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A Appendix: Auxiliary Technical Lemmas

Lemma A.1. (i) When c < c, FC (·, c) on [x, x̄] is positive at first, then intersects zero at a

point, then is negative, then intersects zero at a point, and then is positive again.

(ii) FC (·, c) is nonnegative on [x, x̄] if and only if c � c.

(iii) FA (·, ·, c) is nonnegative on [x, x̄]2 if and only if c � c.

(iv) When c < c̄, FA (x1, ·, c) is quasi-convex on
⇥

x1, b�1 (x1)
⇤

.

Proof. The proof proceeds in steps.

1. Claim: 1 � c � a > 0 and 1 � c � a2 > 0 for any a 2 [x, x̄].

Proof:

1 � c � a > 1 � c � x̄ =
1 � 2c �

p
1 � 4c

2
=

4c2

2
�

1 � 2c +
p

1 � 4c
� > 0,

which, coupled with a2 < a, also implies that 1 � c � a2 > 0.

2. Claim: Define â = 1 �
p

c. Then, â 2 (x, x̄), and a 2 [x, â) [ (â, x̄] implies that

(a � â)
⇣

c � (1 � a)2
⌘

> 0.

Proof: The inequality follows by the definition of â and by inspection. It remains to

verify that â 2 (x, x̄). Indeed,

â � x =
1 +

p
1 � 4c � 2

p
c

2
> 0

x̄ � â =
2
p

c +
p

1 � 4c � 1
2

> 0,

1



where c < c̄.

3. Claim: If FC (a, c) < 0 for some a 2 [x, x̄], then FC (·, c) is at first positive, then

intersects zero at a single point to the left of â, then is negative, then intersects zero

at a single point to the right of â, and then is again positive.

Proof: Because FC (x, c) = 1/ (1 � x) > 0 and FC (x̄, c) = 1/ (1 � x̄) > 0, F (a, c) 

0 =) a 2 (x, x̄). Differentiating,

FC
1 (a, c) =

c
�

1 � c � a2�

(1 � a) (1 � c � a)2 + ln
c (1 � a)

a (1 � c � a)

=
FC (a, c)

a
+

⇣

c � (1 � a)2
⌘

�

1 � c � a2�

a (1 � a) (1 � a � c)2 .

If FC (a, c) = 0 for some a 2 (x, x̄), then

FC
1 (a, c) =

⇣

c � (1 � a)2
⌘

�

1 � c � a2�

a (1 � a) (1 � c � a)2 .

By Step 1, the sign of FC
1 (a, c) is the sign of c � (1 � a)2, which, by Step 2, switches

the sign from negative to positive at â 2 (x, x̄). Hence, if a with FC (a, c) < 0 exists,

then FC (·, c) intersects zero twice: once from above and to the left of â, and once

from below and to the right of â.

4. Claim: If c < c, then FC (â, c) < 0. If c � c, then FC (·, c) is nonnegative on [x, x̄].

Proof: Note that, at a 2 (x, x̄),

FC
2 (a, c) =

a
c

✓

1 � a
1 � c � a

◆2
> 0.

Furthermore,

FC (â, c) = 2 � (1 � p
c) ln

�

1 � p
c
�2

c
= 0,

where the first equality is by â = 1 � p
c, and the second one is by (11). Combining
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the two displays above delivers FC (â, c) < 0 for any c < c and FC (â, c) � 0 for any

c � c.

For c < c, FC (â, c) < 0 and Step 3 imply part (i).

For c � c, FC (â, c) � 0 and Step 3 imply part (ii).

5. Claim: Subject to x2 � x1, FA (·, ·, c) is minimized at x2 = x1.

Proof: The claim follows from

FA
2 (x1, x2, c) =

(1 � x1)

(1 � x2)
2

 

ln
c (1 � x1)

x1 (1 � c � x2)
+

(1 � x2)
�

1 � c � x2
2
�

(1 � c � x2)
2

!

> 0,

where the inequality follows because 1 � c � x2
2 > 0 and 1 � c � x2 > 0 by Step 1.

Because FA (z, z, c) = FC (z, c), Step 5 implies that FA (·, ·, c) has the same mini-

mized value as FC (·, c) does. Hence, part (iii) is implied by part (ii).

6. Claim: Define k (x1, x2, c) ⌘ (1 � x2)
�

2c � 1 + x2 + x2
2 � x1x2

2
�

� c2. Then, for some

yA 2 (x, x̄) and for any x2 2 [x, y⇤) [ (y⇤, x̄],
�

x2 � yA� k (x1, x2, c) > 0.

Proof: First, it will be shown that k (x1, x̄, c) > 0. Indeed,

k (x1, x̄, c) � k (x̄, x̄, c) = c �
⇣

1 �
p

1 � 4c
⌘

✓

1
2

� c
◆

> 0,

where the first inequality is by ∂k/∂x1 < 0, and the last inequality follows because

k (x̄, x̄, ·) is zero at c 2 {0, c̄} and is positive at the only critical point (c = 2/9) in

(0, c̄).

