Bounding Equilibrium Payoffs in Repeated Games with Private Monitoring: Online Appendix

Takuo Sugaya and Alexander Wolitzky Stanford Graduate School of Business and MIT

April 25, 2016

Proof of Proposition 2

We prove that $\overline{E_{\text{talk}}(\delta, p)} = \overline{E_{\text{med}}(\delta)}$. In our construction, players ignore private signals $y_{i,t}$ observed in periods t = 1, 2, ... That is, only signal $y_{i,0}$ observed in period 0 is used. Hence we can see p as an ex ante correlation device. Since we consider two-player games, whenever we say players i and j, we assume that they are different players: $i \neq j$.

The structure of the proof is as follows: take any strategy of the mediator, $\tilde{\mu}$, that satisfies inequality (3) in the text (perfect monitoring incentive compatibility); and let \tilde{v} be the value when the players follow $\tilde{\mu}$. Since each $\hat{v} \in E_{\text{med}}(\delta)$ has a corresponding $\hat{\mu}$ that satisfies perfect monitoring incentive compatibility, it suffices to show that, for each $\varepsilon > 0$, there exists a sequential equilibrium whose equilibrium payoff v satisfies $||v - \tilde{v}|| < \varepsilon$ in the following environment:

- 1. At the beginning of the game, each player i receives a message m_i^{mediator} from the mediator.
- 2. In each period t, the stage game proceeds as follows:
 - (a) Given player *i*'s history $(m_i^{\text{mediator}}, (m_{\tau}^{1\text{st}}, a_{\tau}, m_{\tau}^{2\text{nd}})_{\tau=1}^{t-1})$, each player *i* sends the first message $m_{i,t}^{1\text{st}}$ simultaneously.
 - (b) Given player *i*'s history $(m_i^{\text{mediator}}, (m_\tau^{\text{1st}}, a_\tau, m_\tau^{\text{2nd}})_{\tau=1}^{t-1}, m_t^{\text{1st}})$, each player *i* takes action $a_{i,t}$ simultaneously.
 - (c) Given player *i*'s history $(m_i^{\text{mediator}}, (m_{\tau}^{\text{1st}}, a_{\tau}, m_{\tau}^{\text{2nd}})_{\tau=1}^{t-1}, m_t^{\text{1st}}, a_t)$, each player *i* sends the second message $m_{i,t}^{\text{2nd}}$ simultaneously.

We call this environment "perfect monitoring with cheap talk."

To this end, from $\tilde{\mu}$, we first create a strict full-support equilibrium μ with mediated perfect monitoring that yields payoffs close to \tilde{v} . We then move from μ to a similar equilibrium μ^* , which will be easier to transform into an equilibrium with perfect monitoring with cheap talk. Finally, from μ^* , we create an equilibrium with perfect monitoring with cheap talk with the same on-path action distribution.

Construction and Properties of μ

In this subsection, we consider mediated perfect monitoring throughout. Since $\mathring{W}^* \neq \emptyset$, by Lemma 2 in the text, there exists a strict full support equilibrium μ^{strict} with mediated perfect monitoring. As in the proof of that lemma, consider the following strategy of the mediator: In period 1, the mediator draws one of two states, $R_{\tilde{v}}$ and R_{perturb} , with probabilities $1 - \eta$ and η , respectively. In state $R_{\tilde{v}}$, the mediator's recommendation is determined as follows: If no player has deviated up to period t, the mediator recommends r_t according to $\tilde{\mu}(h_m^t)$. If only player i has deviated, the mediator recommends $r_{-i,t}$ to player j according to α_j^* , and recommends some best response to α_j^* to player i. Multiple deviations are treated as in the proof of Lemma 1 in the text. On the other hand, in state R_{perturb} , the mediator follows the equilibrium μ^{strict} . Let μ denote this strategy of the mediator. From now on, we fix $\eta > 0$ arbitrarily.

With mediated perfect monitoring, since μ^{strict} has full support, player *i* believes that the mediator's state is R_{perturb} with positive probability after any history. Therefore, by perfect monitoring incentive compatibility and the fact that μ^{strict} is a strict equilibrium, it is always strictly optimal for each player *i* to follow her recommendation. This means that, for each period *t*, there exist $\varepsilon_t > 0$ and $T_t < \infty$ such that, for each player *i* and on-path history h_m^{t+1} , we have

$$(1-\delta)\mathbb{E}^{\mu}\left[u_{i}(r_{t})\mid h_{m}^{t}, r_{i,t}\right] + \delta\mathbb{E}^{\mu}\left[(1-\delta)\sum_{\tau=t+1}^{\infty}\delta^{\tau-t-1}u_{i}(\mu(h_{m}^{\tau}))\mid h_{m}^{t}, r_{i,t}\right]$$

$$> \max_{a_{i}\in A_{i}}(1-\delta)\mathbb{E}\left[u_{i}(a_{i}, r_{-i,t})\mid h_{m}^{t}, r_{i,t}\right]$$

$$+(\delta-\delta^{T_{t}})\left\{(1-\varepsilon_{t})\max_{\hat{a}_{i}}u_{i}(\hat{a}_{i}, \alpha_{j}^{\varepsilon_{t}}) + \varepsilon_{t}\max_{a\in A}u_{i}(a)\right\} + \delta^{T_{t}}\max_{a\in A}u_{i}(a).$$
(1)

That is, suppose that if player i unilaterally deviates from on-path history, then player j virtually minmaxes player i for $T_t - 1$ periods with probability $1 - \varepsilon_t$. (Recall that α_j^* is the minmax strategy and α_j^{ε} is a full support perturbation of α_j^* .) Then player i has a strict incentive not to deviate from any recommendation in period t on equilibrium path. Equivalently, since μ is an full support recommendation, player i has a strict incentive not to deviate deviated.

Moreover, for sufficiently small $\varepsilon_t > 0$, we have

$$(1-\delta)\mathbb{E}^{\mu}\left[u_{i}(r_{t})\mid h_{m}^{t}, r_{i,t}\right] + \delta\mathbb{E}^{\mu}\left[(1-\delta)\sum_{\tau=t+1}^{\infty}\delta^{\tau-t-1}u_{i}(\mu(h_{m}^{\tau}))\mid h_{m}^{t}\right]$$

>
$$(1-\delta^{T_{t}})\left\{(1-\varepsilon_{t})\max_{\hat{a}_{i}}u_{i}(\hat{a}_{i}, \alpha_{j}^{\varepsilon_{t}}) + \varepsilon_{t}\max_{a\in A}u_{i}(a)\right\} + \delta^{T_{t}}\max_{a\in A}u_{i}(a).$$
(2)

That is, if a deviation is punished with probability $1 - \varepsilon_t$ for T_t periods including the current period, then player *i* believes that the deviation is strictly unprofitable.¹

For each t, we fix $\varepsilon_t > 0$ and $T_t < \infty$ with (1) and (2). Without loss, we can take ε_t decreasing: $\varepsilon_t \ge \varepsilon_{t+1}$ for each t.

