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Appendix S1. A Dirichlet based family of random belief models

We show here that there are ε-random belief models for every positive value of ε. An ob-
vious idea is to take a smooth family of probability distributions with mean equal to the
truth and small variance. A good candidate for a smooth family is the Dirichlet since we
can easily control the precision by increasing the “number of observations.” However
using an unbiased probability distribution will not work because it is ill-behaved on the
boundary: if we try to keep the mean equal to the truth, then as we approach the bound-
ary, the variance has to go to zero, and on the boundary there will be a spike. A simple
alternative is to bias the mean slightly toward a fixed strictly positive probability vector
with a small weight on that vector, and then let that weight go to zero as we take the
overall variance to zero. Set h(ε) = (ε/2)3. Fix a strictly positive probability vector over
A−k denoted by β−k and call the ε-Dirichlet belief model the Dirichlet distribution with
parameter vector (dimension cardinality of A−k)
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Theorem S1. The ε-Dirichlet belief model is an ε-random belief model.

Proof. Since the parameters are away from the boundary by at least ε/2, this has the
requisite continuity property. The random variable α̃ has mean α−k = (1 − ε
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β−k. Since the covariances of the Dirichlet are negative, E|α̃−k − α−k|2 is bounded

by the sum of the variances and we may apply Chebyshev’s inequality to find
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To evaluate the last expression, let δε(a−k) ≡ 1
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and observe that
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−k) = 1/h(ε). Then by the standard Dirichlet variance for-

mula we have
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We also have |ᾱ−k − α−k| = ε
2
√

2
|α−k − β−k| ≤ ε

2 . Then |α̃−k − α−k| > ε implies |α̃−k −
α−k| > ε/2; hence Pr(|α̃−k − α−k| > ε) ≤ Pr[|α̃−k − α−k| > ε/2] ≤ ε/2 ≤ ε, which shows
that this is indeed an ε-random belief model. �

Appendix S2. Analysis of the leading example

The leading example consists of a three-player game in which each player chooses be-
tween C and D. The payoff matrices if player 3 plays C (left) or D (right) are

C D

C 6�6�5 0�8�0
D 8�0�0 2�2�0

C D

C 10�10�0 0�8�5
D 8�0�5 2�2�5

Given α3, the probability that player 3 plays C, the payoff matrix for players 1 and 2
is then

C D

C 6 + 4
(
1 − α3)�6 + 4

(
1 − α3) 0�8

D 8�0 2�2

Note that if players 1 and 2 believe that α3 < 1/2, their best incentive compatible plan is
CC, while if α3 > 1/2, their best incentive compatible plan is DD.

Nash equilibrium

We first examine Nash equilibrium in the ordinary sense. There is no Nash equilibrium
where α3 > 1/2, for, if 1 and 2 play DD (as they have to in equilibrium), player 3 prefers
D (α3 = 0). Similarly for α3 = 1/2: in equilibrium, 1 and 2 could only play either CC, in
which case player 3 strictly prefers C, or DD, in which case she strictly prefers D.
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Consider now α3 < 1/2. The CC within-group equilibrium for 1 and 2 cannot be part
of a Nash equilibrium because then 3 prefers C (α3 = 1). Hence 1 and 2 must either play
DD or mix.

If 1 and 2 play DD, then 3’s best response is D, that is, α3 = 0 and therefore DDD is
Nash.

Suppose then 1 and 2 mix, and denote by αi the probability that i = 1�2 plays C. In
equilibrium α1 = α2 = 1/2(1 − α3), whence α1 = α2 ≥ 1/2. Player 3 prefers D strictly if
α1 = α2 < 1/

√
2 ≈ 0�7, so the only Nash in this range has α1 = α2 = 1/2 and α3 = 0.

For α1 = α2 = 1/
√

2 there is a fully mixed equilibrium with α1 = α2 = 1/
√

2 and α3

given by 1/2(1 − α3) = 1/
√

2, that is, α3 = 1 − 1/
√

2.
Finally, there are no equilibria with α1 = α2 > 1/

√
2 because, for such values, 3 would

play C for sure, which cannot happen in equilibrium.
In conclusion there are three Nash equilibria: DDD; one where player 3 plays D

and players 1 and 2 mix 50–50 between C and D; a fully mixed one α1 = α2 = 1/
√

2 and
α3 = 1 − 1/

√
2.

The payoffs in the Nash equilibria: in DDD payoffs are (2�2�5). In the partially
mixed equilibrium payoffs are (5�5�3�75). In the fully mixed equilibrium payoffs are
(ς� ς�2�5) where ς = 8/

√
2 + 2(1 − 1/

√
2)≈ 6�24.

Perturbations

We ease the group notation a bit. Group 2 consists of only one player, player 3, who has
to choose between C and D. For ease of readability we identify the correlated strategy
of this individual with the actual strategy: that is, we let α3 = ρ2[C] = ρ−1[C]. Since the
only actual group is group 1, which is also group −2 from the point of view of group
1, we drop the superscript from ρ1 = ρ−2 and simply write ρ, with ρCC and ρDD the
probabilities that group 1 plays CC or DD. For individual play we will also use αi, as
before, for the probability that i = 1�2 plays C.

Player 3’s payoff from C is 5ρCC ; from D it is 5(1 − ρCC). Consequently if player 3
is to be indifferent, it must be that ρCC = 1/2: if ρCC > 1/2, he plays C; if ρCC < 1/2, he
plays D.

Belief equilibrium

Assume the Dirichlet belief model (defined in Section S1). What do the group response
functions look like? Recall that σ indicates the beliefs are variable. For group 1, they
play only CC and DD, and the probability F1(α3)[CC] of playing CC is the probability
that the belief σ−1[C] < 1/2; this is strictly between 0 and 1, symmetric around α3 = 1/2,
where it is equal to 1/2 and strictly decreasing in α3.

For player 3, the probability F2(ρ)[C] of playing C is the probability that the belief
σ−2[CC] > 1/2; this is strictly between 0 and 1 and strictly increasing in ρCC .

Consider what happens at ρCC = ρDD = 1/2 and write f 2
1/2(σ

−2) for the density of 2’s
beliefs. Then by symmetry,

f 2
1/2

(
σ−2[CC] = s|σ−2[CC] + σ−2[DD] = S

)
= f 2

1/2
(
σ−2[DD] = s|σ−2[CC] + σ−2[DD] = S

)
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Figure S1. Random belief equilibrium.

so that

f 2
1/2

(
σ−2[CC] = s|σ−2[CC] + σ−2[DD] = S

)
= f 2

1/2
(
σ−2[CC] = S − s|σ−2[CC] + σ−2[DD] = S

)
�

In other words given σ−2[CC] + σ−2[DD] = S, then σ−2[CC] is symmetric around S/2;
hence σ−2[CC] > 1/2 occurs less than 1/2 the time, so F2(ρCC)[C] < 1/2. Hence the
intersection of F1 and F2 occurs for α3 < 1/2 and and ρCC > 1/2, with ρCD = ρDC = 0, as
illustrated in Figure S1.

