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Proof of Proposition 2

We prove that Etalk (δ, p) = Emed (δ). In our construction, players ignore private signals yi,t
observed in periods t = 1, 2, .... That is, only signal yi,0 observed in period 0 is used. Hence
we can see p as an ex ante correlation device. Since we consider two-player games, whenever
we say players i and j, we assume that they are different players: i 6= j.
The structure of the proof is as follows: take any strategy of the mediator, µ̃, that

satisfies inequality (3) in the text (perfect monitoring incentive compatibility); and let ṽ be
the value when the players follow µ̃. Since each v̂ ∈ Emed (δ) has a corresponding µ̂ that
satisfies perfect monitoring incentive compatibility, it suffi ces to show that, for each ε > 0,
there exists a sequential equilibrium whose equilibrium payoff v satisfies ‖v − ṽ‖ < ε in the
following environment:

1. At the beginning of the game, each player i receives a message mmediator
i from the

mediator.

2. In each period t, the stage game proceeds as follows:

(a) Given player i’s history (mmediator
i , (m1st

τ , aτ ,m
2nd
τ )t−1τ=1), each player i sends the first

message m1st
i,t simultaneously.

(b) Given player i’s history (mmediator
i , (m1st

τ , aτ ,m
2nd
τ )t−1τ=1,m

1st
t ), each player i takes

action ai,t simultaneously.

(c) Given player i’s history (mmediator
i , (m1st

τ , aτ ,m
2nd
τ )t−1τ=1,m

1st
t , at), each player i sends

the second message m2nd
i,t simultaneously.

We call this environment “perfect monitoring with cheap talk.”
To this end, from µ̃, we first create a strict full-support equilibrium µ with mediated per-

fect monitoring that yields payoffs close to ṽ. We then move from µ to a similar equilibrium
µ∗, which will be easier to transform into an equilibrium with perfect monitoring with cheap
talk. Finally, from µ∗, we create an equilibrium with perfect monitoring with cheap talk
with the same on-path action distribution.
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Construction and Properties of µ

In this subsection, we consider mediated perfect monitoring throughout. Since W̊ ∗ 6= ∅, by
Lemma 2 in the text, there exists a strict full support equilibrium µstrict with mediated perfect
monitoring. As in the proof of that lemma, consider the following strategy of the mediator:
In period 1, the mediator draws one of two states, Rṽ and Rperturb, with probabilities 1− η
and η, respectively. In state Rṽ, the mediator’s recommendation is determined as follows: If
no player has deviated up to period t, the mediator recommends rt according to µ̃(htm). If
only player i has deviated, the mediator recommends r−i,t to player j according to α∗j , and
recommends some best response to α∗j to player i. Multiple deviations are treated as in the
proof of Lemma 1 in the text. On the other hand, in state Rperturb, the mediator follows the
equilibrium µstrict. Let µ denote this strategy of the mediator. From now on, we fix η > 0
arbitrarily.
With mediated perfect monitoring, since µstrict has full support, player i believes that the

mediator’s state is Rperturb with positive probability after any history. Therefore, by perfect
monitoring incentive compatibility and the fact that µstrict is a strict equilibrium, it is always
strictly optimal for each player i to follow her recommendation. This means that, for each
period t, there exist εt > 0 and Tt <∞ such that, for each player i and on-path history ht+1m ,
we have

(1− δ)Eµ
[
ui(rt) | htm, ri,t

]
+ δEµ

[
(1− δ)

∞∑
τ=t+1

δτ−t−1ui(µ(hτm)) | htm, ri,t

]
> max

ai∈Ai
(1− δ)E

[
ui(ai, r−i,t) | htm, ri,t

]
+(δ − δTt)

{
(1− εt) max

âi
ui(âi, α

εt
j ) + εt max

a∈A
ui(a)

}
+ δTt max

a∈A
ui(a). (1)

That is, suppose that if player i unilaterally deviates from on-path history, then player j
virtually minmaxes player i for Tt − 1 periods with probability 1 − εt. (Recall that α∗j is
the minmax strategy and αεj is a full support perturbation of α

∗
j .) Then player i has a

strict incentive not to deviate from any recommendation in period t on equilibrium path.
Equivalently, since µ is an full support recommendation, player i has a strict incentive not
to deviate unless she herself has deviated.
Moreover, for suffi ciently small εt > 0, we have

(1− δ)Eµ
[
ui(rt) | htm, ri,t

]
+ δEµ

[
(1− δ)

∞∑
τ=t+1

δτ−t−1ui(µ(hτm)) | htm

]

> (1− δTt)
{

(1− εt) max
âi

ui(âi, α
εt
j ) + εt max

a∈A
ui(a)

}
+ δTt max

a∈A
ui(a). (2)

That is, if a deviation is punished with probability 1−εt for Tt periods including the current
period, then player i believes that the deviation is strictly unprofitable.1

For each t, we fix εt > 0 and Tt < ∞ with (1) and (2). Without loss, we can take εt
decreasing: εt ≥ εt+1 for each t.

