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A Appendix: Auxiliary Technical Lemmas

Lemma A.1. (i) When ¢ < ¢, @ (-, ¢) on [x, %] is positive at first, then intersects zero at a
point, then is negative, then intersects zero at a point, and then is positive again.

(ii) ®° (-, ¢) is nonnegative on [x, %] if and only if ¢ > c.

(iii) @4 (-, -, ¢) is nonnegative on [x, ]? if and only if ¢ > c.

(iv) When ¢ < ¢, @4 (x1, -, ¢) is quasi-convex on [x1,b7! (x7)].
Proof. The proof proceeds in steps.

1. Claim: 1 —c—a >0and 1 —c—a® > O foranya € [x, x].

Proof:
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which, coupled with a? < a, also implies that 1 — ¢ — a® > 0.

2. Claim: Define 4 = 1 — \/c. Then, 4 € (x,%), and a € [x,4) U (4, %] implies that

(a—a) (a—(1—a)2) > 0.

Proof: The inequality follows by the definition of 4 and by inspection. It remains to

verify that 4 € (x, ¥). Indeed,
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where ¢ < C.

. Claim: If ®C (a,c) < 0 for some a € [x, %], then ®C (-,¢c) is at first positive, then

intersects zero at a single point to the left of 4, then is negative, then intersects zero
at a single point to the right of 4, and then is again positive.
Proof: Because ®¢ (x,¢) =1/ (1 —x) > 0and ®¢ (%,c) =1/ (1 - %) >0, P (a,¢) <

0 = a € (x,x). Differentiating,

c(1—c—a?) c(l—a)
(l—a)(l—c—a)z—Hna(l—C_”)
:CIDC(a,c)+ (c—(l—a)2> (1—c—a?)

a(l—a)(1—a—c)*

CI>1C (a,¢) =

If ® (a,c) = 0 for some a € (x, %), then

(c—(l—a)2> (1—c—a?)

C(a,c) =
1 (@,c) a(1—a)(1—c—a)?

By Step 1, the sign of ® (4, c) is the sign of ¢ — (1 — a)?, which, by Step 2, switches
the sign from negative to positive at 4 € (x, X). Hence, if a with @€ (a,¢) < 0 exists,
then ®C (-, c) intersects zero twice: once from above and to the left of 4, and once

from below and to the right of 4.

. Claim: If ¢ < ¢, then ®C (4,c) < 0. If ¢ > ¢, then ®° (-, ¢) is nonnegative on [x, X].

Proof: Note that, ata € (x, ¥),

Furthermore,

where the first equality is by 4 = 1 — , /¢, and the second one is by (11). Combining
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the two displays above delivers ®¢ (4,c) < 0 for any ¢ < ¢ and ®° (4,¢) > 0 for any
c>c.
For ¢ < ¢, ®° (4,¢) < 0 and Step 3 imply part (i).

For ¢ > ¢, ¢ (4,¢) > 0 and Step 3 imply part (ii).

5. Claim: Subject to xo > x1, A (+,-,c) is minimized at x, = x.

Proof: The claim follows from

<I>§l (x1,x2,¢) =

(1—xq) c(1—xq) (1—2x2) (1 —c—x3)
(1—x2)2 <1nx1(]_c_x2)+ (1—c—x2)2 >>0,

where the inequality follows because 1 — ¢ — x5 > 0and 1 — ¢ — x; > 0 by Step 1.
Because ®* (z,z,c) = @ (z,¢), Step 5 implies that ®* (-, -,c) has the same mini-

mized value as ®C (-, c) does. Hence, part (iii) is implied by part (ii).

6. Claim: Define & (x1,x2,¢) = (1 — x2) (2 — 1+ x2 + x3 — x1x3) — ¢2. Then, for some
yA € (x,x) and forany x; € [x,y*) U (v*, %], (x2 — y*) & (x1,x2,¢) > 0.

