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Appendix A: Properties of the likelihood ratio

A.1 Interpretation of la(x|a) �-antitone

The restriction that la(x|a) is �-antitone or �2-antitone have implications for how the
dependence between signals must change with a. In particular, for the likelihood ratio
to be �-antitone it is necessary that

∂2

∂xi ∂xj

(
∂ ln f (x|a)

∂a

)
= ∂

∂a

(
∂2 ln f (x|a)
∂xi ∂xj

)
≤ 0 for all i� j� i �= j� (A.1)

Recall that the random variables are said to be (positively) affiliated if the term inside the
last parentheses is always nonnegative, while they are “negatively” affiliated if the term is
always nonpositive. See Milgrom and Weber (1982) and Müller and Stoyan (2002). Thus,
the sign determines whether variables are positively or negatively dependent. Techni-
cally, the numerical magnitude of the term inside the parentheses does not appear to
have any formal interpretation, but it is nevertheless noteworthy that (A.1) requires it to
be decreasing in a. This suggests that the variables become “less dependent” (or “less
affiliated”) as a increases. In particular, if the variables are independent for some a = â,
or ∂2 ln f (x|̂a)/∂xi ∂xj = 0, then the variables must be positively affiliated for a < â and
negatively affiliated for a > â, by (A.1).

The weakening dependence may suggest that it becomes less likely that all signals
are large simultaneously. However, recall that MLRP together with affiliation is sufficient
to ensure NISP. Then, as long as the signals remain affiliated, an increase in a causes the
signals to exhibit less dependence while nevertheless making it more likely that they are
all large (i.e., in any given increasing set) simultaneously.

Consistent with Corollaries 1 and 2, (A.1) suggest that the restriction that la(x|a) is
�-antitone has little bite if the dependence structure is the same for all a. For instance,
consider n jointly normally distributed signals, where a determines the mean values,
μi(a), with μ′

i(a) > 0. As long as the covariance matrix is independent of a, la(x|a) is then
�-antitone and �2-antitone if and only if MLRP is satisfied. However, since la(x|a) is not
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bounded below, this distribution violates one of the other assumptions of the model.
Nevertheless, if the likelihood ratio of a parent distribution is �-antitone or �2-antitone,
then the likelihood ratio maintains those properties upon truncation.1 In other words,
the FOA can be justified as long as the truncated normal distribution satisfies only MLRP
and CLOCC.

For another example, assume that the joint density takes the form

f (x|a�θ) = e
∑n

i=1[hi(xi�a)+ri(a)]+θt(x)+r(a�θ) =
(

n∏
i=1

eh
i(xi�a)+ri(a)

)
× eθt(x)+r(a�θ)�

where θ is a parameter that measures the dependence between the signals.2 Note that
the signals are independent if θ = 0. Taking hi as given, ri is determined such that the
ith term in the parentheses integrates to 1. Taking t(x) as given, the term r(a�θ) is deter-
mined such that f (x|a�θ) integrates to 1. Thus, r(a�0) = 0 for all a.

The likelihood ratio is �-antitone if hi
ax ≥ 0 and �2-antitone if it is also the case that

hi
axx ≤ 0. These are the same conditions that ensure that f i(xi|a�0) has a monotonic

and a concave likelihood ratio, respectively. Moreover, θ is irrelevant for these proper-
ties. Thus, in this model interdependence does not make it any harder to satisfy the
conditions on the likelihood ratio in Propositions 3 or 4. Furthermore, it is possible to
allow θ to be a function of a if more structure is imposed on t(x). For example, if t(x)
is supermodular, then la(x|a) is �-antitone in the bivariate case if MLRP is satisfied and
θ′(a) ≤ 0. Note that in this case signals are positively (negatively) affiliated if θ(a) is
positive (negative).

