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A Auxiliary Results

A Necessary Condition for the Incumbent’s Incentive Compatibility

Lemma 4. A direct mechanism (p, x) is incentive compatible for the incumbent only if Q
1

(s
1

, p) in

(13) is increasing in s

1

.

Proof. Let X

1

(s
1

, x) ⌘
R
[0,1]n x1(s1, s�1

)dF�1

(s�1

). An incumbent with type s

1

has incentives to

report her true type s

1

rather than s̃

1

only if:

U

⇤(s
1

) ⌘ v̂(s
1

)Q
1

(s
1

, p) +X

1

(s
1

, x) � v̂(s
1

)Q
1

(s̃
1

, p) +X

1

(s̃
1

, x)

= (v̂(s
1

)� v̂(s̃
1

))Q
1

(s̃
1

, p) + v̂(s̃
1

)Q
1

(s̃
1

, p) +X

1

(s̃
1

, x)

= (v̂(s
1

)� v̂(s̃
1

))Q
1

(s̃
1

, p) + U

⇤(s̃
1

).

Thus, we can deduce from the top and bottom lines above and the inequality resulting from inter-

changing the roles of s
1

and s̃

1

that:

(v̂(s
1

)� v̂(s̃
1

))Q
1

(s̃
1

, p)  U

⇤(s
1

)� U

⇤(s̃
1

)  (v̂(s
1

)� v̂(s̃
1

))Q
1

(s
1

, p),

which implies that Q
1

(s
1

, p) must be increasing in s

1

. ⌅

The conditions of Proposition 2 in the Setting of Section 4

We shall show here that the conditions Proposition 2 are met in our application in Section 4 for any

function ⇡ if �, the di↵erence in setup costs of the entrants and the incumbent, is neither so low that

the first best always allocate to one of the entrants nor so high that the second best always allocate

to the incumbent.

Since s̆ 2 [0, ⇢(0)], see Figure 1, the conditions of Proposition 2 are met if s̆ 2 (0, ⇢(0)). This

happens when ⇢(0) > 0 and �(1) = 1, which require that ⇡(0, C � �) � ⇡(0, C) < � and � <

R
1

0

�
⇡(s

1

, C � � � 1)� ⇡(s
1

, C)
�
dF

1

(s
1

), by (4) and (5), respectively. These values of � exist for any

function ⇡ since the submodularity of ⇡ implies that ⇡(0, C � �) � ⇡(0, C)  ⇡(s
1

, C � �) � ⇡(s
1

, C)

and the monotonicity of ⇡ that ⇡(s
1

, C � �) < ⇡(s
1

, C � � � 1).
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Existence of an Increasing Solution to (6)

Let �(✏) ⌘ {(s, s
1

) : s
1

2 [0, 1], s 2 [0, ⇢(s
1

)� ✏]}. That (6) has a unique solution in any point in the

interior of �(✏) for ✏ > 0 follows from applying standard results26 to the following transformation of

(6):

�

0(si) =
f(si)

R
1

�(si)
(v(si, s1)� v̂(s

1

)) dF
1

(s
1

)

f

1

(�(si))
F (⇢(�(si)))�F (si)

2

(v̂(�(si))� v(si, �(si)))
.

It also shows why the solution is strictly increasing. That the numerator is positive follows from (V),

see Footnote 14. That the denominator is positive is a consequence of the fact that the solution lies

in �(0), and v̂(s
1

)� v(si, s1) > 0 in the interior since v̂(s
1

)� v(si, s1) = 0 in the upper right frontier

of �(0) where si = ⇢(s
1

), see Figure 2.

Auxiliary Results for Definition 4

That �(si)  v̂(0) in (8) is a direct consequence of �(0) = 0 as Definition 2 that v(si, 0)� v̂(0)  0.

