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Web Appendix 1: A Dirichlet Based Family of Random Belief Models

We show here that there are ε-random belief models for every positive value of ε. An
obvious idea is to take a smooth family of probability distributions with mean equal to the
truth and small variance. A good candidate for a smooth family is the Dirichlet since we
can easily control the precision by increasing the "number of observations." However using
an unbiased probability distribution will not work - it is ill-behaved on the boundary: if we
try to keep the mean equal to the truth, then as we approach the boundary the variance
has to go to zero, and on the boundary there will be a spike. A simple alternative is to bias
the mean slightly towards a fixed strictly positive probability vector with a small weight
on that vector, and then let that weight go to zero as we take the overall variance to zero.
Set h(ε) = (ε/2)3. Fix a strictly positive probability vector over A−k denoted by β−k and
call the ε-Dirichlet belief model the Dirichlet distribution with parameter vector (dimension
cardinality of A−k)
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Theorem 1. The ε-Dirichlet belief model is an ε-random belief model.

Proof. Since the parameters are away from the boundary by at least ε/2 this has the requisite
continuity property. The random variable α̃ has mean α−k = (1− ε
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the covariances of the Dirichlet are negative, E|α̃−k − α−k|2 is bounded by the sum of the
variances and we may apply Chebyshev’s inequality to find

Pr[|α̃−k − α−k| > ε/2] ≤ E|α̃−k − ᾱ−k|2/(ε/2)2

To evaluate the last expression let δε(a−k) ≡ 1
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and observe that

∑
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−k) = 1/h(ε). Then by the standard Dirichlet variance formula
we have
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We also have |ᾱ−k−α−k| = ε
2
√
2
|α−k−β−k| ≤ ε

2 ; then |α̃
−k−α−k| > ε implies |α̃−k−α−k| >

ε/2; hence Pr(|α̃−k − α−k| > ε) ≤ Pr[|α̃−k − α−k| > ε/2] ≤ ε/2 ≤ ε, which shows that this
is indeed an ε-random belief model.
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Web Appendix 2: Analysis of the Leading Example

The leading example consists of a three player game in which each player chooses between
C,D. The payoff matrices if player 3 plays C (left) or D (right) are

C D

C 6, 6, 5 0, 8, 0

D 8, 0, 0 2, 2, 0

C D

C 10, 10, 0 0, 8, 5

D 8, 0, 5 2, 2, 5

Given α3 - probability that player 3 plays C - the payoff matrix for players 1, 2 is then

C D

C 6 + 4(1− α3), 6 + 4(1− α3) 0, 8

D 8, 0 2, 2

Note that if players 1 and 2 believe that α3 < 1/2 their best incentive compatible plan is
CC, while if α3 > 1/2 their best incentive compatible plan is DD.

Nash Equilibrium

We first examine Nash equilibrium in the ordinary sense. There is no Nash equilibrium
where α3 > 1/2 for if 1 and 2 play DD (as they have to in equilibrium) player 3 prefers D
(α3 = 0 ). Similarly for α3 = 1/2: in equilibrium 1 and 2 could only play either CC, but in
that case player 3 strictly prefers C; or DD, in which case she strictly prefers D.

Consider now α3 < 1/2. The CC within-group equilibrium for 1 and 2 cannot be part
of a Nash equilibrium because then 3 prefers C (α3 = 1). Hence 1 and 2 must either play
DD or mix.

If 1 and 2 play DD then 3’s best response is D that is α3 = 0 and therefore DDD is
Nash.

Suppose then 1 and 2 mix, and denote by αi the probability that i = 1, 2 plays C. In
equilibrium α1 = α2 = 1/2(1 − α3), whence α1 = α2 ≥ 1/2. Player 3 prefers D strictly if
α1 = α2 < 1/

√
2 ≈ 0.7, so the only Nash in this range has α1 = α2 = 1/2, α3 = 0.

For α1 = α2 = 1/
√

2 there is a fully mixed equilibrium with α1 = α2 = 1/
√

2 and α3

given by 1/2(1− α3) = 1/
√

2 that is α3 = 1− 1/
√

2.
Finally, there are no equilibria with α1 = α2 > 1/

√
2 because for such values 3 would

play C for sure this cannot happen in equilibrium.
In conclusion there are three Nash equilibria: DDD; one where 3 plays D and 1 and 2

mix 50-50 between C and D; and a fully mixed one α1 = α2 = 1/
√

2, α3 = 1− 1/
√

2.
The payoffs in the Nash equilibria: in DDD payoffs are (2, 2, 5). In the partially mixed

equilibrium payoffs are (5, 5, 3.75). In the fully mixed equilibrium payoffs are (ς, ς, 2.5)

where ς = 8/
√

2 + 2(1− 1/
√

2) ≈ 6.24.
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Perturbations

We ease the group notation a bit. Group 2 consists of only one player, player 3, who has
to choose between C and D. For ease of readability we identify the correlated strategy of
this individual with the actual strategy: that is we let α3 = ρ2[C] = ρ−1[C]. Since the only
actual group is group 1 which is also group −2 from the point of view of group 1, we will
drop the superscript from ρ1 = ρ−2 and simply write ρ, with ρCC , ρDD the probabilities
that group 1 plays CC or DD. For individual play we will also use αi, as before, for the
probability that i = 1, 2 plays C.

Player 3’s payoff from C is 5ρCC , from D it is 5(1−ρCC). Consequently if player 3 is to
be indifferent it must be that ρCC = 1/2: if ρCC > 1/2 he plays C, if ρCC < 1/2 he plays
D.

Belief Equilibrium

Assume the Dirichlet belief model (defined in Web Appendix 1). What do the group
response functions look like? Recall that σ indicates the beliefs variable. For group 1 they
play only CC and DD, and the probability F 1(α3)[CC] of playing CC is the probability
that the belief σ−1[C] < 1/2; this is strictly between 0 and 1, symmetric around α3 = 1/2

where it is equal to 1/2 and strictly decreasing in α3.
For player 3 the probability F 2(ρ)[C] of playing C is the probability that the belief

σ−2[CC] > 1/2; this is strictly between 0 and 1 and strictly increasing in ρCC .
Consider what happens at ρCC = ρDD = 1/2 and write f21/2(σ

−2) for the density of 2’s
beliefs. Then by symmetry

f21/2(σ
−2[CC] = s|σ−2[CC]+σ−2[DD] = S) = f21/2(σ

−2[DD] = s|σ−2[CC]+σ−2[DD] = S)

so that

f21/2(σ
−2[CC] = s|σ−2[CC]+σ−2[DD] = S) = f21/2(σ

−2[CC] = S−s|σ−2[CC]+σ−2[DD] = S)

In other words given σ−2[CC] + σ−2[DD] = S then σ−2[CC] is symmetric around S/2,
hence σ−2[CC] > 1/2 occurs less than 1/2 the time so F 2(ρCC)[C] < 1/2. Hence the
intersection of F 1, F 2 occurs for α3 < 1/2 and and ρCC > 1/2, with ρCD = ρDC = 0, as
illustrated in the picture below:
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α3

ρ1CC

1/2

1/2

F 1(α3)[CC]

F 2(ρ1CC)[C]

1

1

As beliefs converge to true values the F 2 function shifts to the right and the intersection
occurs at (1/2, 1/2).