1If the current on-path recommendation schedule Prµ(rj,t | htm, ri,t) is very close to α∗j , then (2) may be
more restrictive than (1).
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Construction and Properties of µ∗

In this subsection, we again consider mediated perfect monitoring. We further modify µ and
create the following mediator’s strategy µ∗: At the beginning of the game, for each i, t, and
at, the mediator draws rpunishi,t (at) according to αεti . In addition, for each i and t, she draws
ωi,t ∈ {R,P} such that ωi,t = R (regular) and P (punish) with probability 1 − pt and pt,
respectively, independently across i and t. We will pin down pt > 0 in Lemma 1. Moreover,
given ωt = (ω1,t, ω2,t), the mediator chooses rt(at) for each at as follows: If ω1,t = ω2,t = R,
then she draws rt(at) according to µ(at) (r). If ωi,t = R and ωj,t = P , then she draws ri,t(at)
from Prµ(ri | rpunishj,t (at)) while she draws rj,t(at) randomly from

∑
aj∈Aj

aj
|Aj | .

2 Finally, if
ω1,t = ω2,t = P , then she draws ri,t(at) randomly from

∑
ai∈Ai

ai
|Ai| for each i independently.

Since µ has full support, µ∗ is well defined.
As will be seen, we will take pt suffi ciently small. In addition, recall that η > 0 (the

perturbation of µ̃ to µ) is arbitrarily. In the next subsection and onward, we construct an
equilibrium with perfect monitoring with cheap talk that has the same equilibrium action
distribution as µ∗. Since pt is small and η > 0 is arbitrary, constructing such an equilibrium
suffi ces to prove Proposition 2.
At the start of the game, the mediator draws ωt, r

punish
i,t (at), and rt(at) for each i, t, and

at. Given them, the mediator sends messages to the players as follows:

1. At the start of the game, the mediator sends
((
rpunishi,t (at)

)
at∈At−1

)∞
t=1

to player i.

2. In each period t, the stage game proceeds as follows:

(a) The mediator decides ω̄t(at) ∈ {R,P}2 as follows: if there is no unilateral deviator
(defined below), then the mediator sets ω̄t(at) = ωt. If instead player i is a
unilateral deviator, then the mediator sets ω̄i,t(at) = R and ω̄j,t(at) = P .

(b) Given ω̄i,t(at), the mediator sends ω̄i,t(at) to player i. In addition, if ω̄i,t(at) = R,
then the mediator sends ri,t(at) to player i as well.

(c) Given these messages, player i takes an action. In equilibrium, if player i has not
yet deviated, then player i takes ri,t(at) if ω̄i,t(at) = R and takes rpunishi,t (at) if
ω̄i,t(a

t) = P . For notational convenience, let

ri,t =

{
ri(a

t) if ω̄i,t(at) = R,

rpunishi,t (at) if ω̄i,t(at) = P

be the action that player i is supposed to take if she has not yet deviated. Her
strategy after her own deviation is not specified.

We say that player i has unilaterally deviated if there exist τ ≤ t− 1 and a unique i such
that (i) for each τ ′ < τ , we have an,τ ′ = rn,τ ′ for each n ∈ {1, 2} (no deviation happened

2As will be seen below, if ωj,t = P , then player j is supposed to take rpunishj,t (at). Hence, rj,t(at) does
not affect the equilibrium action. We define rj,t (at) so that, when the mediator sends a message only at
the beginning of the game (in the game with perfect monitoring with cheap talk), she sends a “dummy
recommendation”rj,t(at) so that player j does not realize that ωj,t = P until period t.
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until period τ − 1) and (ii) ai,τ 6= ri,τ and aj,τ = rj,τ (player i deviates in period τ and player
j does not deviate).
Note that µ∗ is close to µ on the equilibrium path for suffi ciently small pt. Hence, on-

path strict incentive compatibility for player i follows from (1). Moreover, the incentive
compatibility condition analogous to (2) also holds.

