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The folk theorem with imperfect public information in
continuous time
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We prove a folk theorem for multiplayer games in continuous time when play-
ers observe a public signal distorted by Brownian noise. The proof is based on
a rigorous foundation for such continuous-time multiplayer games. We study in
detail the relation between behavior and mixed strategies, and the role of public
randomization to move continuously across games within the same model.
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1. Introduction

Folk theorems constitute a set of key results in the theory of discrete-time repeated
games. These theorems state that the set of equilibrium payoffs expands to the set of all
feasible and individually rational payoffs V∗ as players are increasingly patient. A cen-
tral requirement for the standard folk theorem to hold is that profitable deviations from
strategy profiles can be detected. Clearly, this is satisfied if players perfectly observe each
other’s actions. When players observe only a public outcome with noise, players’ devi-
ations need to be sufficiently identifiable, that is, deviations of different players can be
statistically distinguished. Under suitable identifiability assumptions, Fudenberg et al.
(1994) establish the folk theorem in these games of imperfect public information.

A continuous-time analogue to these important games of moral hazard has been
introduced by Sannikov (2007). He studies a class of continuous-time games with two
players, where the public signal is distorted by Brownian noise and players’ actions affect
the drift rate of the signal. Rather than focusing on a folk theorem, Sannikov (2007)
characterizes the set of pure strategy equilibrium payoffs via a differential equation of
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its boundary ∂Ep(r) for any discount rate r > 0. His paper offers seminal insight into
continuous-time games, but his techniques rely heavily on using an ordinary differential
equation, which is only possible in two-player games.

The purpose of this paper is to prove the folk theorem in an extension of these games
to any number of players. In the course of this, we have to construct continuous-time
perfect public equilibria (PPE) that achieve nearly efficient payoffs. Our construction of
equilibrium profiles resembles the iterative procedures of discrete time, in the sense that
the equilibrium profiles are constructed using a local optimality condition on random
time intervals [0� τ1)� [τ1� τ2)� � � � for a suitable increasing sequence of stopping times
(τ�)�≥0 with τ� → ∞. Similarly to Fudenberg et al. (1994), the proof of the folk theorem
can be summarized in the following two main steps:

Step 1. Under suitable identifiability conditions, any smooth closed set W ⊆ intV∗
is locally self-generating, that is, for any w ∈ W , there exists a neighborhood Uw and a
discount rate rw such that any payoff v ∈ Uw ∩ W is attained by the same enforceable
strategy profile for any r ∈ (0� rw) with a continuation value that remains in W for a time
interval [τ�� τ�+1) of positive length.

Step 2. For a sufficiently small discount rate, any compact locally self-generating set
is self-generating, i.e., payoffs can be attained with a continuation value that remains in
W forever.

In continuous-time games, the continuation value of a strategy profile is character-
ized by a stochastic differential equation (SDE) similar as in Sannikov (2007). Step 1 thus
requires us to find a solution to an SDE that remains in W up to a suitable stopping
time. The uniformity condition means that these solutions exist on a fixed probability
space for the entire neighborhood Uw, that is, locally, these are strong solutions to the
SDE. This is important when we concatenate these local solutions to a global solution in
Step 2: by compactness of W , we have to deal with only finitely many probability spaces
and it is thus easy to define an enlarged probability space that contains the concatena-
tion. However, requiring that these local solutions are strong solutions in the definition
of local self-generation creates additional difficulties in proving Step 1, as the conditions
for the existence of strong solutions are much more stringent than for weak solutions.
Nevertheless, we are able to show that local self-generation holds under suitable iden-
tifiability conditions. These conditions are essentially the same as in discrete time, plus
an additional condition to ensure that strong solutions exist in a neighborhood of coor-
dinate payoffs, i.e., payoffs that maximize or minimize a player’s payoff on W .

Requiring strong solutions to the SDE in Step 1 above entails that the local strat-
egy profiles are constant. The constructed equilibrium profiles are therefore constant
on each of the intervals [τ�� τ�+1), which is a very desirable feature from both an im-
plementation and an interpretation standpoint. Indeed, the finite variation property of
the equilibrium profiles precludes strategies of unbounded oscillation, that is, agents do
not switch actions infinitely often in finite time. Note also that agents adapt their strate-
gies only at stopping times (τ�)�≥0. This leads to the interpretation of a continuously
repeated game as a discretely repeated game where the length of the periods is not fixed
but random. Indeed, on each of these intervals of random length, equilibrium profiles
are constant and the corresponding SDE has a strong solution. This is consistent with
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discrete games, where the sampled random variable at time t is necessarily fixed on the
interval [t� t +�).

Our methods indicate that rather than approximating the continuous-time world
by discrete-time models with fixed time intervals, one should consider approximations
where the length of a period is random. This construction avoids the “chattering phe-
nomenon” that arises in optimal control when passing from discrete to continuous time.
In comparison, consider a discrete-time game where players observe cumulative out-
comes of a diffusion process at fixed times ��2�� � � � . Because it is not possible to bound
the change in the public signal with fixed times as it is with stopping times, strategy pro-
files in the limit as � → 0 will typically exhibit unbounded oscillation or one has to con-
sider weaker forms of convergence as in Staudigl and Steg (2014). Thus, one can only
obtain well implementable solutions in the above sense either by directly working in a
continuous-time setting or by defining a suitable sequence of discrete games where the
time periods are of random length.

Not only is this paper the first to formally model continuously repeated games with
any finite number of players, but it is also the first paper to introduce continuous-time
strategies in mixed actions in games of imperfect public monitoring and to establish
the continuous-time analogue of Kuhn’s theorem (realization equivalence of behavior
strategies and mixed strategies). Additional results include a square-root law, establish-
ing that changes in the discount rate r, the drift rate m, or the volatility σ of the pub-
lic signal do not affect the game as long as the informativeness of the signal relative to
the players’ discounting σ	(σσ	)−1m/

√
r remains constant. This is similar in spirit to

a square-root law that is obtained in Faingold and Sannikov (2011) and the news de-
pendence of equilibria in Daley and Green (2012). In contrast to their results, however,
we show that equilibrium strategies are transformed with a time change, and that the
time-changed equilibria give rise to exactly the same path of the continuation values, at
a different speed. Moreover, we show that public randomization can be used to move
continuously over games within the same class of games when σ	(σσ	)−1m/

√
r is in-

creased. Together, these two results imply that E(r) is monotonic in the discount rate if
players have access to a public randomization device.

While we study directly the continuous-time situation rather than a discrete-time
approximation, we briefly mention some recent literature on the connection between
discrete and continuous time in relation to the folk theorem. Fudenberg and Levine
(2007) analyze a specific example between one long-lived and one short-lived player,
where efficient limit equilibria can be obtained as the length of the time period � shrinks
to 0 if the long-lived player’s actions affect the volatility of the Brownian signal. Sannikov
and Skrzypacz (2010) consider games between two long-lived players, where the public
signal has both a Brownian and a Poisson component, and players’ actions affect the
drift of the Brownian motion and the intensity of the Poisson jumps. Building upon the
methods of Fudenberg et al. (1994), they show a folk theorem uniformly for small � and
highlight the different impacts of Brownian and Poisson signals. Osório (2012) studies a
model where players’ actions incur pairwise identifiable jumps in the signal otherwise
given by a Brownian motion. As � goes to 0, the signal becomes perfectly informative
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and a folk theorem is obtained. This is similar to discrete-time repeated games with
perfect monitoring, where r → 0 and � → 0 have the same effect.

The remainder of the paper is organized as follows. We introduce the continuous-
time model with strategies in mixed actions in Section 2. Section 3 states and discusses
our main results and highlights some of the similarities and differences between dis-
crete and continuous time. The proofs of all main results are contained in Section 4.
In Appendix A, we provide a mathematical framework for continuous-time strategies
in mixed actions and prove the continuous-time analogue of Kuhn’s theorem. Simi-
larly to discrete time, the role of mixing is to weaken the conditions under which the
folk theorem holds. When players are restricted to pure strategies, the same tech-
niques can be used to construct equilibrium profiles, but the conditions need to be
strengthened as we explain in the supplementary file available on the journal website,
http://econtheory.org/supp/1687/supplement.pdf. Appendix B shows how we use pub-
lic randomization to prove monotonicity of the equilibrium payoff set in the discount
rate. Finally, Appendices C and D contain proofs of auxiliary results.

2. The multiplayer setting

2.1 The model

We consider a multiplayer game, where agents i = 1� � � � � n continuously take actions
from the finite sets Ai at each moment of time t ∈ [0�∞). Players may be allowed to mix
their actions, in which case they continuously choose an element from �(Ai), the set of
distributions over Ai. We denote by A = A1 × · · · × An and �(A) = �(A1) × · · · × �(An)

the spaces of pure and mixed action profiles, respectively. Agents cannot see their oppo-
nents’ actions and observe only the outcome of a public signal Y = σZ instead, where
the constant volatility matrix σ ∈ Rd×k is of rank d and Z is a k-dimensional Brownian
motion on some probability space (	�F�P). The arrival of public information is cap-
tured by the filtration F = (Ft )t≥0. It can be strictly larger than the filtration generated
by Y to allow for public randomization, but this is not needed in our proof of the folk
theorems.1

Definition 1. A (public) behavior strategy of player i is an F-progressively measurable
stochastic process Ai : 	× [0�∞)→ �(Ai).

Distributions in �(Ai) may be degenerate, so that behavior strategies contain pure
strategies as special cases. A function m : A → Rd describes the impact that a chosen
pure action profile has on the drift rate of the public signal. The drift rate is extended to
any mixed action profile α ∈ �(A) by multilinearity, that is,

μ(α)=
∑
a∈A

m(a)α1(a1) · · ·αn(an)� (1)

1In continuously repeated games it is currently unknown whether the PPE payoff set E(r) is monotonic
in the discount rate r. Hence, even when the folk result applies, E(r) may not expand monotonically to V∗
without public randomization. Using public randomization, we are able to show monotonicity of E(r) with
an appropriate time change; see Theorem 3.

http://econtheory.org/supp/1687/supplement.pdf
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The choice of a strategy profile affects the future distribution of the public signal through
a change of the probability measure. This is the natural analogue to taking expecta-
tions under conditional distributions in discrete time; see, for example, Fudenberg et al.
(1994, p. 1000). Strategy profile A induces a family QA = (QA

t )t≥0 of probability mea-
sures, defined via its density process

dQA
t

dP
:= exp

(∫ t

0
μ(As)

	(σσ	)−1 dYs − 1
2

∫ t

0
μ(As)

	(σσ	)−1μ(As)ds
)
� (2)

under which players observe the game when strategy profile A is played. Under this
family of probability measures, the public signal can be decomposed into

Y =
∫

μ(As)ds + σZA�

where ZA := Z − ∫
σ	(σσ	)−1m(As)ds is a Brownian motion on [0� t] under QA

t by
Girsanov’s theorem. That is, from the players’ perspective, the signal Y consists of a
drift term given by μ(A) and Brownian noise.

Remark 1. Because independence is always subject to a certain probability measure, a
change of measure might affect the outcome of mixed actions. We assert in Lemma 14
that mixed actions remain unaffected by the change of measure in (2).

Anderson (1984) and Simon and Stinchcombe (1989) demonstrate that seemingly
simple strategies need not necessarily lead to unique outcomes in continuous time. This
is not a problem in our model because actions taken by agents do not immediately gen-
erate information. Indeed, since the normal distribution has unbounded support, any
realization of the signal is possible after play of any strategy profile. Therefore, these are
games of full-support public monitoring. Restricting attention to public strategies also
means that the probability space can be identified with the path space of all publicly
observable processes. For a realized path ω ∈ 	, a pure strategy profile A thus naturally
leads to the unique outcome A(ω).2 This is analogous to discrete-time repeated games
with full-support public monitoring; see Mailath and Samuelson (2006) for a thorough
exposition of discrete-time games.

Players i = 1� � � � � n receive an expected flow payoff according to gi : A → R that de-
pends on the action profile a−i of player i’s opponents only through m(a).3,4 Again, gi is
extended to mixed action profiles by multilinearity at all times.

2For nondegenerate behavior strategy profiles, the outcome of strategy profile A additionally includes
the outcome of players’ mixing. See Appendix A for the construction of a unified probability space on which
these outcomes live.

3This is the most general payoff structure in continuous-time games of imperfect public information.
Compare this to discrete-time repeated games, where players receive an expected instantaneous payoff
gi(At)= EQA

t
[f i(Ai

t � Ỹ )|Ft ], where Ỹ = Yt+1 −Yt is the change in the public signal. In continuous time, the

infinitesimal change in the public signal dYt has drift m(At)dt under QA.
4Because Brownian information can only be used to transfer value linearly, we need to impose an affine

payoff structure gi(a) = bi(ai)m(a)− ci(ai) to show that Pareto-efficient payoffs are enforceable. This spe-
cial payoff structure is used in Theorem 2, but not in our other main results. For pure strategy profiles,
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Definition 2. Let r > 0 be a common discount rate. Player i’s discounted expected fu-
ture payoff under a behavior strategy profile A at time t is given by

W i
t (A; r) :=

∫ ∞

t
re−r(s−t)EQA

s
[gi(As)|Ft]ds� (3)

We will omit the argument r when there is no chance of confusion. Because dis-
counted expected future payoffs are normalized, Wt(A) lies in the set of feasible payoffs
V := conv{g(a)|a ∈A} at all times t ≥ 0 with probability 1.

Definition 3. A behavior strategy profile A is a perfect public equilibrium (PPE) for
discount rate r if for every player i = 1� � � � � n and every t ≥ 0, we have

W i
t (A; r) ≥W i

t (Ã; r) a.s.

for all public behavior strategy profiles Ã with Ã−i = A−i a.e.5 We denote the set of
payoffs achievable by perfect public equilibria by

E(r) := {x ∈ V|there exists a PPE A with W0(A; r) = x a.s.}�

Similarly to discrete time, any player has a public best response to any public strategy
profile of his opponents; see Lemma 15. Therefore, in a PPE, any player i = 1� � � � � n can
ensure that his payoff rate dominates his minmax payoff

vi = min
α−i

max
ai∈Ai

gi(ai�α−i)

at all times by myopically maximizing against his opponents’ strategy profile. Therefore,
E(r) ⊆ V∗, where V∗ := {w ∈ V|wi ≥ vi ∀i} denotes the set of feasible and individually
rational payoffs.