Player 3 in Leadership and Costly Enforcement Equilibrium

Player 3’s incentive constraint is the same as his objective function: he has the standard
best response function, if ρ1CC > 1/2 he plays C, if ρ1CC < 1/2 he plays D and if ρ1CC = 1/2

he is indifferent. Because he is the only one in his group he faces no incentive constraint
and relaxing the incentive constraint either in leadership or costly enforcement equilibrium
cannot matter. Hence our focus on players 1 and 2 in group 1, which we refer to simply as
“the group.”

Costly Enforcement Equilibrium

As described in the text the sequence

Ckn(αk, ρ−k) =
πn

1− πn

∑
k(i)=k

Gi(αk, ρ−k)

with πn → 1 is a high cost sequence. To pin down the group’s best response correspondence
note that for α3 ≤ 1/2, it is simply CC. If the group chooses CC, the objective function
takes a value of 2[6 + 4(1 − α3)] − 2 πn

1−πn [2 − 4(1 − α3)]. This turns out to be higher than
the value of 4 achieved by playing DD if and only if α3 < 4−3πn

2 . It turns out that no other
mixed strategy profile is ever an element of the best response set. We establish this next.
Consider any mixed strategy profile for the group. The group payoff would then be

α1α22[6 + 4(1− α3)] + [α1(1− α2) + α2(1− α1)]8

+ (1− α1)(1− α2)4− πn
1− πn

[2α1α2[2− 4(1− α3)] + [α1(1− α2) + α2(1− α1)]2]
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which can be rewritten as

(α1α2)

{
2[6 + 4(1− α3)]− πn

1− πn
2[2− 4(1− α3)]

}
+
[
α1(1− α2) + α2(1− α1)

]{
8− 2

πn
1− πn

}
+
[
(1− α1)(1− α2)

]
4

For πn > 4/5 the term 8 − 2 πn
1−πnmust be negative. So the value to the group from such

a mixed strategy profile is the convex combination of the group’s value from playing CC,
the negative quantity 8 − 2 πn

1−πn and 4. When α3 > 4−3πn
2 then the group’s value from

playing CC is strictly less than 4. Consequently every mixed strategy profile other than
DD must give a value strictly less than 4. Hence the unique group best reply is DD. When
α3 < 4−3πn

2 then the group’s value from playing CC is strictly greater than 4. So every
mixed strategy profile other than CC must have a value strictly less than that from playing
CC. The unique group best reply is therefore CC. Similarly when α3 = 4−3πn

2 CC and DD
are the only elements of the group best reply correspondence.

It follows immediately that the costly enforcement equilibrium consists of the group
randomizing half-half between CC and DD while player 3 plays α3 = 4−3πn

2 , for all πn >
4/5. It is easy to see how this equilibrium converges to the CCE as πn → 1.

Leadership Equilibrium

For α3 < 1/2 playing CC is incentive compatible for the group, the question is how
much can they mix out of the unique bad within-group equilibrium DD when α3 > 1/2

given that they are willing to forgo gains not larger than ν.
From the payoff matrix of group 1 we see that utility for player 1 is given by u1(α1, α2, α3) =

4α1α2(1−α3)−2α1+6α2+2. The group utility (with weights β1 = β2 = 1) is v1(α1, α2, α3) =

u1 + u2 = 8α1α2(1− α3) + 4α1 + 4α2 + 4; notice that it is increasing in α1 and α2 for any
α3.

Consider the utility gained by player 1 upon deviating from (α1, α2, α3) to (0, α2, α3),
namely 2α1[1− 2α2(1− α3)]. This is strictly positive when α3 > 1/2 for any positive value
of α1 and so the optimal deviation from such profiles is precisely to play D with utility
6α2 + 2 and utility gain 2α1[1 − 2α2(1 − α3)]. Group 1 must play ν-incentive compatible
profiles, that is profiles with gain not larger than ν.

When α3 > 1/2 increasing α2 reduces the utility gain from player 1’s optimal deviation
and hence relaxes the incentive constraint for any ν. So in a strict ν-equilibrium we should
choose α1 = α2, and: either the constraint binds in that 2α1[1 − 2α1(1 − α3)] = ν; or
α1 = α2 = 1 since group utility is increasing in both α1 and α2 for any α3.

Notice that the utility gain G(α1) = −4(α1)2(1 − α3) + 2α1 is quadratic concave with
G(0) = 0, G′ = 2[1− 4α1(1− α3)] so that G′(0) > 0 and G′(1) = 2[1− 4(1− α3)] meaning
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G′(1) < 0 for α3 < 3/4.
Since group utility increases in α1 and α2, if the utility gain at α1 = α2 = 1 that is

G(1) = 2[1− 2(1− α̂3)] turns out to be less than ν group 1 plays CC and player 3 plays C
- which is not an equilibrium. If this is greater than ν then regardless of the sign of G′(1),
G(α1) reaches ν while increasing, and group 1 plays α̂1 = α̂2 such that G(α̂1) = ν - that
is, both players mix a little just until the incentive constraint is satisfied with equality. For
small enough ν the solution to G(α̂1) = ν must be an α̂1 so small that ρ1CC < 1/2. This in
turn would make player 3 play D - again not an equilibrium.

Finally consider the case of G(1) = ν so that group 1 shadow mixes between CC and
the smaller solution of −4(α̂1)2(1 − α̂3) + 2α̂1 = ν. For this to be an equilibrium, since
player 3 is mixing, player 1 must mix so that ρ1CC = 1/2. Letting p be the probability of
shadow mixing on CC we may compute p+ (1− p)(α̂1)2 = ρ1CC = 0.5 from which we get

p =
0.5− (α̂1)2

(1− (α̂1)2)
.

So in this equilibrium player 3 has a greater than 50% chance of playing C and the
group has a less than 50% chance of playing DD, a 50% chance of playing CC and some
small chance of playing CD,DC. Here the solution for player 3 is on the opposite side of
1/2 from the belief equilibrium case.

Thus equilibrium hasG(1) = G(α̂1) = ν that is 2α̂1[1−2α̂1(1−α̂3)] = 2[1−2(1−α̂3)] = ν.
As ν → 0 we get α̂3 → 1/2 and the smaller solution α̂1 → 0 so that in the limit the group
shadow mixes half-half between CC and DD.