¹If the current on-path recommendation schedule $\Pr^{\mu}(r_{j,t} \mid h_m^t, r_{i,t})$ is very close to α_j^* , then (2) may be more restrictive than (1).

Construction and Properties of μ^*

In this subsection, we again consider mediated perfect monitoring. We further modify μ and create the following mediator's strategy μ^* : At the beginning of the game, for each i, t, and a^t , the mediator draws $r_{i,t}^{\text{punish}}(a^t)$ according to $\alpha_i^{\varepsilon_t}$. In addition, for each i and t, she draws $\omega_{i,t} \in \{R, P\}$ such that $\omega_{i,t} = R$ (regular) and P (punish) with probability $1 - p_t$ and p_t , respectively, independently across i and t. We will pin down $p_t > 0$ in Lemma 1. Moreover, given $\omega_t = (\omega_{1,t}, \omega_{2,t})$, the mediator chooses $r_t(a^t)$ for each a^t as follows: If $\omega_{1,t} = \omega_{2,t} = R$, then she draws $r_t(a^t)$ according to $\mu(a^t)(r)$. If $\omega_{i,t} = R$ and $\omega_{j,t} = P$, then she draws $r_{i,t}(a^t)$ from $\Pr^{\mu}(r_i \mid r_{j,t}^{\text{punish}}(a^t))$ while she draws $r_{j,t}(a^t)$ randomly from $\sum_{a_j \in A_j} \frac{a_j}{|A_j|}$.² Finally, if $\omega_{1,t} = \omega_{2,t} = P$, then she draws $r_{i,t}(a^t)$ randomly from $\sum_{a_i \in A_i} \frac{a_i}{|A_i|}$ for each i independently. Since μ has full support, μ^* is well defined.

As will be seen, we will take p_t sufficiently small. In addition, recall that $\eta > 0$ (the perturbation of $\tilde{\mu}$ to μ) is arbitrarily. In the next subsection and onward, we construct an equilibrium with perfect monitoring with cheap talk that has the same equilibrium action distribution as μ^* . Since p_t is small and $\eta > 0$ is arbitrary, constructing such an equilibrium suffices to prove Proposition 2.

At the start of the game, the mediator draws ω_t , $r_{i,t}^{\text{punish}}(a^t)$, and $r_t(a^t)$ for each i, t, and a^t . Given them, the mediator sends messages to the players as follows:

- 1. At the start of the game, the mediator sends $\left(\left(r_{i,t}^{\text{punish}}\left(a^{t}\right)\right)_{a^{t}\in A^{t-1}}\right)_{t=1}^{\infty}$ to player *i*.
- 2. In each period t, the stage game proceeds as follows:
 - (a) The mediator decides $\bar{\omega}_t(a^t) \in \{R, P\}^2$ as follows: if there is no unilateral deviator (defined below), then the mediator sets $\bar{\omega}_t(a^t) = \omega_t$. If instead player *i* is a unilateral deviator, then the mediator sets $\bar{\omega}_{i,t}(a^t) = R$ and $\bar{\omega}_{j,t}(a^t) = P$.
 - (b) Given $\bar{\omega}_{i,t}(a^t)$, the mediator sends $\bar{\omega}_{i,t}(a^t)$ to player *i*. In addition, if $\bar{\omega}_{i,t}(a^t) = R$, then the mediator sends $r_{i,t}(a^t)$ to player *i* as well.
 - (c) Given these messages, player *i* takes an action. In equilibrium, if player *i* has not yet deviated, then player *i* takes $r_{i,t}(a^t)$ if $\bar{\omega}_{i,t}(a^t) = R$ and takes $r_{i,t}^{\text{punish}}(a^t)$ if $\bar{\omega}_{i,t}(a^t) = P$. For notational convenience, let

$$r_{i,t} = \begin{cases} r_i(a^t) \text{ if } \bar{\omega}_{i,t}(a^t) = R, \\ r_{i,t}^{\text{punish}}(a^t) \text{ if } \bar{\omega}_{i,t}(a^t) = P \end{cases}$$

be the action that player i is supposed to take if she has not yet deviated. Her strategy after her own deviation is not specified.

We say that player *i* has unilaterally deviated if there exist $\tau \leq t-1$ and a unique *i* such that (i) for each $\tau' < \tau$, we have $a_{n,\tau'} = r_{n,\tau'}$ for each $n \in \{1,2\}$ (no deviation happened

²As will be seen below, if $\omega_{j,t} = P$, then player j is supposed to take $r_{j,t}^{\text{punish}}(a^t)$. Hence, $r_{j,t}(a^t)$ does not affect the equilibrium action. We define $r_{j,t}(a^t)$ so that, when the mediator sends a message only at the beginning of the game (in the game with perfect monitoring with cheap talk), she sends a "dummy recommendation" $r_{j,t}(a^t)$ so that player j does not realize that $\omega_{j,t} = P$ until period t.

until period $\tau - 1$) and (ii) $a_{i,\tau} \neq r_{i,\tau}$ and $a_{j,\tau} = r_{j,\tau}$ (player *i* deviates in period τ and player *j* does not deviate).

Note that μ^* is close to μ on the equilibrium path for sufficiently small p_t . Hence, onpath strict incentive compatibility for player *i* follows from (1). Moreover, the incentive compatibility condition analogous to (2) also holds.

Lemma 1 There exists $\{p_t\}_{t=1}^{\infty}$ with $p_t > 0$ for each t such that it is strictly optimal for each player i to follow her recommendation: For each player i and history

$$h_{i}^{t} \equiv \left(\left(\left(r_{i,t}^{\text{punish}} \left(a^{t} \right) \right)_{a^{t} \in A^{t-1}} \right)_{t=1}^{\infty}, a^{t}, \left(\bar{\omega}_{\tau}(a^{\tau}) \right)_{\tau=1}^{t-1}, \bar{\omega}_{i,t}(a^{t}), \left(r_{i,\tau} \right)_{\tau=1}^{t} \right),$$

if player i herself has not yet deviated, we have the following two inequalities:

1. If a deviation is punished by $\alpha_j^{\varepsilon_t}$ for the next period T_t periods with probability $1 - \varepsilon_t - \sum_{\tau=t}^{t+T_t-1} p_{\tau}$, then it is strictly unprofitable:

$$(1-\delta)\mathbb{E}^{\mu^{*}}\left[u_{i}(r_{i,t},a_{j,t})\mid h_{i}^{t}\right]+\delta\mathbb{E}^{\mu^{*}}\left[(1-\delta)\sum_{\tau=t+1}^{\infty}\delta^{\tau-t-1}u_{i}(r_{i,\tau},a_{j,\tau})\mid h_{i}^{t},a_{i,t}=r_{i,t}\right]$$

$$> \max_{a_{i}\in A_{i}}(1-\delta)\mathbb{E}^{\mu^{*}}\left[u_{i}(a_{i},a_{j,t})\mid h_{i}^{t}\right]$$

$$+(\delta-\delta^{T_{t}})\left\{\left(1-\varepsilon_{t}-\sum_{\tau=t}^{t+T_{t}-1}p_{\tau}\right)\max_{\hat{a}_{i}}u_{i}(\hat{a}_{i},\alpha_{j}^{\varepsilon_{t}})+\left(\varepsilon_{t}+\sum_{\tau=t}^{t+T_{t}-1}p_{\tau}\right)\max_{a\in A}u_{i}(a)\right\}$$

$$+\delta^{T_{t}}\max_{a\in A}u_{i}(a).$$
(3)

