Supplement to "Dynamic Project Selection"

Arina Nikandrova and Romans Pancs

Birkbeck and ITAM

A Appendix: Auxiliary Technical Lemmas

Lemma A.1. (i) When $c<\underline{c}, \Phi^{C}(\cdot, c)$ on $[\underline{x}, \bar{x}]$ is positive at first, then intersects zero at a point, then is negative, then intersects zero at a point, and then is positive again.
(ii) $\Phi^{C}(\cdot, c)$ is nonnegative on $[\underline{x}, \bar{x}]$ if and only if $c \geq \underline{c}$.
(iii) $\Phi^{A}(\cdot, \cdot, c)$ is nonnegative on $[\underline{x}, \bar{x}]^{2}$ if and only if $c \geq \underline{c}$.
(iv) When $c<\bar{c}, \Phi^{A}\left(x_{1}, \cdot, c\right)$ is quasi-convex on $\left[x_{1}, b^{-1}\left(x_{1}\right)\right]$.

Proof. The proof proceeds in steps.

1. Claim: $1-c-a>0$ and $1-c-a^{2}>0$ for any $a \in[\underline{x}, \bar{x}]$.

Proof:

$$
1-c-a>1-c-\bar{x}=\frac{1-2 c-\sqrt{1-4 c}}{2}=\frac{4 c^{2}}{2(1-2 c+\sqrt{1-4 c})}>0
$$

which, coupled with $a^{2}<a$, also implies that $1-c-a^{2}>0$.
2. Claim: Define $\hat{a}=1-\sqrt{c}$. Then, $\hat{a} \in(\underline{x}, \bar{x})$, and $a \in[\underline{x}, \hat{a}) \cup(\hat{a}, \bar{x}]$ implies that $(a-\hat{a})\left(c-(1-a)^{2}\right)>0$.
Proof: The inequality follows by the definition of \hat{a} and by inspection. It remains to verify that $\hat{a} \in(\underline{x}, \bar{x})$. Indeed,

$$
\begin{aligned}
& \hat{a}-\underline{x}=\frac{1+\sqrt{1-4 c}-2 \sqrt{c}}{2}>0 \\
& \bar{x}-\hat{a}=\frac{2 \sqrt{c}+\sqrt{1-4 c}-1}{2}>0
\end{aligned}
$$

where $c<\bar{c}$.
3. Claim: If $\Phi^{C}(a, c)<0$ for some $a \in[\underline{x}, \bar{x}]$, then $\Phi^{C}(\cdot, c)$ is at first positive, then intersects zero at a single point to the left of \hat{a}, then is negative, then intersects zero at a single point to the right of \hat{a}, and then is again positive.
Proof: Because $\Phi^{C}(\underline{x}, c)=1 /(1-\underline{x})>0$ and $\Phi^{C}(\bar{x}, c)=1 /(1-\bar{x})>0, \Phi(a, c) \leq$ $0 \Longrightarrow a \in(\underline{x}, \bar{x})$. Differentiating,

$$
\begin{aligned}
\Phi_{1}^{C}(a, c) & =\frac{c\left(1-c-a^{2}\right)}{(1-a)(1-c-a)^{2}}+\ln \frac{c(1-a)}{a(1-c-a)} \\
& =\frac{\Phi^{C}(a, c)}{a}+\frac{\left(c-(1-a)^{2}\right)\left(1-c-a^{2}\right)}{a(1-a)(1-a-c)^{2}}
\end{aligned}
$$

If $\Phi^{C}(a, c)=0$ for some $a \in(\underline{x}, \bar{x})$, then

$$
\Phi_{1}^{C}(a, c)=\frac{\left(c-(1-a)^{2}\right)\left(1-c-a^{2}\right)}{a(1-a)(1-c-a)^{2}}
$$

By Step 1, the sign of $\Phi_{1}^{C}(a, c)$ is the sign of $c-(1-a)^{2}$, which, by Step 2, switches the sign from negative to positive at $\hat{a} \in(\underline{x}, \bar{x})$. Hence, if a with $\Phi^{C}(a, c)<0$ exists, then $\Phi^{C}(\cdot, c)$ intersects zero twice: once from above and to the left of \hat{a}, and once from below and to the right of \hat{a}.
4. Claim: If $c<\underline{c}$, then $\Phi^{C}(\hat{a}, c)<0$. If $c \geq \underline{c}$, then $\Phi^{C}(\cdot, c)$ is nonnegative on $[\underline{x}, \bar{x}]$.