To see that there is a unique solution �(si) 2 [v̂(0), v̂(�(si))] to (9) note that its left hand side is

positive at �(si) = v̂(0) by Definition 2 since �(si) > 0, strictly decreasing in �(si) and negative at

�(si) = v̂(�(si)), if �(si) < 1 because Definition 2 implies that v(si, s1)� v̂(�(si)) = 0 and if �(si) = 1

because of the condition
R
1

0

(v(si, s1)� v̂(1)) dF
1

(s
1

)  0.

That �(si) � v̂(1) in (10) is direct from
R
1

0

(v(si, s1)� v̂(1)) dF
1

(s
1

) > 0.

Auxiliary Result to Section 7

Lemma 5. The equilibrium of Proposition 7 implements in the survival auction the allocation asso-

ciated to {�i}.

Proof. The allocation associated to {�j} assigns the good to the incumbent with highest type, say

incumbent j, if �j(si; s�j)  sj and otherwise to the entrant with highest type, where sj is the

incumbent j’s type, si is the highest type of the entrants and s�j the vector of the other incumbents’

types.

We first consider the case �j(si; s�j)  sj . This condition implies that

v(si,�j(si; s�j), s�j)  v̂(sj). (41)

26For instance, Theorem 2.3, page 10, in Coddington, E. A. E., and N. Levinson (1984): Theory of Ordinary

Di↵erential Equations. Krieger Publishing Company, first edn.
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This is a consequence of v̂ being increasing and the implication of Definition 5 that v(si,�j(si; s�j), s�j) 

v̂(�j(si; s�j)). The inequality in (41) implies that the incumbent with highest type is not outbid by

the entrants neither in A., nor C. nor D. Besides, the incumbent with highest type is not eliminated

in B. as he bids higher than the other incumbents. Thus, the incumbent with highest type wins as

desired.

Suppose now that �j(si; s�j) > sj . The entrant with highest type is not eliminated in cases

A. and E. because the entrants’ bid function is strictly increasing in these cases. Besides, no entrant

is eliminated in B. Finally, the entrant with highest type is not eliminated in cases C. and D. because

�j(si; s�j) > sj means that she outbids the incumbent. Thus the entrant with highest type wins as

desired. ⌅

B Probability of Rushes Arbitrarily Close to One

Proposition 8. Suppose that v̂(s
1

) = s

1

+1 and v(si, s1) = si+s

1

+ ↵
��s1

where ↵ > 0 and � ⌘ 1

1�e
� 1

↵2
,

and that F and F

1

are uniform. In equilibrium, the probability that a rush occurs tends to one as ↵

goes to zero. In the limit, the good is allocated between the two entrants with equal probability and

independently of their types.

Proof. To prove the proposition we show that both ⇢(s
1

) and �(si) tend to one as ↵ goes to zero for

s

1

2 [0, 1) and si 2 (0, 1), respectively. The former is straightforward since by definition

⇢(s
1

) = 1� ↵

1

1�e
� 1

↵2
� s

1

,

and lim↵!0

↵
1

1�e
� 1

↵2
�s1

= 0 for any s

1

2 [0, 1).

We argue by contradiction that �(si) tends to one for si 2 (0, 1). Suppose an si 2 (0, 1) for which

�(si) remains below and away from one as ↵ tends to zero. Definition 3 implies that � satisfies:

�

0(si) =
f(si)

R
1

�(si)
(v(si, s1)� v̂(s

1

)) dF
1

(s
1

)

f

1

(�(si))
F (⇢(�(si)))�F (si)

2

(v̂(�(si))� v(si, �(si)))
. (42)

and hence, under the particular assumptions of the proposition:

�(si) =

Z si

0

R
1

�(s̃i)

0

@
s̃i +

↵
1

1�e
� 1

↵2
�s1

� 1

1

A
ds

1

⇢(�(s̃i))�s̃i
2

0

@1� s̃i � ↵
1

1�e
� 1

↵2
��(s̃i)

1

A

ds̃i. (43)
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Since for any s

1

< 1, ⇢(s
1

) tends to one as ↵ tends to zero and lim↵!0

↵
1

1�e
� 1

↵2
��(s̃i)