Lemma 1 There exists {pt}∞t=1 with pt > 0 for each t such that it is strictly optimal for each
player i to follow her recommendation: For each player i and history

hti ≡
(((

rpunishi,t

(
at
))

at∈At−1

)∞
t=1

, at, (ω̄τ (a
τ ))t−1τ=1 , ω̄i,t(a

t), (ri,τ )
t
τ=1

)
,

if player i herself has not yet deviated, we have the following two inequalities:

1. If a deviation is punished by αεtj for the next period Tt periods with probability 1− εt−∑t+Tt−1
τ=t pτ , then it is strictly unprofitable:

(1− δ)Eµ∗
[
ui(ri,t, aj,t) | hti

]
+ δEµ∗

[
(1− δ)

∞∑
τ=t+1

δτ−t−1ui(ri,τ , aj,τ ) | hti, ai,t = ri,t

]
> max

ai∈Ai
(1− δ)Eµ∗

[
ui(ai, aj,t) | hti

]
+(δ − δTt)

{(
1− εt −

∑t+Tt−1
τ=t pτ

)
max
âi

ui(âi, α
εt
j ) +

(
εt +

∑t+Tt−1
τ=t pτ

)
max
a∈A

ui(a)

}
+δTt max

a∈A
ui(a). (3)

2. If a deviation is punished by αεtj from the current period with probability 1 − εt −∑t+Tb−1
τ=t pt, then it is strictly unprofitable:

(1− δ)Eµ∗
[
ui(ri,t, aj,t) | hti

]
+ δEµ∗

[
(1− δ)

∞∑
τ=t+1

δτ−t−1ui(ri,τ , aj,τ ) | hti, ai,t = ri,t

]

> (1− δTt)
{(

1− εt −
∑t+Tt−1

τ=t pτ

)
max
âi

ui(âi, α
εt
j ) +

(
εt +

∑t+Tt−1
τ=t pτ

)
max
a∈A

ui(a)

}
+δTt max

a∈A
ui(a). (4)

Moreover, Eµ∗ does not depend on the specification of player j’s strategy after player j’s
own deviation, for each history hti such that player i has not deviated.

Proof. Since µ∗ has full support on the equilibrium path, a player i who has not yet deviated
always believes that player j has not deviated. Hence, Eµ∗ is well defined without specifying
player j’s strategy after player j’s own deviation.
Moreover, since pt is small and ωj,t is independent of (ωτ )

t−1
τ=1 and ωi,t, given (ω̄τ (a

τ ))t−1τ=1

and ω̄i,t(at) (which are equal to (ωτ )
t−1
τ=1 and ωi,t on-path), player i believes that ω̄j,t(a

t) is
equal to ωj,t and ωj,t is equal to R with a high probability, unless player i has deviated. Since

Prµ∗(rj,t | ω̄i,t(at),
{
ω̄j,t(a

t) = R
}
, hti) = Prµ∗(rj,t | at, ri,t),
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we have that the difference

Eµ∗
[
ui(ri,t, aj,t) | hti

]
− Eµ

[
ui(ri,t, aj,t) | rti , at, ri,t

]
is small for small pt.
Further, if pτ is small for each τ ≥ t+1, then since ωτ is independent of ωt with t ≤ τ−1,

regardless of (ω̄τ (a
τ ))tτ=1, player i believes that ω̄i,τ (a

τ ) = ω̄j,τ (a
τ ) = R with high probability

for τ ≥ t + 1 on the equilibrium path. Since the distribution of the recommendation given
µ∗ is the same as that of µ given aτ and ω̄i,τ (aτ ) = ω̄j,τ (a

τ ) = R, we have that

Eµ∗
[

(1− δ)
∞∑

τ=t+1

δτ−t−1ui(ri,τ , aj,τ ) | hti, ai,t = ri,t

]
−Eµ

[
(1− δ)

∞∑
τ=t+1

δτ−t−1ui(ri,τ , aj,τ ) | rti , at, ri,t

]

is small for small pτ with τ ≥ t+ 1.
Hence, (1) and (2) imply that, there exists p̄t > 0 such that, if pτ ≤ p̄t for each τ ≥ t,

then the claims of the lemma hold. Hence, if we take pt ≤ minτ≤t p̄τ , then the claims hold.

We fix {pt}∞t=1 so that Lemma 1 holds. This fully pins down µ∗ with mediated perfect
monitoring.

Construction with Perfect Monitoring with Cheap Talk

Given µ∗ with mediated perfect monitoring, we define the equilibrium strategy with perfect
monitoring with cheap talk such that the equilibrium action distribution is the same as
µ∗. We must pin down the following four objects: at the beginning of the game, what
message mmediator

i player i receives from the mediator; what message m1st
i,t player i sends at

the beginning of period t; what action ai,t player i takes in period t; and what message m2nd
i,t

player i sends at the end of period t.