As beliefs converge to true values, the F2 function shifts to the right and the inter-
section occurs at (1/2�1/2).

Player 3 in leadership and costly enforcement equilibrium

Player 3’s incentive constraint is the same as his objective function: he has the standard
best response function: if ρ1

CC > 1/2, he plays C; if ρ1
CC < 1/2, he plays D; if ρ1

CC = 1/2, he
is indifferent. Because he is the only one in his group, he faces no incentive constraint
and relaxing the incentive constraint either in leadership or costly enforcement equilib-
rium cannot matter; hence our focus on players 1 and 2 in group 1, which we refer to
simply as the group.

Costly enforcement equilibrium

As described in the text, the sequence

Ck
n

(
αk�ρ−k

) = πn

1 −πn

∑
k(i)=k

Gi
(
αk�ρ−k

)

with πn → 1 is a high cost sequence. To pin down the group’s best response correspon-
dence, note that for α3 ≤ 1/2, it is simply CC. If the group chooses CC, the objective
function takes a value of 2[6 + 4(1 − α3)] − 2 πn

1−πn
[2 − 4(1 − α3)]. This turns out to be

higher than the value of 4 achieved by playing DD if and only if α3 < 4−3πn
2 . It turns out
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that no other mixed strategy profile is ever an element of the best response set. We es-
tablish this next. Consider any mixed strategy profile for the group. The group payof is
then

α1α22
[
6 + 4

(
1 − α3)] + [

α1(1 − α2) + α2(1 − α1)]8
+ (

1 − α1)(1 − α2)4 − πn

1 −πn

[
2α1α2[2 − 4

(
1 − α3)] + [

α1(1 − α2) + α2(1 − α1)]2]
�

which can be rewritten as

(
α1α2){2

[
6 + 4

(
1 − α3)] − πn

1 −πn
2
[
2 − 4

(
1 − α3)]}

+ [
α1(1 − α2) + α2(1 − α1)]{8 − 2

πn

1 −πn

}
+ [(

1 − α1)(1 − α2)]4�
For πn > 4/5, the term 8 − 2 πn

1−πn
must be negative. So the value to the group from such a

mixed strategy profile is the convex combination of the group’s value from playing CC:
the negative quantity 8 − 2 πn

1−πn
and 4. When α3 > 4−3πn

2 , then the group’s value from
playing CC is strictly less than 4. Consequently, every mixed strategy profile other than
DD must give a value strictly less than 4. Hence the unique group best reply is DD.
When α3 < 4−3πn

2 , then the group’s value from playing CC is strictly greater than 4. So
every mixed strategy profile other than CC must have a value strictly less than that from
playing CC. The unique group best reply is therefore CC. Similarly when α3 = 4−3πn

2 ,
CC and DD are the only elements of the group best reply correspondence.

It follows immediately that the costly enforcement equilibrium consists of the group
randomizing 50–50 between CC and DD while player 3 plays α3 = 4−3πn

2 for all πn > 4/5.
It is easy to see how this equilibrium converges to the CCE as πn → 1.

Leadership equilibrium

For α3 < 1/2, playing CC is incentive compatible for the group. The question is how
much can they mix out of the unique bad within-group equilibrium DD when α3 > 1/2
given that they are willing to forgo gains no larger than ν.

From the payoff matrix of group 1, we see that utility for player 1 is given by
u1(α1�α2�α3) = 4α1α2(1 −α3)− 2α1 + 6α2 + 2. The group utility (with weights β1 = β2 =
1) is v1(α1�α2�α3) = u1 + u2 = 8α1α2(1 − α3) + 4α1 + 4α2 + 4; notice that it is increasing
in α1 and α2 for any α3.

Consider the utility gained by player 1 upon deviating from (α1�α2�α3) to (0�α2�α3),
namely 2α1[1 − 2α2(1 −α3)]. This is strictly positive when α3 > 1/2 for any positive value
of α1 and so the optimal deviation from such profiles is precisely to play D with utility
6α2 + 2 and utility gain 2α1[1 − 2α2(1 − α3)]. Group 1 must play ν incentive compatible
profiles, that is, profiles with gain no larger than ν.

When α3 > 1/2, increasing α2 reduces the utility gain from player 1’s optimal devia-
tion and hence relaxes the incentive constraint for any ν. So in a strict ν equilibrium we
should choose α1 = α2, and either the constraint binds in that 2α1[1 − 2α1(1 − α3)] = ν

or α1 = α2 = 1 since group utility is increasing in both α1 and α2 for any α3.
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Notice that the utility gain G(α1) = −4(α1)2(1 − α3)+ 2α1 is quadratic concave with
G(0) = 0, G′ = 2[1 − 4α1(1 −α3)] so that G′(0) > 0 and G′(1) = 2[1 − 4(1 −α3)], meaning
G′(1) < 0 for α3 < 3/4.

Since group utility increases in α1 and α2, if the utility gain at α1 = α2 = 1, that is,
G(1) = 2[1−2(1− α̂3)], turns out to be less than ν, group 1 plays CC and player 3 plays C,
which is not an equilibrium. If this is greater than ν, then regardless of the sign of G′(1),
G(α1) reaches ν while increasing, and group 1 plays α̂1 = α̂2 such that G(α̂1)= ν, that is,
both players mix a little just until the incentive constraint is satisfied with equality. For
small enough ν, the solution to G(α̂1) = ν must be an α̂1 so small that ρ1

CC < 1/2. This in
turn would make player 3 play D—again not an equilibrium.

Finally consider the case of G(1) = ν so that group 1 shadow mixes between CC and
the smaller solution of −4(α̂1)2(1 − α̂3) + 2α̂1 = ν. For this to be an equilibrium, since
player 3 is mixing, player 1 must mix so that ρ1

CC = 1/2. Letting p be the probability of
shadow mixing on CC, we may compute p+ (1−p)(α̂1)2 = ρ1

CC = 0�5 from which we get

p = 0�5 − (
α̂1)2

(
1 − (

α̂1)2) �

So in this equilibrium player 3 has, a greater than 50% chance of playing C and the
group has a less than 50% chance of playing DD, a 50% chance of playing CC and some
small chance of playing CD�DC. Here the solution for player 3 is on the opposite side
of 1/2 from the belief equilibrium case.

Thus equilibrium has G(1) = G(α̂1) = ν, that is, 2α̂1[1 − 2α̂1(1 − α̂3)] = 2[1 − 2(1 −
α̂3)] = ν. As ν → 0, we get α̂3 → 1/2 and the smaller solution α̂1 → 0 so that in the limit,
the group shadow mixes 50–50 between CC and DD.