Web Appendix 3: Analysis of the Voting Game

In the three player voting game in the text each player chooses between 0 meaning do
not vote and 1 meaning vote. Players 1 and 2 are assumed to form group 1, with player 3
the sole member of the remaining group.

The payoffs in the example can be written in bi-matrix form: if player 3 does not vote
the payoff matrix for the actions of players 1 and 2 is

1 0

1 τ − 1, τ − 1,−2τ τ − 1, τ,−2τ

0 τ, τ − 1,−2τ 0, 0, 0

This game between players 1 and 2 has a unique dominant strategy equilibrium at which
neither votes if τ < 1. If player 3 does vote the payoff matrix for the actions of players 1
and 2 becomes
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1 0

1 τ − 1, τ − 1,−2τ − 1 −τ − 1,−τ,−2τ − 1

0 −τ,−τ − 1,−2τ − 1 −τ,−τ, 2τ − 1

If τ > 1/2 this is a coordination game for player 1 and 2 due to the fact that a tie is as bad
as a loss: for a large party member not voting and having a tie results in −τ while voting
and winning results in τ − 1 > −τ . Similarly voting and having a tie is as bad as a loss and
it would be better to not vote and lose, suffering the same loss but not paying the cost of
voting.

Overview of Results

We first summarize our conclusions about the structure of collusion constrained, Nash
and free enforcement equilibria in this model. There are a number of equilibria of different
kinds in the various ranges of τ : (i) an equilibrium N where nobody votes (only for τ < 1/2);
(ii) an equilibrium L in which player 3 does not vote and the large group wins by casting a
single vote. In the case of Nash there is also (iii) an equilibrium S in which only player 3
votes (and wins); (iv) equilibria L2, L3 where player 3 plays a pure strategy and the group
members randomize with positive probability on both voting and not voting; (v) a fully
mixed equilibrium M in which the large group members randomize as in the previous case;
(vi) two asymmetric mixed equilibria A in which only one of the group members votes
with positive probability. In the case of collusion constrained equilibrium (CCE) and free
enforcement equilibria (FEE) there are two types of equilibria with player 3 mixing, which
in the CCE case involve shadow mixing: (vii) m1 and M1 in which the large group either
stays out or casts a single vote; and (viii) m2 and M2 in which the large group either stays
out or casts two votes. In all the equilibria where player 3 mixes the probability that neither
group member votes is always ρ1[0, 0] = 1/2τ .

We define τ̃ ≡ 1/(3−
√

5) ≈ 1.31. Our results concerning the entire set of equilibria can
be summarized in the following table.

lower τ upper τ CCE Nash FEE

0 1/2 N N N

1/2 3/4 m2 S L,M1,M2

3/4 1 m2 S L

1 τ̃ m2,m1, L S, L,A L

τ̃ 3/2 m2,m1, L S, L,M,A,L3 L

3/2 2 L S,L, L3 L

2 ∞ L S,L, L2, L3 L
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Discussion

Before establishing these results there are several basic points to be made. If τ < 1/2

then it is strictly dominant for player 3 not to vote: if the group casts no votes, not voting
gives 0 rather than τ − 1, and if the group does cast votes then voting has no effect or
results in an undesirable tie. Given that player 3 is not voting and τ < 1/2 it is optimal
both for player 1 and player 2 individually not to vote and for the group as a whole for
neither of them to vote - there is no conflict here between individual incentives and group
goals. Hence - in all types of equilibrium, CCE, Nash and FEE - when τ < 1/2 the unique
equilibrium involves no voting and this is efficient.

The interesting case is what happens when the stakes increase to τ > 1/2. Here it
cannot be an equilibrium for nobody to vote because in this case player 3 would prefer to
vote. Of particular interest are the S and L equilibria: these are always the best for the
small and large group respectively. To see this, observe that the best that can happen if
nobody in a group votes is to get 0. On the other hand the best thing that can happen if
a group casts at least one vote is that it casts only one vote and it wins, in which case the
group gets 2τ −1. When τ > 1/2 this is better than not voting. In the equilibrium S and L
in which exactly one player votes total welfare is always −1 reflecting the cost of the single
vote that is cast.

Additional observations in the light of the details presented below are the following. In
the range 3/4 < τ < 1 equilibrium of all types are unique, which allows for sharp equilibrium
comparison. The Nash equilibrium is S, and the FEE is L. The CCE is less efficient than
either, but the large group does better than S and does worse than L. In this range as the
stakes τ increase the probability of both members of the large group voting, the probability
of everyone voting and the probability of the large group winning all increase, while total
welfare decreases.

There are a few parameter ranges where there are equilibria giving higher welfare than
the S,L value of −1: for FEE the M1 when it exists gives higher welfare; for CCE m1

gives higher welfare in the range 1 ≤ τ ≤ 9/8. All remaining equilibria give welfare less
than −1. In the Nash case S is always an equilibrium and indeed for τ < 1 this is the
only equilibrium. By contrast in CCE and FEE the small player always gets a negative
utility. Moreover in both cases when the stakes τ are high enough the only equilibrium is
L - although this occurs for a smaller value of τ for FEE than CCE.

In the range 1/2 < τ < 3/2 shadow mixing is a possibility for CCE and for 1/2 < τ < 1

there is a unique CCE with shadow mixing m2. In the shadow mixing equilibria the small
group does better than at L while the large group does worse than L.

It is interesting to compare m2 and M2 in the range 1/2 < τ < 3/4, the former for
CCE and the latter for FEE. In both equilibria the group mixes the same way, but the
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third player must vote more frequently in CCE than in FEE. The reason is that if the third
player votes too infrequently then the incentive constraint fails when both members of the
group vote.

Another observation of interest is that there are CCE and FEE that give the large group
more utility but a lower probability of winning. Specifically in 1/2 < τ < 3/4 for FEE we
have that M1 is better for the large group than M2 but gives them a smaller probability
of winning, and the same is true for CCE in the range 1 < τ < τ̃ for the shadow mixing
equilibria m1and m2.

In a rough sense Nash is best for the small group, FEE is best for the large group and
CCE is in between. This rough “in between” picture also emerges in the sense that CCE
changes more gradually in favor of the large group as τ increases than does FEE.