Intuitive Argument

As in µ∗, at the beginning of the game, for each i, t, and at, the mediator draws rpunishi,t (at)
according to αεti . In addition, with pt > 0 pinned down in Lemma 1, she draws ωt ∈ {R,P}2
and rt(at) as in µ∗ for each t and at. She then defines ω̄t(at) from at, rt(at), and ωt as in µ∗.
Intuitively, the mediator sends all the information about((

ω̄t(a
t), rt

(
at
)
, rpunish1,t

(
at
)
, rpunish2,t

(
at
))

at∈At−1

)∞
t=1

through the initial messages (mmediator
1 ,mmediator

2 ). In particular, the mediator directly sends(
(rpunishi,t (at))at∈At−1

)∞
t=1
to player i as a part ofmmediator

i . Hence, we focus on how we replicate

the role of the mediator in µ∗ of sending (ω̄t(a
t), rt (at)) in each period, depending on realized

history at.
The key features to establish are (i) player i does not know the instructions for the other

player, (ii) before player i reaches period t, player i does not know her own recommendations
for periods τ ≥ t (otherwise, player i would obtain more information than the original
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equilibrium µ∗ and thus might want to deviate), and (iii) no player wants to deviate (in
particular, if player i deviates in actions or cheap talk, then the strategy of player j is as if
the state were ω̄j,t = P in µ∗, for a suffi ciently long time with a suffi ciently high probability).
The properties (i) and (ii) are achieved by the same mechanism as in Theorem 9 of Heller,

Solan and Tomala (2012, henceforth HST). In particular, without loss, let Ai = {1i, ..., ni}
be player i’s action set. We can view ri,t(a

t) as an element of {1, ..., ni}. The mediator at
the beginning of the game draws rt(at) for each at.
Instead of sending ri,t(at) directly to player i, the mediator encodes ri,t(at) as follows: For

a suffi ciently large N t ∈ Z to be determined, we define pt = N tninj. This pt corresponds to
ph in HST. Let Zpt ≡ {1, ..., pt}. The mediator draws xji,t(at) uniformly and independently
from Zpt for each i, t, and at. Given them, she defines

yii,t(a
t) ≡ xji,t(a

t) + ri,t(a
t) (modni). (5)

Intuitively, yii,t(a
t) is the “encoded instruction”of ri,t (at), and to obtain ri,t(at) from yii,t(a

t),
player i needs to know xji,t(a

t). The mediator gives
(
(yii(a

t))at∈At−1
)∞
t=1
to player i as a part of

mmediator
i . At the same time, she gives

((
xji,t(a

t)
)
at∈At−1

)∞
t=1
to player j as a part of mmediator

j .

At the beginning of period t, player j sends xji,t(a
t) by cheap talk as a part of m1st

j,t , based
on the realized action at, so that player i does not know ri,t(a

t) until period t. (Throughout
the proof, the superscript of a variable represents who is informed about the variable, and
the subscript represents whose recommendation the variable is about.)
In order to incentivize player j to tell the truth, the equilibrium should embed a mecha-

nism that punishes player i if she tells a lie. In HST, this is done as follows: The mediator
draws αii,t(a

t) and βii,t(a
t) uniformly and independently from Zpt , and defines

uji,t(a
t) ≡ αii,t(a

t)× xji,t(at) + βii,t(a
t) (mod pt). (6)

The mediator gives xji,t(a
t) and uji,t(a

t) to player j while she gives αii,t(a
t) and βii,t(a

t) to
player i. In period t, player j is supposed to send xji,t(a

t) and uji,t(a
t) to player i. If player i

receives xji,t(a
t) and uji,t(a

t) with

uji,t(a
t) 6= αii,t(a

t)× xji,t(at) + βii,t(a
t) (mod pt), (7)

then player i interprets that player j has deviated. For suffi ciently large N t, since player
j does not know αii,t(a

t) and βii,t(a
t), if player j tells a lie about xji,t(a

t), then with a high
probability, player j creates a situation where (7) holds.
Since HST considers Nash equilibrium, they let player i minimax player j forever after

(7) holds. On the other hand, since we consider sequential equilibrium, as in the proof of
Lemma 2 in the text, we will create a coordination mechanism such that, if player j tells
a lie, then with high probability player i minimaxes player j for a long time and player i
assigns probability zero to the event that player i punishes player j.
To this end, we consider the following coordination: First, if and only if ω̄i,t(at) = R, the
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mediator defines uji,t(a
t) as (6). Otherwise, uji,t(a

t) is randomly drawn. That is,

uji,t(a
t) ≡

{
αii,t(a

t)× xji,t(at) + βii,t(a
t) (mod pt) if ω̄i,t(at) = R,

uniformly distributed over Zpt if ω̄i,t(at) = P.
(8)