Appendix S3. Analysis of the voting game

In the three-player voting game in the text, each player chooses between 0 (meaning do
not vote) and 1 (meaning vote). Players 1 and 2 are assumed to form group 1, with player
3 the sole member of the remaining group.

The payoffs in the example can be written in bi-matrix form: if player 3 does not
vote, the payoff matrix for the actions of players 1 and 2 is

1 0
1 τ − 1� τ − 1�−2τ τ − 1� τ�−2τ
0 τ�τ − 1�−2τ 0�0�0

This game between players 1 and 2 has a unique dominant strategy equilibrium at which
neither votes if τ < 1. If player 3 does vote, the payoff matrix for the actions of players 1
and 2 becomes

1 0
1 τ − 1� τ − 1�−2τ − 1 −τ − 1�−τ�−2τ − 1
0 −τ�−τ − 1�−2τ − 1 −τ�−τ�2τ − 1
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If τ > 1/2, this is a coordination game for players 1 and 2 due to the fact that a tie is as
bad as a loss: for a large party member not voting and having a tie results in −τ, whereas
voting and winning results in τ − 1 > −τ. Similarly, voting and having a tie is as bad as a
loss and it would be better to not vote and lose, suffering the same loss but not paying
the cost of voting.

Overview of results

We first summarize our conclusions about the structure of collusion constrained, Nash,
and free enforcement equilibria in this model. There are a number of equilibria of dif-
ferent kinds in the various ranges of τ: (i) an equilibrium N where nobody votes (only
for τ < 1/2); (ii) an equilibrium L in which player 3 does not vote and the large group
wins by casting a single vote. In the case of Nash equilibria, there is also (iii) an equilib-
rium S in which only player 3 votes (and wins); (iv) equilibria L2 and L3, where player
3 plays a pure strategy and the group members randomize with positive probability on
both voting and not voting; (v) a fully mixed equilibrium M in which the large group
members randomize as in the previous case; (vi) two asymmetric mixed equilibria A

in which only one of the group members votes with positive probability. In the case of
collusion constrained equilibrium (CCE) and free enforcement equilibria (FEE), there
are two types of equilibria with player 3 mixing, which in the CCE case involve shadow
mixing: (vii) m1 and M1 in which the large group either stays out or casts a single vote
and (viii) m2 and M2 in which the large group either stays out or casts two votes. In all
the equilibria where player 3 mixes, the probability that neither group member votes is
always ρ1[0�0] = 1/2τ.

We define τ̃ ≡ 1/(3 − √
5) ≈ 1�31. Our results concerning the entire set of equilibria

can be summarized in the following table.

Lower τ Upper τ CCE Nash FEE
0 1/2 N N N

1/2 3/4 m2 S L�M1�M2

3/4 1 m2 S L

1 τ̃ m2�m1�L S�L�A L

τ̃ 3/2 m2�m1�L S�L�M�A�L3 L

3/2 2 L S�L�L3 L

2 ∞ L S�L�L2�L3 L

Discussion Before establishing these results there are several basic points to be made.
If τ < 1/2, then it is strictly dominant for player 3 not to vote: if the group casts no votes,
not voting gives 0 rather than τ − 1, and if the group does cast votes, then voting has no
effect or results in an undesirable tie. Given that player 3 is not voting and τ < 1/2, it
is optimal both for player 1 and player 2 individually not to vote and, for the group as
a whole, for neither player 1 or 2 to vote: there is no conflict here between individual
incentives and group goals. Hence, in all types of equilibrium (CCE, Nash, and FEE),
when τ < 1/2 the unique equilibrium involves no voting and this is efficient.
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The interesting case is what happens when the stakes increase to τ > 1/2. Here it
cannot be an equilibrium for nobody to vote because, in this case, player 3 would prefer
to vote. Of particular interest are the S and L equilibria: these are always the best for
the small group and large group, respectively. To see this, observe that the best that
can happen if nobody in a group votes is to get 0. Alternatively, the best thing that can
happen if a group casts at least one vote is that it casts only one vote and it wins, in which
case the group gets 2τ−1. When τ > 1/2, this is better than not voting. In the equilibrium
S and L in which exactly one player votes, total welfare is always −1, reflecting the cost
of the single vote that is cast.

Additional observations in the light of the details presented below are the follow-
ing. In the range 3/4 < τ < 1, equilibria of all types are unique, which allows for sharp
equilibrium comparison. The Nash equilibrium is S and the FEE is L. The CCE is less
efficient than either, but the large group does better than S and does worse than L. In
this range, as the stakes τ increase the probability of both members of the large group
voting, the probability of everyone voting and the probability of the large group winning
all increase, while total welfare decreases.

There are a few parameter ranges where there are equilibria giving higher welfare
than the S, L value of −1: for FEE, the M1 when it exists gives higher welfare; for CCE, m1

gives higher welfare in the range 1 ≤ τ ≤ 9/8. All remaining equilibria give welfare less
than −1. In the Nash case, S is always an equilibrium and indeed for τ < 1 is the only
equilibrium. By contrast, in CCE and FEE the small player always gets a negative utility.
Moreover, in both cases, when the stakes τ are high enough, the only equilibrium is L,
although this occurs for a smaller value of τ for FEE than CCE.

In the range 1/2 < τ < 3/2, shadow mixing is a possibility for CCE and for 1/2 < τ < 1,
there is a unique CCE with shadow mixing m2. In the shadow mixing equilibria, the small
group does better than at L while the large group does worse than at L.

It is interesting to compare m2 and M2 in the range 1/2 < τ < 3/4, the former for
CCE and the latter for FEE. In both equilibria the group mixes the same way, but the
third player must vote more frequently in CCE than in FEE. The reason is that if the third
player votes too infrequently, then the incentive constraint fails when both members of
the group vote.

Another observation of interest is that there are CCE and FEE that give the large
group more utility but a lower probability of winning. Specifically in 1/2 < τ < 3/4 for
FEE, we have that M1 is better for the large group than M2 but gives them a smaller prob-
ability of winning, and the same is true for CCE in the range 1 < τ < τ̃ for the shadow
mixing equilibria m1and m2.

In a rough sense Nash is best for the small group, FEE is best for the large group, and
CCE is in between. This rough “in between” picture also emerges in the sense that CCE
changes more gradually in favor of the large group as τ increases than does FEE.

Remark. With respect to welfare of the large group, we have computed it in the obvious
way as expected utility. For shadow mixing, whether or not this is correct depends on
the underlying model: with random beliefs it is correct. However in costly enforcement
equilibrium, shadow mixing appears as actual mixing, meaning that the group must be
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indifferent between the alternatives. In m1 and m2, staying out is strictly worse than
casting either one or two votes. Hence in the costly enforcement equilibrium, the cost
of overcoming the incentive constraints to allow the casting of votes must exactly equal
the difference in utility between casting the votes and staying out: that is to say, all the
gain from vote casting must be dissipated in enforcement cost. Hence, in the limit, we
should evaluate the utility of the group as the least utility of profiles over which shadow
mixing occurs, that is to say, the utility from staying out. As we describe in detail below,
the expected utility to the large group in m1 and m2 is 3 − 2τ − 1

2τ and −3 + 2τ + 1
2τ , re-

spectively, while the probability of player 3 not voting is 1
τ and 1 − 1

τ , respectively. Hence
the utility of staying out is 2(1−τ) and −2, respectively, and this is the appropriate utility
for the large group. In particular in the range 1 ≤ τ ≤ 9/8, it is no longer true that m1 does
better from an overall welfare perspective than L and S.

