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Appendix

Proof of Prop. 2. Let D = fi; j; 3j; k; 2k; l; 3l;m; 2m;ng ; for

i = co f(0; 0) ; (12; 0) ; (0; 12)g

j = co f(0; 0) ; (3; 0) ; (2; 2) ; (0; 2)g

k = co f(0; 0) ; (3; 0) ; (2; 2) ; (0; 2:5)g

l = co f(0; 0) ; (2; 0) ; (2; 2) ; (0; 3:5)g

m = co f(0; 0) ; (2:5; 0) ; (2; 2) ; (0; 3:5)g

n = co f(0; 0) ; (6; 0) ; (4; 4) ; (0; 7)g :

The ten domains are illustrated in Figure 1.

1. The Nash theorem holds on D:
�CNRS, Université Paris-Descartes, Sciences Po, CORE (Université catholique de Louvain) and IDEP.
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Figure 1: The domain used in the proof of Prop. 2

By WP and Sym, '(i) = N(i) = (6; 6): By Ind, '(3j) = N(3j) = (6; 6) and '(3l) =

N(3l) = (6; 6): By ScInv, '(j) = N(j) = (2; 2) and '(l) = N(l) = (2; 2):

By Ind, '(k) must be on the segment (2; 2) (0; 2:5) and '(m) must be on the segment

(2:5; 0) (2; 2) : By ScInv, '(2k) must be on the segment (4; 4) (0; 5) and '(2m) must be

on the segment (5; 0) (4; 4) : Therefore, by Ind, '(n) must be on the segment (4; 4) (0; 7)

and on the segment (6; 0) (4; 4) ; which implies that '(n) = N(n) = (4; 4):

Then, by Ind, '(2k) = N(2k) = (4; 4) and '(2m) = N(2m) = (4; 4). By ScInv,

'(k) = N(k) = (2; 2) and '(m) = N(m) = (2; 2), which completes the proof.

2. Consider the following strategy for the Judge (it is illustrated in Fig. 1):

- for i; pick N(i) or (9; 3), whichever has lower penalty (this clause applies to all choices

below);
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- for j; pick N(j) or (2:5; 1);

- for 3j; pick N(3j) or (7:5; 3);

- for k; pick (1; 2:25) or (2:5; 1);

- for 2k; pick (2; 4:5) or (5; 2);

- for l; pick N(l) or (1; 2:75);

- for 3l; pick N(3l) or (3; 8:25);

- for m; pick (2:25; 1) or (1; 2:75);

- for 2m; pick (4:5; 2) or (2; 5:5);

- for n; pick (5; 2) or (2; 5:5).

Note that for the sets k; 2k; m; 2m and n; the Nash point is not one of the points

possibly selected by this strategy. We now prove that whatever the previous sequence

of problems (it)t=1;:::;T�1 (including the case in which there is no previous sequence and

T = 1); if this strategy has been followed on t = 1; :::; T�1 the Judge can always minimize

penalty by sticking to the strategy in T . We consider a general system of penalties: the

penalty attached to WP, Sym, ScInv, Ind is, respectively, a; b; c; d (with discounting by �

for the last two).

In order to check that the strategy is optimal, we have to check that its recommen-

dations minimize the penalty in every set of the domain. In every set, we will ignore the

points which do not belong to the upper frontier, as every such point always entails a

greater penalty (due to WP) than some point on the frontier.

- For i : the choice in @i is constrained only by Sym, and by choices made in i; 3j and 3l:

Let

T1 = ft < T j (it; xt) = (3j; (7:5; 3)) or (3l; (3; 8:25))g ;

T 01 = ft < T j (it; xt) = (i; N(i))g ;

T 001 = ft < T j (it; xt) = (i; (9; 3))g :
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The penalty for choosing N(i) is
P

t2T1 �
T�td +

P
t2T 001

�T�t (c+ d) : The penalty for

choosing (9; 3) is b +
P

t2T 01
�T�t (c+ d) : The penalty for choosing any other point on @i

is b+
P

t2T 01[T 001
�T�t (c+ d) : The last value is never lower than the penalty for (9; 3); and

therefore the Judge minimizes the penalty by choosing either N(i) or (9; 3); as dictated

by the strategy.