2.2 Enforceable strategy profiles and self-generation

Definition 4. An action profile α is said to be enforceable if there exist sensitivities
β = (β1� � � � �βn)	 ∈ Rn×d to the public signal, such that for every player i, the sum of
expected flow payoff gi(α) and promised continuation rate βiμ(α) is maximized in αi.
That is, for i = 1� � � � � n and every ai ∈ Ai,

gi(α)+βiμ(α)≥ gi(ai�α−i)+βiμ(ai�α−i) a.s. (4)

this payoff structure is the same as in Sannikov (2007), and one can show that Wt(A) is the Ft -conditional
expectation under some probability measure QA∞ of∫ ∞

t
re−r(s−t)(bi(Ai

s)dYs − ci(Ai
s)ds)�

That is, bi is the sensitivity of player i’s payoff to the public signal and ci is a cost-of-effort function.
5Because players maximize their discounted expected future payoff, deviations with time measure 0 or

probability 0 are irrelevant. Therefore, two strategy profiles lead to the same continuation value if they are
P ⊗ Lebesgue-a.e. the same.
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A behavior strategy profile is enforceable if there exists a progressively measurable pro-
cess (βt)t≥0 such that (4) is satisfied a.e.6

It follows from (3) that the continuation game after time t is equivalent to the entire
game. In discrete time, this feature gives rise to an iterative procedure over the time
periods; in continuous time it leads to an SDE characterizing the infinitesimal change in
the continuation value. The following lemma is the analogue of Theorem 1 in Sannikov
(2007) adapted to the multiplayer setting with behavior strategies.

Lemma 1. For an n-dimensional process W and a behavior strategy profile A, the follow-
ing statements are equivalent:

(a) The process W is the discounted expected future payoff under A.

(b) The process W is a bounded semimartingale that satisfies for i = 1� � � � � n that

dW i
t = r(W i

t − gi(At))dt + rβi
t(σ dZt −μ(At)dt)+ dMi

t (5)

for a martingale Mi (strongly) orthogonal to σZ with Mi
0 = 0 and a progressively

measurable process βi with EQA
T
[∫ T

0 |βi
t |2 dt]<∞ for all T ≥ 0.

Moreover, a behavior strategy profile A is a PPE if and only if β = (β1� � � � �βn)	 related
to W (A) by (5) enforces A.

Definition 5. A set W ⊆ Rn is self-generating for discount rate r > 0 if for every w ∈ W
there exists a solution (W �A�β�Z�M) to (5) such that β enforces A, W0 = w a.s., and
Wτ ∈ W a.s. for every stopping time τ.

Lemma 2. The set E(r) is the largest bounded self-generating set.

This result is the equivalent of Theorem 1 in Abreu et al. (1990). It follows from
Lemma 1 that any self-generating set is contained in E(r). The idea for the proof of
the converse is that a PPE is subgame perfect, hence Wt ∈ E(r) a.s. since the continua-
tion game is equivalent to the repeated game. For a formal proof one needs to deal with
some measurability issues that we discuss in Section 4.1.

2.3 Enforceability and identifiability

The folk theorem will follow from Lemma 2 once we find suitable conditions, under
which any smooth set W ⊆ intV∗ is self-generating for a sufficiently small discount rate.
This means that we need to construct enforceable strategy profiles whose continuation
values do not escape W . In this section we will motivate some necessary conditions for
that to be possible. By examining (5), we see that on ∂W , both of the following state-
ments have to be satisfied:

6It is enough to consider deviations to pure strategies, since any behavior strategy has a realization equiv-
alent mixed strategy by Theorem 4, and a deviation to a mixed strategy can only be profitable if it has at least
one profitable pure strategy in its support.
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w

Nw

g(α)

drift rβt(σ dZt −μ(α)dt)

∂W
dWt

r2 tr(βσσ	β	)dt

Figure 1. At every point w ∈ ∂W , the tangential diffusion rβt(σ dZt − μ(α)dt) leads to an out-
ward-pointing drift of order r2 tr(βσσ	β	)dt. For sufficiently small r, this term is dominated by
the inward-pointing drift r(Wt − g(At))dt.

(i) The drift points inward, that is, N	
w (g(α)−w) > 0, where Nw is the outer-pointing

normal vector at w ∈ ∂W .

(ii) The volatility is tangential to W .

Indeed, otherwise the continuation value would immediately escape W ; see also Fig-
ure 1. The first condition translates to enforceability of action profiles with extremal
payoffs. The second condition is achieved using enforceability on hyperplanes and the
related concept of orthogonal enforceability.

Definition 6.

(i) Let T ∈ Rn×(n−1) be a matrix whose column vectors T1� � � � �Tn−1 span the hyper-
plane H ⊆Rn. An action profile α is enforceable on the hyperplane H if there exists
a matrix B ∈R(n−1)×d such that α is enforced by β = TB.

(ii) Let N be a vector in Rn. A matrix β ∈Rn×d enforces α orthogonal to N if it enforces
α and satisfies N	β = 0.

Observe that the two notions of enforceability are equivalent, i.e., α is enforceable on
a hyperplane H if and only if it is enforceable orthogonal to the normal vector N of H.7

While enforceability on hyperplanes has the nice interpretation of transferring future
value among players, it is often easier to work with the related concept of orthogonal
enforceability because the normal vector to the smooth hypersurface ∂W is unique. We
distinguish two types of hyperplanes.

Definition 7. A hyperplane H is said to be coordinate if it is orthogonal to a coordinate
axis. A hyperplane H is regular if it is not coordinate.

For an enforceable action profile α, the additional requirement to be enforceable
on a coordinate hyperplane means that the corresponding player does not make any

7Indeed, if β = TB, then N	β = 0. Conversely, if N	β = 0, then all column vectors βj lie in H, which
means they can be written as linear combinations of the Tj . This is equivalent to β = TB.
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transfers. Indeed, the systems (4) have a solution with βi = 0 if and only if α is a best
response for player i. For ease of reference we state it as a lemma.

Lemma 3. An enforceable action profile α is enforceable on a hyperplane orthogonal to
the ith coordinate axis if and only if α satisfies the best response property for player i, that
is, gi(α) ≥ gi(ai�α−i) for all ai ∈ Ai.

For an action profile α to be enforceable on regular hyperplanes, players’ impacts on
the distribution of the public signal need to be sufficiently identifiable. Let Mi(α) denote
the (d × |Ai|)-dimensional matrix, whose column vectors μ(ai�α−i) − μ(α), ai ∈ Ai are
given by the impact on the drift rate of the public signal that player i’s deviation from αi

to ai has. Observe that rankMi(α) ≤ |Ai| − 1 since

∑
ai∈Ai

αi(ai)(μ(ai�α−i)−μ(α)) = 0

by multilinearity of μ. Denote by 
i(α) := spanMi(α) the space of all those possible
impacts that player i’s deviations may have on the distribution of the public signal.

Definition 8.

(i) An action profile α has individual full rank for player i if Mi(α) has rank |Ai| − 1.
If this is true for every player i = 1� � � � � n, then α has individual full rank.

(ii) An action profile α is said to have pairwise full rank for players i and j if the matrix
Mij(α) = [Mi(α)�Mj(α)] has rank |Ai| + |Aj| − 2. An action profile has pairwise
full rank if this is true for all pairs of players j �= i.

(iii) A mixed action profile α is pairwise identifiable if for any two players i and j,


i(α)∩
j(α) = {0}�

Having individual full rank implies that the system of inequalities (4) can be solved
with equality, thus any action profile with individual full rank is enforceable; see
Lemma 16 for details. Pairwise identifiability means that deviations of any two play-
ers lead to linearly independent impacts on the drift rate of the public signal. Therefore,
deviations of any two players can be statistically distinguished. Finally, note that having
pairwise full rank is equivalent to having individual full rank and pairwise identifiability.

The next result is the analogue of Lemma 5.5 in Fudenberg et al. (1994). The proof
shows that under the assumption of pairwise identifiability, any two players’ incentives
are isolated by an orthogonal decomposition. The proof also sheds some light on the
source of the additional assumption of the continuous-time folk theorem.

Lemma 4. Suppose that an enforceable action profile α is pairwise identifiable. Then it is
enforceable on all regular hyperplanes.
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Proof. We show that α is enforceable orthogonal to the normal vector N of the hyper-
plane. Because the hyperplane is regular, N has at least two nonzero entries and we will
assume that these are the first two. Let β ∈ Rn×d enforce α. Pairwise identifiability im-
plies that Rd = (
i(α)∩
j(α))⊥ =
i(α)⊥ +
j(α)⊥ for all i �= j, hence we can decompose
βi into βi = β⊥�i + β̃i, where β⊥�i ⊥
i(α) for all i and

β̃1 ⊥ 
2(α) and β̃i ⊥ 
1(α)� i = 2� � � � � n�

Let Gi(α) denote the row vector of losses gi(α) − gi(ai�α−i) in player i’s expected flow
payoff when he switches from αi to ai, so that α is enforceable if and only if the inequal-
ity Gi(α) ≥ βiMi(α) holds componentwise for every player i = 1� � � � � n. We construct a
matrix B = (B1� � � � �Bn)	 enforcing α on the hyperplane H by setting

B1 = β̃1 −
n∑

i=2

Ni

N1 β̃
i� B2 = β̃2 − N1

N2 β̃
1 and Bi = β̃i� i = 3� � � � � n� (6)

Indeed, since β⊥�1 and β̃2� � � � � β̃n are orthogonal to 
1(α), it follows that

B1M1(α)= β̃1M1(α)−
n∑

i=2

Ni

N1 β̃
iM1(α) = (β1 −β⊥�1)M1(α) ≤G1(α)�

The inequalities for players i = 2� � � � � n are verified in the same manner. Finally, N	B = 0
by construction. �

Lemmas 3 and 4 tell us how to construct incentives on any hyperplane as a function
of the chosen action profile At and the normal vector NWt .

8 It follows from Itô’s formula
applied to (5) that the tangential volatility leads to an outward-pointing drift of order
r2 tr(βσσ	β	); see also Figure 1. Therefore, for W to remain in W it is necessary that
β is bounded, so that the outward-pointing drift is dominated by the inward-pointing
drift r(W − g(A)) for r small enough. As we can see from (6), this may be tricky where
the tangent hyperplane changes from being regular to coordinate. The following lemma
states various conditions such that β is locally bounded. Since the construction in (6) is
bounded where it is Lipschitz continuous, and we need Lipschitz continuity later on, we
assert both properties. Observe that this issue does not exist in discrete time, since tran-
sitions are discrete and hence attained payoffs are always either coordinate or bounded
away from being coordinate.

Lemma 5. Let N ∈Rn \ {0} and let α be an enforceable action profile. Suppose that one of
the following conditions holds true:

(i) The profile α is pairwise identifiable and N is not parallel to any coordinate axis.

(ii) The profile α is pairwise identifiable and enforceable orthogonal to N .

8To be precise, the normal vector at the point π(Wt) for a suitable projection π of Rn onto ∂W .



Theoretical Economics 11 (2016) Folk theorem with imperfect public information 421

(iii) The profile α is enforceable orthogonal to ei and αi is a unique best response to α−i,
that is, αi = ai for some ai ∈ Ai and gi(ai�α−i) > gi(ãi�α−i) for every ãi ∈ Ai \ {ai}.

(iv) The profile α is a static Nash equilibrium.

Then there exist a neighborhood UN of N and a bounded, Lipschitz continuous map βα :
UN →Rn×d such that βα(x) enforces α orthogonal to x.

3. Main results and discussion

3.1 The folk results

Let A(i) ⊆ A denote the pure action profiles that maximize player i’s payoff over A. The
continuous-time folk theorem differs from its discrete-time counterpart in the addi-
tional assumption that for every player i, one element of A(i) and the minmax profile
αi against player i are either pairwise identifiable or satisfy the unique best response
property for player i.9 While the argument in the previous section leaves open the ques-
tion whether there exists a different construction of incentives that is bounded without
these assumptions, we show in Section 3.3 that some form of identifiability condition is
necessary when the unique best response property fails.

Theorem 1 (Minmax folk theorem). Suppose that the following conditions hold:

(i) Every pure action profile has individual full rank.

(ii) For every pair of players i and j, there exists an action profile αij with pairwise full
rank for these players.

(iii) For every player i, there exists an action profile a∗
i ∈ A(i) that is either pairwise

identifiable or satisfies the unique best response property for player i.

(iv) For every player i, best responses to the minmax profile α−i
i are unique.

Then for any smooth set W ⊆ intV∗, there exists a discount rate r̃ > 0 such that W ⊆ E(r)
for all r ∈ (0� r̃).10

Observe that the second condition is satisfied if there exists at least one pairwise
identifiable pure action profile because then it has pairwise full rank by condition (i).
A sufficient condition for the folk theorem to hold is that all pure action profiles have
pairwise full rank. Then conditions (i), (ii), and (iii) are clearly fulfilled and the fourth
condition can be circumvented by footnote 9. The condition that all pure action profiles
have pairwise full rank is also sufficient to establish a folk theorem in pure strategies; see
the Supplement for details.

9To be precise, we need that an approximation of the minmax profile either is pairwise identifiable or
has the unique best response property. While the unique best response property of the minmax profile
carries over to approximations by linearity of the expectation, pairwise identifiability of the approximation
requires pairwise full rank of all pure action profiles; see Lemma 18 for details.

10A set W is called smooth if it is a closed and convex subset of Rn with nonempty interior and a twice
differentiable boundary.
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If one is not interested in generating all payoffs in the interior of V∗, but only payoffs
that dominate the payoff of a stage-game Nash equilibrium αe, we prove a weaker Nash-
threat folk theorem similar to Theorem 6.1 in Fudenberg et al. (1994).