A.2 Monotonically decreasing Fisher information

It is clear from Section 6 that there is an important relationship between Fisher infor-
mation and the second-best action in the SQIT model. It is relevant whether V (a) is
increasing, decreasing, or possibly non-monotonic in a. However, at the intuitive level
it may be hard to get a feel for how Fisher information depends on a. Indeed, the dis-
tribution function used in Example 1 in Jewitt et al. (2008) can be shown to exhibit U-
shaped Fisher information on [a�a].3 Alternatively, as mentioned earlier, Holmström
(1979) presents a one-signal example in which x is exponentially distributed, F(x|a) =
1 − e−x/a, a > 0, x ≥ 0. The Fisher information in this case is a−2, which is decreasing
in a.4

1Let G(x|a) denote the parent distribution, with density function g(x|a). Since f (x|a) =
g(x|a)/ ∫ x

x g(y|a)dy it holds that ln f (x|a) = lng(x|a) − ln
∫ x

x g(y|a)dy. The claim now follows from the fact

that the last term is independent of x.
2This distribution is related to a distribution used in Banker and Datar’s (1989) paper on linear aggrega-

tion of signals.
3Their example is f (x|a) = 1 + 1

2 (1 − 2x)(1 − 2a), x�a ∈ [0�1]. Similarly, the Fisher information of a
Bernoulli distribution with a ∈ (0�1) being the probability of a success (and 1−a the probability of a failure)
is V (a)= 1/a(1 − a), which is also U-shaped.

4Likewise, the Fisher information of a normally distributed variable with mean μ(a) is μ′(a)2/σ2. This is
decreasing in a as long as μ(a) is increasing and concave.
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Sufficient conditions for Fisher information to be decreasing in a are derived next.
To do so, I ask what added structure must be imposed on top of the structure already im-
plied by Rogerson’s (1985) or Jewitt’s (1988) conditions in the one-signal case. In Roger-
son’s case, it is sufficient to add the condition that laax ≤ 0. In Jewitt’s case, laax ≤ 0 ≤ laaxx
is sufficient. Note that the likelihood ratio, la(x|a), is submodular in x and a when
laax ≤ 0. Holmström’s example satisfies both conditions.5

Lemma A.1 (Monotonic Fisher information). We have V ′(a) ≤ 0 under either of the fol-
lowing sets of conditions:

(i) Assume F(x|a) satisfies CDFC and MLRP. Then V ′(a) ≤ 0 if laax(x|a) ≤ 0 for all x
and a.

(ii) Assume
∫ x
x Faa(y|a)dy ≥ 0 for all x and a and that la(x|a) is increasing and concave

in x for all a. Then V ′(a) ≤ 0 if laax(x|a) ≤ 0 ≤ laaxx for all x and a.

The lemma follows from integration by parts.
Lemma A.1 plays no direct role in the paper. The intention is simply to suggest that

results relying on V ′(a) ≤ 0 are perhaps of more interest than results that are based on
V ′(a) > 0.

Appendix B: The SQIT model

This section characterizes the optimal contract in the SQIT model. Thus, consider a pure
multitasking environment, i.e., F(x|a) = G1(x1|a1)G

2(x2|a2) · · ·Gm(xm|am), and assume
moreover that v(w) = 2

√
w or ω(z) = 2z (Example 1). Assuming the FOA is valid and the

contract takes the form in (1), the agent’s expected utility can be derived by integrating
(2) over all x, yielding

EU(a∗)=
∫ (

2λ+ 2
m∑
j=1

μjl
j
aj (xj|a∗

j )

)
f (x|a∗)dx − c(a∗)�

Since the expected value of l
j
aj (xj|a∗

j ) is zero, the participation constraint yields λ =
1
2(u+ c(a∗)). Similarly, L-IC requires∫ (

2λ+ 2μjl
j
aj (xj|a∗

j )+ 2
∑
k�=j

μkl
k
ak
(xk|a∗

k)

)
g
j
aj (xj|a∗

j )
∏
k�=j

gk(xk|a∗
k)dx − cj(a∗) = 0

for all j = 1�2� � � � �m. Since g
j
aj (xj|a∗

j ) integrates to zero and the expected value of

lkak(xk|a∗
k) is zero, L-IC simplifies to

2μjVj(a
∗
j )− cj(a∗)= 0� j = 1�2� � � � �m�

5However, the support of the exponential distribution is unbounded and so Lemma A.1 technically does
not apply. LiCalzi and Spaeter (2003) characterize classes of distribution functions that satisfy CDFC and
MLRP. Among their explicit examples are F(x|a) = xea(x−1), x ∈ [0�1], and G(x|a) = x + (x − x2)/(a + 1),
x ∈ [0�1], with a > 0. Both satisfy laax ≤ 0.
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where

Vj(a
∗
j ) =

∫
(l
j
aj (xj|a∗

j ))
2gj(xj|a∗

j ) dx

is the Fisher information, measuring how informative xj is about aj . Thus, L-IC yields
μj = 1

2cj(a∗)/Vj(a∗
j ) > 0.