2. If a deviation is punished by $\alpha_j^{\varepsilon_t}$ from the current period with probability $1 - \varepsilon_t - \sum_{\tau=t}^{t+T_b-1} p_t$, then it is strictly unprofitable:

$$(1-\delta)\mathbb{E}^{\mu^{*}}\left[u_{i}(r_{i,t},a_{j,t})\mid h_{i}^{t}\right]+\delta\mathbb{E}^{\mu^{*}}\left[(1-\delta)\sum_{\tau=t+1}^{\infty}\delta^{\tau-t-1}u_{i}(r_{i,\tau},a_{j,\tau})\mid h_{i}^{t},a_{i,t}=r_{i,t}\right]$$

$$> (1-\delta^{T_{t}})\left\{\left(1-\varepsilon_{t}-\sum_{\tau=t}^{t+T_{t}-1}p_{\tau}\right)\max_{\hat{a}_{i}}u_{i}(\hat{a}_{i},\alpha_{j}^{\varepsilon_{t}})+\left(\varepsilon_{t}+\sum_{\tau=t}^{t+T_{t}-1}p_{\tau}\right)\max_{a\in A}u_{i}(a)\right\}$$

$$+\delta^{T_{t}}\max_{a\in A}u_{i}(a).$$

$$(4)$$

Moreover, \mathbb{E}^{μ^*} does not depend on the specification of player j's strategy after player j's own deviation, for each history h_i^t such that player i has not deviated.

Proof. Since μ^* has full support on the equilibrium path, a player *i* who has not yet deviated always believes that player *j* has not deviated. Hence, \mathbb{E}^{μ^*} is well defined without specifying player *j*'s strategy after player *j*'s own deviation.

Moreover, since p_t is small and $\omega_{j,t}$ is independent of $(\omega_{\tau})_{\tau=1}^{t-1}$ and $\omega_{i,t}$, given $(\bar{\omega}_{\tau}(a^{\tau}))_{\tau=1}^{t-1}$ and $\bar{\omega}_{i,t}(a^t)$ (which are equal to $(\omega_{\tau})_{\tau=1}^{t-1}$ and $\omega_{i,t}$ on-path), player *i* believes that $\bar{\omega}_{j,t}(a^t)$ is equal to $\omega_{j,t}$ and $\omega_{j,t}$ is equal to *R* with a high probability, unless player *i* has deviated. Since

$$\Pr^{\mu^{*}}(r_{j,t} \mid \bar{\omega}_{i,t}(a^{t}), \left\{ \bar{\omega}_{j,t}(a^{t}) = R \right\}, h_{i}^{t}) = \Pr^{\mu^{*}}(r_{j,t} \mid a^{t}, r_{i,t}),$$

we have that the difference

$$\mathbb{E}^{\mu^*}\left[u_i(r_{i,t}, a_{j,t}) \mid h_i^t\right] - \mathbb{E}^{\mu}\left[u_i(r_{i,t}, a_{j,t}) \mid r_i^t, a^t, r_{i,t}\right]$$

is small for small p_t .

Further, if p_{τ} is small for each $\tau \geq t+1$, then since ω_{τ} is independent of ω_t with $t \leq \tau - 1$, regardless of $(\bar{\omega}_{\tau}(a^{\tau}))_{\tau=1}^{t}$, player *i* believes that $\bar{\omega}_{i,\tau}(a^{\tau}) = \bar{\omega}_{j,\tau}(a^{\tau}) = R$ with high probability for $\tau \geq t+1$ on the equilibrium path. Since the distribution of the recommendation given μ^* is the same as that of μ given a^{τ} and $\bar{\omega}_{i,\tau}(a^{\tau}) = \bar{\omega}_{j,\tau}(a^{\tau}) = R$, we have that

$$\mathbb{E}^{\mu^*}\left[(1-\delta) \sum_{\tau=t+1}^{\infty} \delta^{\tau-t-1} u_i(r_{i,\tau}, a_{j,\tau}) \mid h_i^t, a_{i,t} = r_{i,t} \right] - \mathbb{E}^{\mu} \left[(1-\delta) \sum_{\tau=t+1}^{\infty} \delta^{\tau-t-1} u_i(r_{i,\tau}, a_{j,\tau}) \mid r_i^t, a^t, r_{i,t} \right]$$

is small for small p_{τ} with $\tau \geq t+1$.

Hence, (1) and (2) imply that, there exists $\bar{p}_t > 0$ such that, if $p_\tau \leq \bar{p}_t$ for each $\tau \geq t$, then the claims of the lemma hold. Hence, if we take $p_t \leq \min_{\tau \leq t} \bar{p}_{\tau}$, then the claims hold.

We fix $\{p_t\}_{t=1}^{\infty}$ so that Lemma 1 holds. This fully pins down μ^* with mediated perfect monitoring.

Construction with Perfect Monitoring with Cheap Talk

Given μ^* with mediated perfect monitoring, we define the equilibrium strategy with perfect monitoring with cheap talk such that the equilibrium action distribution is the same as μ^* . We must pin down the following four objects: at the beginning of the game, what message m_i^{mediator} player *i* receives from the mediator; what message $m_{i,t}^{\text{1st}}$ player *i* sends at the beginning of period t; what action $a_{i,t}$ player i takes in period t; and what message $m_{i,t}^{2nd}$ player i sends at the end of period t.

Intuitive Argument

As in μ^* , at the beginning of the game, for each *i*, *t*, and a^t , the mediator draws $r_{i,t}^{\text{punish}}(a^t)$ according to $\alpha_i^{\varepsilon_t}$. In addition, with $p_t > 0$ pinned down in Lemma 1, she draws $\omega_t \in \{R, P\}^2$ and $r_t(a^t)$ as in μ^* for each t and a^t . She then defines $\bar{\omega}_t(a^t)$ from a^t , $r_t(a^t)$, and ω_t as in μ^* .

Intuitively, the mediator sends all the information about

$$\left(\left(\bar{\omega}_{t}(a^{t}), r_{t}\left(a^{t}\right), r_{1,t}^{\text{punish}}\left(a^{t}\right), r_{2,t}^{\text{punish}}\left(a^{t}\right)\right)_{a^{t} \in A^{t-1}}\right)_{t=1}^{\infty}$$

through the initial messages $(m_1^{\text{mediator}}, m_2^{\text{mediator}})$. In particular, the mediator directly sends $\left((r_{i,t}^{\text{punish}}(a^t))_{a^t \in A^{t-1}}\right)_{t=1}^{\infty}$ to player *i* as a part of m_i^{mediator} . Hence, we focus on how we replicate the role of the mediator in μ^* of sending $(\bar{\omega}_t(a^t), r_t(a^t))$ in each period, depending on realized history a^t .