Theorem 2 (Nash-threat folk theorem). Let V0 be the convex hull of g(αe) and the
Pareto-efficient payoff vectors Pareto-dominating g(αe). Suppose that either g is affine in
m and every Pareto-efficient pure action profile is pairwise identifiable, or that following
statements hold:

(i) For every pair of players i and j, there exists at least one profile αij with pairwise full
rank for that pair of players.

(ii) For every player i, there exists an enforceable action profile a∗
i ∈ A(i) that is either

pairwise identifiable or satisfies the best response property for player i.

Then for any smooth set W ⊆ intV0, there exists a discount rate r̃ > 0 such that W ⊆ E(r)
for all r ∈ (0� r̃).

Because pairwise identifiability of action profiles is essential for the folk result to
hold, it is worth mentioning a special class of games where this assumption is always
satisfied. A game is said to be of a product structure if the impacts of players’ deviations
on the drift are orthogonal, that is, 
i(a) ⊥ 
j(a) for all i �= j and all pure action profiles
a ∈ A. Clearly, this implies pairwise identifiability of all pure action profiles. Therefore,
a Nash-threat folk theorem holds for any game, in which Pareto-efficient action profiles
are enforceable.

Corollary 1. Consider a game with a product structure such that g is an affine function
of m. For any smooth set W ⊆ intV0, there exists a discount rate r̃ > 0 such that W ⊆ E(r)
for all r ∈ (0� r̃).

Since pairwise identifiability and individual full rank are equivalent to having pair-
wise full rank, we obtain the minmax folk theorem for games with a product structure in
the following form.

Corollary 2. Suppose that in a game with a product structure, every pure action profile
has individual full rank. Then for any smooth set W ⊆ intV∗, there exists a discount rate
r̃ > 0 such that W ⊆ E(r) for all r ∈ (0� r̃).

The special case of these corollaries, where n = 2 players are restricted to pure strate-
gies, has already been established in Sannikov (2007) as a consequence of his precise
characterization of ∂Ep(r).

3.2 Monotonicity of E(r)

In this class of continuously repeated games it is currently unknown whether the PPE
payoff set is monotonic in the discount rate r without public randomization. Therefore,
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E(r) may not expand monotonically to V∗ even when the folk theorems apply. We elabo-
rate in this section on how players can use public randomization to achieve payoffs also
under any smaller discount rate.

Previously, the drift function m and the volatility σ were fixed. In this section and
Appendix B we will view the PPE payoff set E(r�m�σ) as an object depending on all three
game primitives. The following square-root law tells us that scaling the discount rate
by λ has the same effect on equilibrium payoffs as dividing the signal-to-noise ratio
σ	(σσ	)−1m by

√
λ. This result is similar in spirit to Corollary 1 in Faingold and San-

nikov (2011), where a square-root law is obtained for continuous-time games between
one long-lived player and a continuum of short-lived players.

Lemma 6. Let m̃ : A → Rd and σ̃ ∈ Rd×k be such that σ̃σ̃	 is invertible and
σ̃	(σ̃σ̃	)−1m̃ = √

λσ	(σσ	)−1m for some λ > 0. Then a strategy profile A is a PPE for
the game primitives (r�m�σ) if and only if (Aλt)t≥0 is a PPE with respect to the game
primitives (λr� m̃� σ̃). Moreover, for every t ≥ 0,

W̃t((Aλt)t≥0;λr� m̃� σ̃) =Wλt(A; r�m�σ) a.s.� (7)

where W̃ is the discounted expected future payoff with respect to the time-changed filtra-
tion (Fλt)t≥0. In particular, the equilibrium payoff set depends on (r�m�σ) only through
the ratio σ	(σσ	)−1m/

√
r.

For λ = 1, the result says that the continuation value depends on m and σ only
through the informativeness of the signal, the signal-to-noise-ratio σ	(σσ	)−1m. This
is very intuitive since the induced probability measure in (2) depends on m and σ only
through that quantity. Therefore, such a transformation leads to the same distribution
over possible signals. For λ < 1, Lemma 6 says that players becoming more patient has
the same effect as increasing the informativeness of the signal. As time becomes less
valuable to the players, a longer interval of observations of the public signal becomes
available at the same cost, hence players can better estimate m. Observe that we con-
sider players as being more patient when their discount rate is lower simply because
they value future payoffs more. In this class of games, being more patient can be taken
very literally, by executing the same strategy profile at a slower speed. Similarly for λ > 1,
players being less patient has the same effect on the game as a decrease in the infor-
mativeness of the signal. Observe that for any value of λ, the same action profiles are
enforceable since m̃ is an invertible linear transformation of m. Therefore, (4) is solvable
for m if and only if it is solvable for m̃.

The quantity γ = σ	(σσ	)−1m/
√
r is a measure of the informativeness of the public

signal adjusted for the patience of players. It follows from (7) at time 0 that the equilib-
rium payoff set depends on the game primitives (r�m�σ) only through γ. This is similar
to Daley and Green (2012), where the quality of news, a quantity corresponding to γ	γ,
plays a central role in the equilibrium analysis. When the signal becomes more infor-
mative relative to players’ discounting, that is, γ̂ ≥ γ in every component, the following
result establishes that a PPE A for γ can be transformed to a PPE Â for γ̂ by adding noise
through public randomization.
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Theorem 3. Let A be a PPE with respect to (r�m�σ). Let F̂ = (F̂t )t≥0 denote the filtration
generated by the public filtration F and the addition of a public randomization device.
Denote by Ŵt(·) the discounted expected future payoff conditional on F̂t . Then by using
the public randomization suitably, A can be transformed to a PPE Â for different game
parameters in the following cases:11

(a) For any symmetric 
 ∈ Rk×k with eigenvalues in [−1�1] such that ker(σ
) =
ker(σ), there exists a PPE Â, differing from A only through public randomization,
with Ŵt(Â; r�m�σ
)=Wt(A; r�m�σ) a.s.

(b) For any symmetric 
 ∈ Rd×d with eigenvalues in [−1�1] \ {0} such that 
σσ	 =
σσ	
, there exists a PPE Â, differing from A only through public randomization,
with Ŵt(Â; r�
−1m�σ)= Ŵt(Â; r�m�
σ)= Wt(A; r�m�σ) a.s.

(c) For any λ ∈ (0�1), there exists a PPE Â, differing from (Aλt)t≥0 only through public
randomization, with Ŵt(Â;λr�m�σ)= Wλt(A; r�m�σ) a.s.

This is a remarkable result because public randomization allows one to transform
PPE continuously over games with a higher quality of the signal, achieving exactly the
same path of continuation values. An equivalent result does not hold in discrete time.12

Returning to the question of how to achieve equilibrium payoffs also under a smaller dis-
count rate, we see in (c) that this is done by performing a time change and then adding
public randomization to the time-changed strategy profile. Monotonicity of E(r) in r is
thus a direct corollary to (c) in Theorem 3.

Corollary 3. If players have access to a public randomization device, then it follows
that E(r) ⊆ E(r ′) for any 0 < r′ < r.

3.3 Motivation for the proof of the folk theorem

In this section we highlight some of the differences and similarities between the proofs
of the folk theorem in discrete and continuous time. In this motivation, some technical
details are omitted; see Section 4 for the full proof. In both discrete and continuous

11By adding public randomization to a strategy profile A, we mean that disregarding the information

of the public randomization device in Â is identical to playing A. Formally, OÂ = A, where O(·) is the
optional projection onto the public filtration F without public randomization. See Appendix A for a short
introduction to the optional projection.

12Even though an equivalent result to our Theorem 3 does not hold in discrete time, one can still observe
the time change in (c). Section 6 of Abreu et al. (1990) or, equivalently, equation (4.2) in Fudenberg et al.
(1994), shows how the continuation value u of the public signal Y has to be adjusted to decompose the
same payoff v when the discount factor changes from δ1 to δ2 ∈ (δ1�1). Namely,

u(Y ;δ2)= (1 − λ)v + λu(Y ;δ1)= (1 − λ)(1 − δ1)g(a)+ (λ+ (1 − λ)δ1)u(Y ;δ1)�

where λ= δ1(1−δ2)/(δ2(1−δ1)) ∈ (0�1). Observe that u(Y ;δ2) is a convex combination of u(Y ;δ1) and the
current payoff g(a). This can be interpreted that time moves more slowly because the current-period payoff
lags into the continuation payoff. At the same time, the current-period action profile remains unchanged,
which is consistent with a slower play of the same strategy profile.
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Figure 2. The left panel shows the decomposition of the payoff w = δg(α)+ (1 − δ)E[u(Y)] on
the boundary ∂W in discrete time. The continuation payoff u(Y) lies on a hyperplane parallel to
the tangent hyperplane Sw for all realizations y of Y . The right panel shows that payoffs close to
w are decomposable with respect to the same hyperplane.

time, the folk theorem is established by showing that any smooth set W ⊆ intV∗ is self-
generating for a sufficiently small discount rate r and therefore has to be a subset of the
PPE payoff set by Lemma 2. To show that W is self-generating, we construct equilibrium
strategies with continuation values in W in the following steps:

Step 1. For any payoff w ∈ W , there exists an enforceable strategy profile Aw with
initial payoff w and continuation value in W for a short but positive amount of time τw.
The discount rate rw may depend on the payoff w.

Step 2. There exist a neighborhood Uw of w and r̃ > 0 such that for any r ∈ (0� r̃), the
time τ and the strategy profile A can be chosen uniformly across Uw.

Step 3. By compactness we can concatenate these local solutions to a global
solution.

In both discrete and continuous time, payoffs in the interior of W are attainable by a
static Nash equilibrium for a sufficiently low discount rate. We will thus focus on payoffs
w ∈ ∂W in this motivation.

Step 1. In discrete time, Fudenberg et al. (1994) decompose any payoff w ∈ ∂W into
a current-period payoff g(α) outside of W and a continuation promise in the interior
of W . In their decomposition, the continuation promise is parallel to the tangent hy-
perplane Sw at w, that is, α is enforceable on Sw; see also Figure 2. A payoff set W is
called decomposable on tangent hyperplanes if such a decomposition is possible for any
w ∈ ∂W , which is sufficient for W to be self-generating in discrete time.

As we mentioned in Section 2.3, in continuous time it is not enough that action pro-
file α is enforceable on Sw only. Instead, α has to be enforceable on all nearby hyper-
planes so that the movement of the continuation value can be continuously adjusted to
follow ∂W . For self-generation in continuous time, a payoff set W has to be uniformly
decomposable on tangent hyperplanes, that is, for any w ∈ ∂W , there exists an enforce-
able action profile α with g(α) strictly separated from W by Sw so that (α�Nw) satisfies
one of the four conditions of Lemma 5, where Nw is the unique outer-pointing normal
vector to ∂W at w. Then w �→ βw

α is locally Lipschitz continuous on ∂W , i.e., if an action
profile is enforceable on a given hyperplane, then it can be enforced on nearby hyper-
planes without changing the volatility significantly. Indeed, since W is smooth, w �→Nw
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is Lipschitz continuous, hence the concatenation with the locally Lipschitz continuous
map from Lemma 5 is Lipschitz continuous on a suitable neighborhood Uw of w. It is
for this difference that the continuous-time folk theorem has the additional conditions
(iii) and (iv).13 The stopping time τw can be chosen as the time when the conditions of
Lemma 5 are no longer satisfied, i.e., τw = inf{t ≥ 0|W w

t /∈ Bε(w)} for a suitable ε > 0.
Step 2. Because continuation payoffs are strictly separated from the hyperplane Sw

in discrete time, it is possible to decompose payoffs v close enough to w on a translate
to Sw by moving the continuations by a small (and constant) amount; see also Figure 2.
Because the variance of the continuation payoff is decreasing in δ, any payoff decom-
posable for δ̃ is also decomposable for δ ∈ (δ̃�1) by convexity of W .

In continuous time, payoffs v ∈ Uw close to w can be decomposed by the same ac-
tion profile α and Lipschitz continuous function v �→ βv

α for sufficiently small r̃ by uni-
form decomposability. The main difficulty in this step is to ensure that the stopping
times τv are uniformly bounded from below by a strictly positive stopping time, that is,
infv∈Uw τv > 0 a.s. For this step it is important that the SDE (5) locally admits a strong
solution so that the probability space 	 and the Brownian motion Z can be fixed on the
entire neighborhood Uw. We show that the SDE is “sufficiently nice” so that solutions W v

to (5) with initial value v ∈Uw have the continuous flow property, that is, v �→ W v is con-
tinuous for almost every ω ∈ 	. This implies that infv∈Uw τv > 0 a.s. if Uw is sufficiently
small; see the proof of Lemma 9 for details.

Step 3. The neighborhoods in Step 2 form an open cover of W , hence by compact-
ness, there exists a finite subcover U = {U1� � � � �UN }. It follows that rU := minU∈U r̃U is
strictly positive. In discrete time, the action profiles found in the one-period decompo-
sition are concatenated at every step to form an enforceable strategy profile with con-
tinuations that remain in W forever.

In continuous time, we also take the minimum over the stopping times, i.e., we set
τU := minU∈U τU , which is strictly positive almost surely. For this step it is crucial again
that (5) locally admits strong solutions, so that we have to deal with only finitely many

13In some games, slightly weaker conditions for enforceability on coordinate hyperplanes may be suffi-
cient. However, if α does not have the unique best response property for player i, then some sort of identifia-
bility conditions has to be satisfied for all deviations ai ∈ Ai with gi(ai�α−i)= gi(α) to ensure enforceability
on hyperplanes infinitesimally close to being coordinate. Indeed, let j �= i be a player for whom αj is not a

best response to α−j . Any neighborhood of ei contains vectors N(ε) := εej +
√

1 − ε2ei for ε arbitrarily close
to zero. From N(ε)	β(ε) = 0 it follows that

βi(ε) = −ε√
1 − ε2

βj(ε)�

For aj ∈ Aj with gj(aj�α−j)−gj(α) = δ > 0, enforceability implies βj(ε)(μ(α)−μ(aj�α−j)) ≥ δ and hence
βj(ε) is not orthogonal to μ(α)−μ(aj�α−j) for any ε close enough to zero. The enforceability condition for
player i, imposes

0 ≤ εβj(ε)(μ(ai�α−i)−μ(α))�

It follows that either the right hand side is identically zero, that is, βj(ε) is orthogonal to μ(ai�α−i)−μ(α),
or βj(ε)(μ(ai�α−i) − μ(α)) takes opposite signs for positive and negative ε, respectively. Both imply that
μ(ai�α−i)−μ(α) is linearly independent of μ(aj�α−j)−μ(α). That is, some sort of identifiability condition
has to be satisfied.