Remark. With respect to welfare of the large group we have computed it in the obvious
way as expected utility. For shadow mixing whether or not this is correct depends on
the underlying model - with random beliefs it is correct. However in costly enforcement
equilibrium shadow mixing appears as actual mixing, meaning that the group must be
indifferent between the alternatives. In m1 and m2 staying out is strictly worse than casting
either one or two votes. Hence in the costly enforcement equilibrium the cost of overcoming
the incentive constraints to allow the casting of votes must exactly equal the difference in
utility between casting the votes and staying out: that is to say, all the gain from vote
casting must be dissipated in enforcement cost. Hence, in the limit, we should evaluate the
utility of the group as the least utility of profiles over which shadow mixing occurs - that is
to say, the utility from staying out. As we describe in detail below, the expected utility to
the large group in m1,m2 is 3− 2τ − 1

2τ and −3 + 2τ + 1
2τ respectively while the probability

of player 3 not voting is 1
τ and 1− 1

τ respectively. Hence the utility of staying out is 2(1−τ)

and −2 respectively and this is the appropriate utility for the large group. In particular
in the range 1 ≤ τ ≤ 9/8 it is no longer true that m1 does better from an overall welfare
perspective than L and S.

In the leadership case the utility assigned to a group when shadow mixing is ambiguous.
From the perspective of the followers the correct calculation is expected utility. From the
perspective of the leader the correct calculation is the least utility of profiles over which
shadow mixing occurs - from the leader’s point of view the punishment needed to make him
indifferent dissipates the benefit of the better profiles. One may wonder why anyone would
agree to be leader given that they get less utility than the followers. Although a discussion
of who leaders are and why they are leaders is beyond the scope of this paper it is natural
to imagine they get some additional compensation from the group for agreeing to be leader.
In this case the follower utility seems the most relevant.
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Detailed Results

We now provide a more detailed summary of the different types of equilibria and pay-
offs. The first table summarizes the different types of equilibria using the notation of the
text. The first column is the designation of the equilibrium. The second column gives the
equilibrium strategies. The final three columns give the total payoff of the group, player 3
and the sum of all the payoffs, respectively. The probability of voting in the group’s mixed
strategy is denoted by p. We also write ρab for ρ1[a, b].

Table 1: Equilibrium Table

Equilibrium Strategies Group Payoff Pl . 3 Payoff Total Payoff (W )
N α3 = ρ00 = 1 0 0 0
L α3 = 1, ρ10 + ρ01 = 1 2τ − 1 −2τ −1
S α3 = 0, ρ00 = 1 −2τ 2τ − 1 −1
m1 α3 = 1

τ , ρ00 = 1
2τ , ρ10 + ρ01 = 1− 1

2τ 3− 2τ − 1
2τ 1− 2τ 4− 4τ − 1

2τ
M1 α3 = 1

2τ , ρ00 = 1
2τ , ρ10 + ρ01 = 1− 1

2τ 1− 2τ 1− 2τ 2− 4τ
m2 α3 = 1− 1

2τ , ρ00 = 1
2τ , ρ11 = 1− 1

2τ −3 + 2τ + 1
2τ 1− 2τ −2 + 1

2τ
M2 α3 = 2(1− 1

2τ ), ρ00 = 1
2τ , ρ11 = 1− 1

2τ 2τ − 2 1− 2τ −1
L2 α3 = 1, p = 1− 1

τ 2τ − 2 −2τ + 2
τ −2 + 2

τ
L3 α3 = 0, p = 1

2τ −2τ 2τ − 5 + 1
τ −5 + 1

τ

M α3 = 1
τ
2pτ−1
3p−1 , p = 1− 1√

2τ
2
√
2τ−τ

√
2τ−1+3τ

3−2
√
2τ

1− 2τ 1− 2τ + 2
√
2τ−
√
2τ

3
2−1+3τ

3−2
√
2τ

A α3 = 1
τ , pi = 1− 1

2τ , pj = 0, i 6= j = 1, 2 3− 2τ − 1
2τ 1− 2τ 4− 4τ − 1

2τ

We repeat for convenience the table from the overview giving the ranges of τ for which
these equilibria exist, where as above τ̃ ≈ 1.31.

Table 2: Existence Table

lower τ upper τ CCE Nash FEE
0 1/2 N N N

1/2 3/4 m2 S L,M1,M2

3/4 1 m2 S L
1 τ̃ m2,m1, L S, L,A L
τ̃ 3/2 m2,m1, L S, L,M,A,L3 L

3/2 2 L S,L, L3 L
2 ∞ L S,L, L2, L3 L

The next table contains payoffs comparisons: we compare payoffs from the point of view
of the whole set of players, represented by the total payoff, and from the point of view of the
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large group. We use �W and �1 to denote respectively welfare and large group preference.
We neglect M,L2 and L3 (notice that A is a special case of m1). Then we have:

Table 3: Payoffs comparisons

τ CCE Nash FEE �W �1

1/2 < τ < 3/4 m2 S L,M1,M2 M1 �W L ∼W S ∼W M2 �W m2 L �1 M1 �1 M2 �1 m2 �1 S
3/4 < τ < 1 m2 S L L ∼W S �W m2 L �1 m2 �1 S
1 < τ ≤ 9/8 m1,m2, L S, L L m1 �W L ∼W S L �1 m1 �1 m2 �1 S
9/8 ≤ τ < τ̃ m1,m2, L S, L L L ∼W S �W m1 �W m2 L �1 m1 �1 m2 �1 S
τ̃ < τ < 3/2 m1,m2, L S, L L L ∼W S �W m2 �W m1 L �1 m2 �1 m1 �1 S
3/2 < τ < 2 L S,L L S ∼W L L �1 S

τ > 2 L S,L L S ∼W L L �1 S

The last table contains information about the electoral outcome. We let H = ρ11(1−α3)

denote the probability of all voting (High turnout); D = (1−α3)(1−ρ00−ρ11) the probability
of deadlock; and Λ = α3(1 − ρ00) + (1 − α3)ρ11 the probability that large group wins. In
the table the rows denote different types of equilibria and the columns provide the relevant
values of H,D,Λ.

Table 4: Electoral outcome probabilities

ρ11 H D Λ
S 0 0 0 0
L 0 0 0 1
m1 0 0 (1− 1

2τ )(1− 1
τ ) 1

τ (1− 1
2τ )

m2 1− 1
2τ (1− 1

2τ ) 1
2τ 0 1− 1

2τ
M1 0 0 (1− 1

2τ )2 1
2τ (1− 1

2τ )
M2 1− 1

2τ (1− 1
2τ )( 1τ − 1) 0 1− 1

2τ

Proofs of Results

We first explain how the assertions in the discussion follow from the detailed Tables 1-4.
Then we derive those tables.

Assertions in the Discussion

From Tables 1 and 2 the total payoffW is negative except for the non-voting equilibrium
N .

From Table 3 M1 gives welfare greater than −1 and m1 gives welfare greater than −1

in the range 1 ≤ τ ≤ 9/8.
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From Tables 1 and 2 all equilibria other than M1,m1 and N give welfare no more than
−1.