The key features to establish are (i) player i does not know the instructions for the other player, (ii) before player i reaches period t, player i does not know her own recommendations for periods $\tau \geq t$ (otherwise, player *i* would obtain more information than the original equilibrium μ^* and thus might want to deviate), and (iii) no player wants to deviate (in particular, if player *i* deviates in actions or cheap talk, then the strategy of player *j* is as if the state were $\bar{\omega}_{j,t} = P$ in μ^* , for a sufficiently long time with a sufficiently high probability).

The properties (i) and (ii) are achieved by the same mechanism as in Theorem 9 of Heller, Solan and Tomala (2012, henceforth HST). In particular, without loss, let $A_i = \{1_i, ..., n_i\}$ be player *i*'s action set. We can view $r_{i,t}(a^t)$ as an element of $\{1, ..., n_i\}$. The mediator at the beginning of the game draws $r_t(a^t)$ for each a^t .

Instead of sending $r_{i,t}(a^t)$ directly to player *i*, the mediator encodes $r_{i,t}(a^t)$ as follows: For a sufficiently large $N^t \in \mathbb{Z}$ to be determined, we define $p^t = N^t n_i n_j$. This p^t corresponds to p_h in HST. Let $\mathbb{Z}_{p^t} \equiv \{1, ..., p^t\}$. The mediator draws $x_{i,t}^j(a^t)$ uniformly and independently from \mathbb{Z}_{p^t} for each *i*, *t*, and a^t . Given them, she defines

$$y_{i,t}^{i}(a^{t}) \equiv x_{i,t}^{j}(a^{t}) + r_{i,t}(a^{t}) \pmod{n_{i}}.$$
(5)

Intuitively, $y_{i,t}^i(a^t)$ is the "encoded instruction" of $r_{i,t}(a^t)$, and to obtain $r_{i,t}(a^t)$ from $y_{i,t}^i(a^t)$, player *i* needs to know $x_{i,t}^j(a^t)$. The mediator gives $((y_i^i(a^t))_{a^t \in A^{t-1}})_{t=1}^{\infty}$ to player *i* as a part of m_i^{mediator} . At the same time, she gives $((x_{i,t}^j(a^t))_{a^t \in A^{t-1}})_{t=1}^{\infty}$ to player *j* as a part of m_j^{mediator} . At the beginning of period *t*, player *j* sends $x_{i,t}^j(a^t)$ by cheap talk as a part of $m_{j,t}^{\text{1st}}$, based on the realized action a^t , so that player *i* does not know $r_{i,t}(a^t)$ until period *t*. (Throughout the proof, the superscript of a variable represents who is informed about the variable, and the subscript represents whose recommendation the variable is about.)

In order to incentivize player j to tell the truth, the equilibrium should embed a mechanism that punishes player i if she tells a lie. In HST, this is done as follows: The mediator draws $\alpha_{i,t}^i(a^t)$ and $\beta_{i,t}^i(a^t)$ uniformly and independently from \mathbb{Z}_{p^t} , and defines

$$u_{i,t}^{j}(a^{t}) \equiv \alpha_{i,t}^{i}(a^{t}) \times x_{i,t}^{j}(a^{t}) + \beta_{i,t}^{i}(a^{t}) \pmod{p^{t}}.$$
(6)

The mediator gives $x_{i,t}^j(a^t)$ and $u_{i,t}^j(a^t)$ to player j while she gives $\alpha_{i,t}^i(a^t)$ and $\beta_{i,t}^i(a^t)$ to player i. In period t, player j is supposed to send $x_{i,t}^j(a^t)$ and $u_{i,t}^j(a^t)$ to player i. If player i receives $x_{i,t}^j(a^t)$ and $u_{i,t}^j(a^t)$ with

$$u_{i,t}^{j}(a^{t}) \neq \alpha_{i,t}^{i}(a^{t}) \times x_{i,t}^{j}(a^{t}) + \beta_{i,t}^{i}(a^{t}) \pmod{p^{t}},$$
(7)

then player *i* interprets that player *j* has deviated. For sufficiently large N^t , since player *j* does not know $\alpha_{i,t}^i(a^t)$ and $\beta_{i,t}^i(a^t)$, if player *j* tells a lie about $x_{i,t}^j(a^t)$, then with a high probability, player *j* creates a situation where (7) holds.

Since HST considers Nash equilibrium, they let player i minimax player j forever after (7) holds. On the other hand, since we consider sequential equilibrium, as in the proof of Lemma 2 in the text, we will create a coordination mechanism such that, if player j tells a lie, then with high probability player i minimaxes player j for a long time and player i assigns probability zero to the event that player i punishes player j.

To this end, we consider the following coordination: First, if and only if $\bar{\omega}_{i,t}(a^t) = R$, the

mediator defines $u_{i,t}^{j}(a^{t})$ as (6). Otherwise, $u_{i,t}^{j}(a^{t})$ is randomly drawn. That is,

$$u_{i,t}^{j}(a^{t}) \equiv \begin{cases} \alpha_{i,t}^{i}(a^{t}) \times x_{i,t}^{j}(a^{t}) + \beta_{i,t}^{i}(a^{t}) \pmod{p^{t}} & \text{if } \bar{\omega}_{i,t}(a^{t}) = R, \\ \text{uniformly distributed over } \mathbb{Z}_{p^{t}} & \text{if } \bar{\omega}_{i,t}(a^{t}) = P. \end{cases}$$
(8)

Since both $\bar{\omega}_{i,t}(a^t) = R$ and $\bar{\omega}_{i,t}(a^t) = P$ happen with a positive probability, player *i* after receiving $u_{i,t}^j(a^t)$ with $u_{i,t}^j(a^t) \neq \alpha_{i,t}^i(a^t) \times x_{i,t}^j(a^t) + \beta_{i,t}^i(a^t) \pmod{p^t}$ interprets that $\bar{\omega}_{i,t}(a^t) = P$. For notational convenience, let $\hat{\omega}_{i,t}(a^t) \in \{R, P\}$ be player *i*'s interpretation of $\bar{\omega}_{i,t}(a^t)$. After $\hat{\omega}_{i,t}(a^t) = P$, she takes period-*t* action according to $r_{i,t}^{\text{punish}}(a^t)$. Given this inference, if player *j* tells a lie about $u_{i,t}^j(a^t) \times with \bar{\omega}_{i,t}(a^t) = R$, then with a high probability, she induces a situation with $u_{i,t}^j(a^t) \neq \alpha_{i,t}^i(a^t) \times x_{i,t}^j(a^t) + \beta_{i,t}^i(a^t) \pmod{p^t}$, and player *i* punishes player *j* in period *t* (without noticing player *j*'s deviation).

Second, switching to $r_{i,t}^{\text{punish}}(a^t)$ for period t only may not suffice, if player j believes that player i's action distribution given $\bar{\omega}_{i,t}(a^t) = R$ is close to the minimax strategy. Hence, we ensure that, once player j deviates, player i takes $r_{i,\tau}^{\text{punish}}(a^{\tau})$ for a sufficiently long time.