Theoretical Economics 11 (2016) Folk theorem with imperfect public information 427

probability spaces and filtrations. These can be enlarged at the beginning of the con-
catenation to contain all the necessary information. Therefore, τU is indeed a stopping
time, i.e., is measurable with respect to the enlarged filtration. Observe that τU depends
on the specific subcover U that is chosen. By construction, the stopping time τU is a
functional of the public signal such that the continuation value W v does not escape W
on [0� τU ) regardless of the starting value v. Since W v

τU ∈ W , we use the same procedure
to find a solution to (5) on [τU � τU�2) starting at W v

τU , where τU�2 − τU is independent of
τU and identically distributed as τU by independence and stationarity of the increments
of Brownian motion.

An iteration of this procedure leads to a sequence of stopping times (τU��)�≥0 and
solutions (W ��A��β��Z�)�≥0 to (5) on [τU��� τU��+1) such that τU��+1 − τU�� are inde-
pendent and identically distributed (i.i.d.) as τU .14 This implies τU�� → ∞ a.s. Indeed,
any sequence (τU��)�≥0 of random variables with strictly positive and i.i.d. increments
τU��+1 −τU�� diverges to ∞ a.s. by the strong law of large numbers; see Lemma 11 for de-
tails. Therefore, a countable concatenation of the solutions (W ��A��β��Z�) to (5) yields
a solution on [0�∞). This shows that W is self-generating and hence W ⊆ E(r). Observe
that the global solution is only a weak solution to (5) because the underlying Brownian
motion was also concatenated at τU��, depending on what element of the cover WτU��

fell into; hence the Brownian motion cannot be fixed a priori. We elaborate on some
technical difficulties that arise with weak solutions in Section 4.1.

3.4 Finite-variation property of equilibrium profiles

Because the constructed equilibrium profiles are concatenations of locally constant
strategy profiles at i.i.d. copies of a positive stopping time τU , the resulting equilibrium
profiles exhibit finitely many changes on every finite time interval. This is a very de-
sirable feature for implementation because it seems unrealistic that agents can adapt
their strategy profiles arbitrarily often. In this section, we present an example of such
a strategy profile and compare it to the techniques used in Sannikov (2007). Consider
the two-player partnership example of Section 2 in Sannikov (2007), reproduced in Fig-
ure 3 for the sake of exposition. To illustrate that the finite-variation property does not
depend on the players’ ability of mixing, we restrict the example to pure strategies.

Figure 3 shows a possible cover for a smooth payoff set W in the interior of V∗, such
that on each element of the cover, the SDE (5) admits a strong solution. To ensure that
the stopping times can be chosen strictly positive uniformly on each element of the
cover, payoffs in a band of width ε around the element of the cover need to be decom-
posable with respect to the same pure action profile. The strategy profile is changed only
when the continuation value leaves this band, ensuring that the strategy profile remains
constant for a small but positive amount of time.15

14We omit mentioning M� as a part of the solution because M� ≡ 0 in a strong solution to (5).
15The stopping times τU�� constructed in the proof are functionals of the signal such that the continua-

tion value would not escape the band of width ε if it were to start at any point of any neighborhood. For all
practical purposes (including this example), one may think of these times as the times τ̃� at which the con-
tinuation value leaves the band of width ε around UWτ̃�−1

. Because τ̃� ≥ τU�� a.s. for any �, the concatenation
still extends to ∞.
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Figure 3. The matrix of static payoffs (w1�w2) is shown to the left, and the right panel shows
a cover of ∂W (bold black line) into four overlapping sets (solid lines in gray scale), such that
payoffs in a band of width ε around the sets (dashed lines in gray scale) can be decomposed with
respect to the same pure action profile for discount rate r = 0�1. The cover of W is completed
by playing the static Nash equilibrium in the interior of W . Also depicted is ∂Ep(0�1) (thin black
line) constructed with the techniques in Sannikov (2007).

In comparison, the construction of equilibrium profiles in Sannikov (2007) works
even on the boundary ∂Ep(r), where the constructed strategy profiles are constant up to
a finite number of “switching points.” However, due to unbounded variation of Brown-
ian motion, the players will switch between action profiles an infinite number of times
during a finite time interval when the continuation value crosses a switching point; see
also Figure 4. While our approach of constructing equilibrium profiles is more general
in the sense that it is applicable to any finite number of players, this example shows that
it can have advantages even in two-player games.

If players are not restricted to pure strategies, the realizations of their strategies are
drawn continuously. Therefore, players switch actions infinitely often on finite time in-
tervals even for constant (but mixed) strategy profiles. However, mixing is done indi-
vidually for each player, and because of the multilinearity in (1), the public signal is not
affected by the different realizations of a player’s mixed action as long as his strategy pro-
file remains constant. The strategies of a player’s opponents are therefore not affected by
the realizations of his mixed strategy; hence a change of actions within a constant strat-
egy profile is a less complicated operation than a change of strategy profile. Moreover,
because m and g are extended to mixed action profiles by multilinearity, continuous-
time mixing may be interpreted as a division of effort among the pure actions in its
support. This is a common formulation in continuous-time games of strategic exper-
imentation; see, for example, Bolton and Harris (1999) and Keller and Rady (2010).
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Figure 4. The left panel shows the simulation of the continuation value of a PPE in a zoom-in
of Figure 3. Lines in light gray, dark gray, and black mean that action profiles (1�1), (0�1), and
(0�0), respectively, are played; see Figure O.1 in the Supplement for a colored version. When
the continuation value leaves the band around the cover of ∂W , the static Nash equilibrium is
played until the boundary of W is reached. The upper right panel shows the corresponding
strategy profile. The lower right panel shows a strategy profile constructed with the techniques
in Sannikov (2007) with unbounded variation when the continuation value crosses the switching
point S (left panel).

4. Proofs of the main results

4.1 Weak definition of E(r) and self-generation

In Section 2.1 we introduced our main object of study, the set E(r) of payoffs that are
achievable by public perfect equilibria. For the proof of our results it is necessary to elab-
orate on what it means for a payoff x ∈ V to be achieved by some PPE A. As we outlined
in Section 3.3, we will construct weak solutions to the SDE (5) achieving x. This means
that the public signal, the filtrations, and the whole probability space may depend on x.
We arrive at the specification

E(r) :=
{
x ∈ V

∣∣∣∣ there exists (	�F�F�P) containing an (F�P) Brownian
motion Z and a PPE A with W0(A) = x P-a.s.

}
�

We will also call (	�F�F�P�Z) a stochastic framework for A.

Remark 2. Technically, this weak definition is necessary to ensure existence of the solu-
tions. But even aside from the technical advantages, the weak solution concept is appro-
priate here. From an interpretation standpoint, the difference between a strong solution
and a weak solution to an SDE lies in the causality of the noise. If the noise is defined ex-
ogenously and not affected by players’ actions, this corresponds to a strong solution. In
games of imperfect information, however, the noise is induced by players’ strategies and
thus cannot be fixed at the beginning. This is in line with discrete-time games, where we
only care about the distribution of the public signal and not on what probability space
the distribution is realized.
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As illustrated in Section 3.3, we will piece together local solutions to obtain a global
solution. At any stopping time τ, the value Wτ(A) is a random variable. Because of
the weak formulation, the probability space depends on the point x ∈ E(r), and hence
it is not clear what measurability conditions a random variable in E(r) should satisfy.
This is clarified by the following lemma, whose rather technical proof is contained in
Appendix C.

Lemma 7. Let X be an F0-measurable random variable in a stochastic framework
(	�F�F�P�Z). Then the following statements are equivalent:

(a) We have X ∈ E(r) a.s.

(b) There exists a PPE A with W0(A) =X a.s.

This means we can only achieve random variables by a PPE on a fixed probability
space. At first glance, this might seem like a major restriction because we are dealing
with weak solutions. However, we will need this result only to concatenate locally strong
solutions to a global solution, at which point we only have finitely many probability
spaces by compactness. These probability spaces can be enlarged at the beginning of
the concatenation, after which it remains fixed. From Lemmas 1 and 7 and we obtain
the following stochastic characterization of E(r).

Lemma 8. The following statements are equivalent for an F0-measurable random vari-
able X in a stochastic framework (	�F�F�P�Z):

(a) We have X ∈ E(r) a.s.

(b) There exists a strategy profile A, a square-integrable progressively measurable pro-
cess β, a martingale M orthogonal to σZ, and a bounded semimartingale W such
that β enforces A, W0 =X a.s., and A, β, W , Z, and M satisfy (5).

We conclude this section with the proof of self-generation. The argument sheds
some first insight into the necessity of weakly defining E(r).

Proof of Lemma 2. By Lemma 1, any bounded self-generating set W is contained in
E(r). Since E(r) is bounded, it remains to show that E(r) is self-generating. Take x ∈ E(r)
so that Lemma 1 yields the existence of a stochastic framework (	�F�F�P�Z), a behav-
ior strategy profile A enforced by β, a martingale M orthogonal to σZ, and a bounded
semimartingale W satisfying (5) with W0 = x a.s. We now fix a stopping time τ and show
that Wτ ∈ E(r) a.s. To do so, we set X̃ = Wτ , F̃t = Ft+τ, Z̃t = Zτ+t − Zτ , M̃t = Mτ+t − Mτ,
W̃t = Wτ+t , β̃t = βτ+t , and Ãt = Aτ+t . Because the tilde processes and filtrations satisfy
condition (b) in Lemma 8, we obtain that Wτ = X̃ ∈ E(r) a.s. �

4.2 Construction of continuous-time equilibria

In Sections 2.3 and 3.3, we motivated the condition of uniform decomposability on tan-
gent hyperplanes for a payoff set W to be self-generating. In this section we will show
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that this condition is also sufficient. In a first step, we show that any uniformly decom-
posable set W is locally self-generating.

Definition 9. A set W ⊆ Rn is called locally self-generating if for every point w ∈ W ,
there exist an open neighborhood Uw of w, a stochastic framework (	�F�F�P�Z), an
enforceable strategy profile A, a martingale M orthogonal to σZ, and r̃ > 0 such that
for every discount rate r ∈ (0� r̃) there exists a stopping time τ > 0 such that for all
v ∈ Uw ∩ W , there exist W v with W v

0 = v a.s. and βv such that v �→ W v and v �→ βv are
Borel measurable and on 0 ≤ t ≤ τ, the processes W v, βv, A, M , Z are related by (5), βv

t

enforces At a.s., and W v
t ∈ W a.s.

Lemma 9. Suppose that a smooth set W ⊆ V∗ is uniformly decomposable on tangent hy-
perplanes. Then W is locally self-generating.

Proof. Suppose first that w is in the interior of W . Let Uw = Bε(w), where ε > 0 is
chosen such that the open ball B2ε(w) is contained in W . For a static Nash equilibrium
αe, the constant strategy profile A ≡ αe is enforced by β ≡ 0. For any r > 0 and any
v ∈Uw, let W v be a strong solution to

dW v
t := r(W v

t − g(αe))dt

with initial condition W v
0 = v a.s. The explicit solution W v

t = v + (ert − 1)(v − g(αe)) is
measurable in v. Let t0(r) := log(1 + ε/(‖w − g(αe)‖ + ε))/r. Then for any v ∈ Bε(w) it
follows that

‖W v
t − v‖ ≤ (ert − 1)

(
ε+ ‖w − g(αe)‖

) ≤ ε

on [0� t0]. Therefore, in the interior of W , we can support any discount rate r > 0 by
choosing Uw = Bε(w) and the deterministic time τ ≡ t0(r) > 0.

For any w ∈ ∂W , denote by Nw the outward unit normal to ∂W in w and denote by
Sw the tangent hyperplane to ∂W in w. By smoothness of W , both of these are unique
and continuous in w ∈ ∂W . Fix now a payoff w ∈ ∂W . It will be convenient to work in a
coordinate system with origin in w and a basis consisting of an orthonormal basis of Sw

and Nw, where we choose the nth coordinate in the direction of Nw.
Since ∂W is a C2 submanifold, we can locally parametrize it by a twice differentiable

function ϕ. Let x̂ = (x1� � � � � xn−1) denote the projection onto the first n− 1 components
so that the boundary ∂W is locally given by (x̂�ϕ(x̂)). By assumption, there exists an
enforceable action profile α such that g(α) is strictly separated from W by Sw. Let βα

be the locally Lipschitz continuous function from Lemma 5, which assigns to any vector
x ∈ Rn a matrix β enforcing α orthogonal to x. Choose an ε > 0 such that the following
statements hold:

(i) We have N	
v Nw > 0 for all v ∈ B2ε(w)∩ ∂W .

(ii) For all v ∈ B2ε(w), ‖∇ϕ(v̂)‖ ≤ p1 and |�ijϕ(v̂)| ≤ p2 for i� j = 1� � � � � n and constants
p1�p2 > 0, where �ijϕ denotes the second partial derivative of ϕ with respect to
v̂i and v̂j .
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(iii) The map βα(−∇ϕ(·̂)�1) is Lipschitz continuous on B2ε(w) and |(βασσ
	β	

α )ij| ≤ B

for i� j = 1� � � � � n and a constant B < ∞.

(iv) We have c(ε) := N	
w (g(α)−w)− 2ε(1 +p1)−p1‖g(α)−w‖ > 0.