From Tables 1 and 2 in CCE and FEE the small player always gets a negative utility.
In the range 3/4 < τ < 1 from Table 3 m2 is less efficient than S or L but the large

group does better than S and does worse than L.
In the range 3/4 < τ < 1 from Table 4 as the stakes τ increase at m2 the probability

of both members of the large group voting, the probability of everyone voting and the
probability of the large group winning all increase, while from Table 1 total welfare decreases.

In the range 1/2 < τ < 3/2 in m1 and m2 from Table 1 the small group does better
than at L with utility of 1− 2τ versus −2τ while from Table 3 the large group does worse
than L.

In the range 1/2 < τ < 3/4 from Table 1 in m2 and M2 the group mixes the same way,
but the third player must vote more frequently in m2 and M2 .

In the range 1/2 < τ < 3/4 for FEE we have from Table 3 that M1 �1 M2 but from
Table 4 gives them a smaller probability of winning Λ.

In the range 1 < τ < τ̃ for CCE we have from Table 3 that m1 �1 m2 but from Table
4 gives them a smaller probability of winning Λ.

Equilibria: All Cases

It is convenient in the analysis of equilibria to create a single group 1 payoff matrix as
a function of α3 by averaging together the two matrices corresponding to 3 not voting and
voting.

1 0
1 τ − 1, τ − 1 (2α3 − 1)τ − 1, (2α3 − 1)τ

0 (2α3 − 1)τ, (2α3 − 1)τ − 1 (α3 − 1)τ, (α3 − 1)τ

To the matrix above we add the constant 1 + τ(1 − 2α3) since this is independent of
group 1 play; this gives the following payoff matrix for group 1:

1 0
1 2τ(1− α3), 2τ(1− α3) 0, 1

0 1, 0 1− α3τ, 1− α3τ

We also make the observation that optimality of the small group (player 3) depends only
on ρ00 and that if ρ00 < 1/(2τ) ≡ Υ then α3 = 1, if ρ00 > Υ then α3 = 0 and if ρ00 = Υ

then player 3 is indifferent. Notice also that Υ ≤ 1 if and only if τ ≥ 1/2. Hence if τ < 1/2

then α3 = 1 in any equilibrium.
We now derive Tables 1 and 2 concerning the types and nature of equilibrium.

13



Collusion Constrained Equilibria

Case 1: τ < 1/2. Nobody votes, equilibrium N . It is easy to check that this is the only
group correlated equilibrium.

Case 2: 1/2 < τ < 1. There is a unique CCE where α3 = 1−Υ , ρ00 = 1/(2τ) = Υ and
ρ11 = 1 − Υ. This is m2. This CCE has shadow mixing. The remaining group correlated
equilibria are: ρ00 = Υ, ρ11 = 1− ρ00 and 0 < α3 < 1− 1/(2τ); and α3 = 0, ρ00 ≥ Υ, ρ11 =

1− ρ00.

Proof. If 2τ(1 − α3) < 1 that is α3 > 1 − 1/2τ the only within-group equilibrium for 1

is 00 and then 3 would prefer to vote whence α3 = 0. It must then be 2τ(1 − α3) ≥ 1

that is α3 ≤ 1 − 1/2τ in any group correlated equilibrium. In this case the group faces a
coordination game with three within-group Nash equilibria: both vote, neither votes and
the symmetric mixed equilibrium.

Let p be the probability of voting in the symmetric mixed equilibrium. The indifference
is 2τ(1 − α3)p = p + (1 − p)(1 − α3τ) whence p = (1 − α3τ)/[τ(2 − 3α3)]. This increases
in α3 from p(0) = 1/2τ > 1/2 to p(1 − 1/2τ) = 1. Since α3 < 1 for this to be part of an
equilibrium 3 should weakly prefer voting (otherwise α3 = 1) and this means −[1 − (1 −
p)2] + (4τ − 1)(1− p)2 ≥ 2τ(1− p)2 which is equivalent to p ≤ 1− 1/

√
2τ < 1− 1/2τ < 1/2;

this is not in the range of equilibrium p’s for group 1. Hence 1 playing their mixed Nash in
any group correlated equilibrium is ruled out.

Next: in any group correlated equilibrium the probability that 1 plays (0, 0) must be
positive, otherwise 3 prefers not voting (α3 = 1) and 1 would play (0, 0) for sure. And also
the probability that 1 plays (1, 1) must be positive, otherwise when 1 is told to vote he
knows 2 is not voting and would deviate. So ρ00, ρ11 > 0. For the possible values of ρ10 and
ρ01 we are left to consider there are the two cases where correlated equilibrium probability
is concentrated on (1, 1), (1, 0), (0, 0) or on (1, 1), (0, 1), (0, 0). They are essentially the same,
we consider the first. Player 1 indifference gives ρ11 · 2τ(1−α3) = ρ11 +ρ10(1−α3τ) that is
ρ11[2τ(1−α3)−1] = ρ10(1−α3τ) and analogously from player 2 we get ρ10[2τ(1−α3)−1] =

ρ00(1 − α3τ); from ρ11 + ρ10 + ρ00 = 1, letting A = [2τ(1 − α3) − 1]/(1 − α3τ) we get in
particular ρ00 = A2/(1+A+A2). Again player 3 should weakly prefer voting, which in this
case gives −(ρ11+ρ10)+(4τ−1)ρ00 ≥ 2τρ00 that is ρ00 ≥ 1/2τ . Thus for 1’s CE to be part of
an equilibrium it must be 2τ ≥ (1+A+A2)/A2. Now the RHS decreases in A and A reaches
its maximum for α3 = 0 where its value is A0 = 2τ−1. So (1+A+A2)/A2 ≥ 1+2τ/(2τ−1)2.
But since 0 < 2τ−1 < 1 we have (2τ−1)3 < 2τ which is equivalent to 2τ < 1+2τ/(2τ−1)2,
whence 2τ ≥ (1 + A + A2)/A2 is false for all admissible values of A. This shows that
ρ01 = ρ10 = 0 in any group correlated equilibrium.

Summing up, group correlated equilibria have α3 ≤ 1 − 1/2τ and ρ00 + ρ11 = 1 with
ρ00, ρ11 > 0. That player 3 should weakly prefer voting gives ρ00 ≥ Υ, with equality if
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α3 > 0. This yields the equilibrium set in the statement.
For CCE: The threshold between dominant strategy and coordination game occurs when

given that one party member votes the other is indifferent to voting: the condition is
2τ(1−α3) = 1 so that α3 = 1− 1/(2τ). This is strictly positive, so ρ00 = Υ. The equilibria
with smaller α3 are not CCE because collusion would lead the group to play the voting
equilibrium for sure.