To this end, we change the mechanism so that player j does not always know $u_{i,t}^j(a^t)$. Instead, the mediator draws p^t independent random variables $v_{i,t}^j(n, a^t)$ with $n = 1, ..., p^t$ uniformly from \mathbb{Z}_{p^t} . In addition, she draws $n_{i,t}^i(a^t)$ uniformly from \mathbb{Z}_{p^t} . The mediator defines $u_{i,t}^j(n, a^t)$ for each $n = 1, ..., p^t$ as follows:

$$u_{i,t}^{j}(n,a^{t}) = \begin{cases} u_{i,t}^{j}(a^{t}) & \text{if } n = n_{i,t}^{i}(a^{t}), \\ v_{i,t}^{j}(n,a^{t}) & \text{if otherwise,} \end{cases}$$

that is, $u_{i,t}^j(n, a^t)$ corresponds to $u_{i,t}^j(a^t)$ with (8) only if $n = n_{i,t}^i(a^t)$. For other $n, u_{i,t}^j(n, a^t)$ is completely random.

The mediator sends $n_{i,t}^i(a^t)$ to player *i*, and sends $\{u_{i,t}^j(n, a^t)\}_{n \in \mathbb{Z}_{p^t}}$ to player *j*. In addition, the mediator sends $n_{i,t}^j(a^t)$ to player *j*, where

$$n_{i,t}^{j}(a^{t}) = \begin{cases} n_{i,t}^{i}(a^{t}) & \text{if } \omega_{i,t-1}(a^{t-1}) = P, \\ \text{uniformly distributed over } \mathbb{Z}_{p^{t}} & \text{if } \omega_{i,t-1}(a^{t-1}) = R \end{cases}$$

is equal to $n_{i,t}^i(a^t)$ if and only if last-period $\bar{\omega}_{i,t-1}(a^{t-1})$ is equal to P.

In period t, player j is asked to send $x_{i,t}^j(a^t)$ and $u_{i,t}^j(n, a^t)$ with $n = n_{i,t}^i(a^t)$, that is, send $x_{i,t}^j(a^t)$ and $u_{i,t}^j(a^t)$. If and only if player j's messages $\hat{x}_{i,t}^j(a^t)$ and $\hat{u}_{i,t}^j(a^t)$ satisfy

$$\hat{u}_{i,t}^{j}(a^{t}) = \alpha_{i,t}^{i}(a^{t}) \times \hat{x}_{i,t}^{j}(a^{t}) + \beta_{i,t}^{i}(a^{t}) \pmod{p^{t}},$$

player *i* interprets $\hat{\omega}_{i,t}(a^t) = R$. If player *i* has $\hat{\omega}_{i,t}(a^t) = R$, then player *i* knows that player *j* needs to know $n_{i,t+1}^i(a^{t+1})$ to send the correct $u_{i,t+1}^j(n, a^{t+1})$ in the next period. Hence, she sends $n_{i,t+1}^i(a^{t+1})$ to player *j*. If player *i* has $\hat{\omega}_{i,t}(a^t) = P$, then she believes that player *j* knows $n_{i,t+1}^i(a^{t+1})$ and does not send $n_{i,t+1}^i(a^{t+1})$.

Given this coordination, once player j creates a situation with $\bar{\omega}_{i,t}(a^t) = R$ but $\hat{\omega}_{i,t}(a^t) = P$, then player j cannot receive $n_{i,t+1}^i(a^{t+1})$. Without knowing $n_{i,t+1}^i(a^{t+1})$, with a large N^{t+1} , with a high probability, player j cannot know which $u_{i,t+1}^j(n, a^{t+1})$ she should send. Then,

again, she will create a situation with

$$\hat{u}_{i,t+1}^{j}(a^{t+1}) \neq \alpha_{i,t+1}^{i}(a^{t+1}) \times \hat{x}_{i,t}^{j}(a^{t+1}) + \beta_{i,t}^{i}(a^{t+1}) \pmod{p^{t+1}},$$

that is, $\hat{\omega}_{i,t+1}(a^{t+1}) = P$. Recursively, player *i* has $\hat{\omega}_{i,\tau}(a^{\tau}) = P$ for a long time with a high probability if player *j* tells a lie.

Finally, if player j takes a deviant action in period t, then the mediator has drawn $\bar{\omega}_{i,\tau}(a^{\tau}) = P$ for each $\tau \ge t+1$ for a^{τ} corresponding to the realized history. With $\bar{\omega}_{i,\tau}(a^{\tau}) = P$, in order to avoid $\hat{\omega}_{i,\tau}(a^{\tau}) = P$, player j needs to create a situation

$$\hat{u}_{i,\tau}^j(a^{\tau}) = \alpha_{i,\tau}^i(a^{\tau}) \times \hat{x}_{i,\tau}^j(a^{\tau}) + \beta_{i,\tau}^i(a^{\tau}) \pmod{p^{\tau}}$$

without knowing $\alpha_{i,\tau}^i(a^{\tau})$ and $\beta_{i,\tau}^i(a^{\tau})$ while the mediator's message does not tell her what is $\alpha_{i,t}^i(a^t) \times x_{i,t}^j(a^t) + \beta_{i,t}^i(a^t) \pmod{p^{\tau}}$ by (8). Hence, for sufficiently large N^{τ} , player j cannot avoid $\hat{\omega}_{i,\tau}(a^{\tau}) = P$ with a nonnegligible probability. Hence, player j will be minmaxed from the next period with a high probability.

The above argument in total shows that, if player j deviates, whether in communication or action, then she will be minimaxed for sufficiently long time. Lemma 1 ensures that player j does not want to tell a lie or take a deviant action.

Formal Construction

Let us formalize the above construction: As in μ^* , at the beginning of the game, for each i, t, and a^t , the mediator draws $r_{i,t}^{\text{punish}}(a^t)$ according to $\alpha_i^{\varepsilon_t}$; then she draws $\omega_t \in \{R, P\}^2$ and $r_t(a^t)$ for each t and a^t ; and then she defines $\bar{\omega}_t(a^t)$ from a^t , $r_t(a^t)$, and ω_t as in μ^* . For each t and a^t , she draws $x_{i,t}^j(a^t)$ uniformly and independently from \mathbb{Z}_{p^t} . Given them, she defines

$$y_{i,t}^{i}(a^{t}) \equiv x_{i,t}^{j}(a^{t}) + r_{i,t}(a^{t}) \pmod{n_{i}},$$

so that (5) holds.

The mediator draws $\alpha_{i,t}^i(a^t)$, $\beta_{i,t}^i(a^t)$, $\tilde{u}_{i,t}^j(a^t)$, $v_{i,t}^j(n, a^t)$ for each $n \in \mathbb{Z}_{p^t}$, $n_{i,t}^i(a^t)$, and $\tilde{n}_{i,t}^j(a^t)$ from the uniform distribution over \mathbb{Z}_{p^t} independently for each player *i*, each period *t*, and each a^t .