In the leadership case, the utility assigned to a group when shadow mixing is am-
biguous. From the perspective of the followers, the correct calculation is expected util-
ity. From the perspective of the leader, the correct calculation is the least utility of pro-
files over which shadow mixing occurs: from the leader’s point of view, the punishment
needed to make him indifferent dissipates the benefit of the better profiles. One may
wonder why anyone would agree to be leader given that he or she get less utility than the
followers. Although a discussion of who leaders are and why they are leaders is beyond
the scope of this paper, it is natural to imagine they get some additional compensation
from the group for agreeing to be leader. In this case, the follower utility seems the most
relevant.

Detailed results

We now provide a more detailed summary of the different types of equilibria and pay-
offs. Table S1 summarizes the different types of equilibria using the notation of the text.
The first column is the designation of the equilibrium. The second column gives the
equilibrium strategies. The final three columns give the total payoff of the group, player
3, and the sum of all the payoffs, respectively. The probability of voting in the group’s
mixed strategy is denoted by p. We also write ρab for ρ1[a�b].

We repeat for convenience the table (see Table S2) from the overview that gives the
ranges of τ for which these equilibria exist, where as above τ̃ ≈ 1�31.

The next table, Table S3, contains payoff comparisons: we compare payoffs from the
point of view of the whole set of players, represented by the total payoff, and from the
point of view of the large group. We use 
W and 
1 to denote, respectively, welfare and
large group preference. We neglect M , L2, and L3 (notice that A is a special case of m1).

The last table, Table S4, contains information about the electoral outcome. We let
H = ρ11(1 − α3) denote the probability of all voting (High turnout); D = (1 − α3)(1 −
ρ00 − ρ11) denote the probability of deadlock, and � = α3(1 − ρ00)+ (1 − α3)ρ11 denote
the probability that the large group wins. In this table, the rows denote different types of
equilibria and the columns provide the relevant values of H, D, and �.
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Table S1. Equilibrium table.

Equilibrium strategies Group payoff Pl. 3 payoff Total payoff (W)

N α3 = ρ00 = 1 0 0 0
L α3 = 1, ρ10 + ρ01 = 1 2τ − 1 −2τ −1
S α3 = 0, ρ00 = 1 −2τ 2τ − 1 −1
m1 α3 = 1

τ , ρ00 = 1
2τ , ρ10 + ρ01 = 1 − 1

2τ 3 − 2τ − 1
2τ 1 − 2τ 4 − 4τ − 1

2τ
M1 α3 = 1

2τ , ρ00 = 1
2τ , ρ10 + ρ01 = 1 − 1

2τ 1 − 2τ 1 − 2τ 2 − 4τ
m2 α3 = 1 − 1

2τ , ρ00 = 1
2τ , ρ11 = 1 − 1

2τ −3 + 2τ + 1
2τ 1 − 2τ −2 + 1

2τ
M2 α3 = 2(1 − 1

2τ ), ρ00 = 1
2τ , ρ11 = 1 − 1

2τ 2τ − 2 1 − 2τ −1
L2 α3 = 1, p = 1 − 1

τ 2τ − 2 −2τ + 2
τ −2 + 2

τ

L3 α3 = 0, p = 1
2τ −2τ 2τ − 5 + 1

τ −5 + 1
τ

M α3 = 1
τ

2pτ−1
3p−1 , p = 1 − 1√

2τ
2

√
2τ−τ

√
2τ−1+3τ

3−2
√

2τ
1 − 2τ 1 − 2τ + 2

√
2τ−√

2τ
3
2 −1+3τ

3−2
√

2τ
A α3 = 1

τ , pi = 1 − 1
2τ , pj = 0, i �= j = 1�2 3 − 2τ − 1

2τ 1 − 2τ 4 − 4τ − 1
2τ

Table S2. Existence table.

Lower τ Upper τ CCE Nash FEE

0 1/2 N N N

1/2 3/4 m2 S L, M1, M2
3/4 1 m2 S L

1 τ̃ m2, m1, L S, L, A L

τ̃ 3/2 m2, m1, L S, L, M, A, L3 L

3/2 2 L S, L, L3 L

2 ∞ L S, L, L2, L3 L

Table S3. Payoff comparisons.

τ CCE Nash FEE 
W 
1

1/2 < τ < 3/4 m2 S L, M1, M2 M1 
W L ∼W S ∼W M2 
W m2 L
1 M1 
1 M2 
1 m2 
1 S

3/4 < τ < 1 m2 S L L∼W S 
W m2 L
1 m2 
1 S

1 < τ ≤ 9/8 m1, m2, L S, L L m1 
W L ∼W S L
1 m1 
1 m2 
1 S

9/8 ≤ τ < τ̃ m1, m2, L S, L L L ∼W S 
W m1 
W m2 L
1 m1 
1 m2 
1 S

τ̃ < τ < 3/2 m1, m2, L S, L L L ∼W S 
W m2 
W m1 L
1 m2 
1 m1 
1 S

3/2 < τ < 2 L S, L L S ∼W L L
1 S

τ > 2 L S, L L S ∼W L L
1 S

Table S4. Electoral outcome probabilities.

ρ11 H D �

S 0 0 0 0
L 0 0 0 1
m1 0 0 (1 − 1

2τ )(1 − 1
τ )

1
τ (1 − 1

2τ )

m2 1 − 1
2τ (1 − 1

2τ )
1

2τ 0 1 − 1
2τ

M1 0 0 (1 − 1
2τ )

2 1
2τ (1 − 1

2τ )

M2 1 − 1
2τ (1 − 1

2τ )(
1
τ − 1) 0 1 − 1

2τ
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Proofs of results

We first explain how the assertions in the discussion follow from the detailed Tables S1–
S4. Then we derive those tables.

Assertions in the discussion From Tables S1 and S2, the total payoff W is negative except
for the nonvoting equilibrium N .

From Table S3, M1 gives welfare greater than −1 and m1 gives welfare greater than
−1 in the range 1 ≤ τ ≤ 9/8.

From Tables S1 and S2, all equilibria other than M1, m1, and N give welfare no more
than −1.