Case 3: 1 < τ < 3/2. There are three sets of CCEs: (a) a continuum of CCEs where
player 3 does not vote and the group mixes with any probability over (1, 0) and (0, 1), which
is L; (b) a CCE where α3 = 1− 1/2τ and the group plays (1, 1) with probability 1− 1/2τ

and (0, 0) with probability 1/2τ , which is m2 and (c) a CCE with α3 = 1/τ where with
probability 1− 1/2τ the group mixes over (1, 0) and (0, 1) while with probability 1/2τ they
play (0, 0), which is m1.

Proof. For α3 ≤ 1 − 1/2τ , (1, 1) and (0, 0) are within-group Nash equilibria along with
a mixed strategy equilibrium. The highest payoff for the group comes from (1, 1). For
1 − 1/2τ < α3 < 1/τ the game becomes dominance solvable with the unique equilibrium
(0, 0). For all higher values of α3, the within-group Nash equilibria are (1, 0) and (0, 1) along
with the mixed equilibrium. The highest payoff for the group in this case turns out to be
any of the group correlated equilibria with mixing over (1, 0) and (0, 1). For these higher
values of α3 where 1/τ < α3 and 1 < τ < 3/2 the expected payoff to each player from the
mixed Nash is always strictly less than that from the group correlated equilibrium average
payoff. Indeed, the inequality is 2pτ(1 − α3) < 1/2, which since α3 > 1/τ > 2/3 reads
4(α3τ − 1)(1− α3) < 3α3 − 2 that is 4α3τ(1− α3) < 2− α3; the left member is decreasing
in α3, and using this and τ < 3/2 we get 4α3τ(1 − α3) < 4

3 < 2 − α3, last inequality from
α3 > 2/3.

Thus in this case the group best response correspondence is as follows:

(1, 1) if α3 ≤ 1− 1/2τ

(0, 0) if 1− 1/2τ ≤ α3 ≤ 1/τ

correlated if 1/τ ≤ α3

So for any 1 < τ < 3/2, we get three sets of CCEs. (a) α3 = 1 and the group mixes
over (1, 0) and (0, 1), (b) α3 = 1−1/2τ and the group plays (1, 1) with probability 1−1/2τ

and (0, 0) with probability 1/2τ and (c) α3 = 1/τ and with probability 1− 1/2τ the group
mixes over (1, 0) and (0, 1) while with probability 1/2τ they play (0, 0), as asserted.
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Case 4: τ > 3/2. There is a continuum of CCEs, where player 3 does not vote and the
group mixes with any probability over (1, 0) and (0, 1).

Proof. It is seen from group 1 payoff matrix that for α3τ ≤ 1, (1, 1) and (0, 0) are within-
group Nash equilibria along with a mixed strategy symmetric equilibrium where the prob-
ability say p that a player votes is given by

p =
1− α3τ

τ(2− 3α3)

The highest payoff for the group comes from (1, 1). For 1/τ < α3 < 1 − 1/2τ the game
becomes dominance solvable with the unique within-group equilibrium (1, 1). For α3 =

1− 1/2τ there are three within-group equilibria: (1, 1), (1, 0) and (0, 1) and again the best
within-group equilibrium for the group is (1, 1).

For α3 > 1− 1/2τ the within-group equilibria are (1, 0) and (0, 1) and the mixed equi-
librium as above. Turning to the group payoff, the two pure NE give the same payoff hence
so does any mixture of the two; the alternative to consider is the mixed equilibrium. In the
latter the expected payoff to each player (say when player 1 plays 1) is 2pτ(1− α3); in the
former per-player payoff is 1/2. Recalling that in the range under consideration α3τ > 1,
the condition for the mixed to be better than the correlated mixtures becomes

2− α3

4α3(1− α3)
≤ τ

In the relevant range - τ > 3/2 and α3 > 1 − 1/2τ imply α3 > 2/3 - the left hand side is
increasing, so letting α̂3(τ) solve the above with equality we get that: the mixed Nash is
better for α3 ≤ α̂3(τ), while the mixture over the two pure Nash is better for α3 > α̂3(τ).
So the group best response correspondence is as follows:

(1, 1) if α3 ≤ 1− 1/2τ

mixed if 1− 1/2τ < α3 ≤ α̂3(τ)

correlated if α3 > α̂3(τ)

Now we can search for collusion constrained equilibria. Player 3’s best response to the
group playing (1, 1) is to set α3 = 1. So there cannot be a CCE with α3 ≤ 1− 1/2τ . Since
Player 3’s best response to the group mixing over (1, 0) and (0, 1) is to again play α3 = 1, we
must also rule out CCE where α̂3(τ) < α3 < 1. The group mixing over (1, 0) and (0, 1) with
some probability and player 3 choosing α3 = 1, is indeed a CCE. Consider the possibility
of a CCE that involves the group playing the mixed Nash equilibrium and player 3 mixing
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too. For Player 3 to be indifferent (in order to mix) it must be that p = 1 − 1/
√

2τ . Now
the equilibrium p in the mixed Nash is decreasing in α3 over the relevant region: it takes
values from 1 when α3 = 1− 1/2τ to (τ − 1)/τ when α3 = 1. Since (τ − 1)/τ > 1− 1/

√
2τ

for τ > 2, for such values of τ we cannot have such a CCE. For 3/2 < τ ≤ 2 there does
exist an α3 that solves

1− α3τ

τ(2− 3α3)
= 1− 1√

2τ

but the solution has α3 > α̂3(τ) whence there is no CCE in the range 1−1/2τ < α3 ≤ α̂3(τ)

either.4

Nash

Recall that τ̃ ≡ 1/(3 −
√

5) ≈ 1.31. Reiterating the payoff matrix for the group for
visibility:

1 0
1 2τ(1− α3), 2τ(1− α3) 0, 1

0 1, 0 1− α3τ, 1− α3τ

Case 1: ρ00 < Υ and α3 = 1. The payoff matrix for the group is

1 0
1 0, 0 0, 1

0 1, 0 1− τ, 1− τ

If τ < 1 then it is dominant to play 0 and this is not an equilibrium. If τ > 1 then there
are two pure equilibria where one voter in the group votes and these imply ρ00 < Υ so this
corresponds to the equilibrium L. The other equilibrium is symmetric and mixed, continuing
to use p for the probability of voting, the indifference condition is p+ (1− p)(1− τ) = 0 or

p =
τ − 1

τ
= 1− 2Υ.