Since both ω̄i,t(at) = R and ω̄i,t(at) = P happen with a positive probability, player i after
receiving uji,t(a

t) with uji,t(a
t) 6= αii,t(a

t)×xji,t(at) +βii,t(a
t) (mod pt) interprets that ω̄i,t(at) =

P . For notational convenience, let ω̂i,t(at) ∈ {R,P} be player i’s interpretation of ω̄i,t(at).
After ω̂i,t(at) = P , she takes period-t action according to rpunishi,t (at). Given this inference, if
player j tells a lie about uji,t(a

t) with ω̄i,t(at) = R, then with a high probability, she induces
a situation with uji,t(a

t) 6= αii,t(a
t)× xji,t(at) + βii,t(a

t) (mod pt), and player i punishes player
j in period t (without noticing player j’s deviation).
Second, switching to rpunishi,t (at) for period t only may not suffi ce, if player j believes that

player i’s action distribution given ω̄i,t(at) = R is close to the minimax strategy. Hence, we
ensure that, once player j deviates, player i takes rpunishi,τ (aτ ) for a suffi ciently long time.
To this end, we change the mechanism so that player j does not always know uji,t(a

t).
Instead, the mediator draws pt independent random variables vji,t(n, a

t) with n = 1, ..., pt

uniformly from Zpt . In addition, she draws nii,t(at) uniformly from Zpt . The mediator defines
uji,t(n, a

t) for each n = 1, ..., pt as follows:

uji,t(n, a
t) =

{
uji,t(a

t) if n = nii,t(a
t),

vji,t(n, a
t) if otherwise,

that is, uji,t(n, a
t) corresponds to uji,t(a

t) with (8) only if n = nii,t(a
t). For other n, uji,t(n, a

t)
is completely random.
The mediator sends nii,t(a

t) to player i, and sends {uji,t(n, at)}n∈Zpt to player j. In addition,
the mediator sends nji,t(a

t) to player j, where

nji,t(a
t) =

{
nii,t(a

t) if ωi,t−1(at−1) = P,
uniformly distributed over Zpt if ωi,t−1(at−1) = R

is equal to nii,t(a
t) if and only if last-period ω̄i,t−1(at−1) is equal to P .

In period t, player j is asked to send xji,t(a
t) and uji,t(n, a

t) with n = nii,t(a
t), that is, send

xji,t(a
t) and uji,t(a

t). If and only if player j’s messages x̂ji,t(a
t) and ûji,t(a

t) satisfy

ûji,t(a
t) = αii,t(a

t)× x̂ji,t(at) + βii,t(a
t) (mod pt),

player i interprets ω̂i,t(at) = R. If player i has ω̂i,t(at) = R, then player i knows that player
j needs to know nii,t+1(a

t+1) to send the correct uji,t+1(n, a
t+1) in the next period. Hence, she

sends nii,t+1(a
t+1) to player j. If player i has ω̂i,t(at) = P , then she believes that player j

knows nii,t+1(a
t+1) and does not send nii,t+1(a

t+1).
Given this coordination, once player j creates a situation with ω̄i,t(at) = R but ω̂i,t(at) =

P , then player j cannot receive nii,t+1(a
t+1). Without knowing nii,t+1(a

t+1), with a large N t+1,
with a high probability, player j cannot know which uji,t+1(n, a

t+1) she should send. Then,
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again, she will create a situation with

ûji,t+1(a
t+1) 6= αii,t+1(a

t+1)× x̂ji,t(at+1) + βii,t(a
t+1) (mod pt+1),

that is, ω̂i,t+1(at+1) = P . Recursively, player i has ω̂i,τ (aτ ) = P for a long time with a high
probability if player j tells a lie.
Finally, if player j takes a deviant action in period t, then the mediator has drawn

ω̄i,τ (a
τ ) = P for each τ ≥ t+1 for aτ corresponding to the realized history. With ω̄i,τ (aτ ) = P ,

in order to avoid ω̂i,τ (aτ ) = P , player j needs to create a situation

ûji,τ (a
τ ) = αii,τ (a

τ )× x̂ji,τ (aτ ) + βii,τ (a
τ ) (mod pτ )

without knowing αii,τ (a
τ ) and βii,τ (a

τ ) while the mediator’s message does not tell her what is
αii,t(a

t)× xji,t(at) + βii,t(a
t) (mod pτ ) by (8). Hence, for suffi ciently large N τ , player j cannot

avoid ω̂i,τ (aτ ) = P with a nonnegligible probability. Hence, player j will be minmaxed from
the next period with a high probability.
The above argument in total shows that, if player j deviates, whether in communication

or action, then she will be minmaxed for suffi ciently long time. Lemma 1 ensures that player
j does not want to tell a lie or take a deviant action.