As in (8), the mediator defines

$$u_{i,t}^{j}(a^{t}) \equiv \begin{cases} \alpha_{i,t}^{i}(a^{t}) \times x_{i,t}^{j}(a^{t}) + \beta_{i,t}^{i}(a^{t}) \pmod{p^{t}} & \text{if } \bar{\omega}_{i,t}(a^{t}) = R, \\ \tilde{u}_{i,t}^{j}(a^{t}) & \text{if } \bar{\omega}_{i,t}(a^{t}) = P. \end{cases}$$

In addition, the mediator defines

$$u_{i,t}^{j}(n,a^{t}) = \begin{cases} u_{i,t}^{j}(a^{t}) & \text{if } n = n_{i,t}^{i}(a^{t}), \\ v_{i,t}^{j}(n,a^{t}) & \text{if otherwise} \end{cases}$$

and

$$n_{i,t}^{j}(a^{t}) = \begin{cases} n_{i,t}^{i}(a^{t}) & \text{if } t = 1 \text{ or } \omega_{i,t-1}(a^{t-1}) = P, \\ \tilde{n}_{i,t}^{j}(a^{t}) & \text{if } t \neq 1 \text{ and } \omega_{i,t-1}(a^{t-1}) = R, \end{cases}$$

as explained above.

Let us now define the equilibrium:

1. At the beginning of the game, the mediator sends

$$m_{i}^{\text{mediator}} = \left(\left(\begin{array}{c} y_{i,t}^{i}(a^{t}), \alpha_{i,t}^{i}(a^{t}), \beta_{i,t}^{i}(a^{t}), r_{i,t}^{\text{punish}}(a^{t}), \\ n_{i,t}^{i}(a^{t}), n_{j,t}^{i}(a^{t}), \left(u_{j,t}^{i}(n,a^{t}) \right)_{n \in \mathbb{Z}_{p^{t}}}, x_{j,t}^{i}(a^{t}) \end{array} \right)_{a^{t} \in A^{t-1}} \right)_{t=1}^{\infty}$$

to each player i.

2. In each period t, the stage game proceeds as follows: In equilibrium,

$$m_{j,t}^{1\text{st}} = \begin{cases} u_{i,t}^{j}(m_{i,t-1}^{2\text{nd}}, a^{t}), x_{i,t}^{j}(a^{t}) & \text{if } t \neq 1 \text{ and } m_{i,t-1}^{2\text{nd}} \neq \{\text{babble}\}, \\ u_{i,t}^{j}(n_{i,t}^{j}(a^{t}), a^{t}), x_{i,t}^{j}(a^{t}) & \text{if } t = 1 \text{ or } m_{i,t-1}^{2\text{nd}} = \{\text{babble}\} \end{cases}$$
(9)

and

$$m_{j,t}^{2\mathrm{nd}} = \begin{cases} n_{j,t+1}^{j}(a^{t+1}) & \text{if } \hat{\omega}_{j,t}(a^{t}) = R, \\ \{\text{babble}\} & \text{if } \hat{\omega}_{j,t}(a^{t}) = P. \end{cases}$$

Note that, since $m_{j,t}^{2nd}$ is sent at the end of period t, the players know $a^{t+1} = (a_1, ..., a_t)$.

(a) Given player *i*'s history $(m_i^{\text{mediator}}, (m_{\tau}^{\text{1st}}, a_{\tau}, m_{\tau}^{\text{2nd}})_{\tau=1}^{t-1})$, each player *i* sends the first message $m_{i,t}^{\text{1st}}$ simultaneously. If player *i* herself has not yet deviated, then

$$m_{i,t}^{1\text{st}} = \begin{cases} u_{j,t}^{i}(m_{j,t-1}^{2\text{nd}}, a^{t}), x_{j,t}^{i}(a^{t}) & \text{if } t \neq 1 \text{ and } m_{j,t-1}^{2\text{nd}} \neq \{\text{babble}\}, \\ u_{j,t}^{i}(n_{j,t}^{i}(a^{t}), a^{t}), x_{j,t}^{i}(a^{t}) & \text{if } t = 1 \text{ or } m_{j,t-1}^{2\text{nd}} = \{\text{babble}\}. \end{cases}$$

Let $m_{i,t}^{1\text{st}}(u)$ be the first element of $m_{i,t}^{1\text{st}}$ (that is, either $u_{j,t}^{i}(m_{j,t-1}^{2\text{nd}}, a^{t})$ or $u_{j,t}^{i}(n_{j,t}^{i}(a^{t}), a^{t})$ on equilibrium); and let $m_{i,t}^{1\text{st}}(x)$ be the second element $(x_{j,t}^{i}(a^{t})$ on equilibrium). As a result, the profile of the messages $m_{t}^{1\text{st}}$ becomes common knowledge. If

$$m_{j,t}^{1st}(u) \neq \alpha_{i,t}^{i}(a^{t}) \times m_{j,t}^{1st}(x) + \beta_{i,t}^{i}(a^{t}) \pmod{p^{t}},$$
 (10)

then player *i* interprets $\hat{\omega}_{i,t}(a^t) = P$. Otherwise, $\hat{\omega}_{i,t}(a^t) = R$.

(b) Given player *i*'s history $(m_i^{\text{mediator}}, (m_{\tau}^{1\text{st}}, a_{\tau}, m_{\tau}^{2\text{nd}})_{\tau=1}^{t-1}, m_t^{1\text{st}})$, each player *i* takes action $a_{i,t}$ simultaneously. If player *i* herself has not yet deviated, then player *i* takes $a_{i,t} = r_{i,t}$ with

$$r_{i,t} = \begin{cases} y_{i,t}^{i}(a^{t}) - m_{j,t}^{1\text{st}}(x) \pmod{n_{i}} & \text{if } \hat{\omega}_{i,t}(a^{t}) = R, \\ r_{i,t}^{\text{punish}}(a^{t}) & \text{if } \hat{\omega}_{i,t}(a^{t}) = P. \end{cases}$$
(11)

Recall that $y_{i,t}^i(a^t) \equiv x_{i,t}^j(a^t) + r_{i,t}(a^t) \pmod{n_i}$ by (5). By (9), therefore, player *i* takes $r_{i,t}^i(a^t)$ if $\bar{\omega}_{i,t}(a^t) = R$ and $r_{i,t}^{\text{punish}}(a^t)$ if $\bar{\omega}_{i,t}(a^t) = P$ on the equilibrium path, as in μ^* .

(c) Given player *i*'s history $(m_i^{\text{mediator}}, (m_{\tau}^{\text{1st}}, a_{\tau}, m_{\tau}^{2\text{nd}})_{\tau=1}^{t-1}, m_t^{\text{1st}}, a_t)$, each player *i* sends the second message $m_{i,t}^{2\text{nd}}$ simultaneously. If player *i* herself has not yet deviated, then

$$m_{i,t}^{\text{2nd}} = \begin{cases} n_{i,t+1}^i(a^{t+1}) & \text{if } \hat{\omega}_{i,t}(a^t) = R, \\ \{\text{babble}\} & \text{if } \hat{\omega}_{i,t}(a^t) = P. \end{cases}$$

As a result, the profile of the messages m_t^{2nd} becomes common knowledge. Note that $\bar{\omega}_t(a^t)$ becomes common knowledge as well on equilibrium path.