Proof: Note that, at $a \in(\underline{x}, \bar{x})$,

$$
\Phi_{2}^{C}(a, c)=\frac{a}{c}\left(\frac{1-a}{1-c-a}\right)^{2}>0
$$

Furthermore,

$$
\Phi^{C}(\hat{a}, \underline{c})=2-(1-\sqrt{\underline{c}}) \ln \frac{(1-\sqrt{\underline{c}})^{2}}{\underline{c}}=0
$$

where the first equality is by $\hat{a}=1-\sqrt{\underline{c}}$, and the second one is by (11). Combining
the two displays above delivers $\Phi^{C}(\hat{a}, c)<0$ for any $c<\underline{c}$ and $\Phi^{C}(\hat{a}, c) \geq 0$ for any $c \geq \underline{c}$.

For $c<\underline{c}, \Phi^{C}(\hat{a}, c)<0$ and Step 3 imply part (i).
For $c \geq c, \Phi^{C}(\hat{a}, c) \geq 0$ and Step 3 imply part (ii).
5. Claim: Subject to $x_{2} \geq x_{1}, \Phi^{A}(\cdot, \cdot, c)$ is minimized at $x_{2}=x_{1}$.

Proof: The claim follows from

$$
\Phi_{2}^{A}\left(x_{1}, x_{2}, c\right)=\frac{\left(1-x_{1}\right)}{\left(1-x_{2}\right)^{2}}\left(\ln \frac{c\left(1-x_{1}\right)}{x_{1}\left(1-c-x_{2}\right)}+\frac{\left(1-x_{2}\right)\left(1-c-x_{2}^{2}\right)}{\left(1-c-x_{2}\right)^{2}}\right)>0
$$

where the inequality follows because $1-c-x_{2}^{2}>0$ and $1-c-x_{2}>0$ by Step 1 . Because $\Phi^{A}(z, z, c)=\Phi^{C}(z, c)$, Step 5 implies that $\Phi^{A}(\cdot, \cdot, c)$ has the same minimized value as $\Phi^{C}(\cdot, c)$ does. Hence, part (iii) is implied by part (ii).
6. Claim: Define $\kappa\left(x_{1}, x_{2}, c\right) \equiv\left(1-x_{2}\right)\left(2 c-1+x_{2}+x_{2}^{2}-x_{1} x_{2}^{2}\right)-c^{2}$. Then, for some $y^{A} \in(\underline{x}, \bar{x})$ and for any $x_{2} \in\left[\underline{x}, y^{*}\right) \cup\left(y^{*}, \bar{x}\right],\left(x_{2}-y^{A}\right) \kappa\left(x_{1}, x_{2}, c\right)>0$.

Proof: First, it will be shown that $\kappa\left(x_{1}, \bar{x}, c\right)>0$. Indeed,

$$
\kappa\left(x_{1}, \bar{x}, c\right) \geq \kappa(\bar{x}, \bar{x}, c)=c-(1-\sqrt{1-4 c})\left(\frac{1}{2}-c\right)>0
$$

where the first inequality is by $\partial \kappa / \partial x_{1}<0$, and the last inequality follows because $\kappa(\bar{x}, \bar{x}, \cdot)$ is zero at $c \in\{0, \bar{c}\}$ and is positive at the only critical point $(c=2 / 9)$ in $(0, \bar{c})$.

Next, it will be shown that $\kappa\left(x_{1}, \underline{x}, c\right)<0$. Indeed,

$$
\kappa\left(x_{1}, \underline{x}, c\right) \leq \kappa(\underline{x}, \underline{x}, c)=c-(1+\sqrt{1-4 c})\left(\frac{1}{2}-c\right)<0
$$

where the first inequality is by $\partial \kappa / \partial x_{1}<0$, and the last inequality follows because $\kappa(\underline{x}, \underline{x}, \bar{c})=0$ and because $\partial \kappa(\underline{x}, \underline{x}, c) / \partial c>0$.