Observe that the reasoning can be simpli�ed. The penalties due to previous choices

made in i push toward making the same choices as previously and therefore reinforce the

contemplated strategy. In the sequel we will ignore the penalties due to previous choices

in the same set. If we can prove that the strategy minimizes the sum of the remaining

penalties, a fortiori it minimizes the complete sum of penalties.

- For j : the choice in @j is constrained only by choices made in 3j and in k (ignoring j

itself).

Let T2 = ft < T j (it; xt) = (3j; (7:5; 3))g ; T3 = ft < T j (it; xt) = (k; (2:5; 1))g ; T4 =

ft < T j (it; xt) = (3j;N(3j))g :

The penalty for choosing N(j) is
P

t2T2 �
T�tc+

P
t2T3 �

T�td: The penalty for choosing

(2:5; 1) is
P

t2T4 �
T�tc: The penalty for choosing any other point on @j is the sum of these

penalties. Whichever of the �rst two values is lower, it can be obtained by the strategy.

- For k : the choice in @k is constrained only by choices made in j and in 2k (ignoring k

itself).

Let T5 = ft < T j (it; xt) = (2k; (5; 2))g ; T6 = ft < T j (it; xt) = (2k; (2; 4:5))g ; T7 =

ft < T j (it; xt) = (j;N(j))g :

The penalty for choosing (1; 2:25) is
P

t2T5 �
T�tc: The penalty for choosing (2:5; 1)

is
P

t2T6 �
T�tc +

P
t2T7 �

T�td: The penalty for choosing any other point is at leastP
t2T5[T6 �

T�tc: This is necessarily as least as great as the lowest of the �rst two val-

ues because for non-negative numbers x; y; z one always has x+ y � min fx; y + zg :

- For 3j : the choice in @j is constrained only by choices made in i and in j (ignoring 3j

itself).

4



Let T8 = ft < T j (it; xt) = (j; (2:5; 1))g ; T9 = ft < T j (it; xt) = (j;N(j))g ; T10 =

ft < T j (it; xt) = (i; N(i))g :

The penalty for choosing N(3j) is
P

t2T8 �
T�tc: The penalty for choosing (7:5; 3) isP

t2T9 �
T�tc +

P
t2T10 �

T�td: The penalty for choosing any other point on @3j is the sum

of the previous two values,
P

t2T8[T9 �
T�tc+

P
t2T10 �

T�td:

- For 2k : the choice in @2k is constrained only by choices made in k and in n (ignoring

2k itself).

Let T12 = ft < T j (it; xt) = (k; (1; 2:25))g ; T13 = ft < T j (it; xt) = (k; (2:5; 1))g ;

T14 = ft < T j (it; xt) = (n; (5; 2))g :

The penalty for choosing (5; 2) is
P

t2T12 �
T�tc: The penalty for choosing (2; 4:5) isP

t2T13 �
T�tc +

P
t2T14 �

T�td: Any other point on @2k incurs
P

t2T12[T13 �
T�tc at least,

which is not less than the lowest of the �rst two values.

- The cases of l;m; 3l; 2m are similar to, respectively, j; k; 3j; 2k:

- For n : the choice in @n is constrained only by choices made in 2k and in 2m (ignoring

n itself).

Let T15 = ft < T j (it; xt) = (2k; (2; 4:5))g ; T16 = ft < T j (it; xt) = (2m; (4:5; 2))g :

The penalty for choosing (5; 2) is
P

t2T15 �
T�td: The penalty for choosing (2; 5:5)

is
P

t2T16 �
T�td: Any other point on @n incurs at least one of the two penalties. This

concludes the proof.

