P̃ r[PLij = APL∗] is more than

α′ := (1− (1− (d̂)m)n−2)APL
∗

= 1−O[(1− d̂m)n]

which is the probability bound that a length-APL∗ indirect path (i.e., β in the proof of
Theorem 2) exists. Note that this construction relies on the fact that k < m.

Hence we have shown the inequality of the form
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O(d̂)1 + (1−O(d̂))APL∗

≤E[APL]

≤
(
O(d̂) + (1−O(d̂))

)
(α′APL∗ + (1− α′)n).

This inequality, together with the fact that (1 − dm)1/dm → e−1 results in the desired
formula.

The extent to which our results regarding the limit values are economically meaningful
depends on the robustness of the comparative statics results. Here we consider the com-
parative statics of clustering coefficient and average path length when n is finite and d̂ is
positive. Figures 1 and 2 plot the realizations of clustering coefficients and average path
lengths of 100 generations of networks for each parameter combination where m ∈ {2, 3}
and n = 1000 under the uniform type distribution. For each profile (m, k), we adjusted the
cutoff level to generate five different levels of expected degrees,11 ED ∈ {10, 20, 30, 40, 50}
and ran simulations. The x-axis of each figure corresponds to the values of k. Each dia-
gram shows the 0.25, 0.50, and 0.75 fractiles of the resulting distribution, along with the
outliers.

Our results in the main sections show that Cl∗(2, 2) > Cl∗(1, 2) and APL∗(2, 2) >
APL∗(1, 2) when m = 2, and Cl∗(3, 3) > Cl∗(1, 3) > Cl∗(2, 3) and APL∗(3, 3) >
APL∗(2, 3) > APL∗(1, 3) when m = 3. Under broad parameter combinations, the sim-
ulation results we ran are consistent with our comparative statics of the limit values. In
Figure 2 the simulation results on the clustering coefficients under m = 3 are inconsistent
with the comparative statics of the limit values when the expected degree is relatively
high. This is because the cutoff value is too high in such cases, so that there can be
significant deviations from the limit values of the clustering coefficients.12

11To be more precise, this is the expected degree of an agent whose type belongs to [d̂, 1− d̂]m ⊂ X.
12When the expected degree is 40, the cutoff for k = 2 is as high as 0.0602. This is so high that

two neighbors of an agent can be linked with each other with a nontrivial probability even when they
are connected with the agent thorough different sets of dimensions. This makes the simulated value of
the clustering coefficient for k = 2 significantly higher than the limit value, leading to the inconsistent
comparative statics.
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Figure 4: Comparative statics under m = 2

Figure 5: Comparative statics under m = 3
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