Finally, $\partial^{2} \kappa\left(x_{1}, x_{2}, c\right) / x_{2}^{2}=-6\left(1-x_{1}\right) x_{2}-2 x_{1}<0$. Hence, $\kappa\left(x_{1}, \underline{x}, c\right)<0$ and $\kappa\left(x_{1}, \bar{x}, c\right)>0$ imply that, on $(\underline{x}, \bar{x}), \kappa\left(x_{1}, \cdot, c\right)$ crosses zero and-by $\partial^{2} \kappa\left(x_{1}, x_{2}, c\right) / x_{2}^{2}<$ 0 -just once, from below, at some $y^{A} \in(\underline{x}, \bar{x})$.
7. Claim: $\Phi^{A}\left(x_{1}, \cdot, c\right)$ can be negative on, and only on, an interval.

Proof: At any $\left(x_{1}, x_{2}, c\right)$ with $\Phi^{A}\left(x_{1}, x_{2}, c\right)=0$, by differentiation and substitution,

$$
\Phi_{2}^{A}\left(x_{1}, x_{2}, x\right)=\frac{\kappa\left(x_{1}, x_{2}, c\right)}{\left(1-x_{2}\right) x_{2}\left(1-c-x_{2}\right)^{2}}
$$

The sign of $\Phi_{2}^{A}\left(x_{1}, x_{2}, c\right)$ is the sign of $\kappa\left(x_{1}, x_{2}, c\right)$, which, by Step 6 , switches from negative to positive at $y^{A} \in(\underline{x}, \bar{x})$ as x_{2} rises; $\Phi^{A}\left(x_{1}, x_{2}, c\right)$ is quasi-convex. Part (iv) follows.

Lemma A.2. The function M^{C} is uniquely maximized on $[\underline{x}, \bar{x}]$ at \bar{x}.

Proof. Recall from the proof of Lemma 3 that M^{C} has two local maxima, at \underline{a} and at \bar{x}. It remains to verify that $M^{C}(\bar{x})>M^{C}(\underline{a})$.

Then,

$$
M^{C}(\bar{x})=2 c \sigma(\bar{x})-\frac{1-V(\bar{x}, \bar{x})}{(1-\bar{x})^{2}}=2 c \sigma(\bar{x})-\frac{1}{1-\bar{x}^{\prime}}
$$

where the last equality uses $V(\bar{x}, \bar{x})=\bar{x}$, by direct substitution. Furthermore,

$$
M^{C}(\underline{a})=2 c \sigma(\underline{a})-\frac{1-V(\underline{a}, \underline{a})}{(1-\underline{a})^{2}}=2 c \sigma(\underline{a})-\frac{c}{\underline{a}(1-\underline{a})^{2}}-\frac{1-\underline{a}}{1-\underline{a}-c^{\prime}},
$$

where the last equality follows by substituting $\Phi(\underline{a}, c)=0$ into the expression for $\frac{1-V(\underline{a}, \underline{a})}{(1-\underline{a})^{2}}$.

As a result,

$$
\begin{aligned}
M^{C}(\bar{x})-M^{C}(\underline{a}) & =2 c \sigma(\bar{x})-2 c \sigma(\underline{a})+\frac{c}{\underline{a}(1-\underline{a})^{2}}+\frac{1-\underline{a}}{1-\underline{a}-c}-\frac{1}{1-\bar{x}} \\
& =c\left[2 \sigma(\bar{x})-\frac{1}{\bar{x}(1-\bar{x})^{2}}\right]-c\left[2 \sigma(\underline{a})-\frac{1}{\underline{a}(1-\underline{a})^{2}}\right]+\frac{1-\underline{a}}{1-\underline{a}-c}>0,
\end{aligned}
$$

where the last equality follows from $\bar{x}(1-\bar{x})=c$ and by rearranging, and the inequality follows because the first bracket exceeds the second bracket, and the fraction $(1-\underline{a}) /(1-\underline{a}-c)$ is positive (by $\underline{a}<\bar{x}$). The ordering of the brackets follows from $\bar{x}>\underline{a}$ and the observation

$$
\frac{\mathrm{d}}{\mathrm{~d} a}\left(2 \sigma(a)-\frac{1}{a(1-a)}\right)=\frac{1}{a^{2}(1-a)^{2}}>0, \quad \forall a \in(0,1)
$$