From Tables S1 and S2, in CCE and FEE the small player always gets a negative utility.
In the range 3/4 < τ < 1 from Table S3, m2 is less efficient than S or L but the large

group does better than S and does worse than L.
In the range 3/4 < τ < 1 from Table S4, as the stakes τ increase at m2, the probability

of both members of the large group voting, the probability of everyone voting, and the
probability of the large group winning all increase, while from Table S1, total welfare
decreases.

In the range 1/2 < τ < 3/2 in m1 and m2 from Table S1, the small group does better
than at L with utility of 1 − 2τ versus −2τ, while from Table S3, the large group does
worse than L.

In the range 1/2 < τ < 3/4 from Table S1, in m2 and M2, the group mixes the same
way, but the third player must vote more frequently in m2 and M2.

In the range 1/2 < τ < 3/4 for FEE, we have from Table S3 that M1 
1 M2, but from
Table S4 it gives them a smaller probability of winning �.

In the range 1 < τ < τ̃ for CCE, we have from Table S3 that m1 
1 m2, but from Ta-
ble S4 it gives them a smaller probability of winning �.

Equilibria: All cases It is convenient in the analysis of equilibria to create a single group
1 payoff matrix as a function of α3 by averaging together the two matrices corresponding
to 3 not voting and voting:

1 0
1 τ − 1� τ − 1

(
2α3 − 1

)
τ − 1�

(
2α3 − 1

)
τ

0
(
2α3 − 1

)
τ�

(
2α3 − 1

)
τ − 1

(
α3 − 1

)
τ�

(
α3 − 1

)
τ

To the matrix above we add the constant 1 + τ(1 − 2α3) since this is independent of
group 1 play; this gives the following payoff matrix for group 1:

1 0
1 2τ

(
1 − α3)�2τ

(
1 − α3) 0�1

0 1�0 1 − α3τ�1 − α3τ

We also make the observation that optimality of the small group (player 3) depends
only on ρ00 and that if ρ00 < 1/(2τ) ≡ ϒ, then α3 = 1, if ρ00 >ϒ, then α3 = 0, and if ρ00 =
ϒ, then player 3 is indifferent. Notice also that ϒ ≤ 1 if and only if τ ≥ 1/2. Hence if
τ < 1/2, then α3 = 1 in any equilibrium.

We now derive Tables S1 and S2 concerning the types and nature of equilibrium.
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Collusion constrained equilibria

Case 1. τ < 1/2. Nobody votes; equilibrium N . It is easy to check that this is the only
group correlated equilibrium.

Case 2. 1/2 < τ < 1. There is a unique CCE where α3 = 1 − ϒ, ρ00 = 1/(2τ) = ϒ, and
ρ11 = 1 − ϒ. This is m2. This CCE has shadow mixing. The remaining group correlated
equilibria are ρ00 = ϒ, ρ11 = 1 − ρ00, and 0 < α3 < 1 − 1/(2τ); and α3 = 0, ρ00 ≥ ϒ, and
ρ11 = 1 − ρ00.

Proof. If 2τ(1 − α3) < 1, that is, α3 > 1 − 1/2τ, the only within-group equilibrium for
1 is 00 and then 3 would prefer to vote, whence α3 = 0. It must then be 2τ(1 − α3) ≥ 1,
that is, α3 ≤ 1 − 1/2τ in any group correlated equilibrium. In this case the group faces
a coordination game with three within-group Nash equilibria: both vote, neither votes,
and symmetric mixed equilibrium.

Let p be the probability of voting in the symmetric mixed equilibrium. The in-
difference is 2τ(1 − α3)p = p + (1 − p)(1 − α3τ) whence p = (1 − α3τ)/[τ(2 − 3α3)].
This increases in α3 from p(0) = 1/2τ > 1/2 to p(1 − 1/2τ) = 1. Since α3 < 1, for this
to be part of an equilibrium, player 3 should weakly prefer voting (otherwise α3 = 1)
and this means −[1 − (1 − p)2] + (4τ − 1)(1 − p)2 ≥ 2τ(1 − p)2, which is equivalent to
p ≤ 1 − 1/

√
2τ < 1 − 1/2τ < 1/2; this is not in the range of equilibrium p’s for group 1.

Hence 1 playing their mixed Nash in any group correlated equilibrium is ruled out.
Next, in any group correlated equilibrium, the probability that 1 plays (0�0) must be

positive; otherwise 3 prefers not voting (α3 = 1) and 1 would play (0�0) for sure. Also
the probability that 1 plays (1�1) must be positive; otherwise when 1 is told to vote, he
knows 2 is not voting and would deviate. So ρ00�ρ11 > 0. For the possible values of ρ10

and ρ01 we are left to consider that there are the two cases where correlated equilibrium
probability is concentrated on (1�1), (1�0), (0�0) or on (1�1), (0�1), (0�0), which are
essentially the same. We consider the first. Player 1 indifference gives ρ11 · 2τ(1 − α3) =
ρ11 +ρ10(1−α3τ), that is, ρ11[2τ(1−α3)−1] = ρ10(1−α3τ) and, analogously, from player
2 we get ρ10[2τ(1 − α3)− 1] = ρ00(1 − α3τ); from ρ11 + ρ10 + ρ00 = 1, letting A = [2τ(1 −
α3) − 1]/(1 − α3τ), we get in particular ρ00 = A2/(1 + A + A2). Again player 3 should
weakly prefer voting, which in this case gives −(ρ11 + ρ10) + (4τ − 1)ρ00 ≥ 2τρ00, that
is, ρ00 ≥ 1/2τ. Thus for 1’s correlated equilibrium to be part of an equilibrium, it must
be 2τ ≥ (1 + A + A2)/A2. Now the right hand side decreases in A and A reaches its
maximum for α3 = 0, where its value is A0 = 2τ−1. So (1+A+A2)/A2 ≥ 1+2τ/(2τ−1)2.
But since 0 < 2τ − 1 < 1, we have (2τ − 1)3 < 2τ, which is equivalent to 2τ < 1 + 2τ/(2τ −
1)2, whence 2τ ≥ (1 +A+A2)/A2 is false for all admissible values of A. This shows that
ρ01 = ρ10 = 0 in any group correlated equilibrium.

Summing up, group correlated equilibria have α3 ≤ 1 − 1/2τ and ρ00 + ρ11 = 1 with
ρ00�ρ11 > 0. That player 3 should weakly prefer voting gives ρ00 ≥ ϒ, with equality if
α3 > 0. This yields the equilibrium set in the statement.

For CCE, the threshold between dominant strategy and coordination game occurs
when given that one party member votes, the other is indifferent to voting: the condition
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is 2τ(1−α3) = 1 so that α3 = 1−1/(2τ). This is strictly positive, so ρ00 =ϒ. The equilibria
with smaller α3 are not CCE because collusion would lead the group to play the voting
equilibrium for sure. �

Case 3. 1 < τ < 3/2. There are three sets of CCEs: (a) a continuum of CCEs where player
3 does not vote and the group mixes with any probability over (1�0) and (0�1), which is
L; (b) a CCE where α3 = 1 − 1/2τ and the group plays (1�1) with probability 1 − 1/2τ
and (0�0) with probability 1/2τ, which is m2; and (c) a CCE with α3 = 1/τ where, with
probability 1 − 1/2τ, the group mixes over (1�0) and (0�1) while with probability 1/2τ
they play (0�0), which is m1.