The first condition makes sure that a local parametrization ϕ exists with bounded gra-
dient as in condition (ii). Since ∂W is assumed to be C2, the first two derivatives of ϕ are
continuous, hence locally bounded. In particular, by letting ε small enough we get the
first two conditions to hold. For the third condition, observe that ϕ is continuous with
bounded derivative by condition (ii), hence is Lipschitz continuous. Since the projec-
tion ·̂ is Lipschitz continuous with Lipschitz constant 1 and the composition of Lipschitz
continuous functions is Lipschitz again, the third condition holds in a small neighbor-
hood of Nw = (−∇ϕ(ŵ)�1) by Lemma 5. Finally, N	

w (g(α) − w) in condition (iv) is pos-
itive by strict separation of g(α) from W . Because ∇ϕ is continuous and ∇ϕ(ŵ) = 0,
p1 can be made arbitrarily small by choosing a small ε. This implies that c(ε) > 0 for
sufficiently small ε.

Fix a stochastic framework (	�F�F�P�Z) and an ε satisfying all of the above con-
ditions. Denote Uw := Bε(w), fix a discount rate r ≤ 2c(ε)/((n − 1)2p2B) =: r̃, and let
A≡ α. For all v ∈ Bε(w), let W v denote the strong solution to

dW v
t = r(W v

t − g(α))dt + rβα(−∇ϕ(Ŵ v
t )�1)(σ dZt −μ(α)dt)

on �0� τv� with W0 = v a.s., where τv := inf{t > 0|W v
t /∈ B2ε(w)}. Using that βα ◦(−∇ϕ(·̂)�1)

is uniformly bounded and Lipschitz continuous on B2ε(w) by condition (iii), a strong so-
lution to this SDE exists by Theorem 5.2.1 of Øksendal (1998).16 Note that the process
βt := βα(−∇ϕ(Ŵ v

t �1)) is progressively measurable on �0� τv� as a concatenation of a pro-
gressively measurable process with a Borel measurable function. Moreover, it enforces
A and it is bounded on �0� τv� by Lemma 5, hence is locally square integrable.

Let Dv
t := W v�n

t − ϕ(Ŵ v
t ) measure the distance from Wt to ∂W in the direction of Nw

as shown in Figure 5. By Itô’s formula,

dDv
t = (−∇ϕ(Ŵ v

t )�1)	 dW v
t − 1

2

n−1∑
i�j=1

∂2ϕ(Ŵ v
t )

∂xi ∂xj
d〈W v�i�W v�j〉t

= r

(
(−∇ϕ(Ŵ v

t )�1)	(W v
t − g(α))− r

2

n−1∑
i�j=1

∂2ϕ(Ŵ v
t )

∂xi ∂xj
(βtσσ

	β	
t )ij

)
dt

+ r(−∇ϕ(Ŵ v
t )�1)	βα(−∇ϕ(Ŵ v

t )�1)(σ dZt −μ(α)dt)

≤ r

(
r

2
(n− 1)2p2B − c(ε)

)
dt�

16Uniform boundedness implies the linear growth condition needed for the existence result. The func-
tion f (x) = r(x− g(α)) is linear, hence Lipschitz continuous and of linear growth.
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v
w

Nw

g(α)

drift

Sv

∂W

W v
t

Dv
t

Dv
t

N(Ŵ v
t �ϕ(Ŵ

v
t ))

βα

Figure 5. The distance of W v
t to ∂W is measured by Dv

t in the direction of Nw for all v in a neigh-
borhood of w. The continuation values W v

t remain in W if and only if Dv
t ≤ 0. The sensitivity βα

of W v to Z is chosen orthogonal to (−∇ϕ(Ŵ v
t )�1), the normal vector to ∂W in the projection

(Ŵ v
t �ϕ(Ŵ

v
t )) of W v

t onto ∂W .

where we used that x	βα(x) = 0 for all x ∈ B2ε(w) and that conditions (ii) and (iv) imply

(
(−∇ϕ(Ŵ v

t )�0)+Nw
)	

(W v
t −w +w − g(α))

≤ ‖∇ϕ(Ŵ v
t )‖

(
2ε+ ‖g(α)−w‖) + 2ε−N	

w (g(α)−w) ≤ −c(ε)�

This implies that for any r ∈ (0� r̃), Dv is absolutely continuous with dDv
t /dt ≤ 0 on

�0� τv�, where τv depends on r. Since Dv
0 ≤ 0 for all v ∈ Uw ∩ W , it follows that Dv

t ≤ 0
on �0� τv�. Next, we show that the stopping times τv are uniformly bounded from below
by a stopping time τ > 0. The idea is that this SDE is sufficiently nice such that the flow
v �→ W v is continuous and thus W v can be approximated by W v̄ for v̄ close to v. This
leads to a cover of Bε(w) with a finite subcover, over which the minimum of stopping
times is still positive. Denote V v

t := e−rt(W v
t − v) and derive from the product rule that it

is the solution to the SDE

dV v
t = re−rt(v − g(α))dt + re−rtβα(−∇ϕ( ̂v + ertV v

t )�1)(σ dZt −μ(α)dt)�

Fix a time horizon T > 0 to make ert bounded and Lipschitz continuous. To apply Theo-
rem V.37 of Protter (2005), we write V v in its integrated form

V v
t = r(1 − e−rt)(v − g(α))+

∫ t

0
F(V v)s(σ dZs −μ(α)ds)� t ≤ T�

where F(V v)s = re−rsβα(−∇ϕ( ̂v + ersV v
s )�1). Both the finite variation part and F are

Lipschitz,17 hence Theorem V.37 of Protter (2005) applies and we deduce that the flow

17The result requires that F is functional Lipschitz, which is satisfied for any operator induced by a Lip-
schitz function; see Protter (2005, p. 251).
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v �→ V v(ω) is continuous for almost all ω.18 Let σv := inf{t > 0|ert‖V v
t ‖> ε/2}, which is

strictly positive by continuity of V v. For any v� v̄ ∈ Bε(w), define the auxiliary process

v�v̄
t := ertV v

t 1�0�σv̄)) + erσv̄V v
σv̄

1�σv̄�∞)). For fixed v̄ ∈ Bε(w), the map v �→ 
v�v̄ is continu-
ous for almost all ω. Because ‖
v̄�v̄‖ ≤ ε/2, there exists an εv̄ > 0 such that ‖
v�v̄‖ < ε for
all v ∈ Bεv̄(v̄). This implies ‖W v − v‖ < ε on �0�σv̄)) for all v ∈ Bεv̄(v̄) ∩ Bε(w) and thus
τv > σv̄ a.s. Since Bε(w) is compact, there exists a finite subcover Bεv̄1

(v̄1)� � � � �Bεv̄m (v̄m)

of Bε(w) and thus τ := inf�=1�����m σv̄� is strictly positive. Since v �→ W v is continuous, it is
Borel measurable and because β is a continuous functional of W , so is v �→ βv. �

Having locally constructed strong solutions to (5), we need to piece them together
to construct a global weak solution. The following lemma tells us that this is possible if
the corresponding payoff set is compact.

Lemma 10. Let W ⊆ Rn be a compact locally self-generating set. Then there exists a dis-
count rate r̃ such that W ⊆ E(r) for any r ∈ (0� r̃).

Proof. The family of open neighborhoods (Uw)w∈W forms an open cover of W ; hence
by compactness there exists a finite subcover (Uk)k=1�����N . By making these sets disjoint,
we obtain a finite, Borel measurable cover of W . On each of these (now disjoint) sets Uk

we have a stochastic framework (	k�Fk�Fk�Pk�Zk). Let (	�F�F�P) be the product
space, that is, 	 := 	1 × · · · × 	N , F := F1 ⊗ · · · ⊗ FN , and similarly for Ft , t ≥ 0, and
define P(B) := P(B1) · · ·P(BN) for B = B1 × · · · × BN ∈ F . Choose any discount rate r

smaller than r̃ = min(r̃1� � � � � r̃N) > 0. Then, dependent on r, for every Uk there exist a
strategy profile Ak, a martingale Mk orthogonal to σZk, and a stopping time τk > 0
such that for every v ∈ Uk ∩W , there exist βv, W v satisfying the appropriate conditions.
Let now τ(ω1� � � � �ωN) := min(τ1(ω1)� � � � � τN(ωN)�1), which is positive P-a.s.

Fix v ∈ W and let κ be the index such that v ∈ Uκ. On �0� τ� we set Z = Zκ, A = Aκ,
M = Mκ, W = W v, and β = βv, and we know that they have the desired properties. In
particular, Wτ ∈ W ; hence we can concatenate the solution with the processes related to
the neighborhood Uk that Wτ falls into. More precisely, on �τ� τ̃�, where τ̃ − τ is identi-
cally distributed as τ, we set

Zt(ω) := Zκ
τ(ω)(ω

κ)+
N∑

k=1

Zk
t−τ(ω)(ω

k)1{Wτ(ω)∈Uk}

and similarly for M . It follows from the strong Markov property of each Zk that Z is
an (F�P)-Brownian motion. Since τ is bounded, the optional stopping theorem implies

18Here, V v(ω) is to be understood as an element of the space Dn of càdlàg functions from [0�∞) to Rn

with the topology of uniform convergence on compacts. A compatible metric is given by

d(f�g) :=
∞∑
k=1

1
2k

(
1 ∧ sup

0≤s≤k

‖f (s)− g(s)‖
)
;

see Protter (2005, p. 220).
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that M is a (P�F)-martingale. Because P is defined as the product measure and each Mk

is orthogonal to σZk, M is orthogonal to σZ. Further, define

At(ω) :=
N∑

k=1

Ak
t−τ(ω)(ω

k)1{Wτ(ω)∈Uk}�

which is �(A)-valued and F-progressively measurable, hence a valid strategy profile.

Finally, let βt(ω) := β
Wτ(ω)

t−τ(ω)(ω) and Wt(ω) =W
Wτ(ω)

t−τ(ω)(ω), which are F-progressively mea-
surable since v �→ βv and v �→ W v are measurable by assumption. By construction, β
enforces A on �0� τ̃� and all the processes are related by (5).

An iteration of this procedure thus leads to a sequence of stopping times (τ�)�≥0 and
solutions (W ��A��β��Z��M�)�≥0 to (5) on �τ�� τ�+1 � such that τ�+1 −τ� are independent
and identically distributed as τ. By the subsequent Lemma 11, τ� diverges to ∞ a.s.;
hence a countable concatenation of the solutions (W ��A��β��Z��M�) yields a solution
to (5) on [0�∞) attaining v. Since v was arbitrary, W is self-generating for discount rate r

and hence W ⊆ E(r) by Lemma 2. The statement follows since r ∈ (0� r̃) was arbitrary. �

Lemma 11. Let (τ�)�≥0 be a sequence of random variables with τ0 = 0 such that τ�+1 − τ�
are strictly positive and i.i.d. Then τ� → ∞ a.s.

Proof. Let τ̃� := τ� − τ�−1 for � ≥ 1. Then τ̃� are i.i.d. and τ� = ∑�
k=1 τ̃k. Therefore, the

strong law of large numbers implies that

1
�
τ� = 1

�

�∑
k=1

τ̃k → E[τ1] a.s.

That is, for all ε > 0 there exists �0 such that for any � ≥ �0, |τ�/�− E[τ1]| < ε a.s. Letting
ε = E[τ1]/2, we obtain τ� > �E[τ1]/2 a.s. for all � ≥ �0. This lower bound, and hence also
τ�, diverges to ∞ a.s. since E[τ1]> 0 because τ1 = τ1 − τ0 > 0 a.s. �

4.3 Proofs of the folk theorems

The proofs of Theorems 1 and 2 are completed by showing that the given conditions
on the game primitives imply that any closed, smooth set W ⊆ intV∗ is uniformly de-
composable on tangent hyperplanes. Auxiliary results in the spirit of Lemmas 6.1–6.3 of
Fudenberg et al. (1994) are contained in Appendix D. Figures 6 and 7 show how these
results come together in the proofs of the folk theorems.

Proof of Theorem 2. The statement follows from Lemmas 9 and 10 once we show that
W is uniformly decomposable on tangent hyperplanes. Suppose first that all Pareto-
efficient pure action profiles a1� � � � � aN are pairwise identifiable and that the expected
flow payoff is affine in m. Then the profiles a1� � � � � aN are enforceable by Lemma 19.
Since W is contained in the interior of conv(g(αe�a1� � � � � aN)), at any point w ∈ ∂W there
exists an enforceable action profile α ∈ {αe�a1� � � � � aN } such that g(α) is separated from
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Lemma 16
Full rank ⇒
enforceability

Lemma 17
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Lemma 18
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Folk theorem
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with PWFR
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full rank

Cond (iii),
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Best responses
are unique

Figure 6. Solid arrows indicate the use in the proof; dashed arrows represent sufficient condi-
tions for a result to apply in the proof of Theorem 1. To establish a Nash-threat folk theorem,
Lemma 18 is not needed; hence we can either assume conditions (ii) and (iv) and proceed as
above or assume that Pareto-efficient pure action profiles are pairwise identifiable and use the
shortcut as in Figure 7.

W by Sw. Suppose first that Sw is regular. Then α and Nw satisfy conditions (i) or (iv) of
Lemma 5.

If Sw is coordinate to the ith axis, then w either maximizes or minimizes player i’s
payoff on W by convexity. If w maximizes player i’s payoff, then a

p
i from Corollary 4

maximizes gi over A and it is pairwise identifiable by assumption; hence condition (ii)
of Lemma 5 is fulfilled. If w minimizes player i’s payoff, then g(αe) is separated from W
by Sw by assumption and (αe�−ei) satisfy condition (iv) of Lemma 5.