Formal Construction

Let us formalize the above construction: As in µ∗, at the beginning of the game, for each i,
t, and at, the mediator draws rpunishi,t (at) according to αεti ; then she draws ωt ∈ {R,P}2 and
rt(a

t) for each t and at; and then she defines ω̄t(at) from at, rt(at), and ωt as in µ∗. For each
t and at, she draws xji,t(a

t) uniformly and independently from Zpt . Given them, she defines

yii,t(a
t) ≡ xji,t(a

t) + ri,t(a
t) (modni),

so that (5) holds.
The mediator draws αii,t(a

t), βii,t(a
t), ũji,t(a

t), vji,t(n, a
t) for each n ∈ Zpt , nii,t(at), and

ñji,t(a
t) from the uniform distribution over Zpt independently for each player i, each period

t, and each at.
As in (8), the mediator defines

uji,t(a
t) ≡

{
αii,t(a

t)× xji,t(at) + βii,t(a
t) (mod pt) if ω̄i,t(at) = R,

ũji,t(a
t) if ω̄i,t(at) = P.

In addition, the mediator defines

uji,t(n, a
t) =

{
uji,t(a

t) if n = nii,t(a
t),

vji,t(n, a
t) if otherwise

and

nji,t(a
t) =

{
nii,t(a

t) if t = 1 or ωi,t−1(at−1) = P,

ñji,t(a
t) if t 6= 1 and ωi,t−1(at−1) = R,

as explained above.
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Let us now define the equilibrium:

1. At the beginning of the game, the mediator sends

mmediator
i =

((
yii,t(a

t), αii,t(a
t), βii,t(a

t), rpunishi,t (at) ,
nii,t(a

t), nij,t(a
t),
(
uij,t(n, a

t)
)
n∈Zpt

, xij,t(a
t)

)
at∈At−1

)∞
t=1

to each player i.

2. In each period t, the stage game proceeds as follows: In equilibrium,

m1st
j,t =

{
uji,t(m

2nd
i,t−1, a

t), xji,t(a
t) if t 6= 1 and m2nd

i,t−1 6= {babble},
uji,t(n

j
i,t(a

t), at), xji,t(a
t) if t = 1 or m2nd

i,t−1 = {babble} (9)

and

m2nd
j,t =

{
njj,t+1(a

t+1) if ω̂j,t(at) = R,
{babble} if ω̂j,t(at) = P.

Note that, since m2nd
j,t is sent at the end of period t, the players know at+1 = (a1, ..., at).

(a) Given player i’s history (mmediator
i , (m1st

τ , aτ ,m
2nd
τ )t−1τ=1), each player i sends the first

message m1st
i,t simultaneously. If player i herself has not yet deviated, then

m1st
i,t =

{
uij,t(m

2nd
j,t−1, a

t), xij,t(a
t) if t 6= 1 and m2nd

j,t−1 6= {babble},
uij,t(n

i
j,t(a

t), at), xij,t(a
t) if t = 1 or m2nd

j,t−1 = {babble}.

Letm1st
i,t (u) be the first element ofm1st

i,t (that is, either u
i
j,t(m

2nd
j,t−1, a

t) or uij,t(n
i
j,t(a

t), at)
on equilibrium); and let m1st

i,t (x) be the second element (xij,t(a
t) on equilibrium).

As a result, the profile of the messages m1st
t becomes common knowledge.

If
m1st
j,t (u) 6= αii,t(a

t)×m1st
j,t (x) + βii,t(a

t) (mod pt), (10)

then player i interprets ω̂i,t(at) = P . Otherwise, ω̂i,t(at) = R.

(b) Given player i’s history (mmediator
i , (m1st

τ , aτ ,m
2nd
τ )t−1τ=1,m

1st
t ), each player i takes

action ai,t simultaneously. If player i herself has not yet deviated, then player i
takes ai,t = ri,t with

ri,t =

{
yii,t(a

t)−m1st
j,t (x) (modni) if ω̂i,t(at) = R,

rpunishi,t (at) if ω̂i,t(at) = P.
(11)

Recall that yii,t(a
t) ≡ xji,t(a

t) + ri,t(a
t) (modni) by (5). By (9), therefore, player i

takes rii,t(a
t) if ω̄i,t(at) = R and rpunishi,t (at) if ω̄i,t(at) = P on the equilibrium path,

as in µ∗.

(c) Given player i’s history (mmediator
i , (m1st

τ , aτ ,m
2nd
τ )t−1τ=1,m

1st
t , at), each player i sends

the second message m2nd
i,t simultaneously. If player i herself has not yet deviated,

then

m2nd
i,t =

{
nii,t+1(a

t+1) if ω̂i,t(at) = R,
{babble} if ω̂i,t(at) = P.

9



As a result, the profile of the messages m2nd
t becomes common knowledge. Note

that ω̄t(at) becomes common knowledge as well on equilibrium path.