The agent’s utility from income when the signal is x is now

v(w(x)) = u+ c(a∗)+
m∑
j=1

(
cj(a∗)
Vj(a

∗
j )
l
j
aj (xj|a∗

j )

)
� (B.1)

Thus, v(w(x)) inherits its curvature properties from the likelihood ratios. The expected
cost, K(a∗), to the principal of inducing a∗ can be computed. To begin, note that

w(x) =
(
u+ c(a∗)

2
+

m∑
j=1

(
cj(a∗)

2Vj(a∗
j )
l
j
aj (xj|a∗

j )

))2

or

w(x) =
(
u+ c(a∗)

2

)2
+

(
m∑
j=1

(
cj(a∗)

2Vj(a∗
j )
l
j
aj (xj|a∗

j )

))2

+ 2
(
u+ c(a∗)

2

) m∑
j=1

(
cj(a∗)

2Vj(a∗
j )
l
j
aj (xj|a∗

j )

)
�

It is necessary to integrate w(x) to derive K(a∗). The first term in w(x) is a constant, while
the third term integrates to zero as the expected value of ljaj (xj|a∗

j ) is zero. Expanding the

second term yields terms that involve (l
j
aj (xj|a∗

j ))
2 and l

j
aj (xj|a∗

j )l
k
ak
(xk|a∗

k), k �= j. The
former integrates to Vj(a

∗
j ), while the latter integrates to zero. Thus,

K(a∗)=
∫

w(x)f (x|a∗)dx =
(
u+ c(a∗)

2

)2
+

m∑
j=1

cj(a∗)2

4Vj(a∗
j )
� (B.2)

The first term coincides with the full-information cost of dictating a∗. The remaining
terms thus capture the agency costs under asymmetric information.

Appendix C: Pure multitasking

The standard moral hazard model assumes that the agent’s action is one-dimensional.
This simplification rules out many interesting and realistic principal–agent relation-
ships, such as those where the agent is assigned multiple tasks. However, the approach
suggested here is conceptually robust to such an extension: the isomorphism described
in Section 3 remains valid when a is multidimensional. In fact, it is straightforward to
generalize CISP, LOCC, and CLOCC to higher dimensions.
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In the one-dimensional case, CISP, LOCC, and CLOCC all exploit the fact that the
tangent line to a convex (concave) function is always below (above) the function itself.
This property extends to higher dimensions, where the tangent line is replaced by the
tangent plane. Thus, for multidimensional a, CISP requires that P(x ∈ E|a) is concave in
a for all increasing sets. Likewise, LOCC becomes the requirement that F(x|a) is convex
in a for all x. CLOCC is extended in a similar manner:

∫
y≤x F(y|a)dy ≥ 0 must be convex

in a for all x. Then CISP, LOCC, and CLOCC imply, as before, that FL FOSD F or that FL

dominates F in the lower orthant order or the lower orthant-concave order, respectively.
Unfortunately, it is harder to establish that v(w(x)) has the properties necessary to

invoke integral stochastic orders. For example, MLRP does not seem sufficient to even
ensure that v(w(x)) is monotonic in the general case. The underlying reason is that it is
hard to sign the multipliers when several action dimensions simultaneously impact the
distribution of a given signal.6,7

To overcome this technical difficulty, I focus on pure multitasking environments,
defined in Section 7. The main purpose is to show that in such environments, the FOA
is valid under conditions that are analogous to those in Section 4.

The independence assumption embodied in the definition of pure multitasking en-
vironments may at first sight appear fairly strong. However, consider for example a pro-
fessor who invests effort in research and teaching. The professor’s research efforts mean
that he understands the literature well and has first hand experience with some of the
technical problems that can arise in his field. Armed with this knowledge and experi-
ence, it becomes easier (e.g., less costly in terms of preparation time) to teach up to a
given standard. Whether the professor was “lucky” enough to prove his theorem and
earn a top publication is arguably not what drives teaching quality; rather, it is the very
effort itself (and not its outcome) that has a spill-over effect. In this case, the tasks are
interdependent only through the cost function.