Suppose now that conditions (i) and (ii) are satisfied instead. In this case, we can
actually decompose smooth payoff sets W in the interior of the slightly larger payoff set
V† := {v ∈ V∗|vi ≥ gi(αe)}. Denote by ã1� � � � � ãK pure action profiles with extremal pay-
offs such that V† is contained in conv(g(αe� ã1� � � � � ãK)). For each ã� there exists a mixed
action profile α� with pairwise full rank by Lemma 17, such that g(α�) is arbitrarily close
to g(ã�) for all �. Moreover, by Lemma 16, α1� � � � �αK are all enforceable and pairwise
identifiable. Because W is contained in the interior of V†, we can choose α1� � � � �αK

such that W is contained in the interior of conv(g(αe�α1� � � � �αK)). Therefore, for every
w ∈ W , there exists an enforceable action profile such that its expected payoff is strictly
separated from W by Sw.
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Figure 7. Condition (v) enables a shortcut to establish a Nash-threat folk theorem. Lemmas 9,
10 and their preliminary results are still needed, but are not reproduced in this figure to avoid
repetition.

If Sw is regular or if w minimizes the payoff of a player i on W , the statement works in
the same way as before. If w maximizes the payoff of player i over W , we use a∗

i instead
of api . It follows from Lemma 3 that a∗

i is enforceable orthogonal to ei and (a∗
i � ei) satisfies

condition (ii) or (iii) of Lemma 5 by assumption. �

Proof of Theorem 1. Because of condition (ii), any extremal payoff can be approxi-
mated by the payoff of a mixed action profile with pairwise full rank. Hence all points w
where Sw is regular can be dealt with as in the proof of Theorem 2 under conditions (i)
and (ii). In the case where w maximizes player i’s payoff on W , condition (i) and Lem-
mas 3 and 16 show that a∗

i is enforceable orthogonal to ei. Because of condition (iii),
(a∗

i � ei) satisfies either condition (ii) or (iii) of Lemma 5. If w minimizes player i’s payoff
on W , condition (iv) and Lemma 18 ensure that there exists an enforceable action pro-
file αi with best response property for player i such that g(αi) is strictly separated from
W by Sw and (αi�−ei) satisfies condition (iii) of Lemma 5. �

5. Conclusion

In this paper, we study continuous-time multiplayer games with imperfect informa-
tion, where the signal is distorted by Brownian noise. Establishing a rigorous theory
of continuous-time repeated games for any number of players, we provide a mathemat-
ically sound basis of how to model strategies in mixed actions. An important concept
introduced in this paper is the notion of uniform decomposability on tangent hyper-
planes of a payoff set W . For such a payoff set, there exists a stopping time τ, such
that equilibrium profiles with continuation values in W need to be adapted only at in-
dependent copies of τ. Using this technique, we are able to construct surprisingly sim-
ple continuous-time equilibria attaining nearly efficient outcomes, thereby establishing
the folk theorem in continuous time. The simple nature of these equilibria is also very
desirable for implementation of these strategies.

The techniques of this paper suggest that if a payoff set W is smooth and uniformly
decomposable on tangent hyperplanes, then there exists a discrete-time game with pe-
riods of random length, such that the equilibrium payoff set of the discrete-time game
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coincides with W and a canonical embedding of the discrete-time equilibria into con-
tinuous time leads to continuous-time equilibria. By considering a sequence of smooth

and uniformly decomposable inner approximations of E(r), it is possible to obtain a se-
quence of such games that approximate the continuous-time game such that the equi-
librium payoff sets of the discrete-time games converge to E(r). This leads to interest-
ing questions for future research on the connection between equilibria in discrete- and
continuous-time models.

Appendix A: Mixing in continuous time

In a continuous-time setting, realizations of a mixed action have to be drawn continu-
ously. Suppose that player i plays a fixed mixed action over an interval [s� t] and samples
from his mixing distribution only at discrete intervals. An opponent who samples more
frequently may realize this after a couple of his own samples, and henceforth play a
best response to the already sampled action of player i. To avoid such a scenario, sam-

pling has to be done continuously, where the realizations are drawn from a continuum
of independent events. This means, though, that a behavior strategy could involve a
continuum of probability spaces on which the distributions �(Ai) are evaluated. In this
appendix, we show the existence of a unified probability space containing all the public
information as well as the outcomes of behavior strategies. In this framework it is also
possible to formulate private strategies, and we show that players always have a pub-

lic best reply to any public strategy profile of their opponents. Moreover, we provide
a definition of public mixed strategies (as opposed to behavior strategies) and prove a
continuous-time analogue to Kuhn’s theorem.

Fix a mixed action profile α ∈ �(A). We call an A-valued random variable γ on some
probability space an instantiation of α if γ has distribution α. An outcome of α is then
identified with γ(ω) for some ω ∈	. We call (γt)t≥0 an instantiation of a strategy profile

A if at each point in time t, the Ft-conditional distribution of γt equals At . Then γ(ω) is
the outcome of the strategy profile A. In continuous time, an instantiation of a strategy
profile A is constructed by setting

γt =
( ∑
a1∈A1

a11�1
t (a

1)� � � � �
∑

an∈An

an1�n
t (a

n)

)
� t > 0� (8)

where �i
t is a partition of 	 independent of the public filtration F, of all partitions �i

s

for s < t, and of all partitions �
j
t for j �= i such that Ai

t(a
i) = P(�i

t(a
i)|Ft ). The following

lemma justifies that we can indeed do this.

Lemma 12. There exist independent filtrations Mi = (Mi
t)t≥0, i = 1� � � � � n, that are inde-

pendent of the public filtration, such that at all t > 0, Mi
t contains finite partitions of 	 of

arbitrary size that are independent of Mi
s for all s < t.
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Proof. Fix a player i. We start by constructing a process (Ui
t )t≥0 such that each Ui

t

is standard uniformly distributed and independent of Ui
s for s < t. Indeed, its finite-

dimensional distributions satisfy

P(Ui
t1

≤ c1� � � � �U
i
tm

≤ cm)=
m∏
j=1

P(Ui
tj

≤ cj) =
m∏
j=1

cj

for all tj ∈ [0�∞) such that tj �= t� for j �= �, all cj ∈ [0�1], and all m ∈ N. Since this family
of finite-dimensional distributions is consistent, Kolmogorov’s existence theorem (see,
for example, Theorem 36.2 of Billingsley 1986) tells us that such a process indeed ex-
ists. Independent partitions of the appropriate size can now be found as the pre-image
of a partition of [0�1] under Ui. Therefore, the filtration generated by Ui will serve as
Mi. Clearly we can do this construction finitely many times in an independent way and
independently of F. �

The filtration Mi is the personal source of randomness that player i has available
for mixing. Because these filtrations are independent, neither do players learn anything
about the signal from their personal source of randomness nor can they predict the out-
come of their opponent’s mixing. For i = 1� � � � � n, let Fi denote the augmented filtration
generated by F and Mi.

Lemma 13. A stochastic process γ is the instantiation of a behavior strategy profile if and
only if γi :	× [0�∞)→ Ai is Fi-progressively measurable for every player i.

Proof. For a behavior strategy profile A, define an instantiation γ through (8), where
the partitions �i

t exist by Lemma 12. Since Mi are defined as the filtrations generated by
�i, γi has the necessary measurability properties. For the converse, let γ be a stochastic
process such that γi is Fi-progressively measurable with values in Ai. For any a ∈ A, de-
fine A(a) := O(1{γ=a}) as the F-optional projection of 1{γ=a}. It is the unique F-optional
process X such that

E[1{γτ=a}1{τ<∞}|Fτ] = Xτ1{τ<∞} a.s.

for every F stopping time τ; see Section VI.2 of Dellacherie and Meyer (1982) for further
details on the optional projection.19 Observe that A(a) is F-progressively measurable
and that

∑
a∈AA(a) = 1 a.e. Because M1� � � � �Mn are independent of each other,

At(a) = E[1{γ1
t =a1} · · ·1{γnt =an}|Ft] = P(γ1

t = a1|Ft ) · · ·P(γn
t = an|Ft) a.s.

19One may wonder why we use the optional projection and not its alternative, the predictable projec-
tion defined in (VI.43.2) of Dellacherie and Meyer (1982). First, in discrete time the optional projection
reduces to the standard conditional expectations O(m(A))� = E[m(A�)|F�] for � ∈ N by Remark VI.44.b of
Dellacherie and Meyer (1982), which means taking the step-by-step average over the mixing, whereas the
predictable projection corresponds to E[m(A�)|F�−1], which would mean to average over not just the mix-
ing but also other new information. Second, without mixing (Mi trivial), the predictable projection does not
need to correspond to the original process, as opposed to the optional projection. In particular, if actions
are correlated in an unpredictable way by using information orthogonal to Z, the predictable projection
would filter this out.
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This means that the players’ distributions are conditionally independent, given the pub-
lic information. Therefore, A is indeed a behavior strategy profile. �

Observe that μ(A) = O(m(γ)) for any instantiation γ of A. Because μ(A) is F-
progressively measurable, so is the density process dQA/dP defined in (2). Therefore,
we immediately obtain the following consistency result.

Lemma 14. For any behavior strategy profile A, the following statements hold:

(i) The family QA of probability measures agrees with P on M1� � � � �Mn.

(ii) The filtrations F�M1� � � � �Mn are independent under QA.

(iii) The F-optional projections under QA and P coincide.

The first property says that a change of measure does not affect the weight a player
assigns to any pure action. By the second property, a mixed action profile remains a
mixed action profile under QA. Finally, the last statement implies that the infinitesimal
average is not affected by a change of measure.

Lemma 15. Suppose that player i’s opponents play a public strategy profile A−i. Then
player i has a best response in public strategies.

Proof. Suppose that player i has additional information available in a filtration Gi and
let γ be an instantiation of A. Similar to the proof of Lemma 13, γi is progressively
measurable with respect to the augmented filtration of F, Gi, and Mi, where M1� � � � �Mn

are independent of Gi. Then a public best response is given by

Ãi(ai) := ai O�Fi (1{γi=ai})� ai ∈ Ai�

where O�Fi (·) denotes the optional projection onto Fi. Indeed, for any F stopping time τ

we obtain, by Fτ-conditional independence of Mj
τ and Mi

τ for j �= i,

μ(Ãi�A−i)τ1{τ<∞} = E[m(γ̃i
τ�γ

−i
τ )1{τ<∞}|Fτ]

=
∑
a∈A

m(a)E[O�Fi (1{γi=ai})τ1{τ<∞}|Fτ]
∏
j �=i

O(1{Aj=aj})τ

= μ(Ai�A−i)τ1{τ<∞}�

where γ̃i is an instantiation of Ãi. Therefore, Q(Ãi�A−i) = QA and it follows from (3) that
W (Ãi�A−i) =W (A) a.e. by projectivity of the conditional expectation. �

A mixed strategy (as opposed to a behavior strategy) is a mixture over pure strategies.
Formally, it is a probability measure on the space of all pure strategies. In the absence
of public randomization, the public filtration is generated by Z; hence 	 = C[0�∞)d

without loss of generality, where C[0�∞)d denotes the space of all continuous functions
from [0�∞) to Rd . Therefore, a pure strategy for player i can be seen as a progressively
measurable mapping γi : C[0�∞)d × [0�∞)→Ai.
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Definition 10. A mixed strategy for player i is a probability measure κi on the set

P i = {γi : C[0�∞)d × [0�∞)→Ai|γi is progressively measurable}�20

A mixed strategy profile κ is given by the product measure κ= κ1 ⊗· · ·⊗κn on the product
σ-algebra on P = P1 ×· · ·×Pn, where κi is a mixed strategy for player i = 1� � � � � n. Player
i’s discounted expected future payoff of a mixed strategy profile is given by

W i
t (κ) =

∫
P
W i

t (γ)dκ(γ) =
∫
P1

· · ·
∫
Pn

W i
t (γ

1� � � � � γn)dκ1(γ1)⊗ · · · ⊗ dκn(γn)�

Since mixing over strategies is a more complicated procedure than mixing over ac-
tions, it is usually easier to work with behavior strategies than with mixed strategies. In
the remainder of this appendix we show in an analogue to Kuhn’s theorem (see Kuhn
1953) that the two notions are equivalent. A mixed strategy profile κ and a behavior
strategy profile A are realization equivalent if they lead to the same distribution over
outcomes, that is, for any a ∈ A,

A(a) = κ({γ ∈ P|γ = a}) a.e.

Theorem 4 (Analogue of Kuhn’s theorem). Every mixed strategy profile is realization
equivalent to some behavior strategy profile. Conversely, every behavior strategy profile
has a realization equivalent mixed strategy profile.

Proof. Let κ be a mixed strategy profile. Fix a player i and define for any ai ∈ Ai and
any (ω� t) ∈ C[0�∞)d × [0�∞),

Ai
t(a

i;ω) := κi
({γi ∈ P i|γi

t(ω) = ai})�
It can be deduced that Ai(ai) is almost everywhere well defined and a progressively mea-
surable process for all ai ∈ Ai. Indeed, the sets

S(ai) = {(γi�ω� t) ∈ P i ×C[0�∞)d × [0�∞)|γi
t(ω) = ai}

are elements of the product σ-algebra of σP i (see footnote 20) and the progressive σ-
algebra on C[0�∞)d × [0�∞). Since {γi ∈ P i|γi

t(ω) = ai} are the (ω� t) sections of S(ai),
it follows from measurable induction that the mapping

(ω� t) → κi
({γi ∈ P i|γi

t(ω) = ai})
is progressively measurable, which means that Ai(ai) is progressively measurable.
Moreover, the processes Ai(ai) are nonnegative and their sum over ai ∈ Ai is 1. Since
κ = κ1 ⊗ · · · ⊗ κn, it follows that A(a) := A1(a1) · · ·An(an) indeed defines a realization
equivalent behavior strategy profile.

20Formally, κi is defined not on P i itself, but on the σ-algebra σP i on P i generated by the coordinate
maps πt : P i → (C[0� t]d → Ai) given by πt(γ

i) := γi
t ; see also Billingsley (1986, p. 509).