Proof. For α3 ≤ 1 − 1/2τ, (1�1) and (0�0) are within-group Nash equilibria along with
a mixed strategy equilibrium. The highest payoff for the group comes from (1�1). For
1−1/2τ < α3 < 1/τ, the game becomes dominance solvable with the unique equilibrium
(0�0). For all higher values of α3, the within-group Nash equilibria are (1�0) and (0�1)
along with the mixed equilibrium. The highest payoff for the group in this case turns
out to be any of the group correlated equilibria with mixing over (1�0) and (0�1). For
these higher values of α3 where 1/τ < α3 and 1 < τ < 3/2, the expected payoff to each
player from the mixed Nash is always strictly less than that from the group correlated
equilibrium average payoff. Indeed, the inequality is 2pτ(1 − α3) < 1/2, which since
α3 > 1/τ > 2/3 reads 4(α3τ − 1)(1 − α3) < 3α3 − 2, that is 4α3τ(1 − α3) < 2 − α3, the left
member is decreasing in α3, and using this and τ < 3/2, we get 4α3τ(1−α3) < 4

3 < 2−α3,
the last inequality from α3 > 2/3.

Thus in this case the group best response correspondence is

(1�1) if α3 ≤ 1 − 1/2τ�

(0�0) if 1 − 1/2τ ≤ α3 ≤ 1/τ�

correlated if 1/τ ≤ α3�

So for any 1 < τ < 3/2, we get three sets of CCEs: (a) α3 = 1 and the group mixes over
(1�0) and (0�1), (b) α3 = 1−1/2τ and the group plays (1�1) with probability 1−1/2τ and
(0�0) with probability 1/2τ, and (c) α3 = 1/τ and with probability 1 − 1/2τ, the group
mixes over (1�0) and (0�1) while with probability 1/2τ they play (0�0), as asserted. �

Case 4. τ > 3/2. There is a continuum of CCEs, where player 3 does not vote and the
group mixes with any probability over (1�0) and (0�1).

Proof. It is seen from group 1 payoff matrix that for α3τ ≤ 1, (1�1) and (0�0) are within-
group Nash equilibria along with a mixed strategy symmetric equilibrium where the
probability say p that a player votes is given by

p= 1 − α3τ

τ
(
2 − 3α3) �
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The highest payoff for the group comes from (1�1). For 1/τ < α3 < 1 − 1/2τ, the game
becomes dominance solvable with the unique within-group equilibrium (1�1). For α3 =
1 − 1/2τ, there are three within-group equilibria—(1�1), (1�0) and (0�1)—and again the
best within-group equilibrium for the group is (1�1).

For α3 > 1 − 1/2τ, the within-group equilibria are (1�0) and (0�1) and the mixed
equilibrium is as above. Turning to the group payoff, the two pure Nash equilibria (NE)
give the same payoff; hence so does any mixture of the two. The alternative to consider
is the mixed equilibrium. In the latter, the expected payoff to each player (say when
player 1 plays 1) is 2pτ(1 − α3); in the former the per-player payoff is 1/2. Recalling that
in the range under consideration α3τ > 1, the condition for the mixed to be better than
the correlated mixtures becomes

2 − α3

4α3(1 − α3) ≤ τ�

In the relevant range, τ > 3/2 and α3 > 1 − 1/2τ imply α3 > 2/3, the left hand side is
increasing, so letting α̂3(τ) solve the above inequality as an equality, we get that the
mixed Nash is better for α3 ≤ α̂3(τ), while the mixture over the two pure Nash is better
for α3 > α̂3(τ). So the group best response correspondence is

(1�1) if α3 ≤ 1 − 1/2τ�

mixed if 1 − 1/2τ < α3 ≤ α̂3(τ)�

correlated if α3 > α̂3(τ)�

Now we can search for collusion constrained equilibria. Player 3’s best response to
the group playing (1�1) is to set α3 = 1. So there cannot be a CCE with α3 ≤ 1 − 1/2τ.
Since player 3’s best response to the group mixing over (1�0) and (0�1) is to again play
α3 = 1, we must also rule out CCE where α̂3(τ) < α3 < 1. The group mixing over (1�0)
and (0�1) with some probability and player 3 choosing α3 = 1 is indeed a CCE. Consider
the possibility of a CCE that involves the group playing the mixed Nash equilibrium and
player 3 mixing too. For player 3 to be indifferent (so as to mix) it must be that p =
1−1/

√
2τ. Now the equilibrium p in the mixed Nash is decreasing in α3 over the relevant

region: it takes values from 1 when α3 = 1 − 1/2τ to (τ − 1)/τ when α3 = 1. Since (τ −
1)/τ > 1 − 1/

√
2τ for τ > 2, for such values of τ we cannot have such a CCE. For 3/2 < τ ≤

2 there does exist an α3 that solves

1 − α3τ

τ
(
2 − 3α3) = 1 − 1√

2τ
�

but the solution has α3 > α̂3(τ), whence there is no CCE in the range 1 − 1/2τ < α3 ≤
α̂3(τ) either.1 �

1Proof of this statement. The displayed equality can be rewritten as 3
√

τ
2 (α

3 − 2
3 ) = 1 − 2τ(1 − α3), while

α3 ≤ α̂3(τ) reads as α3[1+4τ(1−α3)] ≥ 2. Since τ > 3/2, we have 3
√

τ
2 (α

3 − 2
3 ) >

3
2

√
3(α3 − 2

3 ) = √
3( 3

2α
3 −1),



Supplementary Material Supplement to “Collusion constrained equilibrium” 15

Nash Recall that τ̃ ≡ 1/(3 − √
5) ≈ 1�31. We reiterate the payoff matrix for the group for

visibility:

1 0
1 2τ

(
1 − α3)�2τ

(
1 − α3) 0�1

0 1�0 1 − α3τ�1 − α3τ

Case 1. ρ00 <ϒ and α3 = 1. The payoff matrix for the group is

1 0
1 0�0 0�1
0 1�0 1 − τ�1 − τ

If τ < 1, then it is dominant to play 0 and this is not an equilibrium. If τ > 1, then
there are two pure equilibria where one voter in the group votes and these imply ρ00 <ϒ,
so this corresponds to the equilibrium L. The other equilibrium is symmetric and mixed,
and continuing to use p for the probability of voting, the indifference condition is p+ (1−
p)(1 − τ)= 0 or

p= τ − 1
τ

= 1 − 2ϒ�

Here p> 0 requires ϒ ≤ 1/2. The probability that neither player votes is 4ϒ2, which must
satisfy 4ϒ2 <ϒ or ϒ< 1/4. Hence we have an equilibrium of this type (it is L2) if 1/(2τ) <
1/4 or τ > 2. Notice that in this equilibrium the probability that the group wins 1 − 4ϒ2 is
larger than 3/4.