To see why the pure multitasking environment is particularly tractable, recall from
Section 7 that the likelihood ratios are separable, or laj (x|a) = l

j
aj (xj|aj). With the aim of

eventually invoking Lemma 2 in Section 4, it is useful to note that laj (x|a) is �-antitone

in x if and only if ljaj (xj|aj) is �-antitone in xj . Thus, it is sufficient to check the properties

of the m task-specific marginal distributions, Gj(xj|aj). Likewise, v(w(x)) simplifies to

v(w(x)) =ω

(
λ+

m∑
j=1

μjl
j
aj (xj|a∗

j )

)
� (C.1)

The separability in (C.1) is key to signing the multipliers. However, it does not seem
straightforward to generalize Jewitt’s or Rogerson’s proof that μ> 0 to allow m> 1. Thus,

6To illustrate the ensuing complications, assume that there are two action dimensions and that both
impact the distribution of x1. Assume laj (x|a) is strictly increasing in x1, j = 1�2. Imagine that μ1 > 0 >μ2.
Then (2) permits the possibility that v(w(x)) is increasing in x1 most of the time, but not all the time. Thus,
L-IC may very well be satisfied, but G-IC cannot be established using the current approach (or the standard
approaches) since the contract is not globally increasing.

7Boyer and Sinclair-Desgagné (2001) list a set of assumptions that validates the FOA in multi-task set-
tings. However, they assume that the endogenous multipliers are strictly positive. In addition to MLRP they
also impose assumptions that are stronger than NISP and CISP. See also Sinclair-Desgagné (1999).
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I use a more primitive technique, inspired by an observation in Rogerson (1985, foot-
note 8) for the n = m = 1 case. Recall that Gj(xj|aj) satisfies MLRP if ljaj (xj|aj) is non-

decreasing in every element of xj . It satisfies NISP if Paj (xj ∈ E|aj) ≥ 0 for all increasing
sets. MLRP implies NISP if xj is one-dimensional, but not necessarily otherwise.

Lemma C.1. Consider a pure multitasking environment in which Gj(xj|aj) satisfies both
MLRP and NISP for some j = 1� � � � �m. Then μj > 0 for any a∗ ∈ int(A).

Proof. Consider the agent’s incentive to deviate marginally from some interior a∗
j ,

EU j(a∗) = −
∫

· · ·
∫ (∫

[−v(w(x))]gjaj (xj|a∗
j ) dxj

) ∏
k�=j

(gk(xk|a∗
k)dxk)− cj(a∗)�

If μj < 0, the composite function [−v(w(x))] is monotonically increasing in xj , by MLRP.
Hence, by NISP, the inner integral is positive. Thus, EU j(a∗) < 0, which contradicts L-
ICa∗ . The same conclusion holds if μj = 0 since cj > 0. This concludes the proof. �

Assume now that the conditions in Lemma C.1 holds for all j = 1�2� � � � �m. This
assumption can be shown to be equivalent to the assumption that F(x|a) satisfies MLRP
and NISP. Thus, for brevity, the statement that F(x|a) satisfies MLRP and NISP signifies
that Gj(xj|aj) satisfies MLRP and NISP for all j = 1� � � � �m. Under these assumptions,
v(w(x)) as defined in (C.1) is monotonically increasing in all signals.

Likewise, by Lemma 2, v(w(x)) is �-antitone in x if ω is n-antitone and l
j
aj (xj|aj) is

�-antitone in xj for all j = 1�2� � � � �m. The “for all” qualifier is again somewhat cumber-
some. Hence, define

l�(x|a) = (l1a1
(x1|a1)� l

2
a2
(x2|a2)� � � � � l

m
am

(xm|am))

as the gradient (with respect to a) to ln f (x|a), for fixed x. Thus, l�(x|a) is a natural gen-
eralization of the likelihood ratio in the m = 1 case. Here, l�(x|a) is introduced simply
for notational convenience and in particular to permit a more succinct statement of re-
sults. Thus, I say that l�(x|a) is �-antitone in x if each element in l�(x|a) is �-antitone
in x. That is, l�(x|a) is �-antitone in x if and only if ljaj (xj|aj) is �-antitone in xj for all j.

Similarly, l�(x|a) is �2-antitone in x if and only if ljaj (xj|aj) is �2-antitone in xj for all j.