Next, it will be shown that k (x1, x, c) < 0. Indeed,

k (x1, x, c)  k (x, x, c) = c �
⇣

1 +
p

1 � 4c
⌘

✓

1
2

� c
◆

< 0,

where the first inequality is by ∂k/∂x1 < 0, and the last inequality follows because

k (x, x, c̄) = 0 and because ∂k (x, x, c) /∂c > 0.
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Finally, ∂2k (x1, x2, c) /x2
2 = �6 (1 � x1) x2 � 2x1 < 0. Hence, k (x1, x, c) < 0 and

k (x1, x̄, c) > 0 imply that, on (x, x̄), k (x1, ·, c) crosses zero and—by ∂2k (x1, x2, c) /x2
2 <

0—just once, from below, at some yA 2 (x, x̄).

7. Claim: FA (x1, ·, c) can be negative on, and only on, an interval.

Proof: At any (x1, x2, c) with FA (x1, x2, c) = 0, by differentiation and substitution,

FA
2 (x1, x2, x) =

k (x1, x2, c)
(1 � x2) x2 (1 � c � x2)

2 .

The sign of FA
2 (x1, x2, c) is the sign of k (x1, x2, c), which, by Step 6, switches from

negative to positive at yA 2 (x, x̄) as x2 rises; FA (x1, x2, c) is quasi-convex. Part (iv)

follows.

Lemma A.2. The function MC is uniquely maximized on [x, x̄] at x̄.

Proof. Recall from the proof of Lemma 3 that MC has two local maxima, at a and at x̄. It

remains to verify that MC (x̄) > MC (a).

Then,

MC (x̄) = 2cs (x̄) � 1 � V (x̄, x̄)

(1 � x̄)2 = 2cs (x̄) � 1
1 � x̄

,

where the last equality uses V (x̄, x̄) = x̄, by direct substitution. Furthermore,

MC (a) = 2cs (a) � 1 � V (a, a)
(1 � a)2 = 2cs (a) � c

a (1 � a)2 � 1 � a
1 � a � c

,

where the last equality follows by substituting F (a, c) = 0 into the expression for 1�V(a,a)
(1�a)2 .
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As a result,

MC (x̄) � MC (a) = 2cs (x̄) � 2cs (a) +
c

a (1 � a)2 +
1 � a

1 � a � c
� 1

1 � x̄

= c

"

2s (x̄) � 1
x̄ (1 � x̄)2

#

� c

"

2s (a) � 1
a (1 � a)2

#

+
1 � a

1 � a � c
> 0,

where the last equality follows from x̄ (1 � x̄) = c and by rearranging, and the inequality

follows because the first bracket exceeds the second bracket, and the fraction (1 � a) / (1 � a � c)

is positive (by a < x̄). The ordering of the brackets follows from x̄ > a and the observation

d
da

✓

2s (a) � 1
a (1 � a)

◆

=
1

a2 (1 � a)2 > 0, 8a 2 (0, 1) .

To summarize, MC (x̄) > MC (a), and, so, MC has a unique maximand, x̄, on [x, x̄].

Lemma A.3. For MA defined in (25), arg maxa2[x1,b�1(x1)]MA (x1, a) =
�

b�1 (x1)
 

, where

b�1 is the inverse of b defined in (14). As a result, on Â, u (x1) < b�1 (x1) and F ⇢ A.

Proof. By Lemma 4, the only two local maxima of MA (x1, ·) are d (x1) and b�1 (x1), so it

suffices to show that MA �x1, b�1 (x1)
�

> MA (x1, d (x1)). Write

MA
⇣

x1, b�1 (x1)
⌘

= ch
⇣

b�1 (x1)
⌘

�
1 � V

�

x1, b�1 (x1)
�

1 � b�1 (x1)
= ch

⇣

b�1 (x1)
⌘

� 1,

where the first equality is definitional, and the second one is by V
�

x1, b�1 (x1)
�

= b�1 (x1).

Evaluating V in (13) at (x1, d (x1)) and using FA (x1, d (x1) , c) = 0 (by (28)), one can

write

V (x1, d (x1)) = (1 � x1) d (x1) � (1 � d (x1)) c (1 � c � x1d (x1))
d (x1) (1 � c � d (x1))

� c + x1.
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Then,

MA (x1, d (x1)) = ch (d (x1)) � 1 � V (x1, d (x1))
1 � d (x1)

= c


h (d (x1)) � 1
d (x1) (1 � d (x1))

�

+ x1 � c (1 � x1)
1 � c � d (x1)

� 1,

where the first equality is definitional, and the second one follows by substituting V (x1, d (x1))

and rearranging.