4Proof of this: the displayed equality can be re-written as 3
√

τ
2
(α3− 2

3
) = 1−2τ(1−α3), while α3 ≤ α̂3(τ)

reads α3[1 + 4τ(1 − α3)] ≥ 2. Since τ > 3/2 we have 3
√

τ
2
(α3 − 2

3
) > 3

2

√
3(α3 − 2

3
) =
√
3( 3

2
α3 − 1) so the

equality implies 1− 2τ(1− α3) >
√
3( 3

2
α3 − 1) that is 2τ(1− α3) < 1−

√
3( 3

2
α3 − 1), whence

α3[1 + 4τ(1 − α3)] < α3[3 − 2
√
3(

3

2
α3 − 1)] = α3

√
3[
√
3 − (3α3 − 2)] <

2

3

√
3[
√
3 − (3

2

3
− 2)] = 2

where the last inequality follows from the fact that in the relevant range α3 ≥ 2/3 the function α3
√
3[
√
3−

(3α3 − 2)] is decreasing.
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Here p > 0 requires Υ ≤ 1/2. The probability that neither player votes is 4Υ2 which
must satisfy 4Υ2 < Υ or Υ < 1/4. Hence we have an equilibrium of this type (it is L2) if
1/(2τ) < 1/4 or τ > 2. Notice that in this equilibrium the probability that the group wins
1− 4Υ2 is larger than 3/4.

Case 2: ρ00 > Υ and α3 = 0. Recall that this requires τ ≥ 1/2 (otherwise α3 = 1). The
payoff matrix for the group is

1 0
1 2τ, 2τ 0, 1

0 1, 0 1, 1

This coordination game has one pure strategy equilibrium where both vote, which con-
tradicts ρ00 > Υ and one where neither vote, corresponding to the equilibrium S which
therefore exists for all values of τ ≥ 1/2. It also has a unique symmetric mixed equilibrium
where the indifference condition is p2τ = 1 or p = Υ. The probability that neither vote is
then (1−Υ)2 and the condition is (1−Υ)2 > Υ. This is 1− 3Υ + Υ2 > 0 which has roots
at (3 ±

√
5)/2 and is positive only for Υ smaller than the lesser root (3 −

√
5)/2 ≈ 0.38.

That is to say, we have an equilibrium of this type when τ > 1/(3−
√

5) = τ̃ . This is L3

Case 3: ρ00 = Υ. Indifferences give the same values of p and α3 as in the case of
1/2 < τ < 1 that is

p = 1− 1/
√

2τ = 1−
√

Υ α3 =
1

τ

2pτ − 1

3p− 1

This equilibrium - labeled M - exists for

τ̃ < τ < 3/2

In addition, for 1 < τ < 3
2 there is an asymmetric partially mixed equilibrium where one

of the players in the group does not vote and the other votes with probability 1−Υ while
α3 = 2Υ. This is equilibrium A. Notice that this is a special case of m1.

Proof. If both group members mix we must have symmetry and this gives (1− p)2 = Υ, or
p = 1 −

√
Υ > 0 . From the group payoff matrix we see that if τ < 1/2 then 0 is strictly

dominant, so this is impossible. Assume τ > 1/2. For τ > 1/2 the indifference condition
of player 1 between voting and not when 2 votes with probability p gives p2τ(1 − α3) =

p+ (1− p)(1− α3τ) which yields

α3 =
1

τ

2pτ − 1

3p− 1

We then plug p = 1 −
√

Υ and look at the sign of numerator and denominator of this
expression. The numerator is 2τ(1−1/

√
2τ)−1 = 2τ−

√
2τ−1. This is positive if and only
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if 2τ−1 >
√

2τ , which since τ > 1/2 is equivalent to (2τ−1)2 > 2τ that is 4τ2−6τ+1 > 0.
This has roots (3 ±

√
5)/4 and is negative in between. Note that the lesser root is < 1/2.

The denominator is positive for 3(1 − 1/
√

2τ) − 1 > 0 that is for τ > 9/8. Note that
(3 +
√

5)/4 = 1/(3−
√

5) > 9/8 hence for τ > 1/2 the numerator and denominator have the
same sign if and only if 1/2 < τ < 9/8 (both negative) or τ > 1/(3−

√
5) (both positive).

In the latter case α3 < 1 requires 2pτ −1 < 3p−1 which is to say 2τ < 3 or τ < 3/2, and in
this range this equilibrium exists. In the former case α3 ≤ 1 would require 2pτ − 1 ≥ 3p− 1

which is true only for τ ≥ 2 so this range is ruled out.
Now consider the possibility of only one group member mixing. Say player 1 mixes

while player 2 plays 0 with certainty. It must be that 1 − p1 = ρ00 = Υ. For player 1
to be so indifferent we need α3 = 2Υ. For player 2 to prefer not voting to voting, we
need (1 − 1

2τ )(3 − 2τ) ≥ 0. Satisfying this inequality along with α3 ≤ 1, gives the range
1 < τ < 3

2 . So for each 1 < τ < 3
2 , we get two more mixed equilibria, in each of which one

group member plays 0 for sure while the other does so with probability Υ and α3 = 2Υ.

Free Enforcement Equilibrium

Assuming uniform weights in the group utility, group 1 payoffs are 1 − α3τ if neither
votes, 1/2 if one votes and 2τ(1−α3) if both vote. Recalling that if ρ00 < 1/(2τ) ≡ Υ then
α3 = 1, if ρ00 > Υ then α3 = 0 and if ρ00 = Υ then player 3 is indifferent, equilibrium
analysis goes as follows.

Case 1: ρ00 < Υ and α3 = 1. Group payoffs are 1 − τ, 1/2, 0. If 1 − τ > 1/2 that is
τ < 1/2 the optimum is not to vote and this is an equilibrium, since Υ > 1 for τ < 1/2. If
τ > 1/2 the optimum is for exactly one to vote leading to the equilibrium L - hence this is
the equilibrium for τ > 1/2.

Case 2: ρ00 > Υ and α3 = 0. Group payoffs are 1, 1/2, 2τ . If τ > 1/2 optimum is vote,
not an equilibrium given ρ00 > 0. For τ < 1/2 notice that α3 = 0 cannot be optimal. So,
no equilibrium corresponds to this case.

Case 3: ρ00 = Υ, this requires that 1−α3τ ≥ 1/2, 2τ(1−α3) with at least one equality.
Case 3a: 1 − α3τ = 1/2, 1/2 ≥ 2τ(1 − α3). The first solves as α3 = Υ which we know

requires τ ≥ 1/2. The inequality becomes 1/2 ≥ 2τ(2τ − 1)/(2τ) = 2τ − 1 that is τ ≤ 3/4.
Hence for 1/2 < τ < 3/4 there is an equilibrium with ρ11 = 0 and α3 = Υ. This is M1.