Note that F(x|a) satisfies MLRP if l�(x|a) is �-antitone or �2-antitone in x.
In summary, F(x|a) inherits MLRP, NISP, and a �-antitone or �2-antitone likelihood

ratio from its constituent parts, the distributions Gj(xj|aj). The same cannot be said for
CISP, LOCC, or CLOCC. In fact, it is necessary that Gj(xj|aj) satisfies LOCC (Gj(xj|aj) is
convex in aj) for all j in order for F(x|a) to satisfy LOCC (F(x|a) is convex in a), but it is
not sufficient. The same observation applies to CISP and CLOCC. I return to this issue
momentarily. However, for now I simply assume that F(x|a) satisfies CISP, LOCC, or
CLOCC. It is now trivial to derive counterparts to the justifications of the FOA presented
in Section 4. The proof of the next proposition follows the standard logic.
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Proposition C.1. Consider a pure multitasking environment. Assume the second-best

action is in int(A). Then the FOA is valid if any one of the following statements holds:

(i) The function F(x|a) satisfies MLRP, NISP, and CISP.

(ii) The function F(x|a) satisfies NISP and LOCC, l�(x|a) is �-antitone in x, and ω is

n-antitone.

(iii) The function F(x|a) satisfies NISP and CLOCC, l�(x|a) is �2-antitone in x, and ω

is 2n-antitone.

Proposition C.1 is a natural extension of the results in Section 4. However, given the

previous observation that F(x|a) inherits MLRP, NISP, and a �-antitone likelihood ratio

from Gj(xj|aj), it is natural to ask what conditions on Gj(xj|aj) are required for F(x|a) to

satisfy, e.g., LOCC. Such a question is also in the spirit of the additive property discussed

in Section 5. The difference is that here additional tasks are added to the benchmark

model, whereas extra signal are added in Section 5.

Recall that a function must be convex if it is log convex. Next, note that F(x|a) is log

convex in a if and only if for all j, Gj(xj|aj) is log convex in aj . Thus, a sufficient (but not

necessary) condition for LOCC is that Gj(xj|aj) is log convex in aj for all j. For similar

reasons, CLOCC is satisfied if
∫

yj≤xj G
j(yj|aj)dyj is log convex.

Proposition C.2. In the pure multitasking model, LOCC is satisfied if Gj(xj|aj) is log

convex in aj for all j. CLOCC is satisfied if
∫

yj≤xj G
j(yj|aj)dyj is log convex in aj for all j.

Since log convexity is preserved under integration, the first condition implies the

second. This is similar to how Rogerson’s CDFC implies Jewitt’s condition. Although log

convexity may seem like a substantial strengthening of convexity, many common exam-

ples in fact have both properties. In the univariate case, the distribution G(x|a) = xa,

x ∈ [0�1], a > 0, is log convex. Rogerson uses this distribution as an example of one that

satisfies both MLRP and CDFC. The two distributions in footnote 5 are also log convex.

Incidentally, Ábrahám et al. (2011) show that in a two-period model with hidden bor-

rowing, the FOA is valid under a set of assumptions that include log convexity. See also

Kirkegaard (2015).

As mentioned, log convexity is not necessary. In the special case of the SQIT model,

each Gj(xj|aj) need only satisfy CISP, LOCC, or CLOCC. To begin, recall that in the SQIT

model a direct proof that μj > 0 is possible (Appendix B); NISP is not needed in this case.

From (B.1), given the FOA contract satisfies L-ICa∗ , the agent’s utility from action a can

be written as

EU(a) = u+
m∑
j=1

(
cj(a∗)
Vj(a

∗
j )

∫
l
j
aj (xj|a∗

j )g
j(xj|aj)dxj − (aj − a∗

j )cj(a∗)
)

+ (cL(a|a∗)− c(a))�
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By L-ICa∗ , the jth term in the first parentheses has a stationary point at aj = a∗
j . If

l
j
aj (xj|a∗

j ) and Gj(xj|aj) jointly satisfy any of the conditions in Section 4 (e.g., in Proposi-

tions 3 or 4), then that stationary point identifies a global maximum.8 Assuming this is
true for all j, the sum of these terms is maximized at a = a∗. Since c(a) is convex, the last
term is also maximized at a = a∗ (where it is zero). Thus, G-ICa∗ is satisfied.

Proposition C.3. Consider the SQIT model. Assume the second-best action is in int(A).
Then the FOA is valid if for each task, j = 1�2� � � � �m, one of the following conditions is
met (but not necessarily the same condition for all j):

(i) The function Gj(xj|aj) satisfies MLRP and CISP.