To summarize, $M^{C}(\bar{x})>M^{C}(\underline{a})$, and, so, M^{C} has a unique maximand, \bar{x}, on $[\underline{x}, \bar{x}]$.
Lemma A.3. For M^{A} defined in (25), arg $\max _{a \in\left[x_{1}, b^{-1}\left(x_{1}\right)\right]} M^{A}\left(x_{1}, a\right)=\left\{b^{-1}\left(x_{1}\right)\right\}$, where b^{-1} is the inverse of b defined in (14). As a result, on $\hat{\mathcal{A}}, u\left(x_{1}\right)<b^{-1}\left(x_{1}\right)$ and $\mathcal{F} \subset \mathcal{A}$.

Proof. By Lemma 4, the only two local maxima of $M^{A}\left(x_{1}, \cdot\right)$ are $d\left(x_{1}\right)$ and $b^{-1}\left(x_{1}\right)$, so it suffices to show that $M^{A}\left(x_{1}, b^{-1}\left(x_{1}\right)\right)>M^{A}\left(x_{1}, d\left(x_{1}\right)\right)$. Write

$$
M^{A}\left(x_{1}, b^{-1}\left(x_{1}\right)\right)=c \eta\left(b^{-1}\left(x_{1}\right)\right)-\frac{1-V\left(x_{1}, b^{-1}\left(x_{1}\right)\right)}{1-b^{-1}\left(x_{1}\right)}=c \eta\left(b^{-1}\left(x_{1}\right)\right)-1,
$$

where the first equality is definitional, and the second one is by $V\left(x_{1}, b^{-1}\left(x_{1}\right)\right)=b^{-1}\left(x_{1}\right)$.
Evaluating V in (13) at $\left(x_{1}, d\left(x_{1}\right)\right)$ and using $\Phi^{A}\left(x_{1}, d\left(x_{1}\right), c\right)=0$ (by (28)), one can write

$$
V\left(x_{1}, d\left(x_{1}\right)\right)=\left(1-x_{1}\right) d\left(x_{1}\right)-\frac{\left(1-d\left(x_{1}\right)\right) c\left(1-c-x_{1} d\left(x_{1}\right)\right)}{d\left(x_{1}\right)\left(1-c-d\left(x_{1}\right)\right)}-c+x_{1} .
$$

Then,

$$
\begin{aligned}
M^{A}\left(x_{1}, d\left(x_{1}\right)\right) & =c \eta\left(d\left(x_{1}\right)\right)-\frac{1-V\left(x_{1}, d\left(x_{1}\right)\right)}{1-d\left(x_{1}\right)} \\
& =c\left[\eta\left(d\left(x_{1}\right)\right)-\frac{1}{d\left(x_{1}\right)\left(1-d\left(x_{1}\right)\right)}\right]+x_{1}-\frac{c\left(1-x_{1}\right)}{1-c-d\left(x_{1}\right)}-1,
\end{aligned}
$$

where the first equality is definitional, and the second one follows by substituting $V\left(x_{1}, d\left(x_{1}\right)\right)$ and rearranging.

Then, suppressing the argument x_{1} in $b^{-1}\left(x_{1}\right)$ and in $d\left(x_{1}\right)$, for compactness,

$$
\begin{aligned}
M^{A}\left(x_{1}, b^{-1}\right)-M^{A}\left(x_{1}, d\right) & =c\left[\eta\left(b^{-1}\right)-\frac{1}{b^{-1}\left(1-b^{-1}\right)}-\left(\eta(d)-\frac{1}{d(1-d)}\right)\right] \\
& +\frac{b(d)\left(b^{-1}-x_{1}\right)+x_{1}\left(1-b^{-1}\right)}{b^{-1}(1-b(d))}>0
\end{aligned}
$$

where the first equality follows by using the definitions of b and b^{-1} and rearranging, and the inequality uses $b^{-1}\left(x_{1}\right)>d\left(x_{1}\right)$ and

$$
\frac{\mathrm{d}}{\mathrm{~d} y}\left(\eta(y)-\frac{1}{y(1-y)}\right)=\frac{1}{y^{2}(1-y)}>0
$$

to conclude that the bracket in the first line is positive; and uses $x_{1}<b^{-1}\left(x_{1}\right)<1$ to conclude that the fraction in the second line is positive, too. That is, $M^{A}\left(x_{1}, b^{-1}\left(x_{1}\right)\right)>$ $M^{A}\left(x_{1}, d\left(x_{1}\right)\right)$, as desired.