= 0, the denomi-

nator in (43) tends to (1�s̃i)2

2

> 0, since s̃i < si < 1. Moreover, the integral in the numerator is equal

to:27

(s̃i � 1)(1� �(s̃i)) +
1

↵

+ ↵ ln
⇣
1� �(s̃i)

⇣
1� e

� 1
↵2

⌘⌘
,

which diverges to infinity as ↵ tends to zero. This contradicts that �(si) is below and away from

one. ⌅

C An Economic Application: Privatizations with an Insider

In this appendix, we provide another economic application of our results. In this application there is

large uncertainty about a common component of the bidder’s values relative to idiosyncratic di↵erences

and the common component is the incumbent’s private information.28

An asset is privatized. This asset may generate two cash flows V and V , V < V , with probability

⇠ and 1 � ⇠ respectively. The asset generates the cash flow only after incurring in some operating

cost that di↵ers across bidders. We assume that each bidder knows privately its operating cost. We

assume that Bidder i’s operating cost follows an independent distribution Gi with support [c, c]. We

also assume that Bidder 1, the incumbent, knows privately whether the asset’s cash flow is equal to V

or V . Besides, we assume that V � V � c� c and V > c, i.e. the operating cost di↵erences are small

compared to the cash flow uncertainty, and the asset always has positive net value.

This problem can be formulated as a particular case of our model adopting the convention that

s

1

� 1/2 denotes that the asset’s value is equal to V and s

1

 1/2 that it is equal to V , that the

27Note that:

Z 1

�(s̃i)

↵
1

1�e
� 1

↵2
� s1

ds̃i = �↵

"
ln

 
1

1� e�
1

↵2

� s1

!#s1=1

s1=�(s̃i)

= �↵

 
ln

 
1

1� e�
1

↵2

� 1

!
� ln

 
1

1� e�
1

↵2

� �(s̃i)

!!

= �↵ ln

0

@ e�
1

↵2

1� �(s̃i)
⇣
1� e�

1
↵2

⌘

1

A

=
1
↵

+ ↵ ln
⇣
1� �(s̃i)

⇣
1� e�

1
↵2

⌘⌘
.

28A similar role can be played by di↵erences in individual synergies which may be a more relevant example in the case

of takeovers.
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operating cost of Bidder 1 is c � 2s
1

(c � c) if s
1

< 1/2 and c � (2s
1

� 1)(c � c) if s
1

� 1/2, and the

operating cost of i, i 6= 1, is c� si(c� c). Thus, the corresponding value functions are:29

v̂(s
1

) =

8
<

:
V � (c� 2s

1

(c� c)) if s
1

⇥
0, 1

2

�

V � (c� (2s
1

� 1)(c� c)) if s
1

2
⇥
1

2

, 1
⇤

v(si, s1) =

8
<

:
V � (c� si(c� c)) if s

1

⇥
0, 1

2

�

V � (c� si(c� c)) if s
1

2
⇥
1

2

, 1
⇤
.

and the distributions:

F

1

(s
1

) =

8
<

:
⇠ (1�G

1

(c� 2s
1

(c� c))) if s
1

<

1

2

⇠ + (1� ⇠) (1�G (c� (2s
1

)(c� c))) if s
1

� 1

2

Fi(si) = (1�Gi (c� si(c� c))) , i 6= 1.

It is thus direct from Definition 1 that the first best is characterized by:

⇢(s
1

) =

8
<

:
2s

1

if s
1

<

1

2

2s
1

� 1 if s
1

� 1

2

,

(44)

and thus not implementable by Lemma 1. Besides, the maximand of (2) becomes:

Z
min{q,1/2}

0

(si � 2s
1

) (c� c)dF
1

(s
1

) +

Z
max{q,1/2}

1/2
(si � 2s

1

+ 1) (c� c)dF
1

(s
1

).