Incentive Compatibility

The above equilibrium has full support: Since $\bar{\omega}_t(a^t)$, and $r_t(a^t)$ have full support, $(m_1^{\text{mediator}}, m_2^{\text{mediator}})$ have full support as well. Hence, we are left to verify player *i*'s incentive not to deviate from the equilibrium strategy, given that player *i* believes that player *j* has not yet deviated after any history of player *i*.

Suppose that player *i* followed the equilibrium strategy until the end of period t - 1. First, consider player *i*'s incentive to tell the truth about $m_{i,t}^{1st}$. In equilibrium, player *i* sends

$$m_{i,t}^{1\text{st}} = \begin{cases} u_{j,t}^{i}(m_{j,t-1}^{2\text{nd}}, a^{t}), x_{j,t}^{i}(a^{t}) & \text{if } m_{j,t-1}^{2\text{nd}} \neq \{\text{babble}\}, \\ u_{j,t}^{i}(n_{j,t}^{i}(a^{t}), a^{t}), x_{j,t}^{i}(a^{t}) & \text{if } m_{j,t-1}^{2\text{nd}} = \{\text{babble}\}. \end{cases}$$

The random variables possessed by player *i* are independent of those possessed by player *j* given $(m_{\tau}^{1st}, a_{\tau}, m_{\tau}^{2nd})_{\tau=1}^{t-1}$, except that (i) $u_{i,t}^{j}(a^{t}) = \alpha_{i,t}^{i}(a^{t}) \times x_{i,t}^{j}(a^{t}) + \beta_{i,t}^{i}(a^{t}) \pmod{p^{t}}$ if $\bar{\omega}_{i,t}(a^{t}) = R$, (ii) $u_{j,t}^{i}(a^{t}) = \alpha_{j,t}^{j}(a^{t}) \times x_{j,t}^{i}(a^{t}) + \beta_{j,t}^{j}(a^{t}) \pmod{p^{t}}$ if $\bar{\omega}_{j,t}(a^{t}) = R$, (iii) $n_{i,\tau}^{j}(a^{\tau}) = n_{i,\tau}^{i}(a^{\tau})$ if $\omega_{i,\tau-1}(a^{\tau-1}) = P$ while $n_{i,\tau}^{j}(a^{\tau}) = \tilde{n}_{i,\tau}^{i}(a^{\tau})$ if $\omega_{i,\tau-1}(a^{\tau-1}) = R$, and (iv) $n_{j,\tau}^{i}(a^{\tau}) = n_{j,\tau}^{j}(a^{\tau})$ if $\omega_{j,\tau-1}(a^{\tau-1}) = P$ while $n_{j,\tau}^{i}(a^{\tau}) = \tilde{n}_{j,\tau}^{j}(a^{\tau})$ if $\omega_{j,\tau-1}(a^{\tau-1}) = R$. Since $\alpha_{i,t}^{i}(a^{t}), \beta_{i,t}^{i}(a^{t}), v_{i,t}^{j}(n, a^{t}) n_{i,t}^{i}(a^{t})$, and $\tilde{n}_{i,t}^{j}(a^{t})$ are uniform and independent, player *i* cannot learn $\bar{\omega}_{i,\tau}(a^{\tau})$, or $r_{j,\tau}(a^{\tau})$ with $\tau \geq t$. Hence, player *i* believes at the time when she sends $m_{i,t}^{1st}$ that her equilibrium value is equal to

$$(1-\delta)\mathbb{E}^{\mu^*}\left[u_i(a_t) \mid h_i^t\right] + \delta\mathbb{E}^{\mu^*}\left[(1-\delta)\sum_{\tau=t+1}^{\infty} \delta^{\tau-t-1}u_i(a_t) \mid h_i^t\right],$$

where h_i^t is as if player *i* observed $\left(r_{i,t}^{\text{punish}}(a^t)\right)_{a^t \in A^{t-1}t=1}^{\infty}$, a^t , $(\bar{\omega}_{\tau}(a^{\tau}))_{\tau=1}^{t-1}$, and $r_{i,t}(a^t)$, and believed that $r_{\tau}(a^{\tau}) = a_{\tau}$ for each $\tau = 1, ..., t-1$ with μ^* with mediated perfect monitoring.

On the other hand, for each e > 0, for a sufficiently large N^t , if player *i* tells a lie in at least one element $m_{i,t}^{1st}$, then with probability 1 - e, player *i* creates a situation

$$m_{i,t}^{1\mathrm{st}}(u) \neq \alpha_{j,t}^j(a^t) \times m_{i,t}^{1\mathrm{st}}(x) + \beta_{j,t}^j(a^t) \pmod{p^t}.$$

Hence, (10) (with indices i and j reversed) implies that $\hat{\omega}_{j,t}(a^t) = P$.

Moreover, if player *i* creates a situation with $\hat{\omega}_{j,t}(a^t) = P$, then player *j* will send $m_{j,t}^{2nd} = \{\text{babble}\}$ instead of $n_{j,t+1}^j(a^{t+1})$. Unless $\bar{\omega}_{j,t}(a^t) = P$, since $n_{j,t+1}^j(a^{t+1})$ is independent of player *i*'s variables, player *i* believes that $n_{j,t+1}^j(a^{t+1})$ is distributed uniformly over $\mathbb{Z}_{p^{t+1}}$. Hence, for each e > 0, for sufficiently large N^t , if $\hat{\omega}_{j,t}(a^t) = R$, then player *i* will send $m_{i,t+1}^{1st}$ with

$$m_{i,t+1}^{1\text{st}}(u) \neq \alpha_{j,t+1}^{j}(a^{t+1}) \times m_{i,t+1}^{1\text{st}}(x) + \beta_{j,t+1}^{j}(a^{t+1}) \pmod{p^{t+1}}$$

with probability 1 - e. Then, by (10) (with indices *i* and *j* reversed), player *j* will have $\hat{\omega}_{j,t+1}(a^{t+1}) = P$.

Recursively, if $\bar{\omega}_{j,\tau}(a^{\tau}) = R$ for each $\tau = t, .., t + T_t - 1$, then player *i* will induce

 $\hat{\omega}_{j,\tau}(a^{\tau}) = P$ for each $\tau = t, ..., t + T_t - 1$ with a high probability. Hence, for $\varepsilon_t > 0$ and T_t fixed in (1) and (2), for sufficiently large \bar{N}^t , if $N^{\tau} \ge \bar{N}^t$ for each $\tau \ge t$, then player *i* will be punished for the subsequent T_t periods regardless of player *i*'s continuation strategy with probability no less than $1 - \varepsilon_t - \sum_{\tau=t}^{t+T_t-1} p_{\tau}$. $(\sum_{\tau=t}^{t+T_t-1} p_{\tau} \text{ represents the maximum probability} of having <math>\bar{\omega}_{i,\tau}(a^{\tau}) = P$ for some τ for subsequent T_t periods.) (4) implies that telling a lie gives strictly lower payoff than the equilibrium payoff. Therefore, it is optimal to tell the truth about $m_{i,t}^{1\text{st}}$. (In (4), we have shown interim incentive compatibility after knowing $\bar{\omega}_{i,t}(a^t)$ and $r_{i,t}$ while here, we consider h_i^t before $\bar{\omega}_{i,t}(a^t)$ and $r_{i,t}$. Taking the expectation with respect to $\bar{\omega}_{i,t}(a^t)$ and $r_{i,t}$, (4) ensures incentive compatibility before knowing $\bar{\omega}_{i,t}(a^t)$ and $r_{i,t}$.)