The conclusion that, on $\hat{\mathcal{A}}, u\left(x_{1}\right)<b^{-1}\left(x_{1}\right)$ and $\mathcal{F} \subset \mathcal{A}$ follows by inspection of Lemma 4's Figure 7 (just validated by showing that $M^{A}\left(x_{1}, b^{-1}\left(x_{1}\right)\right)>M^{A}\left(x_{1}, d\left(x_{1}\right)\right)$).

Lemma A.4. On $\hat{\mathcal{B}}, w\left(x_{1}\right)<b^{-1}\left(x_{1}\right)$ and $\mathcal{F} \subset \mathcal{B}$.

Proof. To conclude that $w\left(x_{1}\right)<b^{-1}\left(x_{1}\right)$, we shall show that $V\left(x_{1}, b^{-1}\left(x_{1}\right)\right)>B\left(x_{1}, b^{-1}\left(x_{1}\right)\right)$.

Note that $V\left(x_{1}, b^{-1}\left(x_{1}\right)\right)=b^{-1}\left(x_{1}\right)$ and, from the definition of B in (31),

$$
B\left(x_{1}, b^{-1}\left(x_{1}\right)\right)=1-\left(1-b^{-1}\left(x_{1}\right)\right)\left(\frac{1-C\left(x_{1}\right)}{1-x_{1}}+c \eta\left(b^{-1}\left(x_{1}\right)\right)-c \eta\left(x_{1}\right)\right) .
$$

Then,

$$
V\left(x_{1}, b^{-1}\left(x_{1}\right)\right)-B\left(x_{1}, b^{-1}\left(x_{1}\right)\right)=\left(1-b^{-1}\left(x_{1}\right)\right)\left(\frac{1-C\left(x_{1}\right)}{1-x_{1}}-1+c \eta\left(b^{-1}\left(x_{1}\right)\right)-c \eta\left(x_{1}\right)\right)
$$

where

$$
\begin{aligned}
\frac{1-C\left(x_{1}\right)}{1-x_{1}} & =\left(1-x_{1}\right)\left(\frac{1-V(\underline{a}, \underline{a})}{(1-\underline{a})^{2}}+2 c\left[\sigma\left(x_{1}\right)-\sigma(\underline{a})\right]\right) \\
& =\left(1-x_{1}\right)\left(\frac{1}{1-b(\underline{a})}+\frac{c}{\underline{a}(1-\underline{a})^{2}}+2 c\left[\sigma\left(x_{1}\right)-\sigma(\underline{a})\right]\right)
\end{aligned}
$$

The first equality in the display above uses the definition of C in (19). The second equality uses the definitions of V in (13) and b in (14), and the condition $\Phi^{C}(\underline{a}, c)=0$ in (21), which characterizes \underline{a}.

Then, substituting the display above into its precursor display gives

$$
\begin{gathered}
\frac{V\left(x_{1}, b^{-1}\left(x_{1}\right)\right)-B\left(x_{1}, b^{-1}\left(x_{1}\right)\right)}{1-b^{-1}\left(x_{1}\right)}=\left(1-x_{1}\right)\left(\frac{1}{1-b(\underline{a})}+\frac{c}{\underline{a}(1-\underline{a})^{2}}+2 c\left[\sigma\left(x_{1}\right)-\sigma(\underline{a})\right]\right) \\
+c\left[\eta\left(b^{-1}\left(x_{1}\right)\right)-\eta\left(x_{1}\right)\right]-1 \\
=\left(\frac{\left(1-x_{1}\right)}{1-b(\underline{a})}+\frac{c}{b^{-1}\left(x_{1}\right)\left(1-b^{-1}\left(x_{1}\right)\right)}-1\right. \\
+\left(1-x_{1}\right) c\left[2 \sigma\left(x_{1}\right)-\frac{1}{x_{1}\left(1-x_{1}\right)^{2}}-\left(2 \sigma(\underline{a})-\frac{1}{\underline{a}(1-\underline{a})^{2}}\right)\right] \\
\left.+c\left[\eta\left(b^{-1}\left(x_{1}\right)\right)-\frac{1}{b^{-1}\left(x_{1}\right)\left(1-b^{-1}\left(x_{1}\right)\right)}-\left(\eta\left(x_{1}\right)-\frac{1}{x_{1}\left(1-x_{1}\right)}\right)\right]\right) .
\end{gathered}
$$