This expression is increasing in q for q 2 [0, si/2] [ [1/2, 1/2 + si/2] and decreasing in q for q 2

[si/2, 1/2] [ [1/2 + si/2, 1]. Thus, si/2 and si/2 + 1/2 are two local maxima and:

�(si) =

8
<

:
si/2 if si  ŝ

si/2 + 1/2 if si > ŝ,

(45)

where ŝ 2 (0, 1) solves:

Z
1/2

ŝ/2
(ŝ� 2s

1

) dF
1

(s
1

) +

Z
1/2+ŝ/2

1/2
(ŝ� 2s

1

+ 1) dF
1

(s
1

) = 0.

Consequently, for any si > ŝ and s

1

2 (si/2, 1/2) it is satisfied that si < ⇢(s
1

) and s

1

< �(si), as

required by Proposition 2.

29Note that these value functions deviate from our assumptions in that they are not continuous in s1 when V �V > c�c.

This does not upset our results because they do not hinge on continuity.
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D Non-Standard tie-breaking Rules

In this section, we show that one can modify the tie-breaking rule of the open ascending auction to

ensure that the good is allocated to the entrant with largest value in case of a tie. This proposal is

less appealing than the two-round auction we describe in Section 6 or our survival auction in Section

7 because it requires bidders that lose to pay. For simplicity, we shall assume, as in Section 5.2,

Assumptions I to V.

Suppose an open ascending auction with the following modified tie-breaking rule. Each bidder that

ties submits a (non-negative) sealed bid in an auxiliary auction. The bidder submitting the lowest

bid in the auxiliary auction gets the good and pays the price at which the tie occurred. The other

bidders do not get the good but have to pay the lowest bid in the auxiliary auction. In case of a tie

in the auxiliary auction, the object is allocated according to the uniformly random tie-breaking rule

among those that tie in the auxiliary auction. Note that this auxiliary auction can be interpreted as

a multiunit Vickrey auction in which the number of prizes is equal to the number of bidders that tied

in the original auction minus one. In this interpretation, the prize lets the bidder avoid that the tie

of the original auction is resolved by allocating the object to her.

We shall propose a strategy profile for our open ascending auction with the tie-breaking rule

above, and argue that it is an equilibrium that implements the second best. We start with the general

observation that (p� V )+ is the optimal bid in the auxiliary auction for a bidder that knows that his

value is equal to V and that has tied at a price p in the open ascending auction. To see why, note that

when the bidder bids less than all the others in the auxiliary auction she gets payo↵ V � p and when

she loses, she gets payo↵ �b̃, for b̃ the minimum of the bids in the auxiliary auction. Thus, in the case

p � V bidding (p� V )+ guarantees that the bidder outbids the other bidders if and only if it is more

profitable than otherwise. In the case p < V , the bidder strictly prefer to outbid the others for any

b̃ � 0. The chances of doing so are maximized by bidding zero, which is our proposed bid (p� V )+ in

this case.

The previous paragraph characterizes the incumbent’s optimal bidding in the auxiliary auction.

Under this continuation play by the incumbent, the same arguments as in Section 5.1 imply that it is

weakly dominant for the incumbent to bid his value in the open ascending auction, i.e. Lemma 3(i)

also holds here. Hence, the entrants can infer the incumbent’s type when he quits and the argument

in the previous paragraph characterizes the entrants’ optimal bidding in the auxiliary auction. Once

we assume this bidding of the entrants in the auxiliary auction, it is easy to see that we can argue as
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in Section 5.1 that the properties of Lemma 3(ii)-(iii) also hold here. Consequently, it only remains to

propose the entrants’ bidding in information sets in which no bidder has quit yet. We propose a bid

function constructed as in Section 5.1. In particular, our proposed bid function is equal to v̂(�e(si))

where �e(si) is defined by a version of Definition 3 in which (6) is replaced by the following equation:

�

Z
1

�e(si)
(v(si, s1)� v̂(s

1

))
dF

1

(s
1

)

1� F

1

(�e(si))
+(1��)

1

1� F (si)

Z ⇢(�e(si))

si

(v(s̃, �e(si))�v̂(�e(si)))dF (s̃) = 0.