Proof of Prop. 4. If: Let ' be any solution onD satisfying the axioms WP, Sym, ScInv

and IMon. Let i 2 D: By Condition (CKS) there is a special chain j1; : : : jn beginning at

i: By Sym, '(jn) = KS(jn) and one can roll back along the special chain to i; and at

each step '(jk) = KS(jk) either by IMon (case (i)) or by ScInv (case (ii)). For k = 1, we

have '(i) = KS(i): It follows that ' = KS on D:

Only if: 1. For all solutions ' and all problems k; i 2 D such that either k � i or

k � i; let C'(k; i) denote the constraint imposed on '(k) by '(i); IMon and WP, i.e.,

C'(k; i) is the subset of @k such that IMon is not violated if '(k) 2 C'(k; i); given '(i).
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Speci�cally, there are eight cases:

(i) I(k) = I(i) and '(i) 2 @k: Then C'(k; i) = f'(i)g :

(ii) I(k) = I(i) and '(i) 2 k n @k: Then C'(k; i) = fx 2 @k j x � '(i)g :

(iii) I(k) = I(i) and '(i) =2 k: Then C'(k; i) = fx 2 @k j x � '(i)g :

(iv) I1(k) = I1(i) and I2(k) < I2(i): Then C'(k; i) = fx 2 @k j x2 � '2(i)g :

(v) I1(k) = I1(i) and I2(k) > I2(i): Then C'(k; i) = fx 2 @k j x2 � '2(i)g :

(vi) I1(k) < I1(i) and I2(k) = I2(i): Then C'(k; i) = fx 2 @k j x1 � '1(i)g :

(vii) I1(k) > I1(i) and I2(k) = I2(i): Then C'(k; i) = fx 2 @k j x1 � '1(i)g :

(viii) I1(k) 6= I1(i) and I2(k) 6= I2(i): Then C'(k; i) = @k:

Note that if ' satis�es WP and '(k) 2 C'(k; i); necessarily '(i) 2 C'(i; k): This can

be checked for each case:

(i) This also corresponds to case (i) for i : '(k) = '(i) and C'(i; k) = C'(k; i):

(ii) This corresponds to case (iii) for i : As '(i) 2 k n @k, '(k) > '(i); '(k) =2 i and

C'(i; k) = fx 2 @i j x � '(k)g :

(iii) This corresponds to case (ii) for i : As '(i) =2 k; '(k) < '(i); '(k) 2 i n @i and

C'(i; k) = fx 2 @i j x � '(k)g :

(iv) This corresponds to case (v) for i : '2(k) � '2(i) and C'(i; k) =

fx 2 @i j x2 � '2(k)g :

(v) This corresponds to case (iv) for i : '2(k) � '2(i) and C'(i; k) =

fx 2 @i j x2 � '2(k)g :

(vi),(vii) are treated similarly.

(viii): This also corresponds to case (viii) for i and C'(i; k) = @i:

2. Let D+ denote the subset of D containing the problems i at which a special chain

begins. We must show that D+ = D if the Kalai-Smorodinsky theorem holds on D:

Suppose that D nD+ is not empty. For every k 2 D nD+:

1) k is not symmetric because symmetric problems are in D+;

2) k is not a rescaling of a problem i 2 D+ because otherwise k; i; ::: starts a special chain
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beginning at k, implying that k 2 D+;

3) k can be related by IMon to a problem i 2 D+. But necessarily, either I(k) 6= I(i) or

KS(i) =2 @k; otherwise, a special chain beginning at k can be formed and thus k 2 D+:

The set D n D+ can be partitioned into the equivalence classes of the equivalence

relation �is a rescaling of�. Say that two equivalence classes E;E 0 are �linked� if there

is i 2 E; i0 2 E 0 such that I(i) = I(i0); KS(i) = KS(i0); and either i � i0 or i � i0:

The relation �is linked to� is not transitive in general because it may happen that, for

a particular triple E;E 0; E 00; E and E 0 are linked via two problems i; i0; E 0 and E 00 are

linked via j0; j00; and E and E 00 are not linked. We will also be interested in its transitive

closure, called �directly or indirectly linked to�.