Case 2. ρ00 > ϒ and α3 = 0. Recall that this requires τ ≥ 1/2 (otherwise α3 = 1). The
payoff matrix for the group is

1 0
1 2τ�2τ 0�1
0 1�0 1�1

This coordination game has one pure strategy equilibrium where both vote, which
contradicts ρ00 > ϒ, and one where neither votes, corresponding to the equilibrium S,
which therefore exists for all values of τ ≥ 1/2. It also has a unique symmetric mixed
equilibrium where the indifference condition is p2τ = 1 or p = ϒ. The probability that
neither votes is then (1 − ϒ)2 and the condition is (1 − ϒ)2 > ϒ. This is 1 − 3ϒ + ϒ2 > 0,
which has roots at (3 ± √

5)/2 and is positive only for ϒ smaller than the lesser root (3 −√
5)/2 ≈ 0�38. That is to say, we have an equilibrium of this type when τ > 1/(3 −√

5)= τ̃.
This is L3.

so the equality implies 1 − 2τ(1 − α3) >
√

3( 3
2α

3 − 1), that is, 2τ(1 − α3) < 1 − √
3( 3

2α
3 − 1), whence

α3[1 + 4τ
(
1 − α3)]<α3

[
3 − 2

√
3
(

3
2
α3 − 1

)]
= α3

√
3
[√

3 − (
3α3 − 2

)]
<

2
3

√
3
[√

3 −
(

3
2
3

− 2
)]

= 2�

where the last inequality follows from the fact that in the relevant range α3 ≥ 2/3, the function α3
√

3[√3 −
(3α3 − 2)] is decreasing.
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Case 3. ρ00 =ϒ. Indifferences give the same values of p and α3 as in the case of 1/2 < τ <

1, that is,

p= 1 − 1/
√

2τ = 1 − √
ϒ α3 = 1

τ

2pτ − 1
3p− 1

�

This equilibrium, labeled M , exists for

τ̃ < τ < 3/2�

In addition, for 1 < τ < 3
2 , there is an asymmetric partially mixed equilibrium where one

of the players in the group does not vote and the other votes with probability 1 −ϒ while
α3 = 2ϒ. This is equilibrium A. Notice that this is a special case of m1.

Proof. If both group members mix, we must have symmetry and this gives (1−p)2 =ϒ

or p = 1 − √
ϒ> 0. From the group payoff matrix, we see that if τ < 1/2, then 0 is strictly

dominant, so this is impossible. Assume τ > 1/2. For τ > 1/2, the indifference condition
of player 1 between voting and not voting when pkayer 2 votes with probability p gives
p2τ(1 − α3) = p+ (1 −p)(1 − α3τ), which yields

α3 = 1
τ

2pτ − 1
3p− 1

�

We then plug in p = 1 − √
ϒ and look at the signs of the numerator and denominator

of this expression. The numerator is 2τ(1 − 1/
√

2τ) − 1 = 2τ − √
2τ − 1. This is pos-

itive if and only if 2τ − 1 >
√

2τ, which, since τ > 1/2 is equivalent to (2τ − 1)2 > 2τ,
is 4τ2 − 6τ + 1 > 0. This has roots (3 ± √

5)/4 and is negative in between. Note that
the lesser root is < 1/2. The denominator is positive for 3(1 − 1/

√
2τ) − 1 > 0, that is,

for τ > 9/8. Note that (3 + √
5)/4 = 1/(3 − √

5) > 9/8; hence for τ > 1/2, the numera-
tor and denominator have the same sign if and only if 1/2 < τ < 9/8 (both negative) or
τ > 1/(3 − √

5) (both positive). In the latter case, α3 < 1 requires 2pτ− 1 < 3p− 1, which
is to say 2τ < 3 or τ < 3/2, and in this range this equilibrium exists. In the former case,
α3 ≤ 1 would require 2pτ − 1 ≥ 3p− 1, which is true only for τ ≥ 2, so this range is ruled
out.

Now consider the possibility of only one group member mixing. Say player 1 mixes
while player 2 plays 0 with certainty. It must be that 1 − p1 = ρ00 = ϒ. For player 1 to
be so indifferent, we need α3 = 2ϒ. For player 2 to prefer not voting to voting, we need
(1− 1

2τ )(3−2τ) ≥ 0. Satisfying this inequality along with α3 ≤ 1 gives the range 1 < τ < 3
2 .

So for each 1 < τ < 3
2 , we get two more mixed equilibria, in each of which one group

member plays 0 for sure while the other does so with probability ϒ and α3 = 2ϒ. �

Free enforcement equilibrium Assuming uniform weights in the group utility, group 1
payoffs are 1 −α3τ if neither votes, 1/2 if one votes, and 2τ(1 −α3) if both vote. Recalling
that if ρ00 < 1/(2τ) ≡ ϒ, then α3 = 1, if ρ00 >ϒ, then α3 = 0, and if ρ00 = ϒ, then player 3
is indifferent, equilibrium analysis goes as follows.
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Case 1. ρ00 < ϒ and α3 = 1. Group payoffs are 1 − τ, 1/2, and 0. If 1 − τ > 1/2, that is,
τ < 1/2, the optimum is not to vote and this is an equilibrium since ϒ > 1 for τ < 1/2. If
τ > 1/2, the optimum is for exactly one to vote, leading to the equilibrium L; hence this is
the equilibrium for τ > 1/2.

Case 2. ρ00 >ϒ and α3 = 0. Group payoffs are 1, 1/2, and 2τ. If τ > 1/2, the optimum is
vote, which is not an equilibrium given ρ00 > 0. For τ < 1/2, notice that α3 = 0 cannot be
optimal. So, no equilibrium corresponds to this case.

Case 3. ρ00 = ϒ. This case requires that 1 −α3τ ≥ 1/2�2τ(1 −α3) with at least one equal-
ity.

Case 3a. 1 − α3τ = 1/2 and 1/2 ≥ 2τ(1 − α3). The first equation solves as α3 = ϒ, which
we know requires τ ≥ 1/2. The inequality becomes 1/2 ≥ 2τ(2τ − 1)/(2τ) = 2τ − 1, that is,
τ ≤ 3/4. Hence for 1/2 < τ < 3/4, there is an equilibrium with ρ11 = 0 and α3 = ϒ. This is
M1.