Case 3b: 2τ(1−α3) = 1−α3τ , 1−α3τ ≥ 1/2. The first one gives α3 = 2−1/τ = 2(1−Υ).
For Υ we need as usual τ ≥ 1/2. We also need 2− 1/τ ≤ 1 or 1 ≤ 1/τ or τ ≤ 1. Plugging
into the inequality we get 1−(2− 1/τ) τ ≥ 1/2 which gives τ ≤ 3/4. Hence if 1/2 < τ < 3/4

there is another equilibrium with ρ11 = 1−Υ and α3 = 2(1−Υ). This is M2.
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Payoff comparisons

We next derive table 3. For the welfare of all three players combined we have

L, S �W m2 ⇐⇒ τ > 1/2, L, S �W m1 ⇐⇒ τ v 1.14

m1 �W m2 ⇐⇒ τ < τ̃ , M1 �W L, S ⇐⇒ τ < 3/4

For the large group the inequalities are as follows:

L �1 S ⇐⇒ τ > 1/4, L �1 m1 ⇐= τ > 1, m1 �1 m2 ⇐⇒ 0.2 < τ < τ̃

M1 �1 M2 ⇐⇒ τ < 3/4, L �1 M1 ⇐⇒ τ > 1/2, M1 �1 m2 =⇒ τ w 0.85

M2 �1 m2 ⇐⇒ τ > 1/2, m2 �1 S ⇐= τ > 1/2, m1 �1 S ⇐⇒ τ > 1/6

Going in the order of the last display, for the three players we have:
L, S �W m2 ⇐⇒ −1 > −2 + 1

2τ ⇐⇒
1
2τ < 1 ⇐⇒ τ > 1/2

L, S �W m1 ⇐⇒ −1 > 4− 4τ − 1
2τ ⇐⇒ 8τ2 − 10τ + 1 > 0 ⇐⇒ .11 w τ w 1.14

m1 �W m2 ⇐⇒ 4 − 4τ − 1
2τ > −2 + 1

2τ ⇐⇒ 6 − 4τ − 1
τ > 0 ⇐⇒ 4τ2 − 6τ + 1 >

0 ⇐⇒ .19 w τ ≤ τ̃
M1 �W L, S ⇐⇒ 2− 4τ > −1 ⇐⇒ 3 > 4τ ⇐⇒ τ < 3/4

For the large group:
L �1 S ⇐⇒ 2τ − 1 > −2τ ⇐⇒ 4τ > 1 ⇐⇒ τ > 1/4

L �1 m1 ⇐⇒ 2τ − 1 > 3− 2τ − 1
2τ ⇐⇒ 4τ − 4 + 1

2τ > 0 ⇐⇒ 8τ2 − 8τ + 1 > 0⇐=

τ > 0.85

m1 �1 m2 ⇐⇒ 3− 2τ − 1
2τ > −3 + 2τ + 1

2τ ⇐⇒ 6− 4τ − 1
τ > 0 ⇐⇒ 4τ2 − 6τ + 1 <

0 ⇐⇒ 0.2 < τ < τ̃

M1 �1 M2 ⇐⇒ 1− 2τ > 2τ − 2 ⇐⇒ 3 > 4τ

L �1 M1 ⇐⇒ 2τ − 1 > 1− 2τ ⇐⇒ 4τ > 2

M1 �1 m2 ⇐⇒ 1− 2τ > −3 + 2τ + 1
2τ ⇐⇒ 8τ2 − 8τ + 1 < 0 ⇐⇒ 0.15 w τ w 0.85

M2 �1 m2 ⇐⇒ 2τ − 2 > −3 + 2τ + 1
2τ ⇐⇒ 1 > 1

2τ ⇐⇒ τ > 1/2

m2 �1 S ⇐⇒ −3 + 2τ + 1
2τ > −2τ ⇐⇒ 8τ2 − 6τ + 1 > 0⇐= τ > 1/2

m1 �1 S ⇐⇒ 3− 2τ − 1
2τ > −2τ ⇐⇒ 3 > 1

2τ ⇐⇒ τ > 1/6

We check that it is always the case that M ≺W S,L. Indeed this is equivalent to
1− 2τ + 2

√
2τ−
√
2τ

3
2−1+3τ

3−2
√
2τ

< −1 that is 2− 2τ + 2
√
2τ−
√
2τ

3
2−1+3τ

3−2
√
2τ

< 0. In the relevant range
the denominator in the fraction is always negative so after multiplying we get (2− 2τ)(3−
2
√

2τ) + 2(
√

2τ − τ
√

2τ − 1 + 3τ) > 0 which simplifies to 2
√

2[
√

2−
√
τ + τ

√
τ ] > 0 which

is true for every τ > 0.
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Electoral outcome probabilities

Finally we find the electoral outcome probabilities. Electoral outcome probabilities are
also elementarily obtained. Recall that H = ρ11(1 − α3), D = (1 − α3)(1 − ρ00 − ρ11) and
Λ = α3(1− ρ00) + (1− α3)ρ11; we just have to apply these formulas.

We follow the order of the table. In S we have H = D = Λ = 0. In L the only difference
is Λ = 1.

In m1 we have α3 = 1
τ , ρ00 = 1

2τ , ρ10 + ρ01 = 1− 1
2τ . So H = 0, D = (1− 1

τ )(1− 1
2τ ) and

Λ = 1
τ (1− 1

2τ ).
In m2 it is α3 = 1 − 1

2τ , ρ00 = 1
2τ , ρ11 = 1 − 1

2τ so H = (1 − 1
2τ ) 1

2τ , D = 0 and
Λ = (1− 1

2τ )2 + (1− 1
2τ ) 1

2τ = 1− 1
2τ

In M1 we have α3 = 1
2τ , ρ00 = 1

2τ , ρ10 + ρ01 = 1 − 1
2τ so H = 0, D = (1 − 1

2τ )2 and
Λ = 1

2τ (1− 1
2τ ).

Finally, in M2 we have α3 = 2(1− 1
2τ ), ρ00 = 1

2τ , ρ11 = 1− 1
2τ so H = (1− 1

2τ )[1− 2(1−
1
2τ )] = (1− 1

2τ )( 1τ − 1), D = 0, and Λ = 2(1− 1
2τ )(1− 1

2τ ) + [1− 2(1− 1
2τ )](1− 1

2τ ) = 1− 1
2τ .

For the ranges of H in m2 and M2 and of D in m1 and M1 we have:
H in m2: up from 0 for τ = 1/2 to 2/9 for τ = 3/4, still up to 1/4 for τ = 1 then down

to 2/9 again for τ = 3/2.
H in M2: up from 0 for τ = 1/2 to 1/8 for τ = 2/3, then down to 1/9 for τ = 3/4

D in m1: up from 0 for τ = 1 to 2/9 for τ = 3/2

D in M1: up from 0 for τ = 1/2 to 1/9 for τ = 3/4
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