Note that, using the definition of b in (14),

$$
\begin{aligned}
\frac{\left(1-x_{1}\right)}{1-b(\underline{a})}+\frac{c}{b^{-1}\left(x_{1}\right)\left(1-b^{-1}\left(x_{1}\right)\right)}-1 & =\frac{\left(1-x_{1}\right)}{1-b(\underline{a})}+\frac{x_{1}}{b^{-1}\left(x_{1}\right)}-1 \\
& =\frac{x_{1}\left[1-b^{-1}\left(x_{1}\right)\right]+b(\underline{a})\left[b^{-1}\left(x_{1}\right)-x_{1}\right]}{b^{-1}\left(x_{1}\right)(1-b(\underline{a}))}>0
\end{aligned}
$$

where the inequality follows from $x_{1}<b^{-1}\left(x_{1}\right)<1$. Moreover,

$$
2 \sigma\left(x_{1}\right)-\frac{1}{x_{1}\left(1-x_{1}\right)^{2}}-\left(2 \sigma(\underline{a})-\frac{1}{\underline{a}(1-\underline{a})^{2}}\right)>0
$$

by $x_{1}>\underline{a}$ and by

$$
\frac{\mathrm{d}}{\mathrm{~d} y}\left(2 \sigma(y)-\frac{1}{y(1-y)^{2}}\right)=\frac{1}{y^{2}(1-y)^{2}}>0
$$

for any $y \in(0,1)$. Finally,

$$
\eta\left(b^{-1}\left(x_{1}\right)\right)-\frac{1}{b^{-1}\left(x_{1}\right)\left(1-b^{-1}\left(x_{1}\right)\right)}-\left(\eta\left(x_{1}\right)-\frac{1}{x_{1}\left(1-x_{1}\right)}\right)>0
$$

by $b^{-1}\left(x_{1}\right)>x_{1}$ and by

$$
\frac{\mathrm{d}}{\mathrm{~d} y}\left(\eta(y)-\frac{1}{y(1-y)}\right)=\frac{1}{y^{2}(1-y)}>0
$$

for $y \in(0,1)$. Thus, $V\left(x_{1}, b^{-1}\left(x_{1}\right)\right)-B\left(x_{1}, b^{-1}\left(x_{1}\right)\right)>0$, as required.
To show that $(\mathcal{F} \cap \hat{\mathcal{B}}) \subset \mathcal{B}$, from (31) and (13), write

$$
\frac{B(x)-V(x)}{1-x_{2}}=\left(1-x_{1}\right)\left(\frac{1}{1-b\left(x_{2}\right)}+\frac{c}{1-x_{2}}\left[\eta\left(x_{1}\right)-\eta\left(b\left(x_{2}\right)\right)\right]\right)-\frac{1-C\left(x_{1}\right)}{1-x_{1}}-c\left[\eta\left(x_{2}\right)-\eta\left(x_{1}\right)\right] .
$$

Differentiating, then simplifying, gives

$$
\frac{\mathrm{d}}{\mathrm{~d} x_{2}}\left(\frac{B(x)-V(x)}{1-x_{2}}\right)=-\frac{c \Phi^{A}(x, c)}{x_{2}\left(1-x_{2}\right)}
$$

As a result, because $\Phi^{A}(x, c)<0$ implies that $B(x)>V(x), \mathcal{B}$ covers \mathcal{F}, the failure region, on $\hat{\mathcal{B}}$. That is, $\mathcal{F} \cap \hat{\mathcal{B}} \subset \mathcal{B}$.