(ii) The function Gj(xj|aj) satisfies LOCC and l
j
aj (x

j|a∗
j ) is �-antitone in xj .

(iii) The function Gj(xj|aj) satisfies CLOCC and l
j
aj (x

j|a∗
j ) is �2-antitone in xj .

Propositions C.1–C.3 are relevant for the problem of determining how many tasks
to assign an agent to, as they uncover conditions under which the FOA remains valid as
more tasks are added. Similarly, the FOA can be used to investigate how to allocate a
fixed number of tasks among a set of agents. The next section examines the impact of
multitasking on the optimal contract.

Appendix D: Comparing the SQIT and LEN models

This section demonstrates that the pure multitasking environment has different equilib-
rium properties and yields different predictions than the LEN model. The SQIT model
is ideally suited for this purpose.

Thus, consider the general SQIT model. From the principal’s point of view, (B.2)
reveals that the marginal cost of inducing higher aj is

Kj(a) =
(
u+ c(a)

2

)
cj(a)+

(
cj(a)cjj(a)

2Vj(aj)
−

cj(a)2V ′
j (aj)

4Vj(aj)2

)
+

∑
k�=j

ck(a)
2Vk(ak)

ckj(a)�

The first term equals the marginal costs under full information. Holding fixed the
other tasks, the second term essentially coincides with the marginal agency costs in a
single-task setting (examined in detail in Section 6). The last term captures the inter-
action between tasks. Recall from Appendix B that the L-IC multiplier on the kth task
is μk = ck(a)/(2Vk(ak)). Now the marginal cost of task k changes as aj changes, thus
changing the last term in the L-IC constraint on task k. The last term in Kj(a) thus re-
flects the costs of this interdependence between the incentive compatibility constraints
of different tasks. Naturally, this is a cost if tasks k and j are substitutes, or ckj > 0. How-
ever, it is a beneficial effect if the tasks are complements, or ckj < 0.

Consider two tasks, a1 and a2. Assume in the remainder that the agent’s cost func-
tion, c(a), is symmetric in the tasks. Imagine, for now, that a1 = a2, i.e., the agent works

8The “cost function” (aj − a∗
j )cj(a∗) is convex in aj . Thus, the standard argument applies.



Supplementary Material Incentive compatibility in moral hazard problems 9

equally hard on both tasks. By symmetry, it then holds that c1(a) = c2(a), c11(a) = c22(a),
and ck1(a) = ck2(a) for k = 3� � � � �m. By convexity, it is moreover the case that c11(a) =
c22(a) ≥ c12(a) at such a point. In fact, at such a point,

K1(a)−K2(a) = 1
2
c1(a)(c11(a)− c12(a))

(
1

V1(a1)
− 1

V2(a2)

)
(D.1)

− 1
4
c1(a)2

(
V ′

1(a1)

V1(a1)2 − V ′
2(a2)

V2(a2)2

)
�

It is instructive to examine a few special cases. Example 7 illustrates that the agent
may be induced to work hardest on the least informative task. Example 8 demonstrates
that even if two tasks are perfect substitutes, the agent may be induced to work on both.
Neither property arises in the LEN model.

Example 7. Assume first that the last term in (D.1) is zero and that c11(a) > c12(a) at
a1 = a2. Then, at a1 = a2, K1(a) ≤ K2(a) if and only if V1(a1) ≥ V2(a2). In other words,
the most informative task has the lowest marginal costs. This property also holds in the
LEN model, which is why Holmström and Milgrom (1988) (assuming B(a) is symmetric
as well) find that, “[t]he activity which can be measured with less noise will be relatively
favored.” See also the Dixit (1997) quote in Section 7.