3. Pick one particular equivalence class E� (for the rescaling relation) and all the

equivalence classes that are directly or indirectly linked to it. Call the union of these

classes D�: This is a subset of D nD+ (not necessarily a proper subset).

Pick a member of E�, i�: E� and i� will play a special role in the rest of the proof.

If D� 6= E�; let E be any other equivalence class in D�: Consider �rst the case in which

the equivalence classes E and E� are linked by two problems i 2 E; j� 2 E�: Therefore

there exists (not necessarily in E) a rescaling of i; denoted iE; such that I(i�) = I(iE);

KS(i�) = KS(iE); and either i� � iE or i� � iE: Consider now the case in which E and

E� are only indirectly linked (which means that they are not linked but are directly or

indirectly linked). One can then pick an arbitrary i in E and construct a rescaling of i;

denoted iE; such that I(i�) = I(iE): (In this case there is no guarantee that KS(i�) =

KS(iE); i
� � iE or i� � iE:)

For every equivalence class E in D�; one can construct such a iE following the ap-

proach described for each of the two cases in the previous paragraph. The problems iE

may or may not belong to D�: Let D�� be the (possibly empty) subset of these problems

iE that do not belong to D�: Note that D�� \ D+ = ?; because if one had iE 2 D+;

any k 2 E; being a rescaling of iE; would then be the beginning of a special chain,

7



contradicting the fact that E \D+ = ?:

4. Consider any two problems k 2 D�; i 2 D nD�: Suppose that k is related to i by

IMon, which implies that k � i or k � i. Necessarily, either I(k) 6= I(i) or KS(i) =2 @k;

as we now show. First, suppose that i 2 D+: Then I(k) = I(i) and KS(i) 2 @k would

imply that k 2 D+; a contradiction. Second, suppose that i 2 D n D+: In this case,

I(k) = I(i) and KS(i) 2 @k would imply that the equivalence classes of k and i are

linked, contradicting the fact that k 2 D� and i 2 D nD�:

We now derive consequences from the fact that either I(k) 6= I(i) or KS(i) =2

@k whenever k 2 D� and i 2 D n D� are related by IMon. Consider �rst the

case I(k) 6= I(i): Four subcases are possible: CKS(k; i) = fx 2 @k j x2 � KS2(i)g ;

CKS(k; i) = fx 2 @k j x2 � KS2(i)g ; CKS(k; i) = fx 2 @k j x1 � KS1(i)g ; CKS(k; i) =

fx 2 @k j x1 � KS1(i)g : Focus on the �rst subcase, the other subcases being similar. Be-

cause this �rst subcase corresponds to k � i; I1(k) = I1(i) and I2(k) < I2(i); one then

has KS2(k)=KS1(k) < KS2(i)=KS1(i): As k � i; the point x̂ 2 @k such that x̂2 = KS2(i)

(which belongs to CKS(k; i)) satis�es x̂1 � KS1(i) and thus x̂2=x̂1 � KS2(i)=KS1(i):

Therefore KS(k); which is obviously an element of CKS(k; i); satis�es KS2(k)=KS1(k) <

x̂2=x̂1 and is not an extreme point of CKS(k; i). Consider the second case, KS(i) =2 @k:

As the subcase in which I(k) 6= I(i) has already been examined, we can focus on the

subcase in which I(k) = I(i): One then has either KS(k) � KS(i) or KS(k) � KS(i)

and again KS(k) is not an extreme point of CKS(k; i).

5. For every k 2 D�; let C(k) =
T
i2DnD� CKS(k; i): This set contains KS(k) and

KS(k) is not an extreme point of it, because these two properties are satis�ed by each of

the CKS(k; i); of which there is a �nite number.