442 Bernard and Frei Theoretical Economics 11 (2016)

Let now A be a behavior strategy profile and let U1� � � � �Un be independent pro-
cesses with standard uniform marginals as in the proof of Lemma 12 on some probabil-
ity space (	̃� F̃� P̃). For any player i, enumerate Ai = {ai1� � � � � aiKi

} and define

γi
t(ω̃�ω)=

Ki∑
j=1

ai1{∑j−1
�=1 A

i
t(a

i
�;ω)≤Ui

t (ω̃)<
∑j

�=1 A
i
t(a

i
�;ω)}�

which we consider as a mapping in ω̃ from 	̃ to the set P i of progressively measurable
processes C[0�∞)d × [0�∞) → Ai. Using the σ-algebra from footnote 20, this mapping
becomes measurable; hence we can define a probability measure κi on P i as the pre-
image of γi under P̃ , that is, κi = P̃ ◦ (γi)−1. Therefore, κ = κ1 ⊗ · · · ⊗ κn indeed defines
a realization equivalent mixed strategy profile. �

Appendix B: Time-changed PPEs and monotonicity of E(r)

Proof of Lemma 6. For a strategy profile A in a stochastic framework (	�F�F�P�Z),
we define the time-changed processes

Ãt := Aλt� Z̃t := 1√
λ
Zλt� Ỹt := σ̃Z̃t �

Observe that Ã is progressively measurable with respect to the time-changed filtration
F̃ = (F̃t )t≥0, where F̃t := Fλt , and Z̃ is an F̃-Brownian motion by the scaling property

of Brownian motion. The family (Q̃Ã
t )t≥0 of probability measures induced by Ã with

respect to m̃, σ̃ , and Ỹ is defined as

dQ̃Ã
t

dP
:= exp

(∫ t

0
μ̃(Ãs)

	(σ̃σ̃	)−1 dỸs − 1
2

∫ t

0
μ̃(Ãs)

	(σ̃σ̃	)−1μ̃(Ãs)ds
)
�

Abbreviate m̂ := m̃/
√
λ and observe that σ̃	(σ̃σ̃	)−1m̂ = σ	(σσ	)−1m by assumption.

With the substitution ds̃ = λds we arrive at

dQ̃Ã
t

dP
= exp

(∫ t

0
μ̂(Aλs)

	(σ̃σ̃	)−1σ̃ dZλs − 1
2

∫ t

0
μ̂(Aλs)

	(σ̃σ̃	)−1μ̂(Aλs)λds
)

= exp
(∫ λt

0
μ(As̃)

	(σσ	)−1σ dZs̃ − 1
2

∫ λt

0
μ(As̃)

	(σσ	)−1μ(As̃)ds̃
)

= dQA
λt

dP

and hence Q̃Ã
t coincides with QA

λt on F̃t = Fλt . Observe that the expected flow payoff
gi(a) = f i(ai�m(a)) = f i(ai�σσ̃	(σ̃σ̃	)−1m̃(a)/

√
λ) still depends on a−i only through

m̃(a). Substituting ds̃ = λds again, we obtain for every t ≥ 0,

W̃ i
t (Ã;λr� m̃� σ̃) :=

∫ ∞

t
λre−λr(s−t)E

Q̃Ã
s
[gi(Ãs)|F̃ t]ds

(9)

=
∫ ∞

λt
re−r(s̃−λt)EQA

s̃
[gi(As̃)|Fλt]ds̃ = W i

λt(A; r�m�σ) a.s.
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Because all unilateral deviations of (Aλt)t≥0 correspond to unilateral deviations of A, it
follows from (9) that (Aλt)t≥0 is a PPE with respect to (λr� m̃� σ̃) if and only if A is a PPE
with respect to (r�m�σ). �

Proof of Theorem 3. To show (a), we need to show that a PPE A with respect to
(r�m�σ) can be transformed to a PPE with respect to (r�m�σ
). Let (	�F�F�P�Z) be
the stochastic framework of A, and let β, Z, and M be the processes from Lemma 1 that
satisfy (5) for A and W = W (A) with respect to μ and σ . Let Z⊥ be a k-dimensional
Brownian motion orthogonal to both Z and M , and denote by F̂ the augmented filtra-
tion generated by F and Z⊥. Because 
 is symmetric, we can write 
 = Q	DQ for an
orthogonal matrix Q and a diagonal matrix

D =
⎛
⎝ I� 0 0

0 −Im 0
0 0 D̃

⎞
⎠

such that D̃ has entries in (−1�1). Define 
̃ := Q	√
Ik −D2Q so that 
2 + 
̃2 = Ik. Then

Ẑ := 
Z + 
̃Z⊥ is a Brownian motion with respect to F̂. Set


̂ := Q	
(

0 0

0 (
√
Ik−�−m − D̃2)−1

)
Q

and define Ẑ⊥ := 
̂(Z −
Ẑ). It follows from

d〈Ẑ⊥� Ẑ⊥〉t =
(

0 0
0 Ik−�−m

)
dt

and d〈Ẑ⊥� Ẑ〉t = 0 that Ẑ⊥ is a martingale orthogonal to Ẑ. This gives us the decompo-
sition Z = 
Ẑ + 
̃Ẑ⊥ and hence

dWt = r(Wt − g(At))dt + rβt(σ dZt −μ(At)dt)+ dMt

= r(Wt − g(At))dt + rβt(σ
dẐt −μ(At)dt)+ rβtσ
̃dẐ⊥
t + dMt�

Since ker(σ
) = ker(σ) by assumption, it follows that there exists a matrix � ∈Rd×d such
that �σ = σ
.21 Therefore, σ
Ẑ = �2σZ+σ

̃Z⊥ is orthogonal to M and hence also to
M̂ := M + ∫

rβsσ
̃dẐ⊥
s . It follows that W also fulfills (5) for σ
 with processes β, Ẑ, and

M̂ . Since β enforces A, A is also a PPE in the continuous-time game with volatility σ


by Lemma 1. Note, however, that A is a PPE as an F̂-progressively measurable process,
that is, when players use the new orthogonal information suitably. We derive from Itô’s
formula that

d(e−rtWt) = −re−rtg(At)dt + re−rt β̂t(σ
dẐt −μ(At)dt)+ e−rt dM̂t � (10)

21Indeed, σ is an isomorphism from ker(σ)⊥ to Rd with inverse σ	(σσ	)−1 and hence the vectors
bi := σ	(σσ	)−1ei for i = 1� � � � � d form a basis of ker(σ) = ker(σ
), where ei denotes the ith standard
basis vector in Rd . Define δi := σ
bi for i = 1� � � � � d and set � = (δ1� � � � � δd). By construction, we have
�σbi = δi = σ
bi . Since (b1� � � � � bd) can be completed to a basis of Rn with any basis of ker(σ
) and
ker(σ) = ker(σ
), it follows that �σ = σ
.
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Observe that ker(σ
) = ker(σ) implies rank(σ
) = d; hence we can define a family
(Q̃A

t )t≥0 of probability measures as in (2) with respect to m and σ
. Integrating (10)
from t to T and taking Q̃A

T -conditional expectations on F̂t yields

Wt =
∫ T

t
e−r(s−t)EQ̃A

s
[g(As)|F̂ t]ds + e−r(T−t)EQ̃A

T
[WT |F̂ t]�

Taking the limit as T → ∞ yields Wt(A; r�m�σ) = Ŵt(A; r�m�σ
) a.s. since W is
bounded. This concludes the proof of (a).

For statement (b), let first σ̃ = 
σ . Define the k × k matrix 
′ := σ	(σσ	)−1
σ so
that σ
′ = 
σ . Note that 
′	 = σ	
(σσ	)−1σ = 
′, i.e., 
′ is symmetric. Every vector
in the kernel of σ is an eigenvector of 
′ with eigenvalue 0. Let λ be an eigenvalue of 
′
to an eigenvector v that is not in the kernel of σ . Then 
σv = σ
′v = λσv, that is, λ is an
eigenvalue of 
 for eigenvector σv. Since this applies to all eigenvalues of 
′ outside the
kernel of σ , the eigenvalues of 
′ lie in [−1�1] and ker(σ
′) = ker(σ). Moreover, σ
′ =

σ has rank d because 
 is invertible and σ has rank d. The statement now follows by
applying (a) to 
′. Observe that the change m̃=
−1m is completely equivalent since

σ	
	(
σσ	
	)−1m= σ	

−1(σσ	)−1
−1m= σ	(σσ	)−1
−1m

and hence the induced probability measures coincide at all times. For statement (c),
Lemma 6 implies W̃t((Aλt)t≥0�λr�m�σ/

√
λ) = Wλt(A� r�m�σ) a.s. for λ ∈ (0�1). The

statement follows from (a) for the matrix 
 = diagk(
√
λ) applied to σ/

√
λ. �

Appendix C: Proofs of Lemmas 1, 5, and 7

The statement of Lemma 1 is rather intuitive, since (3) can be rewritten as

W i
t (A) = rert

(
lim
u→∞EQA

u

[∫ u

0
e−rsgi(As)ds

∣∣∣Ft

]
−

∫ t

0
e−rsgi(As)ds

)

and hence dW i
t = rWt dt − rgi(At)dt + d“martingale” by the product rule. However, the

limiting probability measure QA∞ is not equivalent to P on F∞; hence we cannot imme-
diately apply a martingale representation result.22

Proof of Lemma 1. To show (a) �⇒ (b), observe first that W i := W i(A) is bounded, as
it remains in V at all times. Fix T > 0 and derive from (3) that

wi
T := W i

T − r

∫ T

0
(W i

t − gi(At))dt

(11)

= W i
T + r

∫ T

0
gi(At)dt − r

∫ ∞

0

∫ s∧T

0
re−r(s−t)EQA

s
[gi(As)|Ft]dt ds

22The probability measure QA∞ that coincides with QA
t on Ft for every t ≥ 0. It is not obtained as the limit

in (2), but its existence is asserted by Proposition I.7.4 of Karatzas and Shreve (1998).
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is a bounded FT -measurable random variable. By Corollary 1 to Theorem IV.37 of
Protter (2005), any square-integrable QA

T -martingale can be decomposed uniquely into
a stochastic integral with respect to σZ − ∫

μ(As)ds and a square-integrable martin-
gale M orthogonal to Z. Applying this to EQA

T
[wi

T |Ft], we obtain an F0-measurable
ciT , a progressively measurable process (βi

t�T )0≤t≤T with EQA
T
[∫ T

0 |βi
t�T |2 dt] < ∞, and a

QA
T -martingale (Mi

t�T )0≤t≤T orthogonal to Z with Mi
0�T = 0 such that

wi
T = ciT +

∫ T

0
rβi

t�T (σ dZt −μ(At)dt)+Mi
T�T �

To prove that (b) holds, we need to show that ciT , βi
t�T , and Mi

t�T do not depend on T . Let

T̃ ≤ T and take in (11) conditional expectations on FT̃ under QA
T to deduce that

EQA
T
[wi

T |FT̃ ] −wi
T̃

= EQA
T
[wi

T |FT̃ ] −W i
T̃

+ r

∫ T

T̃
EQA

t
[gi(At)|FT̃ ]dt

− r

∫ ∞

T̃

∫ s∧T

T̃
re−r(s−t)EQA

s
[gi(As)|FT̃ ]dt ds

= EQA
T
[wi

T |FT̃ ] −W i
T̃

−
∫ ∞

T
re−r(s−t)EQA

s
[gi(As)|FT̃ ]ds

+
∫ ∞

T̃
re−r(s−T̃ )EQA

s
[gi(As)|FT̃ ]ds

= 0�

using that EQA
T
[X|FT̃ ] = EQA

s
[X|FT̃ ] for Fs-measurable X and s ≤ T . Taking T̃ = 0, this

shows that ciT =W i
0 does not depend on T . It also implies

wi
T̃

= EQA
T
[wi

T |FT̃ ] =W i
0 +

∫ T̃

0
rβi

t�T (σ dZt −μ(At)dt)+Mi
T̃�T

�

which yields βi
·�T = βi

·�T̃ a.e. and Mi
T̃�T

= Mi
T̃ �T̃

a.s. by the uniqueness of the orthogo-

nal decomposition. Taking Ft-conditional expectations, we deduce Mi
t�T̃

= Mi
t�T a.s. for

every t; hence W (A) satisfies (b).
To prove (b) �⇒ (a), we derive from Itô’s formula that

d(e−rtW i
t ) = −re−rtgi(At)dt + re−rtβi

t(σ dZt −μ(At)dt)+ e−rt dMi
t � (12)

Integrating (12) from t to T and taking QA
T -conditional expectations on Ft thus yields

W i
t =

∫ T

t
re−r(s−t)EQA

s
[gi(As)|Ft]ds + e−r(T−t)EQA

T
[W i

T |Ft]�

Since W is bounded, the second summand converges to zero a.s. as T tends to ∞; hence
W i

t is indeed the discounted expected future value of A.
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For the last statement, fix a player i and a time t, and let Ã be a strategy profile with
Ã−i =A−i. For β related to W (A) by (5), we obtain from (12) for u≥ t that

W i
t (A) = e−r(u−t)W i

u(A)−
∫ u

t
re−r(s−t)

(
βi
s(σ dZs −μ(As)ds)− gi(As)ds − dMi

s

)
�

As we let u → ∞, the term e−r(u−t)W i
u(A) vanishes since W i(A) is bounded. Since M is

a martingale up to time u also under QÃ
u , we obtain

W i
t (Ã)= lim

u→∞E
QÃ

u

[∫ u

t
re−r(s−t)gi(Ãs)ds

∣∣∣Ft

]

= W i
t (A)+ lim

u→∞E
QÃ

u

[∫ u

t
re−r(s−t)

(
(gi(Ãs)− gi(As))ds

+βi
s(σ dZs −μ(As)ds)

)∣∣∣Ft

]
a.s.