Proof: First, it will be shown that x (x1, %, c) > 0. Indeed,

K (x1,%,¢) > x (%, %,¢) =c— <1 — \/1—74(:> (% —c) >0,

where the first inequality is by dx/dx; < 0, and the last inequality follows because
Kk (%,X,-) is zero at ¢ € {0,¢} and is positive at the only critical point (¢ = 2/9) in
(0,¢0).

Next, it will be shown that « (x1, x,¢) < 0. Indeed,
1
K(xLLC) S K(E;E,C) =C— <1 + v 1 —4:C> (E — C) < O,

where the first inequality is by dx/dx; < 0, and the last inequality follows because

K (x,x,¢) = 0 and because dx (x, x,c) /dc > 0.



Finally, 9% (x1, x2,¢) /x% = —6(1—x1)xp —2x; < 0. Hence, x (x1,x,¢) < 0 and
x (x1,%,¢) > 0imply that, on (x, %), x (x1, -, ¢) crosses zero and—by 9%« (x1, x,¢) /x5 <

0—just once, from below, at some y* € (x, %).

7. Claim: ®4 (x1,-,c) can be negative on, and only on, an interval.

Proof: At any (x1, X2, c) with A (x1,x2,¢) = 0, by differentiation and substitution,

K (x1,Xp,C
<I>§4 (x1,x2,x) = (21, %2, ) )

(1—2x2)x2(1 —c—x2)2

The sign of CIDf (x1,x2,¢) is the sign of « (x1, xp, ¢), which, by Step 6, switches from
negative to positive at y € (x, %) as x; rises; @4 (x1, x2, ¢) is quasi-convex. Part (iv)

follows.

Lemma A.2. The function M is uniquely maximized on [x, %] at %.

Proof. Recall from the proof of Lemma 3 that M has two local maxima, at a and at x. It
remains to verify that M® (%) > M® (a).

Then,

where the last equality uses V (%, ¥) = X, by direct substitution. Furthermore,

1-V(aa) B c _ 1-a
(1—a)® ~ 2l a(l—a)? 1-a-c

ME (a) = 2c0 (a) —

1-V(a,a)
2 .

where the last equality follows by substituting ® (g, c) = 0 into the expression for



As a result,

M (z) = MC (a) = 2co (%) —2co(a) + S+ = -

where the last equality follows from ¥ (1 — X) = ¢ and by rearranging, and the inequality
follows because the first bracket exceeds the second bracket, and the fraction (1 —a) / (1 —a —¢)

is positive (by a < x). The ordering of the brackets follows from ¥ > a and the observation

%(Za(a)—a(ll—_a)>:ﬁ>0, Va e (0,1).

To summarize, M© () > M® (a), and, so, M has a unique maximand, ¥, on [x, ¥|. O

Lemma A.3. For M* defined in (25), arg max ]MA (x1,a) = {b1(x1)}, where

b~ is the inverse of b defined in (14). As a result, on A, u (x1) < b=' (x1) and F C A.

ae [xl,lf1 (x1)

Proof. By Lemma 4, the only two local maxima of M4 (x1,-) are d (x1) and b~ (x1), so it

suffices to show that M4 (x1,b7! (x1)) > M? (x1,d (x1)). Write

M4 (361,19*l (x1)> =cy (bfl (xl)) _1- fj’;l_’fz;()xlw =y (lfl (x1)> -1,

where the first equality is definitional, and the second oneisby V (x1,b7! (x1)) = b~ (x7).
Evaluating V in (13) at (x1,d (x1)) and using ®4 (x1,d (x1),¢) = 0 (by (28)), one can

write

(1—d(x1))c(1—c—x1d(x1))

Vi, d(n) =1 =x)d) - =0 i)

—C+ X1.



Then,

B 1 -V (x1,d(x1))

1—d(xq1)
B 1 c(1—x)
=e |1 - sy a e TP T e a

M (x1,d (x1)) = cn (d (x1))

—1,

where the first equality is definitional, and the second one follows by substituting V' (x1,d (x1))
and rearranging.