Incentive Compatibility

The above equilibrium has full support: Since ω̄t(at), and rt (at) have full support, (mmediator
1 ,mmediator

2 )
have full support as well. Hence, we are left to verify player i’s incentive not to deviate from
the equilibrium strategy, given that player i believes that player j has not yet deviated after
any history of player i.
Suppose that player i followed the equilibrium strategy until the end of period t − 1.

First, consider player i’s incentive to tell the truth about m1st
i,t . In equilibrium, player i sends

m1st
i,t =

{
uij,t(m

2nd
j,t−1, a

t), xij,t(a
t) if m2nd

j,t−1 6= {babble},
uij,t(n

i
j,t(a

t), at), xij,t(a
t) if m2nd

j,t−1 = {babble}.

The random variables possessed by player i are independent of those possessed by player
j given (m1st

τ , aτ ,m
2nd
τ )t−1τ=1, except that (i) u

j
i,t(a

t) = αii,t(a
t) × xji,t(a

t) + βii,t(a
t) (mod pt)

if ω̄i,t(at) = R, (ii) uij,t(a
t) = αjj,t(a

t) × xij,t(a
t) + βjj,t(a

t) (mod pt) if ω̄j,t(at) = R, (iii)
nji,τ (a

τ ) = nii,τ (a
τ ) if ωi,τ−1(aτ−1) = P while nji,τ (a

τ ) = ñii,τ (a
τ ) if ωi,τ−1(aτ−1) = R, and (iv)

nij,τ (a
τ ) = njj,τ (a

τ ) if ωj,τ−1(aτ−1) = P while nij,τ (a
τ ) = ñjj,τ (a

τ ) if ωj,τ−1(aτ−1) = R. Since
αii,t(a

t), βii,t(a
t), ũji,t(a

t), vji,t(n, a
t) nii,t(a

t), and ñji,t(a
t) are uniform and independent, player

i cannot learn ω̄i,τ (aτ ), ri,τ (aτ ), or rj,τ (aτ ) with τ ≥ t. Hence, player i believes at the time
when she sends m1st

i,t that her equilibrium value is equal to

(1− δ)Eµ∗
[
ui(at) | hti

]
+ δEµ∗

[
(1− δ)

∞∑
τ=t+1

δτ−t−1ui(at) | hti

]
,

where hti is as if player i observed
(
rpunishi,t (at)

)∞
at∈At−1t=1

, at, (ω̄τ (a
τ ))t−1τ=1, and ri,t(a

t), and

believed that rτ (aτ ) = aτ for each τ = 1, ..., t− 1 with µ∗ with mediated perfect monitoring.
On the other hand, for each e > 0, for a suffi ciently large N t, if player i tells a lie in at

least one element m1st
i,t , then with probability 1− e, player i creates a situation

m1st
i,t (u) 6= αjj,t(a

t)×m1st
i,t (x) + βjj,t(a

t) (mod pt).

Hence, (10) (with indices i and j reversed) implies that ω̂j,t(at) = P .
Moreover, if player i creates a situation with ω̂j,t(at) = P , then player j will send m2nd

j,t =

{babble} instead of njj,t+1(at+1). Unless ω̄j,t(at) = P , since njj,t+1(a
t+1) is independent of

player i’s variables, player i believes that njj,t+1(a
t+1) is distributed uniformly over Zpt+1 .

Hence, for each e > 0, for suffi ciently large N t, if ω̂j,t(at) = R, then player i will send m1st
i,t+1

with
m1st
i,t+1(u) 6= αjj,t+1(a

t+1)×m1st
i,t+1(x) + βjj,t+1(a

t+1) (mod pt+1)

with probability 1 − e. Then, by (10) (with indices i and j reversed), player j will have
ω̂j,t+1(a

t+1) = P .
Recursively, if ω̄j,τ (aτ ) = R for each τ = t, .., t + Tt − 1, then player i will induce
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ω̂j,τ (a
τ ) = P for each τ = t, .., t + Tt − 1 with a high probability. Hence, for εt > 0 and Tt

fixed in (1) and (2), for suffi ciently large N̄ t, if N τ ≥ N̄ t for each τ ≥ t, then player i will
be punished for the subsequent Tt periods regardless of player i’s continuation strategy with
probability no less than 1−εt−