Then, suppressing the argument x1 in b�1 (x1) and in d (x1), for compactness,

MA
⇣

x1, b�1
⌘

� MA (x1, d) = c


h
⇣

b�1
⌘

� 1
b�1 (1 � b�1)

�
✓

h (d) � 1
d (1 � d)

◆�

+
b (d)

�

b�1 � x1
�

+ x1
�

1 � b�1�

b�1 (1 � b (d))
> 0,

where the first equality follows by using the definitions of b and b�1 and rearranging, and

the inequality uses b�1 (x1) > d (x1) and

d
dy

✓

h (y) � 1
y (1 � y)

◆

=
1

y2 (1 � y)
> 0

to conclude that the bracket in the first line is positive; and uses x1 < b�1 (x1) < 1 to

conclude that the fraction in the second line is positive, too. That is, MA �x1, b�1 (x1)
�

>

MA (x1, d (x1)), as desired.

The conclusion that, on Â, u (x1) < b�1 (x1) and F ⇢ A follows by inspection of

Lemma 4’s Figure 7 (just validated by showing that MA �x1, b�1 (x1)
�

> MA (x1, d (x1))).

Lemma A.4. On B̂, w (x1) < b�1 (x1) and F ⇢ B.

Proof. To conclude that w (x1) < b�1 (x1), we shall show that V
�

x1, b�1 (x1)
�

> B
�

x1, b�1 (x1)
�

.
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Note that V
�

x1, b�1 (x1)
�

= b�1 (x1) and, from the definition of B in (31),

B
⇣

x1, b�1 (x1)
⌘

= 1 �
⇣

1 � b�1 (x1)
⌘

✓

1 � C (x1)
1 � x1

+ ch
⇣

b�1 (x1)
⌘

� ch (x1)

◆

.

Then,

V
⇣

x1, b�1 (x1)
⌘

� B
⇣

x1, b�1 (x1)
⌘

=
⇣

1 � b�1 (x1)
⌘

✓

1 � C (x1)
1 � x1

� 1 + ch
⇣

b�1 (x1)
⌘

� ch (x1)

◆

,

where

1 � C (x1)
1 � x1

= (1 � x1)

 

1 � V (a, a)
(1 � a)2 + 2c [s (x1) � s (a)]

!

= (1 � x1)

 

1
1 � b (a)

+
c

a (1 � a)2 + 2c [s (x1) � s (a)]

!

.

The first equality in the display above uses the definition of C in (19). The second equality

uses the definitions of V in (13) and b in (14), and the condition FC (a, c) = 0 in (21), which

characterizes a.

Then, substituting the display above into its precursor display gives

V
�

x1, b�1 (x1)
�

� B
�

x1, b�1 (x1)
�

1 � b�1 (x1)
= (1 � x1)

 

1
1 � b (a)

+
c

a (1 � a)2 + 2c [s (x1) � s (a)]

!

+ c
h

h
⇣

b�1 (x1)
⌘

� h (x1)
i

� 1

=

✓

(1 � x1)
1 � b (a)

+
c

b�1 (x1) (1 � b�1 (x1))
� 1

+ (1 � x1) c

"

2s (x1) � 1
x1 (1 � x1)

2 �
 

2s (a) � 1
a (1 � a)2

!#

+c


h
⇣

b�1 (x1)
⌘

� 1
b�1 (x1) (1 � b�1 (x1))

�
✓

h (x1) � 1
x1 (1 � x1)

◆�◆

.
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Note that, using the definition of b in (14),

(1 � x1)
1 � b (a)

+
c

b�1 (x1) (1 � b�1 (x1))
� 1 =

(1 � x1)
1 � b (a)

+
x1

b�1 (x1)
� 1

=
x1
⇥

1 � b�1 (x1)
⇤

+ b (a)
⇥

b�1 (x1) � x1
⇤

b�1 (x1) (1 � b (a))
> 0,

where the inequality follows from x1 < b�1 (x1) < 1. Moreover,

2s (x1) � 1
x1 (1 � x1)

2 �
 

2s (a) � 1
a (1 � a)2

!

> 0

by x1 > a and by
d

dy

 

2s (y) � 1
y (1 � y)2

!

=
1

y2 (1 � y)2 > 0

for any y 2 (0, 1). Finally,

h
⇣

b�1 (x1)
⌘

� 1
b�1 (x1) (1 � b�1 (x1))

�
✓

h (x1) � 1
x1 (1 � x1)

◆

> 0

by b�1 (x1) > x1 and by

d
dy

✓

h (y) � 1
y (1 � y)

◆

=
1

y2 (1 � y)
> 0

for y 2 (0, 1) . Thus, V
�

x1, b�1 (x1)
�

� B
�

x1, b�1 (x1)
�

> 0, as required.

To show that
�

F \ B̂
�

⇢ B, from (31) and (13), write

B (x) � V (x)
1 � x2

= (1 � x1)

✓

1
1 � b (x2)

+
c

1 � x2
[h (x1) � h (b (x2))]

◆

� 1 � C (x1)
1 � x1

� c [h (x2) � h (x1)] .

Differentiating, then simplifying, gives

d
dx2

✓

B (x) � V (x)
1 � x2

◆

= � cFA (x, c)
x2 (1 � x2)

.

8



As a result, because FA (x, c) < 0 implies that B (x) > V (x), B covers F , the failure

region, on B̂. That is, F \ B̂ ⇢ B.
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