Because wi
T defined in (11) is bounded, it follows from the construction of β that the

process
∫ ·
t re−r(s−t)βi

s(σ dZs − μ(As)ds) is up to any time u ∈ (t�∞) a bounded mean
oscillation (BMO) martingale under the probability measure QA

u . This implies by The-
orem 3.6 of Kazamaki (1994) that

∫ ·
t re−r(s−t)βi

s(σ dZs − μ(Ãs)ds) is a BMO martingale

under QÃ
u . Together with Fubini’s theorem this implies

W i
t (Ã)−W i

t (A)

=
∫ ∞

t
re−r(s−t)E

QÃ
s

[
gi(Ãs)− gi(As)+βi

s(μ(Ãs)−μ(As))|Ft
]

ds a.s.
(13)

If β enforces A, the above conditional expectation is nonpositive; hence A is a PPE. To
show the converse, assume toward a contradiction that there exists a player i and a set
�⊆ 	× [0�∞) with P ⊗ Lebesgue(�) > 0, such that for some other strategy Âi,

gi(Âi�A−i)− gi(A)+βi(μ(Âi�A−i)−μ(A)) > 0 on ��

Set Ãi := Âi1� + Ai1�c . Because β is progressively measurable, we can and do choose
� and Â to be progressively measurable as well. In particular, Ãi is a behavior strat-
egy for player i. For such an Ã, the expectation in (13) is strictly positive for t = 0, a
contradiction. �

Proof of Lemma 5. Statement (i). Let βi
α(N) = Bi as in (6), which is locally Lipschitz

continuous in N . The statement holds by choosing UN such that the first two coordi-
nates are bounded away from zero.

Statement (ii). The case where N is not parallel to a coordinate axis is shown in
statement (i); hence suppose now that N = e1. Let β̃1� � � � � β̃n be defined as in the proof
of Lemma 4 and set

β1
α(x) := −

n∑
i=2

xi

x1 β̃
i� βi

α(x) = β̃i� i = 2� � � � � n� (14)
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Along the lines of the proof of Lemma 4, it follows that βα(x) enforces α orthogonal to x

if x1 �= 0. The statement follows by choosing UN bounded away from {x1 = 0}.
Statement (iii). Suppose N = e1 and that α1 = a1 ∈ A1 is a unique best response

to α−1. Let βi
α(x) as in (14), except that β̃i are replaced by βi. Then, clearly, (4) is

fulfilled for players i = 2� � � � � n. Because of the unique best response property, there
exists an ε > 0 such that g1(α1) ≥ g1(ã1�α−1) + ε for every ã1 ∈ A1 \ {a1}. Let us set
B = maxi=2�����n maxã1∈A1 |βi(μ(ã1�α−1) − μ(α))|, which is finite as β is fixed. If B = 0,
then α is a Nash equilibrium and the result holds by statement (iv). Suppose, therefore,
that B > 0. Then for all x in

Ue1 :=
{
x ∈Rn

∣∣∣‖x− e1‖ ≤ ε

B(n− 1)+ ε

}
�

x1 is bounded away from 0, and hence |xi|/x1 ≤ ε/(B(n− 1)). It follows that

∣∣β1
α(x)(μ(ã

1�α−1)−μ(α))
∣∣ =

n∑
i=2

|xi|
x1

∣∣βi(μ(a1�α−1)−μ(α))
∣∣ ≤ ε

for every ã1 ∈ A1. Together with the unique best response property for player 1, this
shows that βα(x) enforces α for x ∈Ue1 . For all x ∈Ue1 , βα(x)

	x= 0 by construction and
βα is Lipschitz continuous and bounded since x1 is bounded away from 0.

Statement (iv). This is clear since βα(x) = 0 for all x ∈Rn. �

Proof of Lemma 7. To show that (a) �⇒ (b), let X ∈ E(r�m) a.s. Although we may have
different probability spaces in (a) for each realization X = x, we can use the fact that
the models all share the same path space to construct a regular conditional probability
on that space. The path space of a behavior strategy A and its stochastic framework is
given by D := �(A)[0�∞) × C[0�∞)d , and C[0�∞)d is the space of continuous functions
[0�∞) → Rd . One can show that 	 = V ×D is complete and separable,23 hence by The-
orem V.3.19 in Karatzas and Shreve (1998) there exists a regular conditional probability
Px(F) : V ×F → [0�1], which means that it has the following properties:

(i) For each x ∈ V , Px is a probability measure on (	�F).

(ii) For each F ∈ F , the mapping x �→ Px(F) is B(V)-measurable.

(iii) For each F ∈ F , Px(F) = P(F |X = x) for ν-a.e. x ∈ V , where ν is the distribution
of X .

We know that for each x ∈ E(r�m), there exists a PPE Ax achieving x. Let A now be the
process defined pointwise by Ax on {X = x}. It follows from the properties of a regular
conditional probability that A is a PPE achieving X . Indeed, for any player i and any

23V is complete and separable as a closed subset of Rn, C[0�∞)d is both complete and separable with
respect to the uniform metric by Theorem 43.6 of Munkres (2000) and �(A)[0�∞) is compact by Tychonov’s
theorem and hence complete and separable.
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behavior strategy profile Ã with Ã−i =A−i,

P(W i
0 (A) ≥W i

0 (Ã)) =
∫
E(r�m)

P(W i
0 (A) ≥W i

0 (Ã)|X = x)dν(x)

=
∫
E(r�m)

Px(W
i

0 (A
x) ≥W i

0 (Ã))dν(x) = 1

and in the same way P(W0(A) =X) = ∫
E(r�m) Px(W0(A

x) = x)dν(x) = 1.
To show the implication (b) �⇒ (a), suppose that X /∈ E(r�m) on an F0-measurable

set � with ν(�) > 0. Since there are only finitely many players, this implies the existence
of an F0-measurable set �̃ with ν(�̃) > 0 such that some player i can improve his strategy
to Ãx�i for x ∈ �̃. Letting Âi := Ai1

�̃c (x)+ Ãx�i1
�̃
(x), it follows that

P(W i
0 (A) ≥W i

0 (Â
i�A−i)) =

∫
V
Px(W

i
0 (A) ≥W i

0 (Ã
x�i�A−i))dν(x) < 1�

contradicting the assumption that A is a PPE. �

Appendix D: Auxiliary results

In this appendix we provide some auxiliary results related to enforceability and pairwise
identifiability. These results are needed in the proofs of the folk theorems as indicated in
Figures 6 and 7. They differ from the results in Fudenberg et al. (1994) in that we model
the change of the signal’s distribution through a change of its drift.

Lemma 16. An action profile α is enforceable if for every player i one of below conditions
holds:

(i) The profile α has individual full rank for player i.

(ii) The action αi is a best response of player i to α−i.

The enforceability condition (4) imposes n systems of linear inequalities, one for
each player i. Because rankMi(α) ≤ |Ai| − 1, we cannot simply solve the system i by
applying the left inverse of Mi(α), but we need to additionally exploit that the linear
dependence among the columns of Gi(α) and Mi(α) is the same.

Proof of Lemma 16. Fix a player i and suppose first that 1. is satisfied for action profile
α. Let ai ∈ Ai be an action with αi(ai) > 0 and enumerate Ai = {ai1� � � � � aiKi

} such that

ai = aiKi
is the last element. For the sake of brevity, denote by Mi

j(α) the column of Mi(α)

corresponding to action aij . Because of the linear dependence among the columns of

Mi(α), we obtain

Mi
Ki
(α) = −

Ki−1∑
j=1

α(aij)

α(aiKi
)
Mi

j(α)�
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Figure 8. The right panel shows V� and V∗ for the stage game with payoffs given in the table to
the left. In the proof of the folk theorems, we only need that we can approximate extremal points
of V∗ and the minmax payoffs, which all lie in V�.

Condition 1 implies that there is no other linear dependence among the columns of
Mi(α) and thus the d × (|Ai| − 1)-dimensional submatrix M̃i(α) consisting of the first
|Ai| − 1 columns has full column rank. In particular, M̃i(α) has a left inverse M̃i

L(α) and

βi =Gi(α)

[
M̃i

L(α)

0

]

solves the system for player i with equality. Indeed,

Gi(α)

[
M̃i

L(α)

0

]
Mi(α) = Gi(α)

[
IKi−1

∑Ki−1
j=1

α(aij)

α(aiKi
)
M̃i

L(α)M̃
i
j(α)

0 0

]

=
(
Gi

1(α)� � � � �G
i
Ki−1(α)�−

Ki−1∑
j=1

α(aij)

α(aiKi
)
Gi

j(α)

)
�

where we used that M̃i
L(α)M̃

i
j(α) = ej . The claim under condition 1 follows since

Gi
Ki
(α) = −

Ki−1∑
j=1

α(aij)

α(aiKi
)
Gi

j(α)�

Under condition 2, βi = 0 solves the inequalities for player i. �

The following lemmas are the analogues of Lemmas 6.1–6.3 in Fudenberg et al.
(1994) in our setting. Let V� denote the set of payoffs achievable in mixed actions. While
it may be strictly smaller than V for some games (see Figure 8), the extremal payoffs
always correspond to pure action profiles and hence are contained in V�.

Lemma 17. Suppose that for every pair of players i, j, there exists a mixed action profile
αij having ij-pairwise full rank. Then the set of payoffs C of action profiles with pairwise
full rank for all pairs of players is dense in V�.

Proof. Let E ⊆ �(A) denote the set of mixed action profiles with pairwise full rank. By
Lemma 6.2 of Fudenberg et al. (1994), E is dense in �(A). Since the map g : �(A) → V�

is continuous and surjective, C ⊇ g(E) is dense in V�. �
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Lemma 18. Suppose that every pure action profile has individual full rank. Then for any
ε > 0 and any player i, there exists an enforceable action profile α with best response prop-
erty for player i and |gi(α)− vi| < ε. Moreover, if every pure action is pairwise identifiable
or the best response of player i to the minmax profile αi

−i is unique, then the pair (α�−ei)

satisfies condition (ii) or (iii) of Lemma 5, respectively.

Note that the first part of the statement is identical to Lemma 6.3 of Fudenberg et al.
(1994). However, we also need that the resulting action profile leads to a locally uniform
decomposition as in Lemma 5.

Proof of Lemma 18. Fix a player i and let α−i
i denote a minmax profile against player i.

By assumption, (ai� a−i) has individual full rank for every ai ∈ Ai and every a−i ∈ A−i.
Therefore, similar as in the proof of Lemma 6.2 in Fudenberg et al. (1994), one can find
a sequence of profiles (α−i

(k))k≥1 converging to α−i
i , such that (ai�α−i

(k)) has individual full

rank for every ai ∈ Ai and all k.
Let aik be a best response for player i to α−i

(k). The profiles (aik�α
−i
(k)) are enforceable

orthogonal to −ei by Lemmas 16 and 3. Let ai ∈ Ai be an accumulation point of (aik)k≥1

and choose a subsequence (kν)ν≥1 such that aikν = ai for all ν ∈N. Observe that ai is also

a best response to α−i
i because

gi(ai�α−i
i )= lim

ν→∞gi(ai�α−i
(kν)

) ≥ lim
ν→∞gi(ãi�α−i

(kν)
)= gi(ãi�α−i

i )�

hence ai ∈ arg maxgi(·�α−i
i ) and gi(ai�α−i

i ) = vi. Therefore, for any ε > 0 we can find ν

large enough such that |gi(ai�α−i
(kν)

)− vi| < ε.

Under condition 1, (α−i
(k))k≥1 can be chosen in a way that (ai�α−i

(k)) has pairwise full

rank for every ai ∈ Ai and all k. Therefore, ((ai�α−i
(kν)

)�−ei) satisfies the second condition
of Lemma 5. Under condition 2, it follows from multilinearity that there exists a ν large
enough such that ai is also a unique best response to α−i

(kν)
. Therefore, condition (iii) of

Lemma 5 is fulfilled for the pair ((ai�α−i
(kν)

)�−ei). �

Definition 11. An action profile α Pareto-dominates a profile α̃ if gi(α) ≥ gi(α̃) for ev-
ery player i and gj(α) > gj(α̃) for at least one player j.

An action profile is Pareto-efficient if it is not Pareto-dominated by any other action
profile.

Lemma 19. Suppose that gi(a) = bi(ai)m(a) − ci(ai). Then any Pareto-efficient pure ac-
tion profile is enforceable.

Proof. Fix a Pareto-efficient pure action profile a ∈ A. Because its payoff is on the “up-
per right” boundary of V , there exists a direction N ∈ Rn with Ni > 0 for every i such
that g(a) = arg maxv∈V N	v. Then β with row vectors βi := ∑

j �=ib
j(aj)Nj/Ni enforces a.
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Indeed, for every ãi ∈ Ai, we have

gi(ãi� a−i)+βim(ãi� a−i) = gi(ãi� a−i)+ 1
Ni

∑
j �=i

(Njgj(ãi� a−i)+Njcj(aj))

= 1
Ni

n∑
j=1

Njgj(ãi� a−i)+ 1
Ni

∑
j �=i

Njcj(aj)

≤ 1
Ni

n∑
j=1

Njgj(a)+ 1
Ni

∑
j �=i

Njcj(aj)

= gi(a)+βim(a)� �

Finally, we establish that for every player i there exists at least one Pareto-efficient
action profile globally maximizing player i’s payoff. Hence, from Lemmas 3 and 19, it is
enforceable on the corresponding coordinate hyperplane.

Corollary 4. Suppose that g is affine in m. Then, for every player i, there exists an
enforceable Pareto-efficient pure action profile api that maximizes gi over A. In particular,
it is enforceable on the hyperplane coordinate to the ith axis.

Proof. Let A(i) ⊆ A denote the set of pure action profiles that maximize player i’s pay-
off over A. Action profiles in A(i) can be Pareto dominated only by other action profiles
in A(i) because Pareto dominance of some ã ∈ A over a ∈ A(i) entails gi(ã) ≥ gi(a). Since
the relation of Pareto dominance is transitive and irreflexive, there cannot be any circu-
lar relations on A(i). Because there are only finitely many elements in A(i), at least one
element is not dominated, hence Pareto-efficient. Such an action profile a

p
i is enforce-

able by Lemma 19 and because it is a static best response for player i, it is enforceable
on the hyperplane orthogonal to the ith axis due to Lemma 3. �
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