Then, suppressing the argument x; in b~! (x1) and in d (x7), for compactness,

M (e 071) = M2 ) = (071) = e~ (10— )|
b(d) (b~" —x1) +x (1—b7")
b T(1—b(d)

+ >0,

where the first equality follows by using the definitions of b and b~! and rearranging, and

the inequality uses b~1 (x1) > d (x;) and

d 1 1
dy (n(y)_y(l—y)) TEay Y
to conclude that the bracket in the first line is positive; and uses x; < b~ (x;) < 1to
conclude that the fraction in the second line is positive, too. That is, M4 (x1,b7! (x1)) >
M% (x1,d (x1)), as desired.

The conclusion that, on A, u (x;) < b~! (x;) and F C A follows by inspection of
Lemma 4’s Figure 7 (just validated by showing that M4 (x1,b7! (x1)) > M4 (x1,d (x1))).

[l

Lemma A.4. On B, w (x1) < b1 (xq) and F C B.

Proof. To conclude thatw (x1) < b~ (x1), we shall show that V (x1,b7! (x1)) > B (x1,b71 (x1)).



Note that V (x1,b71 (x1)) = b~! (x1) and, from the definition of B in (31),

B (xl,zfl (x1)> —1- (1 bl (x1)> (ﬂ + oy (b” (x1)> — (xl)) .

1-— X1
Then,

1—C(X1)
1—X1

v (xl,b_l (x1)> B (xl,b_l (x1)> - (1 —pl (x1)> ( —1+cy (b—1 (x1)> — (xl)) ,

where

1-C(x1) = (1-x) (1(_‘/—(2’24)+2c[0(x1)—0(ﬂ)]>

1—x 1—a)
= (1—x7) (1—1b(ﬂ)+ c 2—|-2c[0'(x1)—(7(g)]>.

a(l—a)

The first equality in the display above uses the definition of C in (19). The second equality
uses the definitions of V in (13) and b in (14), and the condition ®¢ (g, c) = 0in (21), which
characterizes a.

Then, substituting the display above into its precursor display gives

V (1,671 (x1)) = B (x1,07 (x1)) 1 c
= (xl)1 - (1 5@ " a(1-ay Falrin) = 0(2)0
+c [77 (b ! (xl)) —U(xl)] -1
_ ((1 —X1) c 1
1—b(a) b 1(x)(1—-b"1(x1))
1 1
+(1—x1)c [2(7(x1) — 0 —x) — (20 (a) — (1 a)2>]




Note that, using the definition of b in (14),

(1—x1) c . (=x) X1
1=b(@) b A-b () | 1-b(@) b (x)

_ a4 b@ b ) —n]
B b=1 (x1) (1-b(a)) ,

-1

where the inequality follows from x; < b~! (x1) < 1. Moreover,

20(x1)—m— (20(@)—ﬁ> >0

by x1 > a and by

1 1
dy (2‘7(y)_y<1—y>2> A

for any y € (0,1). Finally,

ACRCHEF= ) (11_ b (x) <’7 (1) = ﬁ) >0

by b=! (x1) > x; and by

d 1 1
d_y("(y)_y(l—y)) T

fory € (0,1). Thus, V (x1,b7! (x1)) — B (x1,b71 (x1)) > 0, as required.
To show that (F N B) C B, from (31) and (13), write

B(x) =V (x)
1—x2

= (=) (1o * 1o 1100~ 6] ) =TT ey )~y ().

Differentiating, then simplifying, gives

d (B(x) - V(x)> @ (x,0)

dxs 1—2x, xp (1—x2)



As a result, because &4 (x,c) < 0 implies that B (x) > V (x), B covers F, the failure

region, on B. Thatis, FN B C B. O



	Introduction
	Model
	An Optimal Policy
	The HJBQVI Equation
	Maintained Parameter Restrictions and Conventions
	Learning Is Prohibitively Costly
	Learning Is Moderately Costly
	Learning is Cheap

	Alternative Learning Technologies
	Discounting
	Conclusions
	Appendix: Auxiliary Technical Lemmas