∑t+Tt−1
τ=t pτ . (

∑t+Tt−1
τ=t pτ represents the maximum probability

of having ω̄i,τ (aτ ) = P for some τ for subsequent Tt periods.) (4) implies that telling a lie
gives strictly lower payoff than the equilibrium payoff. Therefore, it is optimal to tell the
truth about m1st

i,t . (In (4), we have shown interim incentive compatibility after knowing
ω̄i,t(a

t) and ri,t while here, we consider hti before ω̄i,t(a
t) and ri,t. Taking the expectation

with respect to ω̄i,t(at) and ri,t, (4) ensures incentive compatibility before knowing ω̄i,t(at)
and ri,t.)
Second, consider player i’s incentive to take the action ai,t = ri,t according to (11) if

player i follows the equilibrium strategy until she sends m1st
i,t . If she follows the equilibrium

strategy, then player i believes at the time when she takes an action that her equilibrium
value is equal to

(1− δ)Eµ∗
[
ui(at) | hti

]
+ δEµ∗

[
(1− δ)

∞∑
τ=t+1

δτ−t−1ui(at) | hti

]
,

where hti is as if player i observed
(
rpunishi,t (at)

)∞
at∈At−1t=1

, at, (ω̄τ (aτ ))
t−1
τ=1, ω̄i,t(a

t), and ri,t, and

believed that rτ (aτ ) = aτ for each τ = 1, ..., t− 1 with µ∗ with mediated perfect monitoring.
(Compared to the time when player i sends m1st

i,t , player i now knows ω̄i,t(a
t) and ri,t on

equilibrium path.)
If player i deviates from ai,t, then ω̄j,τ (aτ ) = P by definition for each τ ≥ t + 1 and

aτ that is compatible with at (that is, aτ = (at, at, ..., aτ−1) for some at, ..., aτ−1). To avoid
being minmaxed in period τ , player i needs to induce ω̂j,τ (aτ ) = R although ω̄j,τ (aτ ) = P .
Given ω̄j,τ (aτ ) = P , since αii,t(a

t), βii,t(a
t), ũji,t(a

t), vji,t(n, a
t) nii,t(a

t), and ñji,t(a
t) are uniform

and independent (conditional on the other variables), regardless of player i’s continuation
strategy, by (10) (with indices i and j reversed), player i will send m1st

i,τ with

m1st
i,τ (u) 6= αjj,τ (a

τ )×m1st
i,τ (x) + βjj,τ (a

τ ) (mod pτ )

with a high probability.
Hence, for suffi ciently large N̄ t, if N τ ≥ N̄ t for each τ ≥ t, then player i will be punished

for the next Tt periods regardless of player i’s continuation strategy with probability no less
than 1 − εt. By (3), deviating from ri,t gives a strictly lower payoff than her equilibrium
payoff. Therefore, it is optimal to take ai,t = ri,t.
Finally, consider player i’s incentive to tell the truth about m2nd

i,t . Regardless of m
2nd
i,t ,

player j’s actions do not change. Hence, we are left to show that telling a lie does not
improve player i’s deviation gain by giving player i more information.
On the equilibrium path, player i knows ω̄i,t(at). If player i tells the truth, then m2nd

i,t =
nii,t+1(a

t+1) 6= {babble} if and only if ω̄i,t(at) = R. Moreover, player j sends

m1st
j,t+1 =

{
uji,t+1(m

2nd
i,t , a

t+1), xji,t+1(a
t+1) if ω̄i,t(at) = R,

uji,t+1(n
j
i,t+1(a

t+1), at+1), xji,t+1(a
t+1) if ω̄i,t(at) = P.
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Since nji,t+1(a
t+1) = nii,t+1(a

t+1) if ω̄i,t(at) = P , in total, if player i tells the truth, then
player i knows uij,t+1(m

i
i,t+1(a

t+1), at+1) and xij,t+1(a
t+1). This is suffi cient information to

infer ω̄i,t+1(at+1) and ri,t+1(at+1) correctly.
If she tells a lie, then player j’s messages are changed to

m1st
j,t+1 =

{
uji,t+1(m

2nd
i,t , a

t+1), xji,t+1(a
t+1) if m2nd

i,t 6= {babble},
uji,t+1(n

j
i,t+1(a

t+1), at+1), xji,t+1(a
t+1) if m2nd

i,t = {babble}.

Since αii,t+1(a
t+1), βii,t+1(a

t+1), ũji,t+1(a
t+1), vji,t+1(n, a

t+1) nii,t+1(a
t+1), and ñji,t+1(a

t+1) are
uniform and independent conditional on ω̄i,t+1(a

t+1) and ri,t+1(a
t+1), uji,t+1(n, a

t+1) and
xji,t+1(a

t+1) are not informative about player j’s recommendation from period t + 1 on or
player i’s recommendation from period t + 2 on, given that player i knows ω̄i,t+1(at+1) and
ri,t+1(a

t+1). Since telling the truth informs player i of ω̄i,t+1(at+1) and ri,t+1(at+1), there is
no gain from telling a lie.
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