(46)

This equation guarantees, as (6) for the standard tie-breaking rule, that an entrant with type si 2 (0, s)

does not have incentives to change her bid marginally when all the others bidders play our proposed

equilibrium. To see why, note that a marginal deviation (upwards) only matters if it allows the bidder

to outbid the lowest of the other bidders’ bids (and thus, avoids being the first bidder quitting), i.e. in

the marginal event of tying with the lowest bid of the other bidders. The probability that the lowest

bid of the other bidders is the other entrant’s bid conditional on this marginal event is equal to �. In

this case, Lemma 3(iii) and �(si) = 1 imply that our entrant competes in the last round against the

incumbent until the incumbent quits. This gives our entrant expected positive profits equal to the

expression that it is multiplied by � in (46). The probability that the lowest bid of the other bidders

is the incumbent’s bid conditional on the former marginal event is equal to 1 � �. In this case, our

entrant quits immediately because the incumbent’s type is equal to �e(si), and it is a consequence of

Lemma 3(ii) and si < ⇢(�e(si)). That si < ⇢(�e(si)) is a consequence of si < s, s = ⇢(�e(s)), ⇢ strictly

decreasing and �e strictly increasing. Our entrant loses and makes a zero payo↵ unless the other entrant

also quits immediately after the incumbent. This occurs when the other entrant’s type, say s̃, lies in

(si, ⇢(�e(si)), i.e. with conditional probability F (⇢(�e(si)))�F (si)
1�F (si)

. In this case, our entrant competes in

the auxiliary auction with the other entrant. Since the other entrant has a higher type, i.e. s̃ > si,

the auxiliary auction under our proposed strategies results in our bidder not obtaining the object but

having to pay the other entrant’s bid in the auxiliary auction. This is equal to v̂(�e(si))� v(s̃, �e(si))

since the incumbent has quit at price v̂(�e(si)) and the other entrant infers that her value is equal to

v(s̃, �e(si)).

The proof that entrants do not have incentives to deviate from our proposed bid function in

the information sets in which no bidder has quit yet is a straightforward adaptation of the proof of

Proposition 3 that we do not include.

When bidders use the proposed strategies, there are two possibilities along the equilibrium path.

The first one is that one of the entrants, the one with the lowest signal, quits before the incumbent. In
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this case, the entrant with the largest signal outbids the incumbent as a consequence of Lemma 3 (i)

and (iii), and �(si) = 1 for any si 2 [0, 1]. Thus, the allocation is second best in this case. The other

case is when the incumbent quits first. Then, Lemma 3(ii) implies that the entrant with largest type

wins, as required by the second best, if the entrants do not tie. If they do, Lemma 3(ii) implies that

both entrants’ values are less than the current price. Thus, our tie-breaking rule and the bidding we

propose for the auxiliary auction imply that the good also gets allocated to the entrant with largest

type, as required by the second best.

The following proposition summarizes our discussion in this section and no further proof is required.

Proposition 9. Under Assumptions (I)-(V), it is an equilibrium of the open ascending auction with

the modified tie-breaking rule that:

• The incumbent quits at price v̂(s
1

) when his type is s

1

.

• An entrant with type si quits at price:

– v̂(�e(si)) in information sets in which no bidder has quit yet, where �e is defined in (46).

– max{v(si, s1), v̂(s1)} in information sets in which the incumbent quits at a price v̂(s
1

).

– v̂(�(si)) = v̂(1) in information sets in which the incumbent is the only other active bidder.

• In the tie-breaking auction, the incumbent bids zero and an entrant with type si bids max{0, v̂(s
1

)�

v(si, s1)} when the incumbent quit at price v̂(s
1

).

This equilibrium implements the second best .
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