Case 3b. 2τ(1 − α3) = 1 − α3τ and 1 − α3τ ≥ 1/2. The first equation gives α3 = 2 − 1/τ =
2(1 − ϒ). For ϒ we need as usual τ ≥ 1/2. We also need 2 − 1/τ ≤ 1 or 1 ≤ 1/τ or τ ≤ 1.
Plugging into the inequality, we get 1 − (2 − 1/τ)τ ≥ 1/2, which gives τ ≤ 3/4. Hence if
1/2 < τ < 3/4, there is another equilibrium with ρ11 = 1 − ϒ and α3 = 2(1 − ϒ). This is
M2.

Payoff comparisons

We next derive Table S3. For the welfare of all three players combined we have

L�S 
W m2 ⇐⇒ τ > 1/2� L�S 
W m1 ⇐⇒ τ � 1�14�

m1 
W m2 ⇐⇒ τ < τ̃� M1 
W L�S ⇐⇒ τ < 3/4�

For the large group the inequalities are

L 
1 S ⇐⇒ τ > 1/4� L 
1 m1 ⇐= τ > 1�

m1 
1 m2 ⇐⇒ 0�2 < τ < τ̃� M1 
1 M2 ⇐⇒ τ < 3/4�

L
1 M1 ⇐⇒ τ > 1/2� M1 
1 m2 =⇒ τ � 0�85�

M2 
1 m2 ⇐⇒ τ > 1/2� m2 
1 S ⇐= τ > 1/2�

m1 
1 S ⇐⇒ τ > 1/6�

Going in the order of the last display, for the three players we have

L�S 
W m2 ⇐⇒ −1 > −2 + 1
2τ

⇐⇒ 1
2τ

< 1 ⇐⇒ τ > 1/2�

L�S 
W m1 ⇐⇒ −1 > 4 − 4τ − 1
2τ

⇐⇒ 8τ2 − 10τ + 1 > 0
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⇐⇒ 0�11 � τ � 1�14�

m1 
W m2 ⇐⇒ 4 − 4τ − 1
2τ

> −2 + 1
2τ

⇐⇒ 6 − 4τ − 1
τ
> 0

⇐⇒ 4τ2 − 6τ + 1 > 0 ⇐⇒ 0�19 � τ ≤ τ̃�

M1 
W L�S ⇐⇒ 2 − 4τ >−1 ⇐⇒ 3 > 4τ ⇐⇒ τ < 3/4�

For the large group,

L 
1 S ⇐⇒ 2τ − 1 >−2τ ⇐⇒ 4τ > 1 ⇐⇒ τ > 1/4�

L 
1 m1 ⇐⇒ 2τ − 1 > 3 − 2τ − 1
2τ

⇐⇒ 4τ − 4 + 1
2τ

> 0

⇐⇒ 8τ2 − 8τ + 1 > 0 ⇐= τ > 0�85�

m1 
1 m2 ⇐⇒ 3 − 2τ − 1
2τ

> −3 + 2τ + 1
2τ

⇐⇒ 6 − 4τ − 1
τ
> 0

⇐⇒ 4τ2 − 6τ + 1 < 0 ⇐⇒ 0�2 < τ < τ̃�

M1 
1 M2 ⇐⇒ 1 − 2τ > 2τ − 2 ⇐⇒ 3 > 4τ�

L 
1 M1 ⇐⇒ 2τ − 1 > 1 − 2τ ⇐⇒ 4τ > 2�

M1 
1 m2 ⇐⇒ 1 − 2τ >−3 + 2τ + 1
2τ

⇐⇒ 8τ2 − 8τ + 1 < 0

⇐⇒ 0�15 � τ � 0�85�

M2 
1 m2 ⇐⇒ 2τ − 2 >−3 + 2τ + 1
2τ

⇐⇒ 1 >
1

2τ
⇐⇒ τ > 1/2�

m2 
1 S ⇐⇒ −3 + 2τ + 1
2τ

>−2τ ⇐⇒ 8τ2 − 6τ + 1 > 0 ⇐= τ > 1/2�

m1 
1 S ⇐⇒ 3 − 2τ − 1
2τ

> −2τ ⇐⇒ 3 >
1

2τ
⇐⇒ τ > 1/6�

We check that it is always the case that M ≺W S�L. Indeed this is equivalent to 1 −
2τ+2

√
2τ−√

2τ
3
2 −1+3τ

3−2
√

2τ
<−1, that is, 2−2τ+2

√
2τ−√

2τ
3
2 −1+3τ

3−2
√

2τ
< 0. In the relevant range, the

denominator in the fraction is always negative, so after multiplying, we get (2 − 2τ)(3 −
2
√

2τ)+2(
√

2τ−τ
√

2τ−1+3τ) > 0, which simplifies to 2
√

2[√2−√
τ+τ

√
τ] > 0, which

is true for every τ > 0.

Electoral outcome probabilities

Finally we find the electoral outcome probabilities. Electoral outcome probabilities are
also elementarily obtained. Recall that H = ρ11(1 − α3), D = (1 − α3)(1 − ρ00 − ρ11), and
� = α3(1 − ρ00)+ (1 − α3)ρ11; we just have to apply these formulas.

We follow the order of the table. In S, we have H = D = � = 0. In L, the only differ-
ence is � = 1.

In m1, we have α3 = 1
τ , ρ00 = 1

2τ , and ρ10 +ρ01 = 1 − 1
2τ , so H = 0, D = (1 − 1

τ )(1 − 1
2τ ),

and � = 1
τ (1 − 1

2τ ).
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In m2, it is α3 = 1 − 1
2τ , ρ00 = 1

2τ , and ρ11 = 1 − 1
2τ , so H = (1 − 1

2τ )
1

2τ , D = 0, and
� = (1 − 1

2τ )
2 + (1 − 1

2τ )
1

2τ = 1 − 1
2τ .

In M1, we have α3 = 1
2τ , ρ00 = 1

2τ , and ρ10 + ρ01 = 1 − 1
2τ , so H = 0, D = (1 − 1

2τ )
2, and

� = 1
2τ (1 − 1

2τ ).
Finally, in M2, we have α3 = 2(1 − 1

2τ ), ρ00 = 1
2τ , and ρ11 = 1 − 1

2τ , so H = (1 − 1
2τ )[1 −

2(1 − 1
2τ )] = (1 − 1

2τ )(
1
τ − 1), D = 0, and � = 2(1 − 1

2τ )(1 − 1
2τ )+ [1 − 2(1 − 1

2τ )](1 − 1
2τ ) =

1 − 1
2τ .
For the ranges of H in m2 and M2, and of D in m1 and M1, we have the following

equalities.
Range H in m2: Up from 0 for τ = 1/2 to 2/9 for τ = 3/4, still up to 1/4 for τ = 1, and

then down to 2/9 again for τ = 3/2.
Range H in M2: Up from 0 for τ = 1/2 to 1/8 for τ = 2/3, then down to 1/9 for τ = 3/4.
Range D in m1: Up from 0 for τ = 1 to 2/9 for τ = 3/2.
Range D in M1: Up from 0 for τ = 1/2 to 1/9 for τ = 3/4.
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