However, this property does not hold in the SQIT model more generally, as the last
term in (D.1) may outweigh the first. For instance, consider the case where c(a) =
c(a1 + a2 + · · · + am), ai ≥ 0 for all i = 1� � � � �m. Note that (D.1) is valid for all a in this case
(not just when a1 = a2), as it is always true that c1(a) = c2(a) and c11(a) = c22(a) = c12(a).
Using such a cost function, Holmström and Milgrom (1991, Section 3) interpret aj as
time or attention devoted to a specific activity. Here the first term in (D.1) is zero. For
any a, it is possible that task 1 will be the most informative, V1(a1) > V2(a2), yet will have
the higher marginal cost, K1(a) > K2(a). This occurs if

V ′
1(a1)

V1(a1)2 <
V ′

2(a2)

V2(a2)2 � (D.2)

This condition is satisfied if, e.g., V ′
1(a1) < 0 < V ′

2(a2). Assume now that V1(a1) > V2(a2)

and that (D.2) holds whenever a2 ≤ a1. Hence, K1(a) > K2(a) whenever a2 ≤ a1. To facil-
itate comparison with Holmström and Milgrom (1988), assume that B(a) is symmetric.
For concreteness, assume B(a) = ∑m

i=1 b(ai), where b(·) is strictly increasing and strictly
concave. Assuming the optimum is interior and satisfies a2 ≤ a1, the principal’s first-
order conditions now yield

b′(a1) =K1(a) > K2(a) = b′(a2)�

However, this contradicts the strict concavity of b(·). Thus, the solution is either not
interior (the agent is not induced to work on both tasks) or it satisfies a2 > a1. In the
latter case, the agent thus works harder on the least informative task. This outcome
reflects the fact that the value of improving the informativeness of a task is greater when
the task is less informative to begin with. Finally, interior actions are optimal when b′(0)
is large enough.
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Example 8. Assume that c(a) = c(a1 + a2 + · · · + am) and B(a) = b(a1 + a2 + · · · + am),
such that tasks are perfect substitutes for both parties. Then the LEN model predicts a
corner solution: the agent will be induced to work harder than the absolute minimum
only on the most informative task. Again, this result is not robust. That is, the prin-
cipal may induce the agent to work on multiple tasks, even though tasks are perfect
substitutes and have different levels of informativeness. To see this more formally, as-
sume m = 2. Consider all (a1� a2) combinations that yields some target total effort level,
at = a1 + a2. For any interior pair, the cost to the principal is

K(a1� a2) =
(
u+ c(at)

2

)2
+ c′(at)2

4

[
1

V1(a1)
+ 1

V2(a2)

]
�

where only the last term depends on how total effort is distributed among tasks. Assum-
ing that a1 = a2 = 0, the cost of inducing positive effort on only one task is

K(a1� a2) =
(
u+ c(at)

2

)2
+ c′(at)2

4

[
1

Vj(at)

]
�

where j is the task that is being induced, aj = at . Assume without loss of generality that
V1(a

t) ≥ V2(a
t). In this case, it is optimal to induce positive effort on both tasks if and

only if

1
V1(a1)

+ 1
V2(a2)

<
1

V1(at)

for some (a1� a2) pair with a1 + a2 = at . It is optimal to induce only task 1 if task 1 is
unambiguously the most informative, or minV1(a1) ≥ maxV2(a2). This result echoes the
prediction from the LEN model. In particular, the signals’ informativeness is completely
independent of (a1� a2) in the LEN model. Thus, generically one of the tasks is always
strictly more informative than the other (the exception is the symmetric case where the
two are equally informative). However, the SQIT model allows more complicated inter-
actions among informativeness. Thus, assume both terms on the left hand side of the
above inequality are strictly increasing and strictly convex. Holmström’s (1979) example
satisfies this assumption. Note the implication that Vi(ai) is strictly decreasing. Assume
that V1(a) = V2(a) + ε, where ε > 0 is small. Then it remains optimal to induce only
task 1 if at is small. However, if at is sufficiently large, then it is preferable to induce both
tasks. After all, since V1 is decreasing in a1, the information system becomes less and less
informative if it relies only on task 1 (i.e., a1 = at ) as at becomes large. Eventually, it be-
comes preferable to lower a1, thereby increasing V1, by shifting effort toward task 2 even
though the information value of the latter is mediocre. Note that even if tasks are com-
pletely symmetric, V2(a) = V1(a), the distribution of total effort among tasks (whether
positive effort on one or both tasks is induced) depends on the scale of the operation,
i.e., on the total effort being targeted.9

9In Holmström’s (1979) example, 1/Vi(ai) = a2
i and it follows that 1/V1(

1
2a

t) + 1/V2(
1
2a

t) < 1/V1(a
t) for

all at > 0. Thus, it is always optimal to induce the agent to work on both tasks. This example is special
because Vi(ai)→ ∞ as ai → 0, since Fi becomes degenerate in the limit.
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