Second, consider player *i*'s incentive to take the action $a_{i,t} = r_{i,t}$ according to (11) if player *i* follows the equilibrium strategy until she sends $m_{i,t}^{1\text{st}}$. If she follows the equilibrium strategy, then player *i* believes at the time when she takes an action that her equilibrium value is equal to

$$(1-\delta)\mathbb{E}^{\mu^*}\left[u_i(a_t) \mid h_i^t\right] + \delta\mathbb{E}^{\mu^*}\left[(1-\delta)\sum_{\tau=t+1}^{\infty} \delta^{\tau-t-1}u_i(a_t) \mid h_i^t\right],$$

where h_i^t is as if player *i* observed $\left(r_{i,t}^{\text{punish}}(a^t)\right)_{a^t \in A^{t-1}t=1}^{\infty}$, a^t , $(\bar{\omega}_{\tau}(a^{\tau}))_{\tau=1}^{t-1}$, $\bar{\omega}_{i,t}(a^t)$, and $r_{i,t}$, and believed that $r_{\tau}(a^{\tau}) = a_{\tau}$ for each $\tau = 1, ..., t-1$ with μ^* with mediated perfect monitoring. (Compared to the time when player *i* sends $m_{i,t}^{1\text{st}}$, player *i* now knows $\bar{\omega}_{i,t}(a^t)$ and $r_{i,t}$ on equilibrium path.)

If player *i* deviates from $a_{i,t}$, then $\bar{\omega}_{j,\tau}(a^{\tau}) = P$ by definition for each $\tau \geq t+1$ and a^{τ} that is compatible with a^t (that is, $a^{\tau} = (a^t, a_t, ..., a_{\tau-1})$ for some $a_t, ..., a_{\tau-1}$). To avoid being minmaxed in period τ , player *i* needs to induce $\hat{\omega}_{j,\tau}(a^{\tau}) = R$ although $\bar{\omega}_{j,\tau}(a^{\tau}) = P$. Given $\bar{\omega}_{j,\tau}(a^{\tau}) = P$, since $\alpha_{i,t}^i(a^t)$, $\beta_{i,t}^i(a^t)$, $\tilde{u}_{i,t}^j(a^t)$, $v_{i,t}^j(n, a^t) n_{i,t}^i(a^t)$, and $\tilde{n}_{i,t}^j(a^t)$ are uniform and independent (conditional on the other variables), regardless of player *i*'s continuation strategy, by (10) (with indices *i* and *j* reversed), player *i* will send $m_{i,\tau}^{1\text{st}}$ with

$$m_{i,\tau}^{\mathrm{1st}}(u) \neq \alpha_{j,\tau}^{j}(a^{\tau}) \times m_{i,\tau}^{\mathrm{1st}}(x) + \beta_{j,\tau}^{j}(a^{\tau}) \pmod{p^{\tau}}$$

with a high probability.

Hence, for sufficiently large \bar{N}^t , if $N^{\tau} \geq \bar{N}^t$ for each $\tau \geq t$, then player *i* will be punished for the next T_t periods regardless of player *i*'s continuation strategy with probability no less than $1 - \varepsilon_t$. By (3), deviating from $r_{i,t}$ gives a strictly lower payoff than her equilibrium payoff. Therefore, it is optimal to take $a_{i,t} = r_{i,t}$.

Finally, consider player *i*'s incentive to tell the truth about $m_{i,t}^{2nd}$. Regardless of $m_{i,t}^{2nd}$, player *j*'s actions do not change. Hence, we are left to show that telling a lie does not improve player *i*'s deviation gain by giving player *i* more information.

On the equilibrium path, player *i* knows $\bar{\omega}_{i,t}(a^t)$. If player *i* tells the truth, then $m_{i,t}^{2nd} = n_{i,t+1}^i(a^{t+1}) \neq \{\text{babble}\}$ if and only if $\bar{\omega}_{i,t}(a^t) = R$. Moreover, player *j* sends

$$m_{j,t+1}^{1\text{st}} = \begin{cases} u_{i,t+1}^j(m_{i,t}^{2\text{nd}}, a^{t+1}), x_{i,t+1}^j(a^{t+1}) & \text{if } \bar{\omega}_{i,t}(a^t) = R, \\ u_{i,t+1}^j(n_{i,t+1}^j(a^{t+1}), a^{t+1}), x_{i,t+1}^j(a^{t+1}) & \text{if } \bar{\omega}_{i,t}(a^t) = P. \end{cases}$$

Since $n_{i,t+1}^{j}(a^{t+1}) = n_{i,t+1}^{i}(a^{t+1})$ if $\bar{\omega}_{i,t}(a^{t}) = P$, in total, if player *i* tells the truth, then player *i* knows $u_{j,t+1}^{i}(m_{i,t+1}^{i}(a^{t+1}), a^{t+1})$ and $x_{j,t+1}^{i}(a^{t+1})$. This is sufficient information to infer $\bar{\omega}_{i,t+1}(a^{t+1})$ and $r_{i,t+1}(a^{t+1})$ correctly.

If she tells a lie, then player j's messages are changed to

$$m_{j,t+1}^{1\text{st}} = \begin{cases} u_{i,t+1}^j(m_{i,t}^{2\text{nd}}, a^{t+1}), x_{i,t+1}^j(a^{t+1}) & \text{if } m_{i,t}^{2\text{nd}} \neq \{\text{babble}\}, \\ u_{i,t+1}^j(n_{i,t+1}^j(a^{t+1}), a^{t+1}), x_{i,t+1}^j(a^{t+1}) & \text{if } m_{i,t}^{2\text{nd}} = \{\text{babble}\}. \end{cases}$$

Since $\alpha_{i,t+1}^i(a^{t+1})$, $\beta_{i,t+1}^i(a^{t+1})$, $\tilde{u}_{i,t+1}^j(a^{t+1})$, $v_{i,t+1}^j(n, a^{t+1})$ $n_{i,t+1}^i(a^{t+1})$, and $\tilde{n}_{i,t+1}^j(a^{t+1})$ are uniform and independent conditional on $\bar{\omega}_{i,t+1}(a^{t+1})$ and $r_{i,t+1}(a^{t+1})$, $u_{i,t+1}^j(n, a^{t+1})$ and $x_{i,t+1}^j(a^{t+1})$ are not informative about player j's recommendation from period t + 1 on or player i's recommendation from period t + 2 on, given that player i knows $\bar{\omega}_{i,t+1}(a^{t+1})$ and $r_{i,t+1}(a^{t+1})$. Since telling the truth informs player i of $\bar{\omega}_{i,t+1}(a^{t+1})$ and $r_{i,t+1}(a^{t+1})$, there is no gain from telling a lie.