Take any k� 2 D�: Let E be its equivalence class. For every k 2 E; there is � 2 R2++
such that k� is an �-rescaling of k: Let Cjk� (k) denote the �-rescaling of C(k): This is a

subset of @k�: Note that KS(k�) is an �-rescaling of KS(k): As KS(k) is a non-extreme

element of C(k); then KS(k�) is a non-extreme element of Cjk� (k): Therefore the subset
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T
k2E Cjk� (k) contains KS(k�) and KS(k�) is not an extreme point of this subset. Let

C�(k�) denote this subset. Note that when k is a rescaling of k0; C�(k) is a rescaling of

C�(k0):

Take any iE 2 D��; where E is an equivalence class in D�: Recall that iE =2 D� but

iE is a rescaling of each member of E: The subset
T
k2E CjiE (k) contains KS(iE) and

KS(iE) is not an extreme point of this subset. Let C�(iE) denote this subset. Note that

for all k 2 E; C�(iE) is a rescaling of C�(k):

6. Now let us look again at the particular i� and all the iE (that may belong

to D� or D��) that were introduced in step 3. One has I(i�) = I(iE) and therefore

KS2(i
�)=KS1(i

�) = KS2(iE)=KS1(iE) for all E in D�; while KS(i�) is not an extreme

point of C�(i�) just as KS(iE) is not an extreme point of C�(iE): Therefore there is

� 2 R2++; � 6= KS2(i�)=KS1(i�) such that the point x 2 @i� such that x2=x1 = � belongs

to C�(i�) and for all E in D�; the point x 2 @iE such that x2=x1 = � belongs to C�(iE):

Now we are ready to de�ne a solution ' as follows. On D nD�; it coincides with KS:

For k 2 D�; there is � 2 R2++ and E in D� such that k is an �-rescaling of iE (or i�); then

'(k) is the point x 2 @k such that x2=x1 = (�2=�1)�: Note that, as C�(k) is a �-rescaling

of C�(iE) (or of C�(i�)), this implies that '(k) 2 C�(k):

7. It is obvious that ' satis�es WP, Sym and ScInv. It also obviously satis�es IMon

on D nD�.

Consider two problems k 2 D�; i 2 DnD� that are related by IMon. By construction,

'(k) 2 C�(k) � C(k) � CKS(k; i) = C'(k; i); where the last equality is due to '(i) =

KS(i): And conversely this implies '(i) 2 C'(i; k):

Consider two problems i; k 2 D� that are related by IMon. First case: If they

belong to the same equivalence class, IMon is satis�ed because it is implied by ScInv in

this case. Second case: Suppose i is a rescaling of iE; k a rescaling of iE0 (one problem

among iE; iE0 may be i�). One has '2(iE)='1(iE) = '2(iE0)='1(iE0) = �: Without loss

of generality, suppose that i � k and I1(i) = I1(k): If I2(i) = I2(k); then i and k are
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�-rescalings of iE and iE0 ; respectively, for the same � (recall that I(iE) = I(iE0) = I(i�)).

Then '2(i)='1(i) = '2(k)='1(k) = (�2=�1)� and IMon is satis�ed. If I2(i) < I2(k);

then '2(i)='1(i) = (�2=�1)� and '2(k)='1(k) = (�
0
2=�1)� for some �1; �2; �

0
2 such that

�2 < �
0
2: IMon would be violated if one had '2(k) < '2(i): This inequality is equivalent

to

'2(k) = '1(k)(�
0
2=�1)� < '1(i)(�2=�1)� = '2(i);

'1(k)(�
0
2=�2) < '1(i):

One would then obtain '(i)� '(k); contradicting the fact that i � k and that ' satis�es

WP. Therefore IMon is satis�ed.

The solution ' coincides with KS only on D nD�; which shows that if D nD+ is not

empty, the Kalai-Smorodinsky theorem does not hold on D. This achieves the proof of

the "only if" part of the proposition.

10


